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1 Introduction

Understanding the mechanism of thermalization and information spreading (scrambling)

in nonequilibrium quantum many-body systems is one of the fundamental challenges in

theoretical physics. In a classically chaotic system the information on the initial conditions

is quickly lost, which can be measured by the Lyapunov exponent that characterizes the

sensitivity of the orbit to perturbations of initial conditions. In quantum systems, one clear

fingerprint of chaos is the fact that statistical properties of the energy levels are given by
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random matrix theory (RMT) [1–3]. Quantum chaos in this sense has been the subject of

research over decades, and its possible role in the relaxation (or thermalization) of a quan-

tum system to equilibrium is still actively debated [4–11]. Further progress was made on the

treatment of black holes and holography in terms of quantum information theory [12–21].

Building on these works, Kitaev suggested to employ the so-called out-of-time-ordered cor-

relator (OTOC) [22] to probe information scrambling in black holes and in more general

quantum systems [23]. Along this line of thought one can define a quantum analog of the

classical Lyapunov exponent, which is argued to have an intrinsic upper bound under cer-

tain assumptions [24]. Based on earlier work of Sachdev and Ye [25], Kitaev put forward a

(0 + 1)-dimensional fermionic model with all-to-all random interactions that can be solved

in the large-N limit, with N the number of fermions involved [26]. While it is hard to avoid

the spin-glass phase at low temperatures in the original Sachdev-Ye model [27, 28], it is

ingeniously avoided in Kitaev’s model, where fermions are put on a single site. Despite its

apparent simplicity, this new Sachdev-Ye-Kitaev (SYK) model has a number of intriguing

properties, including the spontaneous breaking of reparametrization invariance, emergent

conformality at low energy, and maximal quantum chaos at strong coupling that points to

an underlying duality to a black hole [26, 29–33]. Since the model was announced, a variety

of generalizations appeared and computations of the OTOC in various other models were

performed [34–49], including an SYK-like tensor model without random disorder [50], mod-

ified SYK models with a tunable quantum phase transition to a nonchaotic phase [51–53],

and supersymmetric generalizations of the SYK model [54] (see also [55–59]). An analysis

of tractable SYK-type models with SUSY will not only help to better understand theoret-

ical underpinnings of the original AdS/CFT correspondence [60] but also provide insights

into condensed matter systems with emergent SUSY at low energy [61–65].

The level statistics of the SYK model was numerically examined in [66–69] via exact

diagonalization and agreement with RMT was found (although sizable discrepancies from

RMT were seen in the long-range correlation [67]). An intimate connection between the

SYK model and the so-called k-body embedded ensembles of random matrices [70, 71] was

also pointed out [67]. The algebraic symmetry classification of the SYK model based on

RMT in [66–68] was recently generalized to the N = 1 supersymmetric SYK model [72].

A random matrix analysis of tensor models has also appeared [73, 74].

In this paper, we complete the random matrix analysis of the SYK model. Specifically:

1. We extend the symmetry classification of SYK models with N = 0 and 1 SUSY that

were focused on the 4-body interaction Hamiltonian [66–68] to generic q-body inter-

actions. The correctness of our classification is then checked by detailed numerical

simulations of the SYK model.

2. We provide a detailed numerical examination of the hard-edge universality of energy-

level fluctuations near zero in SYK models.

3. We delineate the complex structure of the Hilbert space of the N = 2 SYK model

and provide a complete random matrix classification of energy-level statistics in each

eigenspace of the fermion number operator.
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This paper is organized as follows. In section 2 we review the random matrix classifi-

cation of generic Hamiltonians to make this paper self-contained. In section 3 we study the

non-supersymmetric SYK model. We determine the relevant symmetry classes and report

on detailed numerical verifications. In section 4 we study the N = 1 supersymmetric SYK

model in a similar fashion. In section 5 we introduce a new SYK-like model that shares

some properties (e.g., numerous zero-energy ground states) with the N = 2 SYK model

but is theoretically much simpler. In section 6 we investigate the N = 2 supersymmetric

SYK model. We explain why the symmetry classification of this model is far more com-

plex than for its N = 1 and 0 cousins. We identify random matrix ensembles for each

eigenspace of the fermion number operator and present a quantitative comparison between

the level statistics of the model and RMT by exact diagonalization. Section 7 is devoted

to a summary and conclusions.

Throughout this paper, we will denote the number of Majorana fermions by Nm and the

number of complex fermions by Nc. The number of fermions in the Hamiltonian is denoted

by q and that in the supercharge is denoted by q̂. Needless to say, q is even and q̂ is odd.

2 Symmetry classes in RMT

To set the stage for our later discussion focused on the supersymmetric SYK model, we

begin with a pedagogical summary of the symmetry classification scheme for a generic

Hamiltonian, also known as the Altland-Zirnbauer theory [75–77]. For broad reviews of

RMT we refer the reader to [2, 78–86].

In the early days of RMT, there were just 3 symmetry classes called the Wigner-

Dyson ensembles, which can be classified by the presence or absence of the time-reversal

invariance and the spin-rotational invariance of the Hamiltonian [87–90]. It is convenient

to distinguish them by the so-called Dyson index β, which counts the number of degrees of

freedom per matrix element in the corresponding random matrix ensembles: β = 1, 2, and

4 corresponds, respectively, to the Gaussian Orthogonal Ensemble (GOE), the Gaussian

Unitary Ensemble (GUE), and the Gaussian Symplectic Ensemble (GSE). By diagonalizing

a random matrix drawn from each ensemble, one finds the joint probability density for all

eigenvalues {λn} to be of the form P (λ) ∝
∏
i<j |λi − λj |β

∏
n e
−V (λn), where V (x) ∝ x2

is a Gaussian potential. The spectral density R(λ), also called the one-point function,

measures the number of levels in a given interval [λ, λ+ dλ]. In RMT, one can show under

mild assumptions that for large matrix dimension this function approaches a semicircle

R(λ) ∝
√

Λ2 − λ2 (Wigner’s semicircle law), but in real physical systems R(λ) is typically

sensitive to the microscopic details of the Hamiltonian, and one cannot exactly match R(λ)

in RMT with the physical spectral density. By contrast, if one looks into level correlations

after “unfolding”, which locally normalizes the level density to 1, one encounters universal

agreement of physical short-range spectral correlations with RMT.1 Heuristically, larger β

1A cautionary remark is in order. When unitary symmetries are present, the Hamiltonian can be trans-

formed to a block-diagonal form, where each block is statistically independent. The spectral correlations

must then be measured in each independent block. If one sloppily mixes up all eigenvalues before measur-

ing the spectral correlations, the outcome is just Poisson statistics (see section III.B.5 of [2] for a detailed

discussion).
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implies stronger level repulsion and a more rigid spectrum. A quantum harmonic oscillator

exhibits a spectrum with strictly equal spacings, while a completely random point process

allows two levels to come arbitrarily close to each other with nonzero probability. RMT

predicts a nontrivial behavior that falls in between these two extremes. It is well known that

a quantum system whose classical limit is chaotic tends to exhibit energy-level statistics

well described by RMT [1, 7, 8]. Also, Wigner-Dyson statistics emerges in mesoscopic

systems with disorder, where the theoretical understanding was achieved by Efetov [91].

An important property of the β = 4 class is the Kramers degeneracy of levels. In gen-

eral, when there is an antiunitary operator P acting on the Hilbert space that commutes

with the Hamiltonian, P−1HP = H, it follows that for each eigenstate ψ there is another

state Pψ that has the same energy as ψ. If P 2 = 1 (GOE), Pψ is not necessarily linearly

independent of ψ, hence levels are not degenerate in general, whereas if P 2 = −1 (GSE)

their linear independence can be readily shown, so that all levels must be twofold degen-

erate. We note that the existence of such an operator is a sufficient, but not necessary,

condition for the degeneracy of eigenvalues.

Long after the early work by Wigner and Dyson, 7 new symmetry classes were identified

in physics. Hence there are now 10 classes in total. (Some authors count them as 12 by

distinguishing subclasses more carefully, as we will describe later.) The salient feature

pertinent to those post-Dyson classes is a spectral mirror symmetry: the energy levels

are symmetric about the origin (also called “hard edge”). This means that, while they

show the standard GUE/GOE/GSE level correlations in the bulk of the spectrum (i.e.,

sufficiently far away from the edges of the energy band), their level density exhibits a

universal shape near the origin, different for each symmetry class. (Such a property is

absent in the Wigner-Dyson classes since the spectrum is translationally invariant after

unfolding and there is no special point in the spectrum.) The physical significance of such

near-zero eigenvalues depends on the specific context in which RMT is used. In Quantum

Chromodynamics (QCD), small eigenvalues of the Dirac operator in Euclidean spacetime

are intimately connected to the spontaneous breaking of chiral symmetry and the origin

of mass [79, 92, 93]. In mesoscopic systems that are in proximity to superconductors,

small energy levels describe low-energy quasiparticles and hence affect transport properties

of the system at low temperatures. In supersymmetric theories the minimal energy is

nonnegative, and it takes a positive value when SUSY is spontaneously broken [94–96].

The three chiral ensembles [79, 97–100] relevant to systems with Dirac fermions such

as QCD and graphene are denoted by chGUE/chGOE/chGSE (also known as the Wishart-

Laguerre ensembles) and have the block structure

(
0 ∗
∗ 0

)
, which anticommutes with the

chirality operator γ5 =

(
1 0

0 −1

)
. This accounts for the spectral mirror symmetry in these 3

classes. We remark that chiral symmetry (i.e., a unitary operation that anticommutes with

the Hamiltonian) is often called a sublattice symmetry in the condensed matter literature.

A unique characteristic of the chiral classes in contrast to the other 4 mirror-symmetric

classes is that there can be an arbitrary number of exact zero modes. This is easily seen

by making the matrix block ∗ rectangular, say, of size m × n. When |m − n| is large,

the nonzero levels are pushed away from the origin due to level repulsion. In the limit

– 4 –
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m,n → ∞ with m/n 6→ 1 the macroscopic spectral density fails to approach Wigner’s

semicircle and rather converges to what is called the Marčenko-Pastur distribution [101].

In the thermodynamic limit of QCD with nonzero fermion mass, the number of zero modes

|m − n| ∝ V
1/2
4 [93] while m,n ∝ V4, where V4 is the Euclidean spacetime volume, and

hence the physical limit is m/n→ 1.

The other 4 post-Dyson classes are referred to as the Bogoliubov-de Gennes (BdG)

ensembles. They were identified by Altland and Zirnbauer [75, 102]. It is the particle-hole

symmetry that accounts for the mirror symmetry of the spectra in these classes. This

completes the ten-fold classification of RMT as summarized in table 1. There is a one-to-

one correspondence between each ensemble and symmetric spaces in Cartan’s classification,

so the RMT ensembles are often called by abstract names such as A, AI, and AII due

to Cartan [76]. In recent years this classification scheme was found to be useful in the

classification of topological quantum materials [86, 103–107].

We refer the reader to [75–77, 108, 109] for the detailed mathematics of the Altland-

Zirnbauer theory and only recall the essential ingredients here. Let T+ (T−) denote an

antiunitary operator that commutes (anticommutes) with the Hamiltonian.2 (Note that

any antiunitary operator can be expressed as the product of a unitary operator and the

complex conjugation operator K.) The chirality operator (a unitary operator that anti-

commutes with the Hamiltonian and squares to 1) is denoted by Λ from here on. The first

step is to check whether T+, T−, and Λ exist for a given Hamiltonian. If both T+ and

T− exist, one always has chiral symmetry, Λ = T+T−. The second step is to check if the

antiunitary symmetry squares to +1 or −1. This allows one to figure out which class the

Hamiltonian belongs to. However, there is an additional subtlety in the symmetry classes

BD and DIII. There one has to distinguish two cases according to the parity of the dimen-

sion of the Hilbert space (see table 1), which results in the presence/absence of exact zero

modes. The classes B and DIII-odd have physical applications to superconductors with

p-wave pairing [110–113]. The functional forms of the universal level density near zero for

all the 7 post-Dyson classes are explicitly tabulated in, e.g., [113, 114]. Note that, because

class B and class C share the same set of indices α and β, their level density near zero

coincides, except for a delta function at the origin in class B.

3 N = 0 SYK model

In this and the next section, we complete the random matrix classification of the SYK

model with N = 0 and 1 SUSY with q-body interactions, generalizing earlier work focused

mostly on q = 4 [66–68, 72]. Many of the concepts and techniques employed here will be

taken up again for the analysis of the N = 2 SYK model in section 6.

3.1 Definitions of relevant operators

To begin with, recall that when we speak of a non-SUSY SYK model, there are actually

two models, one involving Majorana fermions [26, 30, 31] and another involving complex

2Here we conform to the notation of [72]. Rather than calling T± time-reversal symmetry or spin-

rotational symmetry, we prefer to denote them by abstract symbols, since the proper physical interpretation

of each operator depends on the specific system.

– 5 –
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RMT Cartan
name

β α T 2
+ T 2

− Λ2 Block
structure

#Zero
modes

GUE A 2 — — — — H = H† complex 0

GOE AI 1 — +1 — — H = HT real 0

GSE AII 4 — −1 — — H = H† quaternion 0

chGUE AIII 2 2ν + 1 — — 1

(
0 W

W † 0

)
,
W : complex

n×m |n−m|
(≡ ν)

chGOE BDI 1 ν +1 +1 1

(
0 W

W T 0

)
,
W : real
n×m

chGSE CII 4 4ν + 3 −1 −1 1

(
0 W

W † 0

)
,
W : quaternion

n×m 2ν

BdG

C 2 2 — −1 —

(
A B

B −A

)
,
A: Hermitian,

B: complex symmetric
0

CI 1 1 +1 −1 1

(
0 Z

Z 0

)
, Z: complex symmetric 0

BD
D

2
0

— +1 —
H

pure imaginary
and skew-symmetric

dim[H] = even 0

B 2 dim[H] = odd 1

DIII

DIII
even

4

1

−1 +1 1

(
0 Z

−Z 0

)
,

Z: complex and
skew-symmetric

dim[Z] = even 0

DIII
odd

5 dim[Z] = odd 2

Table 1. Classification of RMT symmetry classes. In the first three rows we list the Wigner-Dyson

classes. β is the Dyson index defined in the main text. In the remaining rows we list the chiral and

BdG classes. The joint probability density for energy levels in these ensembles assumes the form

P (λ) ∝
∏
i<j |λ2i − λ2j |β

∏
n |λn|α, and the indices β and α are presented in the third and fourth

column, respectively. α is related to the number of exact zero modes. The index ν defined in the

last column is related to the topological charge of the gauge field in non-Abelian gauge theories.

Here we define ν to be nonnegative. The symbol “—” implies that there is no symmetry in that

class. The classes B and DIII-odd are sometimes omitted in other references, but we include them

here for completeness. T+ (T−) denotes an antiunitary operator that commutes (anticommutes)

with the Hamiltonian, and Λ is the chirality operator. If both T+ and T− are present, there is chiral

symmetry, but the converse is not true in general. Our notation in this table is such that A is the

complex conjugate of A and A† is the conjugate transpose of A, i.e., A† = A
T

.

fermions [29, 35, 44, 66, 115]. In either case it is useful to start with the creation and

annihilation operators of complex fermions, denoted by ca and ca, respectively, obeying

{ca, cb} = {ca, cb} = 0 , {ca, cb} = δab with a = 1, . . . , Nc . (3.1)

These operators can be represented as real matrices by adopting the Jordan-Wigner con-

struction [35, 66] ca = (
∏

1≤b<a σ
z
b )(σxa +iσya)/2 and ca = (ca)

†.3 We also define the fermion

3The structure of energy levels including degeneracy is of course independent of the basis choice, but

making c and c real makes symmetry classification based on antiunitary operations more transparent.

– 6 –
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number operator

F ≡
Nc∑
a=1

caca . (3.2)

The total Hilbert space V of dimension 2Nc splits into two sectors with even/odd eigenvalue

of F , i.e., (−1)F = ±1.

One can construct Nm = 2Nc Majorana fermions χi from complex fermions as

χ2k−1 =
ck + ck√

2
, χ2k =

ck − ck√
2 i

, k = 1, . . . , Nc , {χi, χj} = δij . (3.3)

The antiunitary operator of special importance in the SYK model is the particle-hole

operator [66–68, 116]

P = K

Nc∏
a=1

(ca + ca) ≡ K(c1 + c1) · · · (cNc
+ cNc

) , (3.4)

where K is complex conjugation. One can show [66–68]

PcaP = ηca , P caP = ηca , PχiP = ηχi , (3.5)

P 2 = (−1)bNc/2c , η = (−1)b
Nc−1

2
c . (3.6)

Here bxc denotes the greatest integer that does not exceed x. We stress that all of the

above formulas hold irrespective of the form of the Hamiltonian.

3.2 Classification

Let us begin with the non-supersymmetric SYK model with Nm Majorana fermions for

Nm even.4 For a positive even integer 2 ≤ q ≤ Nm, the Hamiltonian [26, 30, 31] is given by

H = iq/2
∑

1≤i1<···<iq≤Nm

Ji1···iqχi1χi2 · · ·χiq , (3.7)

where Ji1···iq are independent real Gaussian random variables with the dimension of energy,

〈Ji1···iq〉 = 0 and 〈J2
i1···iq〉 = (q−1)!

Nq−1
m

J2. The prefactor iq/2 is necessary to make H Hermitian.

This model is conjectured to be dual to a black hole in the large-N limit [26, 30, 31] and

for βJ � 1 saturates the bound on quantum chaos proposed in [24]. While the q = 4

version has attracted most of the attention in the literature, it is useful to consider general

q because the theory simplifies in the large-q limit [26, 31].

Now, due to the Majorana nature of the fermions, the fermion number is only conserved

modulo 2. The Hilbert space naturally admits a decomposition into two sectors of equal

dimensions, with a definitive parity of the fermion number. Since H does not mix sectors

with (−1)F = +1 and −1, H acquires a block-diagonal form

(
A 0

0 B

)
, where A and B are

Hermitian square matrices of equal dimensions. By examining the commutation relation

4The Hilbert space for odd Nm can be constructed by adding another Majorana fermion that does not

interact with the rest. For the symmetry classification of the SYK model with odd Nm, see [66].
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N = 0 SYK
q = 0 (mod 4)

Block structure degeneracy β mirror
symmetry

Nm = 0 (mod 8)

(
A 0
0 B

)
, A,B: real

symmetric
1 1

No

Nm = 2 (mod 8)

(
A 0
0 A

)
, A: Hermitian 2 2

Nm = 4 (mod 8)

(
A 0
0 B

)
,

A,B:
quaternion

real
2 4

Nm = 6 (mod 8)

(
A 0
0 A

)
, A: Hermitian 2 2

Table 2. Symmetry classification of H in the Majorana SYK model (no SUSY) for q = 0 (mod 4).

This table is consistent with [66–68, 72].

of H and P , one finds that q = 0 (mod 4) and q = 2 (mod 4) have to be treated separately

because HP = (−1)q/2PH. The spectral statistics for q = 2 (mod 4) did not receive

attention in [66–68, 72],5 and we shall work it out below. This is a new result.

q = 0 (mod 4). In this case [H,P ] = 0. Thus P corresponds to T+ in table 1. For

Nm = 0 and 4 (mod 8), P is a bosonic operator and maps each parity sector onto itself.

For Nm = 0 (mod 8), P 2 = +1 so that H = GOE ⊕ GOE. For Nm = 4 (mod 8),

P 2 = −1 so that H = GSE ⊕ GSE. In both cases the two blocks of H are independent

in general. Finally, for Nm = 2 and 6 (mod 8) P is a fermionic operator and exchanges

the two sectors. Hence H =

(
A 0

0 A

)
, where A = A† belongs to GUE. It follows that the

eigenvalues are twofold degenerate for Nm = 2, 4 and 6 (mod 8), and unpaired only for

Nm = 0 (mod 8). This is summarized in table 2, which is consistent with [66–68, 72].

q = 2 (mod 4). Now {H,P} = 0. Thus P corresponds to T− in table 1 and the

spectrum enjoys a mirror symmetry λ↔ −λ.6 For Nm = 0 and 4 (mod 8), P is a bosonic

operator and maps each parity sector onto itself. For Nm = 0 (mod 8), P 2 = +1 so that

H = BdG(D) ⊕ BdG(D). (It is not class B because the dimension 2Nm/2−1 of each sector

is even.) For Nm = 4 (mod 8), P 2 = −1 so that H = BdG(C) ⊕ BdG(C). In both cases

the two blocks of H are independent in general. For Nm = 2 and 6 (mod 8), H =

(
A 0

0 −A

)
,

where A = A† belongs to GUE, for the same reason as above. This is summarized in table 3.

As a generalization one can also consider a Hamiltonian that includes both a q = 0

(mod 4) term and a q = 2 (mod 4) term. Then H has no antiunitary symmetry and the

result is just GUE⊕GUE, i.e., H =

(
A 0

0 B

)
with A and B independent Hermitian matrices.

5An exception is the simplest case q = 2, which was analytically solved at finite Nm [56] and in the

limit Nm → ∞ [31, 55] (see also [68, 117]). Note that H in this theory is just a random mass with no

interactions, so one cannot extrapolate features of q = 2 to the more nontrivial q ≥ 4 cases.
6What is meant here is that the mirror symmetry is present for every single realization {Ji1,··· ,iq} of

the disorder.
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N = 0 SYK
q = 2 (mod 4)

Block structure degeneracy β mirror
symmetry

Nm = 0 (mod 8)

(
A 0
0 B

)
, A,B ∈ BdG(D)

1 2 Yes
Nm = 2 (mod 8)

(
A 0
0 −A

)
, A: Hermitian

Nm = 4 (mod 8)

(
A 0
0 B

)
, A,B ∈ BdG(C)

Nm = 6 (mod 8)

(
A 0
0 −A

)
, A: Hermitian

Table 3. Symmetry classification of H in the Majorana SYK model (no SUSY) for q = 2 (mod 4).

For the block structure of each class we refer to table 1.

Even when the symmetry class of H is known, it is highly nontrivial whether the

level correlations of H quantitatively coincide with those of RMT. In the SYK model (3.7)

there are only O(N q
m) independent random couplings, while a dense random matrix has

O(2Nm) independent random elements. The level statistics of H for q = 4 has been

studied numerically via exact diagonalization [66–69] and agreement with the RMT classes

in table 2 was found for not too small Nm. This is consistent with the quantum chaotic

behavior of the model [26, 31].

3.3 Numerical simulations

Level correlations in the bulk. Here we report on the first numerical analysis of the

bulk statistics of energy levels for the N = 0 SYK model with q = 6 via exact diagonaliza-

tion to test table 3. To identify the symmetry class we employ the probability distribution

P (r) of the ratio r = (λn+2 − λn+1)/(λn+1 − λn) of two consecutive level spacings in a

sorted spectrum, as it does not require an unfolding procedure [66, 118, 119]. We used

accurate Wigner-like surmises for the Wigner-Dyson classes derived in [119],

PW (r) =
1

Zβ

(r + r2)β

(1 + r + r2)1+3β/2
(3.8)

with Z1 = 8/27, Z2 = 4π/81
√

3, and Z4 = 4π/729
√

3. For Poisson statistics we have

PP (r) = 1/(1 + r)2 [119]. Our numerical results are displayed in figure 1. Without any

fitting parameter, they all agree excellently with the GUE (β = 2) as predicted by table 3.

This indicates that quantum chaotic dynamics emerges in this model even for such small

values of Nm.

Universality at the hard edge. In class C and D the origin is a special point due to the

spectral mirror symmetry, and the level statistics near zero shows universal fluctuations

different from those in the bulk of the spectrum [75]. Their form is solely determined

by the global symmetries of the Hamiltonian and is insensitive to microscopic details of

interactions. In figure 2 we compare the distributions of the near-zero energy levels of the
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Figure 1. Statistical distribution of the ratio r of two consecutive level spacings for the N = 0

SYK model with q = 6. The number of realizations used for averaging was 103 for Nm = 16, 102 for

Nm = 18 and 20, and 10 for Nm = 22. The blue lines are surmises for the RMT classes in table 3.
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Figure 2. Distributions of the eigenvalues of H with smallest absolute values in the N = 0 SYK

model with q = 6 and J = 1, compared with the predictions (solid lines) of the RMT classes in

table 3. The number of independent random samples is 104 for each plot. The small deviations

from RMT for the third nonzero eigenvalue are interpreted to be effects of finite Nm.

N = 0 SYK model with q = 6 and those of RMT, finding nearly perfect agreement.7 The

nonzero (zero) intercept at λ = 0 in class D (class C) directly reflects the fact that α = 0

for class D (α = 2 for class C), where α is the index listed in table 1.

3.4 Overview of the N = 0 SYK model with complex fermions

We finally comment on the non-supersymmetric SYK model with complex fermions [29,

35, 44, 66, 115]. The Hamiltonian reads H =
∑Nc

i,j,k,`=1 Jij;k`cicjckc` − µF , where µ is the

chemical potential for the fermion number operator F in (3.2) and the coupling is a complex

Gaussian random variable obeying Jij;k` = −Jji;k` = −Jij;`k = J∗k`;ij . Since H preserves the

fermion number, H as a matrix has a block-diagonal structure representing each eigenspace

of F = 0, 1, . . . , Nc. There is no antiunitary symmetry for H and consequently the levels

collected in each block of H would obey GUE. Intriguingly, one can amend H by adding

correction terms so that it commutes with P [35, 66]. In this case, the half-filled sector

F = Nc/2 (which only exists for Nc even) is symmetric under P and its level statistics

7To obtain these plots we determined the RMT curves numerically for matrix size 103 using the mapping

to tridiagonal matrices invented in [120]. We then rescaled the RMT curves as p(x) → cp(cx) and tuned

the parameter c to achieve the best fit to the data, where c is common to the three curves in each plot.
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becomes either GOE (if P 2 = +1) or GSE (if P 2 = −1). In all other sectors, the level

statistics remains GUE, but there arises a degeneracy between the sector F = k and the

sector F = Nc − k for k 6= Nc/2 since they are mapped to each other by P .

4 N = 1 SYK model

4.1 Classification

The supersymmetric generalization of the SYK model was introduced in [54] (see

also [55–59]). The model with N = 1 SUSY has the Hamiltonian H = Q2 with supercharge

Q = i(q̂−1)/2
∑

1≤i1<···<iq̂≤Nm

Ci1i2···iq̂χi1χi2 · · ·χiq̂ , (4.1)

where 1 ≤ q̂ ≤ Nm is an odd integer. (Note that Q† = Q.) In this case H involves terms

with up to 2q̂−2 fermions. The couplings Ci1i2···iq̂ are independent real Gaussian variables

with mean 〈Ci1i2···iq̂〉 = 0 and variance 〈C2
i1i2···iq̂〉 = (q̂−1)!

N q̂−1
m

J for some J > 0. The ground-

state energy of this model is evidently nonnegative. In [54] a strictly positive ground-state

energy that decreases exponentially with N was obtained numerically, indicating that SUSY

is dynamically broken at finite N and restored only in the large-N limit.

It is easy to verify the simple relation

ρH(λ) =
1√
λ
ρQ(
√
λ ) (λ ≥ 0) (4.2)

between the spectral densities of H and Q, where ρH(λ) ≡
〈
Tr δ(λ − H)

〉
and

ρQ(X) ≡
〈
Tr δ(X −Q)

〉
. Equation (4.2) reveals that the level density of H would blow

up as λ−1/2 near zero if Q had a nonzero density of states at the origin for large Nm. This

blow-up was indeed seen in the exact diagonalization analysis [72] as well as in analytical

studies of the low-energy Schwarzian theory [54, 121, 122]. Since Q is more fundamental

than H we will focus on the level structure of Q below, viewing it as a matrix acting on

the many-body Fock space.

The random matrix classification for q̂ = 3 has recently been put forward in [72]. Here

we will generalize this to all odd q̂, with emphasis on the difference of symmetry classes

between q̂ = 1 (mod 4) and q̂ = 3 (mod 4). The main theoretical novelty in the N = 1

SYK model is the fact that Q anticommutes with the fermion parity operator (−1)F . Thus

(−1)F plays the role of γ5 for the Dirac operator in QCD and naturally induces a block

structure

(
0 ∗
∗ † 0

)
for Q. The spectrum of Q is therefore symmetric under λ↔ −λ. Since

the block ∗ is a square matrix, there are no topological zero modes, i.e., all eigenvalues of

Q are nonzero unless fine-tuning of the matrix elements is performed. From the relation

H = Q2 we conclude that all eigenvalues of H should be at least twofold degenerate.

Following [72] we introduce a new antiunitary operator R ≡ P (−1)F . We have

PQP = (−1)(q̂−1)/2ηQ and RQR = (−1)(q̂−1)/2+Nc+1ηQ , (4.3)
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N = 1 SYK

q̂ = 1 (mod 4)
P 2 R2 (anti-)

commutators
β class of Q

degeneracy
of levels in H

Nm = 0 (mod 8) +1 +1
{P,Q} = 0

[R,Q] = 0
1

chGOE (BDI)

ν = 0
2

Nm = 2 (mod 8) +1 −1
[P,Q] = 0

{R,Q} = 0
1 BdG (CI) 2

Nm = 4 (mod 8) −1 −1
{P,Q} = 0

[R,Q] = 0
4

chGSE (CII)

ν = 0
4

Nm = 6 (mod 8) −1 +1
[P,Q] = 0

{R,Q} = 0
4 BdG

(DIII-even)
4

Table 4. Symmetry classification of Q in the N = 1 SYK model for q̂ = 1 (mod 4). For the block

structure of each class we refer to table 1.

N = 1 SYK

q̂ = 3 (mod 4)
P 2 R2 (anti-)

commutators
β class of Q

degeneracy
of levels in H

Nm = 0 (mod 8) +1 +1
[P,Q] = 0

{R,Q} = 0
1

chGOE (BDI)

ν = 0
2

Nm = 2 (mod 8) +1 −1
{P,Q} = 0

[R,Q] = 0
4 BdG

(DIII-even)
4

Nm = 4 (mod 8) −1 −1
[P,Q] = 0

{R,Q} = 0
4

chGSE (CII)

ν = 0
4

Nm = 6 (mod 8) −1 +1
{P,Q} = 0

[R,Q] = 0
1 BdG (CI) 2

Table 5. Symmetry classification of Q in the N = 1 SYK model for q̂ = 3 (mod 4). This table is

consistent with [72]. For the block structure of each class we refer to table 1.

where Nc = Nm/2 as before and η is given in (3.6). These relations, combined with table 1,

lead to the classification of Q shown in table 4 for q̂ = 1 (mod 4) and table 5 for q̂ = 3

(mod 4). By comparing the (anti-)commutators in each table, we see that the roles of

P and R are exchanged for q̂ = 1 and 3. Consequently the positions of BdG(CI) and

BdG(DIII-even) are exchanged. In these tables we made it clear that we are considering

chGOE and chGSE in the topologically trivial sector ν = 0.

One can also consider a superposition of multiple fermionic operators in the super-

charge, e.g, Q = i
∑

ijk Cijkχiχjχk +
∑

iDiχi, where {Cijk} and {Di} are independent

real Gaussian couplings. Then Q fails to commute or anti-commute with P and R and the

symmetry class is changed: Q now belongs to the β = 2 chGUE (AIII) class with ν = 0.

There is no degeneracy of eigenvalues for Q while all eigenvalues of H = Q2 are two-fold

degenerate since {(−1)F , Q} = 0.

In all cases considered above for N = 1, the symmetry classes differ from the Wigner-

Dyson classes because of the presence of chiral symmetry (−1)F . This difference manifests

itself in distinctive level correlations near the origin (universality at the hard edge). In

order to expose this in the thermal N = 1 SYK model, the temperature must be lowered

to the scale of the smallest eigenvalue of H. This is exponentially small in Nm.
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Figure 3. Distribution of the ratio r of two consecutive level spacings in the N = 1 SYK model

with q̂ = 5. The number of realizations used for averaging was 103 for Nm = 16, 100 for Nm = 18

and 22, and 200 for Nm = 20. The blue lines are surmises for the RMT classes in table 4.

4.2 Numerical simulations

Level correlations in the bulk. Previously, the level statistics in the bulk of the energy

spectrum for the N = 1 SYK model with q̂ = 3 was studied in [72] and results consistent

with table 5 were reported. Here we report the first numerical analysis of the bulk statistics

for the N = 1 SYK model with q̂ = 5 via exact diagonalization, to test table 4. To

identify the symmetry class, we again used the ratio of two consecutive level spacings. Our

numerical results are displayed in figure 3. Excellent agreement with the RMT curves of

the symmetry classes predicted by table 4 is observed. This evidences the existence of

quantum chaotic dynamics in this model and corroborates our classification scheme.

Universality at the hard edge. Next we proceed to the investigation of universality of

the level distributions near the origin. In contrast to the N = 0 SYK model, whose hard

edge at λ = 0 was in the middle of the spectrum, the fluctuations of the smallest eigenvalues

of Q (or H) are of direct physical significance for the low-temperature thermodynamics of

the N = 1 SYK model. We have numerically studied the distributions of the smallest

three eigenvalues of Q for the N = 1 SYK model with q̂ = 3 and 5 for varying Nm. (The

twofold degeneracy of each level was resolved in the case of β = 4.) The results for q̂ = 3

and 5 are shown in figures 4 and 5, respectively. They show very good agreement with the

corresponding RMT predictions in tables 5 and 4. The smallest eigenvalue approaches zero

from above for larger Nm, indicating restoration of SUSY in the large-Nm limit as already

reported in [54].

We note that the RMT classes chGOE (BDI) and chGSE (CII) were originally invented

and exploited in attempts to theoretically understand fluctuations of small eigenvalues of

the Euclidean QCD Dirac operator with special antiunitary symmetries in a finite vol-

ume [99, 100, 123–125],8 related to spontaneous breaking of chiral symmetry through the

Banks-Casher relation [92]. The RMT predictions agree well with the Dirac spectra taken

from lattice QCD simulations [131]. It is a nontrivial observation that the smallest energy

levels of the N = 1 SYK model, which set the scale for the spontaneous breaking of SUSY,

obey the same statistics as the eigenvalues of the Dirac operator in QCD, which has to-

tally different microscopic interactions compared to the SYK model. This is yet another

example for random matrix universality.

8See also [126–130] for related works in mathematics.
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Figure 4. Distributions of the smallest 3 eigenvalues of Q in (4.1) in the N = 1 SYK model with

q̂ = 3 and J = 1, compared with the predictions (solid lines) of the RMT classes in table 5. The

number of independent random samples is 104 for each plot. As in figure 2, the small deviations

from RMT for λ3 are interpreted to be effects of finite Nm.
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Figure 5. Same as figure 4 but for q̂ = 5 and compared with the RMT predictions in table 4.
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5 Interlude: a simple model bridging the gap between N = 1 and 2

5.1 Motivation and definition

The SYK model with N = 2 SUSY [54] has the Hamiltonian H = {Q,Q} with two

supercharges Q and Q, each comprising an odd number of complex fermions. This model

preserves the U(1) fermion number exactly, so that the Hamiltonian is block-diagonal in

the fermion-number eigenbasis. As shown by the Witten-index computation in [54], the

Hamiltonian has an extensive number of exact zero modes9 and SUSY is unbroken at finite

Nc. These features are in marked contrast to the N = 1 SYK model, where the fermion

number is only conserved modulo 2, the Hamiltonian is positive definite with no exact zero

modes, and SUSY is spontaneously broken at finite Nc.

While there is no logical obstacle to moving from N = 1 to 2, it is helpful to have a

simple model that serves as a bridge between these two theories. The model we designed

for this purpose is defined by the Hamiltonian H = M2 with the Hermitian operator

M ≡ ip/2
∑

1≤j1<···<jp≤Nc

(
Zj1···jp cj1 · · · cjp + Zj1···jp cj1 · · · cjp

)
, (5.1)

where 1 ≤ p ≤ Nc is an even integer and Zj1···jp are independent complex Gaussian

random variables with mean zero and 〈ZabZab〉 = 2J/N2
c for some J > 0. The creation and

annihilation operators ca and ca were introduced in section 3.1. Because of M = M † we

have H ≥ 0, similarly to the supersymmetric SYK models. If we forcefully substitute p = 3

and let ip/2 → i, then M = Q + Q and H = M2 = {Q,Q}, i.e., the N = 2 SYK model is

recovered (see section 6). What difference emerges if we retain an even number of fermions

in M? Of course it makes M a bosonic operator and destroys SUSY. At this cost, however,

we gain three new features that were missing in the N = 1 SYK model: (i) the fermion

number is conserved modulo 2p (rather than modulo 2), (ii) H has a large number of exact

zero modes, and (iii) an interplay between Nc and F emerges in the symmetry classification

of energy-level statistics. The last point is especially intriguing since this property is shared

by the N = 2 SYK model (section 6). This is why we regard this model as “intermediate”

between the N = 1 and N = 2 SYK models. Studying the level structure of this exotic

model provides a useful digression before tackling the N = 2 case.

By exact diagonalization we have numerically computed the spectral density of M

for p = 2 and 4, see figure 6. In all plots there is a delta function at zero due to the

macroscopic number of zero-energy states. Interestingly, the global shape never resembles

Wigner’s semicircle but rather depends sensitively on both p and Nc. For p = 2 we observe

oscillations in the middle of the spectrum, for which we currently do not have a simple

explanation. The case p = 2 could be more the exception than the rule,10 much like the

q = 2 SYK model that is solvable and nonchaotic [31, 56, 68] unlike its q > 2 counterparts.

9The existence of a macroscopic number of ground states is a familiar phenomenon in lattice models

with exact SUSY [132–137].
10We speculate that the spectral density for this case may even be computed exactly since M is just a

fermion bilinear, but this is beyond the scope of this paper.
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Figure 6. Spectral density of M in (5.1) for p = 2 (top) and 4 (bottom) at Nc = 9 and 10, averaged

over many random samples. Since the spectra are symmetric about 0, only the nonnegative part

is shown. The sharp peak at the origin in each plot represents the density of exact zero modes. In

all plots J = 1 and the total density is normalized to 1. The blue dashed lines in the bottom plots

are analytic approximations (5.9) based on the Marčenko-Pastur law.

For both p = 2 and 4, a close inspection of the plots near the origin reveals that for odd

Nc there is a dip of the density around the origin, indicating that small nonzero levels are

repelled from the origin, while there is no such repulsion for even Nc. The same tendency

of the spectral density (albeit with the parity of Nc reversed) has been observed for the

N = 2 SYK model, too [121]. We will give a simple explanation of this phenomenon later.

5.2 Classification for p = 2

To make the presentation as simple as possible, we shall begin with p = 2, in which case

the fermion number F is conserved modulo 4. The Hilbert space V of Nc complex fermions

can be arranged into a direct sum of four spaces V 0,1,2,3, where V f is the eigenspace of F

corresponding to F = f (mod 4), i.e.,

V = V 0 ⊕ V 1 ⊕ V 2 ⊕ V 3 (5.2)

with dim(V ) =
∑3

f=0 dim(V f ) = 2Nc and

Df ≡ dim(V f ) =

b(Nc−f)/4c∑
k=0

(
Nc

4k + f

)
. (5.3)

The numbers D0,1,2,3 are listed for 3 ≤ Nc ≤ 10 in table 6. Since there is no nonzero matrix

element of M between states with different parity of F we have M =

(
0 A0

A†0 0

)
⊕

(
0 A1

A†1 0

)
,
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Nc 3 4 5 6 7 8 9 10

D0 1 2 6 16 36 72 136 256

D2 3 6 10 16 28 56 120 256

#Zero modes 2 4 4 0 8 16 16 0

D1 3 4 6 12 28 64 136 272

D3 1 4 10 20 36 64 120 240

#Zero modes 2 0 4 8 8 0 16 32

P 2 −1 1 1 −1 −1 1 1 −1

S2 (−1)F+1i (−1)F (−1)F+1i (−1)F (−1)F+1i (−1)F (−1)F+1i (−1)F

Table 6. Model (5.1) for p = 2. We list the dimensions (5.3) of the eigenspaces of F (mod 4).

Uncolored blocks belong to chGUE (AIII)β=2, while : chGSE (CII)β=4 with ν = |D1 − D3|/2,

: BdG (DIII-even)β=4, : chGOE (BDI)β=1 with ν = |D0−D2|, and : BdG (CI)β=1. Details

of each class can be found in table 1. Also shown are the squares of the antiunitary operators P

and S. The symmetry pattern is periodic in Nc with period 4.

where the first (second) term corresponds to V 0 ⊕ V 2 (V 1 ⊕ V 3). The chiral structure in

each term is due to the chiral symmetry {iF ,M} = 0, which ensures the spectral mirror

symmetry of M .

It should be stressed that A0 and A1 are in general rectangular. When they become

a square matrix can be read off from table 6. These cases are colored in red and green.

They only occur for even Nc (which is also true for p = 4, see table 7 below). On the other

hand, for odd Nc, both A0 and A1 are rectangular. As is well known from studies in chiral

RMT [79, 100], in that case the nonzero eigenvalues of M (i.e., the nonzero singular values

of A0 and A1) are pushed away from the origin by the large number of exact zero modes.

Indeed, α in table 1 is proportional to the number of zero modes, and large α suppresses

the joint probability density of eigenvalues near zero. This leads to the dip around the

origin in the left plots of figure 6. However, for even Nc, in the subspaces without exact

zero modes there is no repulsion of the nonzero modes from the origin, and thus no dip of

the density (which is summed over all subspaces) shows up near zero.

In order to understand the level degeneracy in each sector correctly, we must figure out

the antiunitary symmetries of the matrix M . We use the particle-hole operator P in (3.4)

again. In addition, we define another antiunitary operator S ≡ P · iF . One can show

{P,M} = 0 and [S,M ] = 0 for all Nc. (5.4)

Both P 2 and S2 are tabulated in table 6, but extra care is needed for S because S2 is not

just ±1 but a nontrivial operator that depends on F .

For even Nc, each chiral block belongs to one of chGSE (CII)β=4, BdG (DIII-even)β=4,

chGOE (BDI)β=1, and BdG (CI)β=1 according to the values of P 2 and S2 (cf. table 1).

In the β = 4 classes, every nonzero level must come in quadruplets (λ, λ,−λ,−λ) due to

Kramers degeneracy and chiral symmetry.

For odd Nc, P maps a state in V 0 ⊕ V 2 to V 1 ⊕ V 3 and vice versa. Therefore the

nonzero levels of M in V 0 ⊕ V 2 must be degenerate with those in V 1 ⊕ V 3. Since there is
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no antiunitary symmetry acting within each chiral block, all uncolored sectors in table 6

belong to chGUE (AIII).

This completes the algebraic classification of the model (5.1) for p = 2 based on RMT.

This classification is periodic in Nc with period 4 as can be seen from table 6. We have

numerically checked the level degeneracy of M in each sector for various Nc and confirmed

consistency with our classification. In this process we found, surprisingly, that levels often

show a large (e.g., 16-fold) degeneracy that cannot be accounted for by our antiunitary

symmetries P and S. Such a large degeneracy, which presumably is responsible for the

wavy shape in the upper plots of figure 6 and makes the level spacing distribution for p = 2

deviate from RMT, was not observed for p = 4. We interpret this as an indication that the

model with p = 2 is just too simple to show quantum chaos and therefore do not investigate

it further.

5.3 Classification for p = 4

As a more nontrivial case we now study the p = 4 model, which preserves F (mod 8). This

time the Hilbert space decomposes as V =
7⊕

f=0

V f with

Df ≡ dim(V f ) =

b(Nc−f)/8c∑
k=0

(
Nc

8k + f

)
. (5.5)

M acquires a block-diagonal form, M =

(
0 A0

A†0 0

)
⊕

(
0 A1

A†1 0

)
⊕

(
0 A2

A†2 0

)
⊕

(
0 A3

A†3 0

)
, where the

terms correspond to V 0⊕V 4, V 1⊕V 5, V 2⊕V 6, and V 3⊕V 7, respectively. As a consequence,

the spectrum of M enjoys a mirror symmetry as in the model with p = 2. Let us define

an antiunitary operator S̃ ≡ P · κF , where κ ≡ eiπ/4 is the 8-th root of unity and P was

defined in (3.4). One can show

[P,M ] = 0 and {S̃,M} = 0 for all Nc. (5.6)

The dimension of each subspace of V is listed for 7 ≤ Nc ≤ 14 in table 7. As for

p = 2, the particle-hole operator P generates degeneracies between distinct chiral blocks.

For instance, at Nc = 11, the 166 distinct positive levels in V 0 ⊕ V 4 are degenerate with

those in V 3 ⊕ V 7. The symmetry classification is just a rerun of our arguments for p = 2

and therefore omitted here. We have numerically confirmed that table 7 gives the cor-

rect degeneracy of levels. (Unlike for p = 2, we did not observe any unexpected further

degeneracies.)

5.4 Global spectral density

Table 7 not only provides a symmetry classification but also enables us to derive a fairly

simple analytic approximation to the global spectral density. Let us recall the so-called

Marčenko-Pastur law [101]: suppose X is a complex L×N matrix with L ≤ N whose ele-

ments are independently and identically distributed with 〈Xij〉 = 0 and 〈|Xij |2〉 = σ2 <∞.

– 18 –



J
H
E
P
0
9
(
2
0
1
7
)
0
5
0

Nc 7 8 9 10 11 12 13 14

D0 1 2 10 46 166 496 1288 3004

D4 35 70 126 210 330 496 728 1092

# Positive

levels of M
1 2 10 46 166 496 728 1092

D1 7 8 10 20 66 232 728 2016

D5 21 56 126 252 462 792 1288 2016

# Positive

levels of M
7 8 10 20 (2) 66 232 728 2016 (2)

D2 21 28 36 46 66 132 364 1092

D6 7 28 84 210 462 924 1716 3004

# Positive

levels of M
7 28 36 46 66 132 364 1092

D3 35 56 84 120 166 232 364 728

D7 1 8 36 120 330 792 1716 3432

# Positive

levels of M
1 8 36 120 (2) 166 232 364 728 (2)

P 2 −1 1 1 −1 −1 1 1 −1

S̃2 −κ2F+1 κ2F κ2F−1 κ2F+2 κ2F+1 −κ2F κ2F+3 κ2F−2

Table 7. Model (5.1) for p = 4. We list the dimensions (5.5) of the eigenspaces of F (mod 8).

Uncolored blocks belong to chGUE (AIII)β=2, while : chGSE (CII)β=4 with ν = |Di −Di+4|/2,

: BdG (DIII-even)β=4, : chGOE (BDI)β=1 with ν = |Di − Di+4|, and : BdG (CI)β=1.

Details of each class can be found in table 1. The mark (2) after the number of positive levels of

M indicates that those levels are twofold degenerate, e.g., 20 (2) means 10 pairs. In each block

of given Nc there is an equal number of positive and negative levels because of chiral symmetry,

{κF ,M} = 0. Also shown are the squares of the antiunitary operators P and S̃. The symmetry

pattern is periodic in Nc with period 8.

Let us denote the L eigenvalues of
√
XX† by {ξi} ≥ 0. Then for L,N → ∞ with

L/N ∈ (0, 1] fixed, the probability distribution of {ξi} takes on the limit

PL,N (σ; ξ) =
1√
Nσ

F

(
L

N
,

ξ√
Nσ

)
, (5.7)

where

F (α, x) ≡


1

παx

√[
(1+
√
α)2−x2

] [
x2−(1−

√
α)2
]

for x ∈ [1−
√
α, 1+

√
α ] ,

0 otherwise .
(5.8)

This function satisfies the normalization
∫∞
0 dxF (α, x) = 1 for all α ∈ (0, 1]. We now

exploit this law to describe the global density of our p = 4 model, shown previously

in figure 6. Whether (5.7) works quantitatively or not is not obvious a priori because

the matrix elements of (5.1) are far from statistically independent, but rather strongly

correlated. Putting this worry aside, let us consider the Nc = 9 case first. According to

table 7, there are four chiral blocks, and two of them are copies of the other two, so we

should sum just two Marčenko-Pastur distributions. For Nc = 10, we have to sum three.
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Figure 7. Distribution of the ratio r of two consecutive level spacings of M in (5.1) with p = 4.

The number of random samples used for averaging was 180 for Nc = 10, 120 for Nc = 11, and 40

for Nc = 12. The blue lines are surmises for the RMT classes in table 7.

Taking into account that the global density in figure 6 counts both positive modes and

exact zero modes, we obtain formulas with the correct normalization,

P (p=4,Nc=9)(σ; ξ) =
2
[
10 · P10,126(σ; ξ) + 36 · P36,84(σ; ξ)

]
29 − 2(10 + 36)

, (5.9a)

P (p=4,Nc=10)(σ; ξ) =
2 · 46 · P46,210(σ; ξ) + 20 · P20,252(σ; ξ) + 120 · P120,120(σ; ξ)

210 − (2 · 46 + 20 + 120)
. (5.9b)

The parameter σ has to be tuned to achieve the best fit to the data because RMT does

not know the typical energy scale of the model. The results of the fits displayed in the

bottom plots of figure 6 show impressive quantitative agreement. We also notice a shortage

of levels near the peak density, as well as a leakage of levels toward larger values. Even

though the agreement is not perfect it is intriguing that a näıve ansatz such as (5.9) is

sufficient to account for the shape of the global density. We tried a similar fit for p = 2

as well but did not find any agreement even at a qualitative level, probably due to the

nonchaotic character of the p = 2 model as described before.

5.5 Numerical simulations

Level correlations in the bulk. We numerically checked the bulk statistics

(GOE/GUE/GSE). As there are quite a few chiral blocks in table 7 we did not check

all of them but concentrated on three cases: (i) the V 3 ⊕ V 7 sector for Nc = 10, (ii) the

V 3 ⊕ V 7 sector for Nc = 11, and (iii) the V 0 ⊕ V 4 sector for Nc = 12. To identify the

symmetry classes we again used the probability distribution of the ratio of two consecutive

level spacings. Our numerical results are displayed in figure 7, where excellent agreement

with the respective symmetry classes predicted by table 7 is found. This corroborates our

symmetry classification scheme.

Universality at the hard edge. To check the universality of the level distributions

near the origin, we have numerically generated M randomly and computed the smallest 3

eigenvalues. (In the sector of F = 3 (mod 4) for Nc = 10, each twofold degenerate pair of

levels was counted only once.) The results shown in figure 8 display excellent agreement

with RMT as predicted by table 7.
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Figure 8. Distributions of the smallest three eigenvalues of M in (5.1) with p = 4 and J = 1 for

two sets of Nc and F (mod 4). Comparison is made with the predictions (solid lines) of the RMT

classes in table 7. The number of independent random samples is 104 for each plot. The small

deviations from RMT are again effects of finite Nc.

6 N = 2 SYK model

6.1 Preliminaries

The N = 2 SYK model [54, 58, 59] has significantly different properties from its N = 1

cousin. The Hamiltonian is defined by H = {Q,Q} with two supercharges

Q = i
∑

1≤i<j<k≤Nc

Xijkcicjck and Q = i
∑

1≤i<j<k≤Nc

Xijk cicjck (6.1)

that are nilpotent, Q2 = Q
2

= 0, where the couplings Xijk are independent complex

Gaussian random variables obeying 〈XijkXijk〉 = 2J/N2
c . Apart from the random disorder,

this model is somewhat similar to lattice models with exact SUSY [132–137]. The model

can be generalized so that Q and Q involve q̂ fermions with q̂ odd [54]. We postpone

this generic case to section 6.5 and for the moment focus on q̂ = 3, i.e., (6.1). As for the

operator P in (3.4), we have

Nc (mod 4) P 2

0 +1 PQ = QP , PQ = QP

[P,H] = 0

for all Nc .

1 +1 PQ = −QP , PQ = −QP
2 −1 PQ = QP , PQ = QP

3 −1 PQ = −QP , PQ = −QP

(6.2)

As shown in [54, 121, 122], H possesses a number of exactly zero eigenvalues, so SUSY is

not spontaneously broken in contrast to the N = 1 model. Moreover, the N = 2 model has

U(1) R-symmetry. [H,F ] = 0 ensures that H and F can be diagonalized simultaneously.

The total Hilbert space V has the structure

V =

Nc⊕
f=0

Vf with dim(Vf ) =

(
Nc

f

)
, (6.3)
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where Vf is the eigenspace of F with eigenvalue f . The level density of H in the low-energy

limit has been derived analytically from the large-Nc Schwarzian theory [121, 122], whereas

analysis of the level statistics and symmetry classification of H based on RMT has not yet

been done for the N = 2 SYK model. In the remainder of this section we fill this gap.

6.2 Näıve approach with partial success

In this subsection we briefly review a simple approach to the N = 2 model that is a natural

extrapolation of our treatment for the N = 0 and 1 SYK models but is beset with fatal

problems and eventually fails. This subsection is included for pedagogical reasons and can

be skipped by a reader interested only in final results.

In section 3.4 we have reviewed the symmetry properties of the N = 0 SYK model

with complex fermions, which had the virtue of the exactly conserved fermion number, just

like the N = 2 SYK model. If one were to boldly extrapolate the statements in section 3.4

to the N = 2 case, one would conclude that the levels of H in all Vf except for VNc/2 belong

to GUE while those in VNc/2 belong to GOE or GSE depending on P 2 = ±1. However,

numerical analysis of the level correlations clearly reveals disagreement with the expected

statistics. This failure can be traced back to the fact that in this approach all the fine

structure of H imposed by N = 2 SUSY is neglected.

So let us change the strategy and try to move along the path we have followed in

sections 4 and 5. First of all, note that in the N = 2 SYK model one can write H = M2

with a Hermitian operator M ≡ Q+Q. Since M preserves F (mod 3) and anticommutes

with (−1)F , it is useful to divide V into subspaces V f on which F = f (mod 6), i.e.,

V =

5⊕
f=0

V f with Df ≡ dim(V f ) =

b(Nc−f)/6c∑
k=0

(
Nc

6k + f

)
. (6.4)

Closed analytic expressions for Df are given in appendix A. Then M assumes a block-

diagonal chiral form M =

(
0 A0

A†0 0

)
⊕

(
0 A1

A†1 0

)
⊕

(
0 A2

A†2 0

)
, where the terms correspond to

V 0⊕ V 3, V 1⊕ V 4, and V 2⊕ V 5, respectively. The spectrum of M has a mirror symmetry

for every single realization of {Xijk}. As a consequence, every nonzero eigenvalue of H is

at least twofold degenerate. From the above structure, a lower bound on the number N z

of exact zero modes of M and hence of H can readily be obtained (cf. appendix A) as

N z ≥
∑

f=0,1,2

|Df −Df+3| =

{
4 · 3Nc/2−1 for Nc even ,

2 · 3(Nc−1)/2 for Nc odd .
(6.5)

The same bound was obtained via the Witten index in [57].11 In numerical simulations

we found that this bound is saturated for Nc ∈ {0, 2, 3} (mod 4), while a strict inequality

11We emphasize that the extensive number of zero-energy states in this model owes their existence to the

mismatch of Df and Df+3 (f = 0, 1, 2). If one adds an arbitrarily small perturbation that breaks the U(1)

R-symmetry down to Z2, the Hamiltonian would lose its triple chiral-block structure and is left with just

the two eigenspaces of (−1)F , which have equal dimension. Then nothing protects zero modes from being

lifted and SUSY gets broken, as reported in [57, 138].

– 22 –



J
H
E
P
0
9
(
2
0
1
7
)
0
5
0

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
=2 SYK, Nc = 9 (samples = 30000)

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
=2 SYK, Nc = 10 (samples = 4000)

Figure 9. Spectral density of M = Q+Q in the N = 2 SYK model from exact diagonalization for

Nc = 9 and 10, averaged over random samples. Since the spectra are symmetric about 0, only the

nonnegative part is shown. The delta peaks at the origin represent exact zero modes, as in figure 6.

In both plots J = 1 and the total density is normalized to 1. The blue dashed lines are the best

fits of analytic approximations based on the Marčenko-Pastur law.

holds for Nc = 1 (mod 4) due to the presence of O(1) “exceptional” zero modes [54, 57] (see

also appendix B). We will explain their origin later. We note in passing that the present

argument based on M does not tell us how many zero modes exist in each Vf .

Global spectral density. Utilizing the decomposition of M into three chiral blocks,

we can derive an approximate analytic formula for the global level density based on the

Marčenko-Pastur law (5.7), repeating the steps that led to (5.9). (We note that the level

densities of M and H are linked by formula (4.2), where Q should be replaced by M

here.) Figure 9 displays the numerically obtained global spectral density of M for Nc = 9

and 10 together with the analytic approximations obtained by tuning the parameter σ for

optimal fits. The quality of the agreement is worse than for the previous model (figure 6).

In particular, the pronounced sharp peak of the density cannot be reproduced with the

Marčenko-Pastur law. This could be an indication that the N = 2 SYK model indeed has

a more complex structure than the model in section 5.

In figure 9 there is a spectral gap for Nc = 9 but not for Nc = 10. The peculiar

dependence of the level density of H on the parity of Nc was also noted in [121]. Intriguingly,

this can easily be accounted for by the fact that a chiral block with Df = Df+3 is present

only for odd Nc (cf. appendix A). This can be shown by elementary combinatorics.

Symmetry of M . To classify M based on RMT we can again make use of P and

R ≡ P (−1)F in the same way as for the N = 1 SYK model (section 4). For Nc = 1

(mod 4), it can easily be shown that P and R map V f ⊕ V f+3 to itself, with f =


2

1

0

 for

Nc =


1

5

9

 (mod 12). Using (6.2) one can show

P 2 = +1 , R2 = −1 , [R,M ] = 0 , and {P,M} = 0 , (6.6)

so M on the corresponding space V f ⊕ V f+3 is classified as class BdG (DIII) with

β = 4, according to table 1. Therefore every eigenvalue of M must be twofold de-
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generate. On the other hand, with elementary combinatorics, one can show that

Df = Df+3 = (2Nc−1 − 1)/3 ≡ dodd (cf. appendix A) for the three sets of f and Nc spec-

ified above. The point is that dodd is an odd integer. This means that the spectrum of

M on V f ⊕ V f+3 cannot consist of dodd positive levels and dodd negative levels, since this

would contradict the Kramers degeneracy. We conclude that M (and H) must have at least

2 zero modes in V f ⊕ V f+3. This explains why we encounter “exceptional” zero modes

for Nc = 1 (mod 4), and is corroborated by our exact diagonalization analysis of H (see

appendix B).12

It turns out, however, that the current approach is incapable of describing the actual

level structure of M in full detail. For instance, although M in the sector V 0 ⊕ V 3 with

Nc = 12 is classified as class chGOE (BDI)β=1, exact diagonalization shows that all nonzero

eigenvalues of M in this sector are in fact twofold degenerate. The reason that the symmetry

classification based on M is doomed to be incomplete is that M does not manifestly reflect

the fermion-number conservation of H. We have no access to the level statistics in the

individual eigenspaces Vf of F as long as we see H through the lens of M . The upshot is

that since the structure of the N = 2 SYK model is qualitatively different from its cousins

with N = 0 and 1 SUSY, we need an entirely new approach to carry out its symmetry

classification. This is the subject of the next subsection.

6.3 Complete classification based on QQ and QQ

Using the nilpotency Q2 = Q
2

= 0 one can show that H, QQ, QQ and F all commute

with one another, so they can be diagonalized simultaneously. Let ψ be an eigenstate with

QQψ = λ+ψ and QQψ = λ−ψ with λ+, λ− ≥ 0. Let us assume λ+ > 0 and λ− > 0. Then

ψ†ψ =
1

λ+λ−
(λ+ψ)†λ−ψ =

1

λ+λ−
(QQψ)†QQψ

=
1

λ+λ−
ψ†QQ

2
Qψ = 0 , (∵ Q

2
= 0)

(6.7)

implying ψ is a null vector. To resolve this contradiction, λ+ = 0 or λ− = 0 must hold for

every eigenstate. Note that λ+ = 0 (λ− = 0) is equivalent to Qψ = 0 (Qψ = 0) since, e.g.,

QQψ = 0 implies ψ†QQψ = ||Qψ||2 = 0. If λ+ = λ− = 0, then ψ is a zero mode (ground

state) of H. Thus each subspace Vf of V for given Nc admits an orthogonal decomposition

Vf = V +
f ⊕ V

−
f ⊕ V

z
f , (6.8)

where

V +
f = Hilbert space spanned by eigenstates ψ with Qψ 6= 0 and Qψ = 0 ,

V −f = Hilbert space spanned by eigenstates ψ with Qψ = 0 and Qψ 6= 0 , (6.9)

V z
f = Hilbert space spanned by zero modes (Qψ = Qψ = 0) .

12For Nc = 5, 13, 17 we found 2 exceptional zero modes, while only for Nc = 9 we found 6 exceptional

zero modes, in agreement with previous numerical data [54, 57]. Currently the origin of the 4 additional

zero modes is unclear.
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(In figure 11 below we will show a graphical representation of the interrelations of the

V ±,zf .) Next we introduce notation for the dimensions of the subspaces,

N+
f ≡ dim(V +

f ) , N−f ≡ dim(V −f ) , N z
f ≡ dim(V z

f ) ,

Nf ≡ dim(Vf ) = N+
f +N−f +N z

f =

(
Nc

f

)
, N z =

Nc∑
f=0

N z
f .

(6.10)

We choose to keep the Nc-dependence of N±,zf implicit to avoid cluttering the notation.

Using the properties (6.2) related to P one can verify

N+
f = N−Nc−f , N−f = N+

Nc−f , N z
f = N z

Nc−f . (6.11)

There is yet another important formula for N±f . To derive it, we note that there is a

one-to-one mapping between the bases of V +
f and those of V −f+3. Namely, if ψ ∈ V +

f with

QQψ = λψ for λ > 0, then ψ′ ≡ 1√
λ
Qψ ∈ V −f+3 with QQψ′ = λψ′. This can be inverted to

give ψ = 1√
λ
Qψ′. Hence

Q(V +
f ) = V −f+3

Q(V −f+3) = V +
f

}
for 0 ≤ f ≤ Nc − 3 and N+

f = N−f+3 . (6.12)

For convenience we provide tables of the numerical values of N±,zf for 3 ≤ Nc ≤ 17 in

appendix B. They confirm the relations (6.11) and (6.12). Explicit analytical formulas for

N±,zf will be derived in section 6.4.

This concludes the necessary preparations for the ensuing analysis. Our strategy in

what follows is determined by the observation that H is the sum of two operators that

commute with each other. Therefore we need to classify the symmetries of H on V +
f and

V −f separately. It is essential to distinguish these eigenspaces because they are not mixed

by H and the eigenvalues of H on them are, a priori, statistically uncorrelated. Näıvely

collecting all eigenvalues of H on Vf leads to incorrect statistics and must be avoided.

For generic f and Nc, there is no antiunitary symmetry that acts within V ±f . P just

exchanges V +
f and V −Nc−f (as well as V −f and V +

Nc−f ), which does not impose constraints

on the level statistics in any of the V ±f . Therefore the symmetry class of H on V ±f is

generally GUE.

However, when the difference of f and Nc−f is 3, there exists an antiunitary operator

that commutes with H and maps V ±f to itself. To see this, assume f + 3 = Nc − f and

let ψ be a basis element of V +
f (so that QQψ = λψ for some λ > 0). Then Qψ ∈ V −f+3,

cf. (6.12), and PQψ ∈ V +
f , so PQ is an antilinear operator that acts within V +

f . By the

same token one can show that PQ maps V −f+3 to itself. The presence of these operators

indicates that the spectra of H on V +
f and V −f+3 in the case f + 3 = Nc − f belong to

either GOE or GSE. If we define the canonically normalized operators PQ/
√
H on V +

f and

PQ/
√
H on V −f+3, one can show with the help of (6.2) that they are antiunitary and that

their squares are ±1, depending on Nc (mod 4). This sign determines the symmetry class
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Figure 10. Distribution of the ratio r of two consecutive level spacings for the N = 2 SYK model

with q̂ = 3. The label n = f± (f = 6, 7) refers to levels of H on V ±f . The number of realizations

used for averaging is 103 for Nc = 15 and 102 for Nc = 16 and 17. The blue lines are surmises

for the RMT classes of (6.13). The twofold degeneracy for the GSE case was resolved before the

statistical analysis. In the right-most plot of Nc = 16 we show the result obtained by an incorrect

analysis, when levels from V +
f and V −f are mixed into a single sequence. Although the result is

surprisingly well fitted by the GOE, this is misleading: there is no antiunitary symmetry in this

sector. This highlights the danger of inferring the symmetry class from spectra on the full Vf .

(GOE/GSE). Our conclusions for the N = 2 SYK model with q̂ = 3 are summarized in

the following table.

Nc = 0, 2 (mod 4) Nc = 1 (mod 4) Nc = 3 (mod 4)

V +
f GUE for ∀f

GSE for f = Nc−3
2

GUE for f 6= Nc−3
2

GOE for f = Nc−3
2

GUE for f 6= Nc−3
2

V −f GUE for ∀f
GSE for f = Nc+3

2

GUE for f 6= Nc+3
2

GOE for f = Nc+3
2

GUE for f 6= Nc+3
2

(6.13)

This is the main result of this section. We have verified our classification by extensive

numerical analysis of the spectra of H projected to each Vf . The numerical results shown

in figure 10 demonstrate excellent agreement with the RMT statistics specified in (6.13).

Thus, as far as one can judge from the short-range correlations of energy levels, the N = 2

SYK model exhibits quantum chaos in each eigenspace of F to the same extent as its N = 0

and 1 cousins.

The argument above also clarifies the degeneracy of individual levels of H when diag-

onalized on the whole Hilbert space V . In summary, we have found the following:

• For Nc = 0, 1, 2 (mod 4), every positive eigenvalue of H is 4-fold degenerate. A
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quadruplet is formed by the set of eigenstates

ψ ∈ V +
f , Qψ ∈ V −f+3, Pψ ∈ V −Nc−f , and PQψ ∈ V +

Nc−f−3 (6.14)

for 0 ≤ f ≤ Nc − 3. The number of quadruplets is (2Nc −N z)/4. In particular, for

even Nc, every positive eigenvalue of H on VNc/2 is twofold degenerate, because both

ψ and Pψ ∈ VNc/2.
13

• For Nc = 3 (mod 4), there are N+
(Nc−3)/2 (= N−(Nc+3)/2) doublets residing in the GOE

sectors and (2Nc−N z−2N+
(Nc−3)/2)/4 quadruplets. The latter consist of the set (6.14)

subject to the condition that f 6= (Nc − 3)/2.

6.4 Analytical formulas for N±
f and Nz

f

Up to now we have not mentioned how to compute N±f explicitly for given f and Nc.

Actually this proves to be a straightforward (albeit tedious) task if we posit the following

premise:

For any Nc≥3, all exact zero modes of H reside in Vf with |f−Nc/2| ≤ 3/2,

where the equality holds only for exceptional zero modes that occur when

Nc = 1 (mod 4).14
(6.15)

This rather strong condition on the ground states of H is not only corroborated by detailed

numerical simulations (see appendix B and [54]) but also derived from the Schwarzian

effective theory valid in the large-Nc and low-energy limit [121, 122]. If (6.15) is accepted,

one can fully clarify the relation of Hilbert spaces linked by Q as in table 8. The sequences

tabulated there are exact sequences in the terminology of mathematics, in the sense that

the kernel of Q acting on Vf coincides exactly with the image of Vf−3 by Q. Two examples

of these sequences, extended up to VNc , are graphically illustrated in figure 11 for Nc = 15.

Although we do not provide a rigorous proof of (6.15), there is a heuristic argument to

convince oneself that (6.15) is correct. Let us consider a sequence · · · Q−→ Vf
Q−→ Vf+3

Q−→ · · ·
with dim(Vf ) < dim(Vf+3). If Q in the middle were a completely random linear map, it is

a matrix of size dim(Vf )× dim(Vf+3) whose rank is almost surely dim(Vf ) (in the absence

of fine-tuning or a special symmetry). This is of course an oversimplification for Q, because

it is not a generic linear map but a nilpotent map. Taking this into account, let us next

view Q as a random matrix of size dim
[
Vf \Q(Vf−3)

]
×dim(Vf+3), where the trivial kernel

Q(Vf−3) has been left out. Then the rank of Q is almost surely dim
[
Vf \ Q(Vf−3)

]
, i.e.,

there is no “nontrivial” zero mode of Q in Vf . This argument may be repeated along the

sequence as long as the condition dim(Vf ) < dim(Vf+3) is fulfilled. A completely parallel

argument can also be given for a “descending” sequence · · · Q←− Vf
Q←− Vf+3

Q←− · · · with

dim(Vf ) > dim(Vf+3). By pinching the sequence from both ends like this, we find at the

end of the day that all zero modes (Qψ = Qψ = 0) must be concentrated in the subspace

Vf with the largest dimension in the sequence. This is equivalent to the condition (6.15).

13The reader should be cautioned that this degeneracy does not mean that H on VNc/2 obeys GSE

statistics. Actually, we have two identical copies of the GUE.
14The origin of these exceptional zero modes was explained in section 6.2.
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Nc
(mod 6)

Exact Sequence Nc
(mod 6)

Exact Sequence

0

V0
Q−→ V3

Q−→ · · · Q−→ VNc/2

V1
Q−→ V4

Q−→ · · · Q−→ VNc/2+1

V2
Q−→ V5

Q−→ · · · Q−→ VNc/2−1

3

V0
Q−→ V3

Q−→ · · · Q−→ V ∗(Nc−3)/2

V1
Q−→ V4

Q−→ · · · Q−→ V(Nc−1)/2

V2
Q−→ V5

Q−→ · · · Q−→ V(Nc+1)/2

1

V0
Q−→ V3

Q−→ · · · Q−→ V(Nc−1)/2

V1
Q−→ V4

Q−→ · · · Q−→ V(Nc+1)/2

V2
Q−→ V5

Q−→ · · · Q−→ V ∗(Nc−3)/2

4

V0
Q−→ V3

Q−→ · · · Q−→ VNc/2+1

V1
Q−→ V4

Q−→ · · · Q−→ VNc/2−1

V2
Q−→ V5

Q−→ · · · Q−→ VNc/2

2

V0
Q−→ V3

Q−→ · · · Q−→ VNc/2−1

V1
Q−→ V4

Q−→ · · · Q−→ VNc/2

V2
Q−→ V5

Q−→ · · · Q−→ VNc/2+1

5

V0
Q−→ V3

Q−→ · · · Q−→ V(Nc+1)/2

V1
Q−→ V4

Q−→ · · · Q−→ V ∗(Nc−3)/2

V2
Q−→ V5

Q−→ · · · Q−→ V(Nc−1)/2

Table 8. Exact sequences of the Hilbert spaces generated by the linear map Q. Complementary

exact sequences descending from VNc , VNc−1, and VNc−2 by way of Q can be obtained by applying

the particle-hole operator P to the sequences in the table. The spaces V contain an exponentially

large number of “typical” zero modes, see (6.5). The spaces V ∗ contain no zero modes for Nc = 3

(mod 4), or 1 or 3 “exceptional” zero modes for Nc = 1 (mod 4).

 

Figure 11. Relations among the Hilbert spaces with F = 0 and 1 (mod 3) for Nc = 15. The

numbers shown are the dimensions of the corresponding subspaces of V . Arrows to the symbol ∅
(empty set) are shown to emphasize the nilpotency Q2 = Q

2
= 0.
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Now it is straightforward to work out N±f . Let us begin with the case of even Nc.

First, for 3 ≤ f < Nc/2− 1, Vf does not contain zero modes under the assumption (6.15).

Hence, with the help of (6.12), we find

N+
f =

(
Nc

f

)
−N−f =

(
Nc

f

)
−N+

f−3 . (6.16)

This recursion relation for N+
f is to be solved with the initial conditions N+

0 = 1, N+
1 = Nc,

and N+
2 = Nc(Nc − 1)/2. The result reads

N+
f = N−Nc−f = (−1)f+f0N+

f0
+ (−1)f

(f−f0)/3∑
n=1

(−1)3n+f0
(

Nc

3n+ f0

)
, (6.17)

N−f = N+
Nc−f =

(
Nc

f

)
−N+

f , (6.18)

where f0 ≡ f −3bf/3c ∈ {0, 1, 2}. Equation (6.11) was used in the first equalities of (6.17)

and (6.18). These formulas hold in the range 0 ≤ f < Nc/2 − 1. We verified (6.17)

numerically for Nc up to 17.

Finally, to derive N±f for f close to Nc/2, we need to know N z
f . Recalling the

premise (6.15) and the fact that the inequality (6.5) is saturated except when Nc = 1

(mod 4) (see appendix A for Df and section 6.2 for the origin of the 1 or 3 “exceptional”

zero modes in this case), we readily arrive at the following summary:

Nc = 0, 2 (mod 4) Nc = 1 (mod 4) Nc = 3 (mod 4)

N z
f =


2 · 3Nc/2−1 , f =

Nc

2

3Nc/2−1 , f =
Nc

2
± 1

0 , otherwise

N z
f =


3(Nc−1)/2 , f =

Nc ± 1

2

1 or 3 , f =
Nc ± 3

2
0 , otherwise

N z
f =

 3(Nc−1)/2 , f =
Nc ± 1

2
0 , otherwise

(6.19)

which fully agrees with numerical results in [54]. This input should be plugged into

N+
f =

(
Nc

f

)
−N+

f−3 −N
z
f and N−f = N+

f−3 for f =
Nc

2
,
Nc

2
± 1 , (6.20)

where N+
f−3 has been obtained by (6.17). This completes our discussion of even Nc.

For odd Nc, (6.17) and (6.18) still hold in the range 0 ≤ f < (Nc − 3)/2 (see table 8).

For f near Nc/2 we only have to substitute (6.19) into

N+
f =

(
Nc

f

)
−N+

f−3 −N
z
f and N−f = N+

f−3 for f =
Nc ± 1

2
,
Nc ± 3

2
. (6.21)

The numerical results in appendix B agree with the formulas derived in this subsection.

6.5 Generalization to q̂ > 3

We now generalize the preceding classification scheme to the N = 2 SYK model with

H = {Q,Q} and q̂ complex fermions in the supercharge, where q̂ is odd, i.e.,

Q = i(q̂−1)/2
∑

1≤i1<···<iq̂≤Nc

Xi1i2···iq̂ci1ci2 · · · ciq̂ and Q = i(q̂−1)/2
∑

1≤i1<···<iq̂≤Nc

Xi1i2···iq̂ci1ci2 · · · ciq̂ .

(6.22)
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−2 0 2
0

0.5

1

−1 1

ln r

Nc = 13, n = 4+

GOE

−2 0 2−1 1

ln r

Nc = 13, n = 5+

GUE

−2 0 2
0

0.5

1

−1 1

ln r

Nc = 15, n = 5+

GSE

−2 0 2−1 1

ln r

Nc = 15, n = 6+

GUE

Figure 12. Same as figure 10 but for q̂ = 5 and compared with the surmises of the RMT classes in

table (6.24). The number of realizations used for averaging is 103 for Nc = 13 and 102 for Nc = 15.

This is a counterpart of (4.1) with N = 1. For q̂ = 3 it reverts to (6.1). The tables (6.2)

and (6.13) for q̂ = 3 are now generalized to

Nc (mod 4) P 2

0 +1 PQ = (−1)
q̂+1
2 QP , PQ = (−1)

q̂+1
2 QP

[P,H] = 0

for all Nc .

1 +1 PQ = (−1)
q̂−1
2 QP , PQ = (−1)

q̂−1
2 QP

2 −1 PQ = (−1)
q̂+1
2 QP , PQ = (−1)

q̂+1
2 QP

3 −1 PQ = (−1)
q̂−1
2 QP , PQ = (−1)

q̂−1
2 QP

(6.23)

and

Nc = 0, 2
(mod 4)

Nc = 1 (mod 4) Nc = 3 (mod 4)

V +
f

GUE

for ∀f

GOE
if q̂ = 1
(mod 4)

GSE
if q̂ = 3
(mod 4)

 for f = Nc−q̂
2

GUE for f 6= Nc−q̂
2

GSE
if q̂ = 1
(mod 4)

GOE
if q̂ = 3
(mod 4)

 for f = Nc−q̂
2

GUE for f 6= Nc−q̂
2

V −f
GUE

for ∀f

GOE
if q̂ = 1
(mod 4)

GSE
if q̂ = 3
(mod 4)

 for f = Nc+q̂
2

GUE for f 6= Nc+q̂
2

GSE
if q̂ = 1
(mod 4)

GOE
if q̂ = 3
(mod 4)

 for f = Nc+q̂
2

GUE for f 6= Nc+q̂
2

(6.24)

respectively. We numerically tested this table via exact diagonalization of H. Figure 12

shows superb agreement between the numerical data and RMT.

We also analyzed the dimensions N±,zf of the subspaces, for which formulas similar

to those in section 6.4 can be derived. For q̂ = 5, we have numerically confirmed up to

Nc = 17 that all exact zero modes of H reside in Vf with |f − Nc/2| ≤ 5/2. The last

inequality is saturated only for Nc = 7 and 11 by just 2 zero modes in each case. This

is not only consistent with our heuristic argument in section 6.4 but also conforms to the

claim at large Nc [121, 122] that all zero modes should satisfy |f − Nc/2| < q̂/2. In the

regime Nc � 1 one can ignore O(1) exceptional zero modes and the strict inequality may

be justified.
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7 Conclusions

In this paper we have completed the symmetry classification of SYK models with N = 0,

1, and 2 SUSY on the basis of the Altland-Zirnbauer theory of random matrices (table 1).

The symmetry classes of RMT not only tell us the level degeneracies of the Hamiltonian

but also offer a diagnostic tool of quantum chaos through level correlations in the bulk of

the spectrum. Furthermore, when the spectral mirror symmetry is present, RMT precisely

predicts universal level correlation functions in the vicinity of the origin (also known as

hard edge or microscopic domain [79]). The present work can be viewed as a generalization

of preceding works [66–69, 72] that analyzed the level statistics of the N = 0 and 1 SYK

models solely with a 4-body interaction.15 Our new results include the following:

1. The symmetry classification of the N = 0 SYK model was given for a Hamiltonian

with the most generic q-body interaction. The result, summarized in tables 2 and 3,

includes the RMT classes C and D that did not show up in the preceding classification

of [66–69, 72]. Our results were corroborated by detailed numerics (figure 1).

2. We numerically compared the smallest eigenvalue distributions in the N = 0 SYK

model with q = 6 with the RMT predictions of class C and D, finding excellent agree-

ment (figure 2).

3. The symmetry classification of the N = 1 SYK model was given for a supercharge

with the most generic interaction of q̂ Majorana fermions (tables 4 and 5). This

extends [72] which investigated only q̂ = 3. Our results were corroborated by detailed

numerics (figure 3).

4. We numerically compared the smallest eigenvalue distributions in the N = 1 SYK

model with q̂ = 3 and 5 with the RMT predictions, finding excellent agreement

(figures 4 and 5). This confirms the hard-edge universality of the N = 1 SYK model for

the first time and is relevant for the thermodynamics of this model at low temperatures

comparable to the energy scale of the SUSY breaking.

5. We proposed an intriguing new SYK-type model which lacks SUSY but whose Hamil-

tonian is semi-positive definite and has an extensive number of zero-energy states

(section 5). The symmetry classification based on RMT was provided, and a detailed

numerical analysis of the spectra both in the bulk and near the origin was performed,

resulting in agreement with the RMT predictions.

6. We completed the RMT classification of the N = 2 SYK model for the first time. This

model is qualitatively different from its N = 0 and 1 cousins in various aspects. It

is a model of complex fermions rather than Majorana fermions, and it has a U(1) R-

symmetry. The symmetry classification of this model is nontrivial because the structure

of its Hilbert space is far more complex (see figure 11 for an example) than that of the

N = 0 SYK model with complex fermions considered previously in [29, 35, 44, 66, 115].

15A notable exception is [66], which also considered 4k-body interactions with k ∈ N.
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Our main results, summarized in table (6.13) for q̂ = 3 and in table (6.24) for general

odd q̂, are strongly supported by intensive numerics, as shown in figure 10 (for q̂ = 3)

and figure 12 (for q̂ = 5).

7. In section 6.2 we succeeded in giving a logical explanation for the curious fact [54, 57]

that, in the N = 2 SYK model, the number of zero-energy ground states exactly agrees

with the lower bound from the Witten index in some cases but not in other cases. In

short, this is due to the dichotomy between the odd dimensionality of the Hilbert space

and Kramers degeneracy.

This work can be extended in several directions. First, our analysis of spectral properties

of the Hamiltonian could be further deepened by using probes that are sensitive to long-

range correlations of energy levels, like the level number variance Σ2(L) and the spectral

rigidity ∆3(L) [2, 80]. Investigating the spectral form factor of the N = 2 SYK model

and making a quantitative comparison with RMT along the lines of [68] is another future

direction, although physical interpretation of the ramp, dip, etc., of the spectral form factor

as a signature of quantum chaos is rather subtle [45]. Finally, we note that there is no

analytical result for the global spectral density of the N = 1 and 2 SYK models, although

an accurate formula is already known for the N = 0 model [67–69]. We wish to address

some of these problems in the future.
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A Df in the N = 2 SYK model

In this appendix we display short convenient expressions for Df as defined in (6.4) for the

N = 2 SYK model with q̂ = 3. For simplicity we denote Nc by N in this appendix. Then

D0 =
1

6

[
2N + 2 · 3N/2 cos

Nπ

6
+ 2 cos

Nπ

3

]
, (A.1)

D1 =
1

6

[
2N − 2 · 3N/2 cos

(N + 4)π

6
+ 2 cos

(N − 2)π

3

]
, (A.2)

D2 =
1

6

[
2N + 2 · 3N/2 cos

(N − 4)π

6
+ 2 cos

(N + 2)π

3

]
, (A.3)

D3 =
1

6

[
2N − 2 · 3N/2 cos

Nπ

6
+ 2 cos

Nπ

3

]
, (A.4)

D4 =
1

6

[
2N + 2 · 3N/2 cos

(N + 4)π

6
+ 2 cos

(N − 2)π

3

]
, (A.5)

D5 =
1

6

[
2N − 2 · 3N/2 cos

(N − 4)π

6
+ 2 cos

(N + 2)π

3

]
. (A.6)
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B Dimensions of Hilbert spaces for N = 2

In this appendix we present tables of the N±,zf defined in (6.10) for the N = 2 SYK model

with q̂ = 3, for Nc = 3, 4, . . . , 17. The symmetry classes are : GOE, : GSE, and

uncolored numbers GUE. All of these results were checked numerically.16

� Nc = 3

f 0 1 2 3

N+
f 1 0 0 0

N−f 0 0 0 1

N z
f 0 3 3 0

� Nc = 4

f 0 1 2 3 4

N+
f 1 1 0 0 0

N−f 0 0 0 1 1

N z
f 0 3 6 3 0

� Nc = 5

f 0 1 2 3 4 5

N+
f 1 4 1 0 0 0

N−f 0 0 0 1 4 1

N z
f 0 1 9 9 1 0

� Nc = 6

f 0 1 2 3 4 5 6

N+
f 1 6 6 1 0 0 0

N−f 0 0 0 1 6 6 1

N z
f 0 0 9 18 9 0 0

� Nc = 7

f 0 1 2 3 4 5 6 7

N+
f 1 7 21 7 1 0 0 0

N−f 0 0 0 1 7 21 7 1

N z
f 0 0 0 27 27 0 0 0

� Nc = 8

f 0 1 2 3 4 5 6 7 8

N+
f 1 8 28 28 8 1 0 0 0

N−f 0 0 0 1 8 28 28 8 1

N z
f 0 0 0 27 54 27 0 0 0

� Nc = 9

f 0 1 2 3 4 5 6 7 8 9

N+
f 1 9 36 80 36 9 1 0 0 0

N−f 0 0 0 1 9 36 80 36 9 1

N z
f 0 0 0 3 81 81 3 0 0 0

� Nc = 10

f 0 1 2 3 4 5 6 7 8 9 10

N+
f 1 10 45 119 119 45 10 1 0 0 0

N−f 0 0 0 1 10 45 119 119 45 10 1

N z
f 0 0 0 0 81 162 81 0 0 0 0

� Nc = 11

f 0 1 2 3 4 5 6 7 8 9 10 11

N+
f 1 11 55 164 319 164 55 11 1 0 0 0

N−f 0 0 0 1 11 55 164 319 164 55 11 1

N z
f 0 0 0 0 0 243 243 0 0 0 0 0

� Nc = 12

f 0 1 2 3 4 5 6 7 8 9 10 11 12

N+
f 1 12 66 219 483 483 219 66 12 1 0 0 0

N−f 0 0 0 1 12 66 219 483 483 219 66 12 1

N z
f 0 0 0 0 0 243 486 243 0 0 0 0 0

16Our tables are correct “almost surely”, i.e., there can be deviations from the numbers in the tables

if the random couplings {Xijk} in (6.1) are fine-tuned (e.g., to all zeros). Such exceptional cases are of

measure zero and physically unimportant.
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� Nc = 13

f 0 1 2 3 4 5 6 7 8 9 10 11 12 13

N+
f 1 13 78 285 702 1208 702 285 78 13 1 0 0 0

N−f 0 0 0 1 13 78 285 702 1208 702 285 78 13 1

N z
f 0 0 0 0 0 1 729 729 1 0 0 0 0 0

� Nc = 14

f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N+
f 1 14 91 363 987 1911 1911 987 363 91 14 1 0 0 0

N−f 0 0 0 1 14 91 363 987 1911 1911 987 363 91 14 1

N z
f 0 0 0 0 0 0 729 1458 729 0 0 0 0 0 0

� Nc = 15

f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N+
f 1 15 105 454 1350 2898 4551 2898 1350 454 105 15 1 0 0 0

N−f 0 0 0 1 15 105 454 1350 2898 4551 2898 1350 454 105 15 1

N z
f 0 0 0 0 0 0 0 2187 2187 0 0 0 0 0 0 0

� Nc = 16

f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N+
f 1 16 120 559 1804 4248 7449 7449 4248 1804 559 120 16 1 0 0 0

N−f 0 0 0 1 16 120 559 1804 4248 7449 7449 4248 1804 559 120 16 1

N z
f 0 0 0 0 0 0 0 2187 4374 2187 0 0 0 0 0 0 0

� Nc = 17

f 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N+
f 1 17 136 679 2363 6052 11697 17084 11697 6052 2363 679 136 17 1 0 0 0

N−f 0 0 0 1 17 136 679 2363 6052 11697 17084 11697 6052 2363 679 136 17 1

N z
f 0 0 0 0 0 0 0 1 6561 6561 1 0 0 0 0 0 0 0
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