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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] and continuous

studies of its properties have revealed an intriguing consistency of experimental results

with the Standard Model (SM) predictions. This highlights yet another major step in

precision verification of the SM structure. Besides being a big phenomenological success

as a fundamental theory of particle physics, the SM as an effective theory still allows

for possibilities for new interactions and particles (such as Dark Matter, right-handed

neutrinos, heavy Higgs boson partners, new gauge interactions, among others) at energy

scales much larger then the electroweak (EW) scale. This kind of new physics might

bring answers to current open questions and could be detected already at the LHC. In

addition, the origin of the large set of measured (not predicted!) fermion mass and mixing

parameters as well as the Higgs boson mass and self-couplings still remains as one of the

most interesting open questions to date. Furthermore, there is still no explanation for the

characteristic hierarchies in the measured fermion mass spectrum.

In order to get a better understanding of these long-standing issues in the framework

of quantum field theory, one naturally considers the SM as a low-energy approximation of

a bigger and more symmetric (unified) theory whose dynamics at high energies is implicitly

encoded in the observed structure of the SM.

An important example of such a grand unified theory (GUT) based upon the trinified

gauge group SU(3)L × SU(3)R × SU(3)C ≡ [SU(3)]3 (also known as trinification) was

proposed by De Rújula, Georgi and Glashow (RGG-model) back in 1984 [3]. Since then,

trinified extensions of the SM have been traditionally considered as good bets for a GUT,

both with and without supersymmetry (SUSY) [4–9], due to many attractive features (for

a good introduction into trinification GUTs, see [10] and references therein).

The gauge trinification [SU(3)]3 n Z3 is a maximal subgroup of E6, where Z3 is the

group of cyclic (L,R,C)-permutations (for a comprehensive discussion of E6-inspired GUT

scenarios, see e.g. refs. [11–37]). Typically, this model is considered to be a low-energy

limit of the heteroic E8 × E′8 string theory [38] as well as the N = 4 supergravity [39]. It

naturally incorporates the left-right (LR) symmetric gauge interactions [40] as well as the

gauge couplings’ unification at a GUT scale. All matter fields (including the Higgs fields)

can be elegantly arranged into bi-fundamental representations where each family belongs

to a 27-plet, 27 = (3, 3̄,1)⊕ (1,3, 3̄)⊕ (3̄,1,3) , being the fundamental representation of

the E6 group [11, 41]. Remarkably, no adjoint Higgs fields are needed to break SU(3)L ×
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SU(3)R down to the electroweak (EW) symmetry group of the SM, SU(2)L × U(1)Y. The

spontaneous breaking of trinification with at least two Higgs 27-plets yields the standard

GUT-scale prediction for the weak mixing angle, sin2 θW = 3/8, which leads to quantization

of the U(1)Y hypercharge in the SM (e.g. resulting in electron charge being exactly opposite

to the proton charge) and provides a consistent explanation of parity violation in the SM.

As was shown in refs. [42, 43] it is possible to achieve naturally light neutrinos via a seesaw

mechanism as well. Moreover, in the RGG formulation, the model accommodates any

quark mixing angles [44] and a natural suppression of proton decay [4, 8].

However, many existing realizations of the RGG model suffer from severe issues with

phenomenology, a considerable amount of particles in its spectrum and many (e.g. Yukawa)

parameters. One particular issue, common to most of the well-known GUTs, is an unmo-

tivated strong hierarchy between the trinification and the EW symmetry breaking scales

as well as hierarchies in the SM fermion mass spectrum. In addition, the existing minimal

SUSY-based trinification [44] has problems in avoiding TeV-scale lepton masses without

imposing higher-dimensional operators, large Higgs representations or an artificial and

simultaneous fine tuning of many parameters. At the same time, realistic calculations in-

cluding quantum corrections are cumbersome due to a large number of scalar particles and

gauge bosons in any [SU(3)]3-symmetric theory. These issues left the trinification-based

models among the least-developed GUT scenarios so far.

To be consistent with SM phenomenology, a number of additional U(1) groups emerg-

ing in E6 (or E8) breaking [45] should be consistently broken at intermediate steps by the

conventional Higgs mechanism. Having a few 27 Higgs multiplets coupled to fermions which

acquire several low-scale vacuum expectation values (VEVs), may resolve this issue. How-

ever, those interactions induce potentially large flavour-changing neutral current processes

which are severely restricted by experiment, and a large degree of fine tuning is required.

Due to a huge hierarchy in the mass spectra, at low energy scales heavy d.o.f.’s have to

be integrated out at each intermediate symmetry breaking scale giving rise to a new effective

model having a fewer amount of light fields in the spectrum. Depending on the symmetry

breaking scheme and the hierarchy in the initial [SU(3)]3 GUT model parameters, one

may end up with a few possible low-energy effective models having different light particle

content.

One possible development would be to consider a mechanism for Yukawa couplings

unification, severely reducing the number of free parameters at the GUT scale [15, 16].

Similarly to the gauge couplings, the unified Yukawa coupling would then give rise to

several different couplings by means of radiative corrections via the renormalisation group

(RG) evolution and loop-induced operators, which may reproduce the SM fermion mass

and mixing hierarchies at low energies. In this way, family symmetries acting in the space

of fermion generations [46] are known to provide a convenient tool for generating the

necessary patterns in fermion spectra [16, 47]. In particular, such symmetries help to avoid

GUT-scale lepton masses in trinification-type models.

An example of an effective LR-symmetric scenario with very interesting phenomenology

has been discussed in ref. [48]. There the authors introduce the gauge group SU(3)C ×
SU(2)L×SU(2)R×U(1)B−L as originating at lower energies from the trinification model with
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two Z2-even and odd Higgs 27-plets. However, the properties of the Yukawa sector in this

model rely on additional higher-dimensional representations of E6 such as (anti)symmetric

351 reps.

In this work, we consider an alternative non-SUSY trinification model [SU(3)]3 n Z3

augmented by a SU(3)F global family symmetry which acts both on fermion and scalar

multiplets. The latter are thus incorporated in a symmetric way essentially inspired by

SUSY. Our scenario is however manifestly non-supersymmetric and it does not invoke any

higher-dimensional reps or extra singlets besides lowest 27-plets of E6. The scenario we

present is naturally inspired by a reduction E8 → E6 × SU(3) where the remnant SU(3) is

identified with a global family symmetry SU(3)F at the trinification breaking scale. The

symmetry group is spontaneously broken down to a LR-symmetric model with an extra

SU(2)F×U(1)X×U(1)Z×U(1)B global symmetry that is a remnant of the SU(3)F and an

accidental U(1)A ×U(1)B symmetry in the high-scale trinification theory.

As we show in the present work, this model inherits all the important features of trini-

fied GUTs and resolves some of their known difficulties. In the considered implementation

of the family symmetry together with the trinification model, all Yukawa couplings are

manifestly unified into a single coupling at the GUT scale, and the number of free scalar

self-couplings in the scalar potential is remarkably low, making a complete RG analysis of

this model feasible. Many of the relevant interactions in the low-energy effective theory

emerge radiatively at one (or higher) loop level, bringing a potential explanation to a vari-

ety of hierarchies in the SM parameters. However, a detailed calculation of such quantities

is beyond the scope of this paper and left for future work. Simultaneously, the family sym-

metry forbids proton decay due to an appearance of an accidental U(1)B symmetry and

protects the light SM fermion sector from large radiative corrections offering potentially

interesting phenomenological consequences. Another feature of this model, that we show

in this work, is that the SU(2)R × U(1)L+R subgroup gets broken radiatively to U(1)Y

at a much lower scale in a natural way for a large region of the parameter space of the

GUT-scale trinification model.

In section 2, we introduce the high-scale trinification model augmented by the family

symmetry. In section 3, we discuss in detail the first symmetry breaking stage down to

a low-energy LR-symmetric effective theory. In section 4, we describe the effective model

and the matching of effective couplings in order to study, in section 5, under which circum-

stances the effective theory shows radiative breaking of the SU(2)R × U(1)L+R symmetry.

In section 6, we perform a parameter space scan to find the regions where the radiative

symmetry breaking happens in the simplest feasible scenario. In section 7 we discuss, in

the light of our results, under which conditions it could be possible to reproduce the SM

mass spectra. Concluding remarks are given in section 8.

1.1 A quick note on notations

In the text that follows, we employ the following notations:

• Fundamental representations carry superscript indices while anti-fundamental repre-

sentations carry subscript indices.

– 3 –
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• Fundamental and anti-fundamental indices of SU(3) groups are denoted with lower

case letters, while fundamental and anti-fundamental indices under SU(2) groups are

denoted with upper case letters.

• SU(3)K and SU(2)K (anti-)fundamental indices are denoted by k, k′, k1, k2 . . . and

K,K ′,K1,K2 . . . for K = L,R,C, respectively.

• Indices belonging to (anti-)fundamental representations of SU(3)F and SU(2)F are

denoted by i, j, k . . . and I, J,K . . . respectively.

• If a field transforms both under gauge and global symmetry groups, the index cor-

responding to the global one is placed within the parenthesis around the field, while

the indices corresponding to the gauge symmetries are placed outside.

• Global symmetry groups will be indicated by {. . . }.

For example, (Li)lr is a 3⊗ 3⊗ 3̄ representation of SU(3)L × SU(3)R × {SU(3)F}, and

(l̃R
I)R is a 2⊗ 2̄ representation of SU(2)R×{SU(2)F}, where SU(3)F and SU(2)F are global

family symmetry groups.

2 The GUT-scale [SU(3)]3 n Z3 × {SU(3)F} model

The fields in the high-scale trinification model form representations of the symmetry group

[SU(3)L × SU(3)R × SU(3)C] n Z3 × {SU(3)F}, (2.1)

as shown in table 1, and consist of three Weyl fermion multiplets (L, QL, QR), three scalar

multiplets (L̃, Q̃L, Q̃R) and gauge bosons (GL, GR, GC). Here, SU(3)F is a global family

symmetry acting on the space of fermion and scalar field generations, while SU(3)L ×
SU(3)R × SU(3)C is the standard trinification gauge group. Although our model is not

supersymmetric, we employ a notation inspired by SUSY, since we have the same group

representations in the scalar and fermion sectors. The fermions and scalars both form

bi-triplet representations under the gauge group, but tri -triplets under the full symmetry

group (including the SU(3)F).1

The Z3 symmetry refers to the cyclic permutation of the fields

GL
Z3→ GC,

GC
Z3→ GR,

GR
Z3→ GL,

L
Z3→ QL,

QL
Z3→ QR,

QR
Z3→ L,

L̃
Z3→ Q̃L,

Q̃L
Z3→ Q̃R,

Q̃R
Z3→ L̃.

(2.2)

which in turn enforces the gauge coupling unification. This symmetry combined with the

global SU(3)F also dramatically reduces the number of possible terms in the scalar potential

as well as in the fermion sector of the theory.

1Gauging the family SU(3)F in an E8 inspired scenario would effectively mean the doubling the number

of chiral and scalar multiplets as is required by the anomaly cancellation condition. In this paper, however,

we avoid such a huge complication by treating the family symmetry as a global one, as a first step.
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SU(3)L SU(3)R SU(3)C {SU(3)F}
fermions

L 3 3̄ 1 3

QL 3̄ 1 3 3

QR 1 3 3̄ 3

scalars

L̃ 3 3̄ 1 3

Q̃L 3̄ 1 3 3

Q̃R 1 3 3̄ 3

gauge bosons

GL 8 1 1 1

GR 1 8 1 1

GC 1 1 8 1

Table 1. Field content of the GUT-scale trinification model. The fermionic fields are left-handed

Weyl fermions.

The most general renormalizable scalar potential for the trinification model reads

V = V1 + V2 + V3 (2.3)

where

V1 = −µ2(L̃i)lr (L̃∗i )
r
l + λ1

[
(L̃i)lr (L̃∗i )

r
l

]2
+ λ2(L̃i)lr (L̃j)l

′
r′ (L̃∗j )

r
l (L̃∗i )

r′
l′

+ λ3(L̃i)lr (L̃j)l
′
r′ (L̃∗i )

r′
l (L̃∗j )

r
l′ + λ4 (L̃i)lr (L̃j)l

′
r′ (L̃∗j )

r′
l (L̃∗i )

r
l′

+ (Z3 permutations),

V2 = α1 (L̃i)lr (L̃∗i )
r
l (Q̃L

j)cl′ (Q̃∗Lj)
l′
c + α2 (L̃i)lr (L̃∗j )

r
l (Q̃L

j)cl′ (Q̃∗Li)
l′
c

+ α3 (L̃i)lr (L̃∗i )
r
l′ (Q̃L

j)cl (Q̃∗Lj)
l′
c + α4 (L̃i)lr (L̃∗j )

r
l′ (Q̃L

j)cl (Q̃∗Li)
l′
c

+ (Z3 permutations),

(2.4)

and

V3 = γ εijk (L̃i)lr (Q̃L
j)cl (Q̃R

k)rc + c.c. (2.5)

The scalar potential thus contains two dimensionfull parameters, mass parameter µ and

trilinear coupling γ, and eight quartic couplings λ1,...,4 and α1,...,4 which can be taken to

be real without loss of generality.

Due to the interplay between SU(3)F and Z3, combined with the trinification gauge

group, the fermion sector in the model only contains one single Yukawa coupling,

LFermion = −y εijk (L̃i)lr (QL
j)cl (QR

k)rc + c.c.+ (Z3 permutations). (2.6)

The trinification Yukawa coupling y can be taken to be real since any complex phase may

be absorbed into the definition of the fermion fields.

– 5 –
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U(1)A U(1)B

L, L̃ +1 0

QL, Q̃L −1/2 +1/3

QR, Q̃R −1/2 −1/3

GL,R,C 0 0

Table 2. Charge assignment under the accidental symmetries.

Once all the renormalizable terms invariant under the trinification gauge group and

the global SU(3)F symmetry are written, one can notice that the terms are also invariant

under an accidental {U(1)A × U(1)B} symmetry. A convenient charge assignment under

the accidental U(1) groups is shown in table 2, where one immediately recognizes U(1)B

as giving rise to a conserved baryon number. Furthermore, U(1)B will stay unbroken at

lower scales (including the SM), since L̃ is uncharged under U(1)B and no other fields will

develop VEVs throughout the evolution to the EW scale. Though the symmetry would still

allow for the proton to decay into coloured scalars Q̃L,R, we will see that all the coloured

scalar states acquire their masses of the order of the unification scale (i.e. much larger than

the proton mass), making such a proton decay kinematically impossible. Meanwhile, the

heavy coloured scalars are relevant for generation of loop-induced lepton mass terms at the

matching scale in the low-energy effective model as will be discussed in more detail below.

3 Spontaneous trinification breaking down to a LR-symmetric model

In this paper, we would like to explore whether after the spontaneous symmetry breaking

(SSB) of the trinification gauge symmetry, it will be possible for the effective LR-symmetric

model to break down to the SM gauge group by means of the RG evolution of the cor-

responding couplings, in particular, mass parameters. In order to do that, one has to

explore first the SSB of the group in eq. (2.1) (also taking into account the accidental

{U(1)A×U(1)B} symmetry). The most straightforward way to break trinification is when

only one component in L̃ acquires a real non-zero VEV, namely,

〈(L̃i)lr〉 = δi3δ
l
3δ

3
r

v3√
2

=




0 0 0

0 0 0

0 0 v3√
2




i=3

, (3.1)

where the l (r) index labels the rows (columns), while 〈Q̃L〉 = 〈Q̃R〉 = 0. As will be shown

in section 3.5, this often corresponds to the global minimum of the potential in eq. (2.3),

assuming no SU(3)C breaking VEVs. The extremal conditions (i.e. the requirement that

the first derivatives of the scalar potential vanish in the minimum) allow us to rewrite µ in

terms of v3 as follows

µ2 = (λ1 + λ2 + λ3 + λ4) v2
3 . (3.2)

– 6 –
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By applying a general infinitesimal gauge transformation on 〈(L̃i)lr〉, we find that the fol-

lowing subset of the trinification gauge symmetry generators leaves that vacuum invariant:

T 1,...,8
C , T 1,2,3

L , T 1,2,3
R , TL+R ≡

2√
3

(
T 8

L + T 8
R

)
. (3.3)

Therefore, the vacuum (3.1) spontaneously breaks the trinification gauge group to the

LR-symmetric gauge group SU(3)C × SU(2)L × SU(2)R × U(1)L+R. Before the SSB, the

global symmetry group is the full symmetry group SU(3)C× SU(3)L× SU(3)R× SU(3)F×
U(1)A×U(1)B. When applying a general infinitesimal global symmetry transformation on

the vacuum given by eq. (3.1), we find that the following generators leave it invariant

T 1,2,3
F , TX ≡

2√
3

(
T 8

L − T 8
R − 2T 8

F

)
, TZ ≡

2

3

(
TA +

√
3T 8

F

)
, (3.4)

in addition to TB and the generators in eq. (3.3). Here, we have constructed TX,Z such that

they are orthogonal to TL+R and chosen their normalisation for convenience. However, any

other two linearly independent combinations of TX,Z and TL+R that are also linearly inde-

pendent of TL+R, generate an unbroken {U(1)×U(1)} symmetry. Therefore, after the SSB,

in addition to the unbroken gauge group, the symmetry {SU(2)F×U(1)X×U(1)Z×U(1)B}
remains unbroken as well. In summary, the VEV setting (3.1) leads to the SSB pattern

SU(3)L × SU(3)R × SU(3)C × {SU(3)F ×U(1)A ×U(1)B}
↓

SU(3)C × SU(2)L × SU(2)R ×U(1)L+R × {SU(2)F ×U(1)X ×U(1)Z ×U(1)B} ,
(3.5)

and the basic properties of the resulting effective LR-symmetric model will be studied

below in detail.

3.1 Colour-singlet scalar sector

The colour-singlet scalars (CSS) are contained in L̃ which is the tri-triplet representa-

tion 3 ⊗ 3̄ ⊗ 3 of SU(3)L × SU(3)R × {SU(3)F}. It therefore contains 54 real degrees

of freedom. The VEV structure (3.1) breaks nine gauge symmetry generators, mean-

ing that one identifies nine massless real d.o.f.’s in the CSS mass spectrum that become

the longitudinal polarisation states of nine massive gauge bosons. In addition, the non-

gauge part of the symmetry group is reduced from SU(3)F × U(1)A × U(1)B down to

SU(2)F × U(1)X × U(1)Z × U(1)B so that the CSS spectrum, after the SSB, also contains

four corresponding Goldstone d.o.f.’s. These so-called “global Goldstone” bosons remain

as physical massless scalar d.o.f.’s. However, at energy scales much lower than v3, these are

effectively decoupled from all other light fields (including the SM fields) since their inter-

actions are always suppressed by powers of v3. The decoupling of global Goldstone bosons

is further discussed in section 4.4. The mass eigenstates and the corresponding squared

masses of the CSS after (L̃3)3
3 develops a VEV, are listed in table 3. Local stability of

the minima in the CSS sector is obtained when these squared masses are non-negative.

Combined with the requirement that µ2 > 0, this is ensured when

λ1 + λ2 + λ3 + λ4 > 0 , λ2 + λ3 ≤ 0 , λ2 + λ4 ≤ 0 , λ3 + λ4 ≤ 0 . (3.6)

– 7 –
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Fields (Mass)2 (L+R,X,Z) Comment

(L̃I)LR −(λ2 + λ3 + λ4) v2
3 (0, 0,+1)

(L̃I)3
R m2

R ≡ −(λ2 + λ3) v2
3 (−1,−1,+1)

(L̃3)LR m2
h ≡ −(λ3 + λ4) v2

3 (0,+2, 0)

(L̃I)L3 −(λ2 + λ4) v2
3 (+1,−1,+1)

Re[(L̃3)3
3] 2(λ1 + λ2 + λ3 + λ4) v2

3 (0, 0, 0)

Im[(L̃3)3
3] 0 (0, 0, 0) Gauge Goldstone

(L̃3)L3 0 (+1,+1, 0) Gauge Goldstone

(L̃3)3
R 0 (−1,+1, 0) Gauge Goldstone

(L̃I)3
3 0 (0,−2,+1) Global Goldstone

Table 3. Mass eigenstates in L̃ after the SSB of the trinification group, and the corresponding

tree-level squared masses and U(1) charges. All states have zero baryon number here. In section 4,

we consider the LR-symmetric low-energy effective model with (L̃I)3
R ≡ (l̃R

I)R and (L̃3)LR ≡ h̃LR
assuming that m2

R,h � v2
3 while all other masses are heavy, i.e. ∼ v3.

Fields (Mass)2 (L+R,X,Z,B)

(Q̃L
I)cL

1
2 [α1 − 2(λ1 + λ2 + λ3 + λ4)] v2

3 (−1/3,−1, 0,+1/3)

(Q̃R
I)Rc

1
2 [α1 − 2(λ1 + λ2 + λ3 + λ4)] v2

3 (+1/3,−1, 0,−1/3)

(Q̃L
3)cL

1
2 [α1 + α2 − 2(λ1 + λ2 + λ3 + λ4)] v2

3 (−1/3,+1,−1,+1/3)

(Q̃R
3)Rc

1
2 [α1 + α2 − 2(λ1 + λ2 + λ3 + λ4)] v2

3 (+1/3,+1,−1,−1/3)

(Q̃ILR±)c 1
2

[
α1 + α3 ± γ√

2v3
− 2(λ1 + λ2 + λ3 + λ4)

]
v2

3 (+2/3, 0,+1/3)

(Q̃L
3)c3

1
2 [α1 + α2 + α3 + α4 − 2(λ1 + λ2 + λ3 + λ4)] v2

3 (+2/3,+2,−1,+1/3)

(Q̃R
3)3
c

1
2 [α1 + α2 + α3 + α4 − 2(λ1 + λ2 + λ3 + λ4)] v2

3 (−2/3,+2,−1,−1/3)

Table 4. Mass eigenstates in Q̃L and Q̃R after the SSB of the trinification symmetry

group, and the corresponding tree-level squared masses and U(1) charges. Here, (Q̃ILR±)c ≡
1√
2

[
(Q̃L

I)c3 ± εIJ(Q̃∗RJ)c3

]
.

3.2 Coloured scalar sector

When L̃ acquires a VEV according to eq. (3.1), all coloured scalar (CS) d.o.f.’s become

massive. The mass eigenstates and masses are listed in table 4. Requiring that the squared

masses must be non-negative constrains the parameters in V2 and V3 as

α1 ≥ 2(λ1 + λ2 + λ3 + λ4) ,

α1 + α2 ≥ 2(λ1 + λ2 + λ3 + λ4) ,

α1 + α3 −
|γ|√
2v3

≥ 2(λ1 + λ2 + λ3 + λ4) ,

α1 + α2 + α3 + α4 ≥ 2(λ1 + λ2 + λ3 + λ4) .

(3.7)
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Fields (Mass)2 (L+R,X) Comment

GC
1...8
µ 0 (0, 0) Gauge field of SU(3)C

GL
1...3
µ 0 (0, 0) Gauge field of SU(2)L

GR
1...3
µ 0 (0, 0) Gauge field of SU(2)R

1√
2

(
GL

8 +GR
8
)
µ

0 (0, 0) Gauge field of U(1)L+R

VL
L
µ

1
4g

2 v2
3 (+1,+1)

VR
R
µ

1
4g

2 v2
3 (+1,−1)

Vsµ
2
3g

2 v2
3 (0, 0)

Table 5. Gauge boson states after the SSB of the trinification group. All gauge boson states are

uncharged under {U(1)Z ×U(1)B}.

Fields (Mass)2 (L+R,X,Z,B) Comment

(DH
I)c 1

2y
2v2

3 (+2/3, 0, 0,+1/3) Dirac fermion

Table 6. The first and second generation SU(2)L × SU(2)R-singlet quarks make up an SU(2)F-

doublet Dirac fermion that gets a tree-level mass at the trinification breaking scale. All other

fermionic d.o.f.’s in (Li)lr, (QL
i)cl and (QR

i)rc are massless at tree-level.

3.3 Gauge boson sector

After the SSB, nine gauge bosons become massive. Their masses are determined by the

trinification gauge coupling g as indicated in table 5. They can be conveniently grouped

into two doublets (one for each SU(2)L,R)

VL
L
µ ≡

1√
2

(
GL

6 + iGL
7

GL
4 + iGL

5

)

µ

, VR
R
µ ≡

1√
2

(
GR

6 + iGR
7

GR
4 + iGR

5

)

µ

, (3.8)

and one singlet

Vsµ ≡
1√
2

(
GL

8 −GR
8
)
µ
. (3.9)

3.4 Fermion sector

The fermions (Li)lr, (QL
i)cl and (QR

i)rc couple to the scalars (L̃i)lr, (Q̃L
i)cl and (Q̃R

i)rc via

the Yukawa interactions given in eq. (2.6). In particular, the VEV leads to a Dirac mass

term for one fermionic SU(2)F doublet. The corresponding down-type Dirac state is built

out of (QL
I)c3 and (Q†RI)

c
3 as follows

(DH
I)c ≡

(
(QL

I)c3

εIJ(Q†RJ)c3

)
. (3.10)

The U(1) charges of DH are shown in table 6.
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3.5 Finding the global minimum through homotopy continuation

If we restrict ourselves to the case of two generations of colour singlet scalars L̃i getting

VEVs, the most general VEV setting after accounting for gauge [43] and family symmetries

can be written as2

〈(L̃1)lr〉 =
1√
2




v1 0 0

0 v2 0

0 0 v3


 , 〈(L̃2)lr〉 =

1√
2




v5 0 v6

0 0 0

v7 0 v8


 . (3.11)

Note that, due to Z3, this choice is physically equivalent to assuming only VEVs in two

generations of either Q̃L or Q̃R.

As discussed in the previous sections, we are interested in the case where only one real

scalar field aqcuires a non-zero VEV. The question remains as to whether this is indeed

the global minimum of the scalar potential or if the global minimum has a different set of

non-zero VEVs and therefore a different symmetry breaking chain takes place.

Using the homotopy continuation method through HOM4PS2 [49], we performed a

random scan over 5000 parameter points satisfying the conditions in eqs. (3.6) and (3.7).

The homotopy continuation method finds all the solutions of systems of polynomial equa-

tions, in this case the minimisation conditions of the tree-level potential (2.3) for the VEV

setting in eq. (7.9).

For all the points in the scan, the global minimum was always the one for which

v3 ≡ v 6= 0 and vi 6=3 = 0, even for parameter points where other minima were present. In

other words, for the model described here if we require that there exists a minimum with

one real field acquiring a VEV then, excluding pathological cases that might have been

missed in the numerical analysis, that minimum is the global one.

The most general case where a third generation is also allowed to acquire VEVs could

not be treated with HOM4PS2 due to a complicated system of equations outpacing our

computational resources. However, a purely numerical minimisation was performed over a

second scan of parameter space leading to the same result as for the case of two generations.

Given a parameter point that satisfies the positive scalar mass-squares condition in the one

VEV minima, the numerical minimisation procedure was started in a random point in

field space, whereby the minimum of the potential was found by a simple steepest-descent

method. For the minima obtained in this way, we computed the gauge boson mass spectrum

and observed that it numerically matched the masses in table 5. By pretending that SU(3)F

is gauged, we computed the number of unbroken global symmetry generators by counting

the number of “new” massless gauge bosons, and could in all cases conclude that it matched

the number of global symmetry generators in the effective LR-symmetric model. Therefore,

we believe that the all of these minima are related to the one VEV minima in eq. (3.1) by

a symmetry transformation, and are hence physically equivalent.

2Using the SU(2)F ⊂ SU(3)F family symmetry we can “rotate away” one of the VEVs of the general

case shown in ref. [43].
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4 The low-scale effective LR-symmetric model

4.1 Minimal particle content of the effective model

The trinification group is spontaneously broken by the VEV v3 in eq. (3.1) to the following

symmetry

SU(3)C × SU(2)L × SU(2)R ×U(1)L+R × {SU(2)F ×U(1)X ×U(1)Z ×U(1)B}. (4.1)

The decomposition of L̃ in terms of representations of the group (4.1) can be written as

(L̃i)lr = δiI

[
δlLδ

R
r (H̃I)LR + δlLδ

3
r (l̃L

I)L + δl3 δ
R
r (l̃R

I)R + δl3δ
3
r Φ̃I

]

+ δi3

[
δlLδ

R
r h̃

L
R + δlLδ

3
r l̃
s
L
L + δL3 δ

R
r l̃

s
RR + δl3δ

3
r

(
Φ̃s +

v3√
2

)]
.

(4.2)

Here, l̃sL,R and Im[Φ̃s] are the gauge Goldstone d.o.f.’s that become the longitudinal po-

larisation states of the heavy vector bosons listed in table 5, wheras Φ̃I is the “global”

Goldstone boson. Similarly, the fermion multiplet L can be written in terms of reps of the

new symmetry group as follows

(Li)lr = δiI

[
δlLδ

R
r (HI)LR + δlLδ

3
r (lL

I)L + δl3δ
R
r (lR

I)R + δl3δ
3
r ΦI

]

+ δi3

[
δlLδ

R
r (Hs)LR + δlLδ

3
r l
s
L
L + δl3δ

R
r l

s
RR + δl3δ

3
r Φs

]
.

(4.3)

Moreover, the decomposition of the trinification quark multiplets, QL and QR, reads

(QL
i)cl = δiI

[
δLl (QL

I)cL + δ3
l (DL

I)c
]

+ δi3
[
δLl QsLcL + δ3

l D
s
L
c
]
,

(QR
i)rc = δiI

[
δrR (QR

I)Rc + δr3(DR
I)c
]

+ δi3
[
δrRQsRRc + δr3 D

s
Rc

]
,

(4.4)

and similarly for Q̃L,R.

As mentioned in section 3, we want to explore whether a radiatively induced breaking

down to the SM gauge group can happen for the proposed model. As will be discussed

later in detail, in order for that to happen, we need to have at least one SU(2)R and one

SU(2)L scalar doublet in the effective theory so that the SU(2)R-doublet mass parameter

can run negative. With this in mind, and considering the simplest possible scenario, we

will focus our attention on a subset of the parameter space where after the trinification

symmetry is broken, the scalar spectrum comprises two very light states, namely,

h̃LR ≡ (L̃3)LR and (l̃R
I)R ≡ (L̃I)3

R , (4.5)

in addition to the global Goldstone field Φ̃I ≡ (L̃I)3
3. The remaining scalars either get

masses of O(v3) or get “eaten” by heavy gauge bosons. For this particular case, one can

integrate out all the heavy scalars ending up with a simpler effective theory containing the

light and massless fields only. In the fermion sector, the fields (QL
I)c3 and (QR

I)3
c can also

be integrated out as they make up the heavy Dirac fermions shown in table 6. The fields

that are present in the effective theory are shown in table 7.
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In order to parametrize the relevant regions of parameter space giving rise to such a

minimal particle content of the effective model, let us define small dimensionless δ and ε

parameters as follows

ε ≡ −λ2 − λ3 , δ ≡ −λ3 − λ4, (4.6)

such that m2
R = εv2

3 and m2
h = δv2

3. We will then construct the effective LR-symmetric

model assuming ε� 1 and δ � 1. At higher orders in perturbation theory, other tree-level

couplings (such as αi and γ) will enter in the full expressions for m2
h,R. To still keep these

states sufficiently light at the matching scale will then further constrain the parameter space

as the simple assumptions ε, δ � 1 will not suffice. This is further discussed in section 7.2.

In the LR-symmetric effective model, the fields interact with gauge bosons according to

their representations under the gauge groups as given in table 7, with strengths determined

by the gauge couplings gL, gR, gC and gL+R. At the matching scale v3, these are related

to the trinification gauge coupling g as

gL = gR = gC = g , gL+R =

√
3

8
g . (4.7)

4.2 Matching of the scalar potential parameters

The GUT-scale scalar potential V should be matched onto the most general renormalizable

scalar potential for h̃LR, (l̃R
I)R and Φ̃I in the low-energy LR-symmetric model:

VLR = m2
h |h̃|2 +m2

R |l̃R|2 +m2
Φ̃
|Φ̃|2

+ λa |h̃|4 + λb |l̃R|4 + λc |Φ̃|4 + λd |h̃|2|Φ̃|2 + λe |l̃R|2|Φ̃|2 + λf |l̃R|2|h̃|2

+ λg (l̃R
I)R1 (l̃∗RI)

R2
h̃LR′

1
h̃∗
R′

2
L εR1R′

1 εR2R′
2

+ λh (l̃R
I1)R (l̃∗RJ1)

R
Φ̃I2 Φ̃∗J2

εI1I2 ε
J1J2

+ λi (l̃R
I1)R1 (l̃R

I2)R′
1

(l̃∗RJ1)
R2

(l̃∗RJ2)
R′

2 εI1I2 ε
J1J2 εR2R′

2
εR1R′

1

+ λj h̃
L1
R1

h̃
L′

1

R′
1
h̃∗R2
L2

h̃∗
R′

2

L′
2

εL1L′
1
εL2L′

2 εR2R′
2
εR1R′

1

(4.8)

The tree-level matching conditions in the scalar sector are obtained by requiring that

the n-point functions with external scalars in the high-scale and the low-scale theory coin-

cide at tree-level at the matching scale µm, which we take to be the trinification breaking

scale v3. In this case, we get all relations between the high scale parameters {v3, λ1,3, ε, δ},
and the low-scale parameters {m2

h,R,Φ̃
, λa,...,j} from the two-point functions (i.e. from the

masses squared) and the four-point functions (quartic couplings). We compute the four-

point functions taking the limit of small external momenta (compared to v3 scale), since we

are only interested in the matching of the renormalizable operators. Any momentum de-

pendence in the four-point functions in the low-scale theory would instead be attributed to

(non-renormalizable) derivative interactions. We do not take these higher order derivative

operators into account since they presumably would have a negligible effect in the infrared
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behaviour of the theory. Thus, the matching conditions are

m2
h = δv2 , m2

R = εv2 , m2
Φ̃

= 0 ,

λc = λd = λe = λh = 0 ,

λg = −2λ3 , λi =
1

2
ε , λj =

1

2
δ ,

λa = λ1 − λ3 − ε− δ −
(λ1 − λ3 − ε)2

λ1 − λ3 − ε− δ
≈ −2δ +O(ε2, εδ, δ2) ,

λb = λ1 − λ3 − ε− δ −
(λ1 − λ3 − δ)2

λ1 − λ3 − ε− δ
≈ −2ε+O(ε2, εδ, δ2) ,

λf = 2

[
λ1 + λ3 −

(λ1 − λ3 − ε)(λ1 − λ3 − δ)
λ1 − λ3 − ε− δ

]
≈ 4λ3 +O(ε2, εδ, δ2) .

(4.9)

Interestingly, all λ1’s cancel out in the matching conditions, provided that ε and δ are

sufficiently small, which means that λ1 does not affect the values of the couplings in the

effective LR-symmetric model at tree-level. This can be seen as a consequence of h̃LR, (l̃R
I)R

and Φ̃I becoming Goldstone bosons of the O(54)→ O(53) breaking that is induced in the

CSS sector by the v3 VEV in the limit λ2, λ3, λ4 → 0 (since they are Goldstone bosons in

this limit, they must decouple from the scalar potential in the same limit).

4.3 Fermion sector

Though the trinification theory only contains one Yukawa coupling, many terms are allowed

by the symmetry group of the LR-symmetric effective model in the fermion sector:

L(LR)
Fermion = Yα (l̃∗RI)

R
(lR

I)R Φs + Yβ (l̃∗RI)
R
lsRR ΦI + Yγ (l̃R

I)R (QR
J)R Ds

L εIJ

+ Yδ h̃
∗R
L (Hs)LR Φs + Yε h̃

∗R
L lsL

L lsRR + Yζ h̃
L
R (QL

I)L (QR
J)R εIJ

+ Yη Φ̃∗I ΦIΦs +
mΦs

2
ΦsΦs + c.c.

(4.10)

The matching conditions for these Yukawa couplings are rather easy at tree-level, as

only two of them are found to have non-vanishing values at the matching scale. This does

not mean that the other couplings are not present in the effective theory and it would be a

subject of a future study to calculate the matching conditions at higher orders where they

might not necessarily vanish. However, for the purpose of this work, which is to explore a

potential for the radiative breaking of the LR symmetry down to the SM gauge group, the

tree-level approximation is expected to be sufficient. In this case, the matching conditions

are such that

Yζ = −y and Yγ = y , (4.11)

while Yα,β,δ,ε,η = 0. Furthermore, the β-functions in appendix A indicate that the Yukawa

couplings that are zero at the matching scale will also remain zero at lower scales, since

βYi ∝ Yi.
With the matching conditions defined above, the parameters of the effective LR-

symmetric model can be determined from a reduced set of parameters of the GUT-scale

theory. The vacuum stability constraints (3.6) and (3.7) can be then translated as well to
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reduce further the allowed parameter space for the effective theory. With this framework in

mind, the question remains as to whether the remaining symmetries of the effective theory

can be broken radiatively by one-loop RG running at a lower scale leading to an effective

model which approaches the SM.

4.4 Decoupling of “global” Goldstone bosons

It can be shown, on very general grounds that Goldstone bosons appearing due to the

spontaneous breaking of a global symmetry at a scale v3, have negligibly small interactions

at scales µ � v3 [50, 51]. This decoupling is obvious if one chooses a specific exponential

representation of the Goldstone d.o.f.’s, which comes at expense of manifest renormalisabil-

ity. In this work, we have instead chosen the simple (but equivalent) linear representation

of the global Goldstone d.o.f.’s Φ̃I such that renormalisability (but not decoupling) is man-

ifest in the GUT-scale trinification theory. Nevertheless, with the results from the three

previous sections, we can see explicitly how Φ̃I decouple at scales well below v3.

Firstly, we notice that Φ̃I decouples from the scalar potential at the matching scale

since mΦ̃ = 0 and λc = λd = λe = λh = 0. Instead, one finds that for the matching to agree

at non-zero Goldstone boson momenta, one has to introduce derivative interactions among

the Goldstone bosons as well as between the Goldstone bosons and non-Goldstone fields.

These derivative interactions necessarily have dim > 4 and hence must be suppressed by the

trinification breaking scale ∼ v3. Since these operators presumably will be increasingly ir-

relevant in the infrared, we simply omit them from our LR-symmetric effective Lagrangian.

In the trinification fermion sector shown in eq. (2.6), one can check that the only

Yukawa interactions involving Φ̃I that are non-zero at tree-level also involve the heavy

quark fields (QL
I)c3 and (QR

I)3
c (which are integrated out at the trinification breaking

scale). In addition, in the effective theory, one new Yukawa interaction with Φ̃I is allowed

by symmetry (Yη in eq. (4.10)), but it vanishes at the matching scale. The corresponding

β-function, βYη , is proportional to Yη, meaning that the vanishing matching condition also

forces Yη = 0 at lower scales.

Having shown the disappearance of scalar and Yukawa interactions with Φ̃I , only

gauge interactions remain. However, since Φ̃I is a gauge singlet, it will neither interact

via gauge interactions nor contribute to the running of the gauge couplings in the effective

LR-symmetric model.

5 Breaking of SU(2)R ×U(1)L+R in the effective model

In order to reproduce the phenomenology of the SM at low energies, the gauge SU(2)R ×
U(1)L+R subgroup needs to be broken to the SM hypercharge group U(1)Y. One of the

persistent issues in high energy models is the fact that the vastly different energy scales

associated have to be given through input parameters. One way of dealing with this

issue is to introduce the possibility of radiative symmetry breaking, i.e SSB triggered by

the RG evolution of the model. This is a standard way of understanding, for example,

EW symmetry breaking in the MSSM where the running of m2
Hu

drives the breaking of

SU(2)L×U(1)Y [52–54]. The question remains as to whether this model offers a possibility
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SU(2)L SU(2)R SU(3)C U(1)L+R {SU(2)F} {U(1)X} {U(1)Z} {U(1)B}
fermions

H 2 2̄ 1 0 2 0 +1 0

lL 2 1 1 +1 2 −1 +1 0

lR 1 2̄ 1 −1 2 −1 +1 0

Φ 1 1 1 0 2 −2 +1 0

QL 2̄ 1 3 −1/3 2 −1 0 +1/3

QR 1 2 3̄ +1/3 2 −1 0 −1/3

Hs 2 2̄ 1 0 1 +2 0 0

lsL 2 1 1 +1 1 +1 0 0

lsR 1 2̄ 1 −1 1 +1 0 0

Φs 1 1 1 0 1 0 0 0

QsL 2̄ 1 3 −1/3 1 +1 −1 +1/3

QsR 1 2 3̄ +1/3 1 +1 −1 −1/3

Ds
L 1 1 3 +2/3 1 +2 −1 +1/3

Ds
R 1 1 3̄ −2/3 1 +2 −1 −1/3

scalars

h̃ 2 2̄ 1 0 1 +2 0 0

l̃R 1 2̄ 1 −1 2 −1 +1 0

Φ̃ 1 1 1 0 2 −2 +1 0

gauge bosons

GL 3 1 1 0 1 0 0 0

GR 1 3 1 0 1 0 0 0

GC 1 1 8 0 1 0 0 0

GL+R 1 1 1 0 1 0 0 0

Table 7. Field content of the effective LR-symmetric model.

of breaking SU(2)R ×U(1)L+R through the RG running of m2
R and the rest of parameters

of the effective model with initial conditions coming from tree-level matching of the high

energy theory. This will give us the possibility of checking under which conditions (for the

high-energy input parameters) this radiative breaking can be induced.

For this purpose, we consider two separate scenarios. In scenario I, we study the

properties of a minimum in the scalar potential of the effective LR-symmetric model where

SU(2)R×U(1)L+R is broken to the analogous of U(1)Y in the SM, (i.e. the EW gauge group

SU(2)L ×U(1)Y is unbroken in this minimum). To study the model at the electro-weak

scale, where SU(2)L×U(1)Y is broken, a second step of matching and running would have

to be performed to discover whether there is a sign change of the Higgs squared mass
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parameter inducing the electro-weak symmetry breaking. In scenario II, we instead study

minima with a more complicated VEV structure such that SU(2)L × SU(2)R ×U(1)L+R is

directly broken down to U(1)E.M.. This is accomplished by suitable VEVs both in h̃ and in

l̃R. The VEV in l̃R needs to be larger than the Higgs VEV to keep the W ′ and Z ′ bosons

heavy, but not too large as to ruin the convergence the perturbative expansion through

large logarithms of the ratio between the two VEVs. If this ratio would become too large,

Scenario I is more appropriate.

5.1 Scenario I: breaking to the SM gauge group

Let us first understand what are the conditions necessary for SU(2)R × U(1)L+R breaking

through non-vanishing VEV for the scalar field l̃R,

〈(l̃RI)R〉 = δI2δ
2
R

w√
2

=


0 0

0 w√
2


 , (5.1)

where w is taken to be real. The extremal condition for such a VEV setting reads

−m2
R = λbw

2. (5.2)

This leaves the following gauged U(1) generator unbroken,

TY = T 3
R +

1

2
TL+R, (5.3)

which can be identified as the SM hypercharge generator. In addition, eq. (5.1) leaves four

global U(1) generators unbroken,

TD ≡
1

2

(
TX − TL+R

)
, TE ≡ T 3

F +
1

2
TZ , TG ≡

1

2

(
TZ + TL+R

)
, TB . (5.4)

Thus, the VEV (5.1) breaks the LR symmetry group (4.1) down to

SU(3)C × SU(2)L ×U(1)Y × {U(1)D ×U(1)E ×U(1)G ×U(1)B}. (5.5)

which will also be the symmetry group of a SM-like effective model that is obtained when

the heavy particles in the effective LR-symmetric model are integrated out.

The scalar mass eigenstates in the minimum described by eq. (5.2) are shown in table 8.

Notice, in particular, that the scalar spectrum contains one massless complex d.o.f. that

is the “global” Goldstone boson from the breaking of the global part of the LR symmetry.

We expect this to decouple at scales µ� w, similarly to how Φ̃I decouples for µ� v.

The gauge fields after SSB of the LR symmetry are mixed and give rise to the massive

and massless states shown in table 9. The massless states are the gauge fields of the

unbroken gauge symmetries, and the massive gauge fields are the combinations

W ′±µ =
1√
2

(
GR

1 ∓ iGR
2
)
µ
, Z ′0µ = cos θV GL+Rµ − sin θV GR

3
µ (5.6)
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Fields (Mass)2 (Y,D,E) Comment

h̃L1 m2
h2
≡ m2

h + 1
2(λg − λf )w2 (−1/2,+1, 0)

h̃L2 m2
h1
≡ m2

h − 1
2λfw

2 (+1/2,+1, 0)

(l̃R
1)1 m2

r2 ≡ 2λiw
2 (−1, 0,+1)

Re[(l̃R
2)2] m2

r1 ≡ 2λbw
2 (0, 0, 0)

(l̃R
2)1 0 (−1, 0, 0) Gauge Goldstone

Im[(l̃R
2)2] 0 (0, 0, 0) Gauge Goldstone

(l̃R
1)2 0 (0, 0,+1) Global Goldstone

Table 8. Mass eigenstates in h̃ and l̃R after SSB of the LR symmetry by l̃R VEV, the corresponding

tree-level masses and U(1) charges. All scalars are uncharged under the {U(1)G × U(1)B} global

symmetry.

Fields (Mass)2 Y Comment

GC
1,...,8
µ 0 0 Gauge field of SU(3)C

GL
1,2,3
µ 0 0 Gauge field of SU(2)L

sθVGL+Rµ + cθVGR
3
µ 0 0 Gauge field of U(1)Y

W ′±µ m2
W ′ ≡ 1

4g
2
Rw

2 ±1

Z ′0µ m2
Z′ ≡

(
g2

L+R + 1
4g

2
R

)
w2 0

Table 9. Gauge boson mass eigenstates and their hypercharges after the spontaneous LR symmetry

breaking. All gauge bosons are uncharged under the global {U(1)D×U(1)E×U(1)G×U(1)B} group.

Here, cθV ≡ cos θV and sθV ≡ sin θV .

with tan θV = gR/2gL+R. The hypercharge gauge coupling gY becomes

gY =
2 gR gL+R√
4g2

L+R + g2
R

. (5.7)

For general values of the Yukawa couplings in eq. (4.10), many fermion fields become

massive once 〈l̃R〉 6= 0. However, in the approximation employed in this work, i.e. tree-level

matching and one-loop RG evolution, most of the Yukawa couplings are zero and only one

Dirac fermion becomes massive in the effective LR-symmetric model (shown in table 10).

This fermion is a Dirac state

Ds
c ≡

(
Ds

L
c

(Q†R
1
)2
c

)
(5.8)

and, when integrated out, leaves behind three SU(2)L doublet quarks and six SU(2)L singlet

quarks that will make up the SM quark sector.

5.2 Scenario II: breaking directly to U(1)E.M.

A second possible scenario is that in which both (l̃R
I)R and h̃LR develop VEVs, which

would directly trigger SU(2)L × SU(2)R × U(1)L+R → U(1)E.M.. Although this case is
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Fields (Mass)2 (Y,D,E)

Ds
c m2

q ≡ 1
2Y

2
γ w

2 (+1/3, 2/3,−1/3)

Table 10. Massive quark field and its quantum numbers after the SU(2)R ×U(1)L+R breaking.

certainly allowed by the model, and might also be triggered by RG running of effective

Lagrangian parameters, there is no a priori reason that there will be any hierarchy in the

VEVs of the fields consistent with the SM. This could lead to several massive gauge bosons

with comparable masses which would immediately be in conflict with what is observed

experimentally. So far, only the SM W± and Z0 bosons have been observed, and the

existing LHC bounds on extra gauge bosons [55, 56] would force an unnatural hierarchy

which is precisely the problem one wants to avoid by means of radiative breaking.

Nevertheless, let us explore the conditions under which such symmetry breaking might

lead to an unbroken U(1)E.M.. The most general VEV setting, after accounting for gauge

symmetries for (l̃R
I)R and h̃LR would be:

〈(l̃RI)R〉 =
1√
2

(
w1 w2

0 w3

)
〈h̃LR〉 =

1√
2

(
v1 0

0 v2

)
. (5.9)

However, not all of these minima lead to a U(1)E.M. remaining gauge symmetry consistent

with the proposed framework. To understand this, it is useful to think as if the VEVs are

attained sequentially. Let us assume (l̃R
I)R gets its VEV first. From our previous analysis

we know that in order to identify TE.M. = T 3
L +TY we need h̃LR to break down to two SU(2)L

doublets with opposite hypercharge. This is only possible with w1 = w2 = 0 (up to any

symmetry transformation on 〈l̃R〉). Once (l̃R
I)R has obtained its VEV, there are physically

different VEV settings in the Higgs bi-doublet we should explore separately: v1 = v 6= 0

and v2 = 0 (Case A), v2 = v 6= 0 and v1 = 0 (Case B), and v1 6= 0 and v2 6= 0 (Case C). In

the following we will explore the details of Case A and B. Case C, where both Higgs VEVs

are non-zero, is cumbersome and can be left for a future work. The reason for this is that

for that case the masses in the scalar sector can not be obtained analytically and the type

of analysis we will do in section 6.1.1 is not feasible without further work. We will thus

take a closer look at scenario I and the first two cases described above.

5.2.1 Case A

Given the VEV setting

〈(l̃RI)R〉 =


0 0

0 w√
2


 , 〈h̃LR〉 =


0 0

0 v√
2


 , (5.10)

the extremal conditions become

(
m2
h + v2λa −

1

2
w2λf

)
v = 0 ,

(
m2
R + w2λb −

1

2
v2λf

)
w = 0. (5.11)
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With v 6= 0 and w 6= 0, there is only one unbroken gauge symmetry generator

TE.M. = T 3
L + T 3

R +
1

2
TL+R (5.12)

which corresponds exactly to the generator of U(1)E.M in our previous analysis with only

(l̃R
I)R VEV. There are also two new U(1) global symmetries in addition to {U(1)G×U(1)B}

with generators

TV = TX − TL+R + 4T 3
L , TW = T 3

F −
1

2
TL+R (5.13)

The mass eigenstates in the scalar sector after this symmetry breaking are shown in

table 11. In particular, there is one real state which obtains a mass of O(v) when v � w,

which would be the candidate for the 125 GeV SM Higgs particle.

5.2.2 Case B

A second possible case follows from the VEV assignment

〈(l̃RI)R〉 =


0 0

0 w√
2


 〈h̃LR〉 =




v√
2

0

0 0


 . (5.14)

The extremal conditions in this case will be(
m2
H + v2λa +

1

2
w2(−λf + λg)

)
v = 0 ,

(
m2
R + w2λb +

1

2
v2(−λf + λg)

)
w = 0.

(5.15)

The mass eigenstates in the scalar sector after this symmetry breaking are shown in

table 12, where as in the previous case the spectrum contains a candidate for the SM

Higgs particle. The VEV setting (5.14) leaves the same gauged U(1)E.M. and global U(1)W

unbroken as the vev setting in eq. (5.10). However, the U(1)V is replaced by U(1)V′ which

is generated by

TV′ = TX − TL+R − 4T 3
L . (5.16)

6 Numerical results

The main question to answer for the proposed framework is whether for a consistent set

of parameters of the trinification theory, the RG running in the effective LR-symmetric

theory can trigger the radiative breaking of SU(2)R × U(1)L+R, and for what regions in

parameter space this happens. In addition, we will explore under which circumstances we

can get close to a realistic SM-like scalar sector, with a light SU(2)L scalar doublet with

hypercharge Y = +1/2 remaining in the spectrum at lower energies (which potentially can

induce EW symmetry breaking). The resulting low-scale mass spectrum after the radiative

symmetry breaking will depend on our choice of initial parameters only, but the connection

between the initial values of the parameters and the resulting mass spectrum is not obvious.

In order to explore it, we implemented a parameter scanning framework using numerical

integration of the RG equations together with a simulated annealing (SA) procedure to

scan over the possible initial values of high-scale parameters.

We calculated one-loop β-functions for the effective LR-symmetric model using the

package pyr@te [57], which are written in appendix A.
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Fields (Mass)2 Comment

sα(l̃R
2)1 − cαh̃2

1
1
2(v2 + w2)λg

(l̃R
1)1

1
2v

2λg + 2w2λi

h̃1
1

1
2w

2λg + 2v2λj

cηRe[h̃2
2] + sηRe[(l̃R

2)2] v2λa + w2λb +
√
. . .

cηRe[(l̃R
2)2]− sηRe[h̃2

2] v2λa + w2λb −√. . . ∼ O(v2) for tanα ∼ 0

(l̃R
1)2 0 Global Goldstone

h̃1
2 0 Gauge Goldstone

Im[h̃2
2] 0 Gauge Goldstone

Im[(l̃R
2)2] 0 Gauge Goldstone

cα(l̃R
2)1 + sαh̃

2
1 0 Gauge Goldstone

Table 11. Case A: mass eigenstates in h̃ and l̃R after SSB of the LR symmetry group to

U(1)E.M. and the corresponding tree-level masses. Here,
√
. . . =

√
(v2λa − w2λb)2 + (vwλf )2,

cα = cosα, sα = sinα with tanα = v/w and cη = cos η, sη = sin η with η being the corresponding

mixing angle whose explicit form we omit for simplicity.

Fields (Mass)2 Comment

cαRe[h̃1
2] + sαRe[(l̃R

2)1] −1
2(v2 + w2)λg

sαIm[(l̃R
2)1]− cαIm[h̃1

2] −1
2(v2 + w2)λg

(l̃R
1)1 −1

2v
2λg + 2w2λi

h̃2
2 −1

2w
2λg + 2v2λj

cκRe[h̃1
1] + sκRe[(l̃R

2)2] v2λa + w2λb +
√
. . .

cκRe[(l̃R
2)2]− sκRe[h̃1

1] v2λa + w2λb −√. . . ∼ O(v2) for tanα ∼ 0

(l̃R
1)2 0 Global Goldstone

h̃2
1 0 Gauge Goldstone

Im[h̃1
1] 0 Gauge Goldstone

Im[(l̃R
2)2] 0 Gauge Goldstone

−sαRe[h̃1
2] + cαRe[(l̃R

2)1] 0 Gauge Goldstone

cαIm[(l̃R
2)1] + sαIm[h̃1

2] 0 Gauge Goldstone

Table 12. Case B: mass eigenstates in h̃ and l̃R after SSB of the LR symme-

try group directly to U(1)E.M. and the corresponding tree-level masses. Here,
√
. . . =√

(v2λa − w2λb)2 + v2w2(λg − λf )2, cα = cosα, sα = sinα with tanα = v/w and cκ = cosκ, sκ =

sinκ with κ being the corresponding mixing angle whose explicit form we omit for simplicity.
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6.1 Parameter scan

Effectively, we would like to explore a five-dimensional parameter subspace of the high-

scale model {λ3, ε, δ, g, y} assuming we have fixed the scale at which trinification is broken

and imposed the constraints in eq. (3.6). This is due to the fact that in the effective

LR-symmetric model after tree-level matching, the β-functions only depend on those pa-

rameters as seen in eq. (4.9). Once a consistent set of high-scale model parameters is found,

the matching can be performed and the RG equations can be numerically integrated yield-

ing a scale dependence of the effective model parameters. The running starts from the

matching scale µm, which is chosen to be the trinification breaking VEV,

µm = v3, (6.1)

since the heavy states in the trinification theory that we integrate out have masses of O(v3).

The running is then terminated at a lower scale µr, which is defined as

µr =

√
|m2

R(µr)|+ |m2
h(µr)|

2
, (6.2)

since, at this scale, there are again states with masses of the same order as the renormalisa-

tion scale. These states then have to be integrated out before we can run down even further.

Depending on the initial values at a high scale, m2
R may have run negative at this scale,

thus triggering the radiative symmetry breaking we are looking for. However, we have to

guarantee that, at the stopping scale µr, the minimisation conditions for the VEV setting

described in eq. (5.1) are satisfied (i.e. that all the squared masses in table 8 are positive).

6.1.1 Simulated annealing

In order to find viable parameter space points in the high-scale theory, we implemented the

SA algorithm together with the numerical integration of β functions. The SA is a method

for estimating the global minimum of a given function E({pi}) in a multi-dimensional

parameter space {pi} [58].

If we interpret the function E({pi}) as the energy of a system whose physical state

is defined by {pi}, and imagine that the system is in thermal contact with a heat bath

with temperature T , we can let this system approach its equilibrium state by employing

the Metropolis algorithm. That is, we start with a random set of initial parameters, and

propose random updates {pi} → {p′j} that are accepted with probability

Pacc({pi} → {p′i}) =

{
1 if E({p′i}) < E({pi})
e(E({pi})−E({p′i}))/T otherwise,

. (6.3)

Given a constant T , this procedure fulfils detailed balance w.r.t. the canonical ensemble

P({pi}) ∝ e−E({pi})/T , which in the limit T → ∞ is a flat distribution where all {pi} are

equally likely, while in the limit T → 0 becomes highly peaked for the ground states of the

system, i.e. the states {pi} that minimise E({pi}).
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The SA works by initialising the system at a large temperature, and then running

the Metropolis algorithm while slowly (i.e. adiabatically) decreasing the temperature until

T ∼ 0. In this way, E({pi}) is minimised and the corresponding parameter space points

{pi} are found. This procedure has the advantage of being easy to implement while also

being less prone to get stuck in local minima compared to for example a gradient descent

method since local energy barriers can be overcome by “thermal fluctuations”.

For the purpose of this work we defined

E =





10 if m2
R(µ) > 0 ∀µ ∈ (mZ , µm)

5 +
min(m2

i )

max(|m2
i |)

if m2
j < 0 for some j

2
min(m2

hi
)

min(m2
q ,m

2
Z′ ,m

2
W ′ )

+
min(m2

hi
)

max(m2
q ,m

2
r2
,m2

Z′ ,m
2
W ′ )

if m2
R(µr) < 0 and m2

j (µr) > 0

(6.4)

where E = E(λ3, ε, δ, g, y) and m2
i = (m2

q ,m
2
hi
,m2

Ri
,m2

Z′ ,m2
W ′) are the masses after radia-

tive symmetry breaking evaluated at the scale µr. Minimisation of this function guarantees

that we find parameter space points where m2
R runs negative while also introducing a bias

towards parameters that yield a light Higgs-like SU(2)L doublet.

6.1.2 Choosing the trinification breaking scale

One of the free parameters of the proposed framework is the scale at which trinification

symmetry is spontaneously broken. This scale, which is the starting point for all the

successive symmetry breakings at low scales, is defined only by the trinification breaking

VEV (3.1). In order to get an idea of what scales are sensible to explore, we integrated

the one-loop RG equations for gauge couplings in the effective LR-symmetric model, an

easy task due to the fact that at one-loop the β-functions only depend on the gauge

couplings themselves. It was possible then to relate the trinification breaking scale to the

measured values of the SM SU(2)L, U(1)Y and SU(3)C gauge couplings. We found that

for a trinification breaking scale of µm = 1012.2 GeV, the boundary condition of g0 = 0.61

leads roughly to the SM values at mZ . In figure 1 we show the result from integrating the

gauge coupling β-functions from µm down to mZ . Because the β-functions only depend on

the gauge couplings at one-loop, this running is valid for any parameter space point with

g0 = 0.61 as boundary condition. We show in the same plot

gY(µ) ≡ 2 gR gL+R√
4g2

L+R + g2
R

(6.5)

which would be the matching condition for g1, the hypercharge gauge coupling, as function

of the scale µ. Note however that in figure 1, the running is performed all the way down to

the EW scale mZ , without decoupling the massive states at µr. A more accurate calculation

would implement this intermediate step, which would alter the slopes of the lines in figure 1

at scales below µr. Therefore, this calculation should only serve as a very rough estimate of

the numerical values of the matching scale (and the value of the trinification gauge coupling

at this scale).
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Figure 1. One-loop RG evolution of gauge couplings in the effective LR-symmetric model and

matching condition for the hypercharge coupling gY with g0 = 0.61. A trinification breaking scale

of µm ≈ 1012.2 GeV leads to roughly SM values for gL ≡ g2, gC ≡ g3 and gY ≡ g1 at µ ≈ mZ .

6.2 Regions of parameter space with radiative breaking

Using the framework described above we found 22081 parameter space points by running

our implementation of the SA algorithm allowing for high-scale parameters within the

unitarity bounds and for a trinification breaking scale of µm = 1012.2 GeV. Remarkably,

we found that the considered model naturally contains large parameter space regions where

SU(2)R×U(1)L+R is radiatively broken down to U(1)Y while a light Higgs doublet remains

in the spectrum at the stopping scale µr. In figure 2 we show the allowed regions in

several slices of the high-scale parameter space. Most of the features of these regions can

be explained by the structure of the mass-parameter β-functions in eqs. (A.13) and (A.12).

Our algorithm selects points where m2
R would have a positive β-function so that it could

run to negative values at low scales. For example, we see that the allowed parameter space

region always satisfies ε < δ which translates into the inequality m2
R < m2

h at the matching

scale. Although one can find points for which (A.13) is positive and ε > δ, for such points

m2
h value runs negative before m2

R does. This would trigger an unwanted simultaneous

breaking of SU(2)L and SU(2)R with the same VEV, as opposed to the desired situation

where the VEV responsible for SU(2)R ×U(1)L+R → U(1)Y is much larger than the Higgs

VEV that triggers the EW symmetry breaking.

We selected the most promising candidates from the results of the scan by requiring

the maximal hierarchy between a light Higgs-like doublet and heavy exotic particles at the

scale µr while having parameters within the perturbativity constraints. In figure 3 we show

the running of mass parameters before and after the radiative SU(2)R×U(1)L+R symmetry

breaking for a benchmark point satisfying those conditions. We find that it is possible to

find some mass hierarchy at the symmetry breaking scale, with a Higgs-like scalar doublet

coming from h̃ with masses up to two orders of magnitude lighter than the rest of the mass

spectrum. In addition, we also observe that a complex scalar coming from l̃R prefers to

have a small mass at µr (this is the dark solid curve in figure 3, corresponding to m2
r2 in

table 8). This scalar is a singlet under SU(2)L while having unit hypercharge, meaning that
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Figure 2. Regions of the high-scale model parameter space with the radiative SU(2)R × U(1)L+R

symmetry breaking down to U(1)Y by RG evolution in the effective LR-symmetric model. The

ranges for the scan were chosen such as to preserve the unitarity property at tree-level. The colours

indicate the lightness of the lightest Higgs doublet compared to the renormalization scale at the

stopping scale µr.

it will have unit electric charge after EW symmetry breaking. At present, it is not clear

to what extent this state accumulates a much larger mass when evolving from µr down to

the EW scale.

Although the gauge couplings of the effective LR-symmetric model start with the same

values due to the matching conditions and the Z3 symmetry in the high-scale model, the

RG evolution induces a splitting as seen in figure 1. It is interesting to note that although

we did not impose the boundary condition g0 = 0.6 for the SA algorithm, the allowed

points in parameter space seem to be consistent with the boundary condition as seen in

the upper right plot in figure 2. We also note from figure 1 that there is an approximate

relation gL ≈ gR that is exact at the matching scale, while a small splitting between gL and

gR is generated in the low energy limit. This observation points towards an approximate

Z2 symmetry between the SU(2)L and SU(2)R gauge groups. In fact, we can trace the

origin of the radiative Z2 breaking to the scalar sector in the effective model, where the

choice of keeping only l̃R and h̃ leads to βgL 6= βgR . This is because only h̃ transforms

under SU(2)L (while both l̃R and h̃ transform under SU(2)R).

This serves to prove that in the proposed framework it is possible to trigger the full

symmetry breaking down to the SM gauge group by means of the trinification breaking
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Figure 3. One-loop RG evolution of the mass parameters before and after the radiative SU(2)R ×
U(1)L+R symmetry breaking down to U(1)Y for an example point. The two vertical lines mark

the scales at which m2
R first runs negative (right) and the scale µr at which the RG running is

terminated (left), respectively.

VEV (3.1) only, while at the same time generating a desired hierarchy at low energy scales.

In other words, in the model proposed in this work, the RG evolution makes it possible to

have a highly symmetric trinification model whose gauge group is naturally broken down

to the SM gauge group.

For the alternative case of breaking directly to U(1)E.M. discussed in section 5.2 we

performed a similar analysis as we did above by preparing a SA scan to find parameter

space points looking for a possibility for the radiative breaking to U(1)E.M.. For case A

(discussed in section 5.2.1) 6080 points were produced during three weeks where both m2
h

and m2
R ran negative. However, none of the points showed positive squared masses in the

scalar sector, i.e. no points were found where the desired vacuum was a minimum of the

scalar potential. Similarly, for case B (discussed in section 5.2.2) we run a SA scan that

produced 32631 points, again with none of them showing stable minima with the desired

radiative symmetry breaking. What this means is that as far as our analysis could tell,

when m2
h and m2

R became negative through RG running, the true minimum of the scalar

potential did not exhibit U(1)E.M. as a remaining symmetry, thus making it unviable as a

phenomenological model within the proposed framework.

7 Discussion and future work

7.1 Fermion sector at one-loop

In the present analysis, many Yukawa couplings (and also the Majorana mass mΦs) in the

effective LR-symmetric model are zero simply due to the tree-level matching procedure.

However, this will no longer be true once the matching and running are performed at
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Figure 4. A diagram in the trinification theory that constitutes the one-loop contribution to the

matching onto the Majorana Φs mass, mΦs , in the effective LR-symmetric model.

a higher loop level. Although the full one-loop matching and two-loop running analysis

is necessary to obtain precise numerical values that is planned for a future work, it is

interesting to understand which diagrams will lead to non-vanishing matching conditions

for some of the parameters in eq. (4.10).

We first note that mΦs receives a non-zero contribution from the diagram in figure 4,

with the trinification VEV in eq. (3.1). From this we can estimate that mΦs will be

suppressed with respect to the trinification breaking scale v3 as

m
(1−loop)
Φs ∼

(
y3

(4π)2
· γ
v3

)
v3. (7.1)

If the trinification Yukawa coupling y and the scalar tri-linear coupling γ are sufficiently

large, it might be appropriate to integrate out Φs along with the heavy trinification-scale

quarks in table 6, so that it no longer appears in the effective LR-symmetric model. If

instead y and γ are small, the suppression factor in eq. (7.1) can easily be very small such

that mΦs ∼ mh,mR. At present, as was shown in section 6, we see no preference for neither

large nor small values of y and γ, and both possibilities thus remain open.

Next, we turn to the Yukawa interactions that are generated by the diagrams in figure 5.

These diagrams are of interest when the external leg L̃ corresponds to one of the two

remaining scalars in the effective LR-symmetric model, namely h̃ and l̃R. One can then

show that the diagram is non-vanishing when the external fermion legs are such that the

loop corresponds to Yukawa interactions of the types

(l̃∗RI)
R

(lR
I)R Φs + c.c. ,

(l̃∗RI)
R

(lR
s)R ΦI + c.c. ,

h̃∗RL (lL
s)L (lR

s)R + c.c. ,

(7.2)

i.e. the Yukawa couplings Yγ , Yδ and Yη receive a non-zero contribution at one-loop. In

particular, when 〈l̃R〉 6= 0 the upper two interaction terms in eq. (7.2) will provide masses
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L L

〈L̃〉

L̃

Q̃L Q̃R

QR QL
L L

L̃

〈L̃〉

Q̃L Q̃R

QR QL

Figure 5. These two diagrams give rise to Yukawa terms that, in turn, provide Dirac masses for

two generations of right-handed neutrinos and Φ’s, as well as for SM leptons of the third generation.

Q̃L

L̃ L̃

Q̃R

γ γ

Q̃L, Q̃R, L̃

L̃ L̃
αi, λi

Figure 6. Class of diagrams with a non-vanishing contribution to m2
h and m2

R in the trinification

theory.

to two generations of right-handed neutrinos. Note, however, that right-handed neutrinos

receive a Dirac mass that is formed together with two generations of Φ. We can identify

the last interaction term in eq. (7.2) as containing the Yukawa term for SM leptons of the

third generation.

7.2 One-loop corrections to masses of light scalars

Although we have performed tree-level matching down to an effective theory, its important

to understand whether the scalars h̃LR, (l̃R
I)R can remain light as soon as the higher-order

corrections are considered. In general, this may not be the case and thus it would no longer

be justified to keep those light scalars in the low-energy theory. Even if the corrections

would keep the scalars sufficiently light, the particular values for their masses also affect the

RG flow potentially leading to different conclusions regarding the radiative LR-symmetry

breaking.

It turns out that the only non-vanishing one-loop contributions (in the zero external

momenta approximation) to m2
h and m2

R come from the type of diagrams shown in figure 6.

Any other topology will either (i) be forbidden by the trinification symmetry (such as

fermion loops), or (ii) vanish once the zero momentum approximation is taken into account.
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The tri-linear coupling γ plays an important role in the one-loop matching conditions.

Namely, it determines the size of the one-loop corrections to m2
h and m2

R coming from the

left panel in figure 6. It thus suffices to make γ/v3 � 1 in order to keep those corrections

small.3 For the second type of diagrams in figure 6 (right), the corrections become functions

of λi but also αi (the tree-level masses are only functions of λi). As long as the coloured

scalars remain heavy, choosing appropriate values for αi would give us enough freedom for

h̃LR, (l̃R
I)R to remain light.

In the tree-level study of the model that has been presented here, we thus assume that

the scalars are light leaving the specifics of the physical mechanism which appropriately

tunes the values for γ and αi as well as the corresponding effect on the RG evolution for

future work. However, we expect that the qualitative conclusions reached in this work

would still be valid when accounting for the higher-order corrections due to the fact that,

as discussed in section 6, the regions of the effective theory parameter space where the

radiative LR-symmetry breaking takes place are quite broad.

7.3 The low-energy LR-symmetric model with additional light Higgs-doublets

We have shown that the proposed model brings an intriguing possibility of the radiative

SU(2)R ×U(1)L+R → U(1)Y breaking. To do this, we integrated out the maximal number

of fields in the high scale trinification theory in order to make the effective LR-symmetric

model as simple as possible. Although the radiative symmetry breaking in such a toy model

is realized, we show in this section that in order to accurately generate all fermion masses in

the SM, we need to consider the case where more scalars are present in the effective theory.

This is due to the fact that some mass terms are forbidden by the global group that remains

unbroken in the scenario considered in section 4. However, we note that the interplay

between scalar mass parameters and their β-functions allowing m2
R to run negative, will

still be present when integrating out fewer Higgs doublets. Although a more detailed study

will be needed to find explicit regions of parameter space with the radiative symmetry

breaking, we expect that the qualitative conclusions in section 6 will not be changed.

7.3.1 SM quarks

With tree-level matching (and one-loop running) the only non-zero Yukawa coupling with

SM particles is Yζ in eq. (4.10). Arranging the h̃ and l̃R VEVs as in eq. (5.9), we see that,

through this term, v1 gives masses to two up-type quarks which could be identified with

the top and charm quarks of the SM. On the other hand, the VEV v2 gives a mass to one

down-type quark (which can be identified with the bottom quark) and also a contribution

to the mass of the heavy down-type quark in table 10. However, there still remain one up-

type and two down-type quarks that are massless at tree-level, which should be identified

with the lightest u, d, s quarks in the SM. The corresponding left-handed and right-handed

components are shown in table 13 along with their charges under the global group {U(1)E×
U(1)G}, which is unbroken by the Higgs VEVs in eq. (5.9). Since none of the QL fields have

3The model presented here, while inspired by SUSY, is not supersymmetric. However, as long as SUSY

is concerned, γ/v3 � 1 condition could be justified by γ corresponding to a soft-SUSY breaking term whose

natural values are around the SUSY breaking scale.
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Trinification effective LR-symmetric model U(1)E U(1)G

(QL
2)c2 (QL

2)c2 −1/2 −1/6

(QL
3)c1 (QL

s)c1 −1/2 −2/3

(QL
3)c2 (QL

s)c2 −1/2 −2/3

(Q†R3)c1 (Q†R
s
)1
c +1/2 +1/3

(Q†R3)c2 (Q†R
s
)2
c +1/2 +1/3

(Q†R3)c3 (D†R
s
)3
c +1/2 +5/6

Table 13. Components in the trinification quark tri-triplets (and the corresponding fields in the

effective LR-symmetric model) that should build up the left- and right-handed components of the

lightest SM u, d, s quarks. In the current realisation of the model, the mass terms for these quarks

are forbidden by the global {U(1)E ×U(1)G} group that is left unbroken by the two Higgs VEVs.

the same global U(1) charges as any of the Q†R fields in table 13, it is not possible to generate

Dirac masses for the u, d, s quarks since those mass terms would violate {U(1)E×U(1)G}.
However, there is a simple way to accommodate these masses. For regions of parameter

space with light Higgs doublets in the effective LR-symmetric model, their VEVs would

break {U(1)E ×U(1)G} enabling the radiative generation of the light quark mass terms.

7.3.2 Colour singlet fermions

As in the quark sector, many colour neutral fermion mass terms are forbidden by the

global group that is left unbroken by the two Higgs VEVs. By looking at the global U(1)

charges of the components of the colour neutral fermions, we find that the only electrically

charged and electrically neutral fermions that can participate in a fermion bilinear term

are contained in

ψC =
(

(lR
s)1 (lL

s)1 (H2)1
2 (Hs)1

2 (Hs)2
1 (lR

2)1

)T
,

ψN =
(

(lR
s)2 (H2)1

1 (H2)2
2 Φ2 (lL

s)2 (lR
2)2 (Hs)1

1 (Hs)2
2 Φs

)T
,

(7.3)

respectively. For all other colour neutral fermions, there is no fermion field with opposite

U(1) charges such that they together could form a mass term. In particular, note that

ψC,N contain no first generation colour singlet fermions.

Generally, we can then write the mass terms for the colour neutral fermions as

1

2
ψTC MCψC +

1

2
ψTN MNψN + c.c. (7.4)

Upon demanding invariance under the global U(1) groups (and of course U(1)E.M.), we
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find that the mass matrices MC,N have the following structure:

MC =




• •
•
•

• •
•
•




, MN =




• • • •
•
•
•
•

? • • •
• ? • •
• • ? •
• • • ?




, (7.5)

where entries marked with a ‘•’ (‘?’) denote the Dirac (Majorana) contributions that are

allowed to be non-zero. These would amount to two electrically charged massive Dirac

fermions (which we would have to identify with the τ -lepton and muon in the SM), one

massive electrically neutral Dirac fermion, and four electrically neutral Weyl fermions that

receive both Dirac and Majorana mass contributions.

The tri-triplet (Li)lr contains twelve electrically charged Weyl fermions, meaning that

we will still have eight electrically charged Weyl fermions whose mass terms are forbidden

by the unbroken global group. Out of the remaining fifteen electrically neutral components

in (Li)lr, at least nine Weyl fermions are necessarily massless. To make more components in

(Li)lr massive (to evade obvious inconsistencies with phenomenology), we have to include

more Higgs doublets in the effective LR-symmetric model originating from the high-scale

trinification theory.

7.4 CKM mixing with additional Higgs doublets

In the previous section, we have seen that in order to explain the observed fermionic mass

spectra, more components of L̃ should be kept in the effective LR-symmetric model. By

looking at the CSS mass spectra, we see that this will be possible when

λ2,3,4 � λ1 , (7.6)

in which case the fields

(L̃I)LR , (L̃I)3
R , (L̃I)L3 , (L̃3)LR , (7.7)

would all remain in the effective LR-symmetric model (see table 3). In this case, the

CSS potential exhibits an approximate O(54) symmetry. Although this increase in the

number of scalar fields would lead to a substantial increase in complexity in the low-energy

theory, we are confident that the radiative SU(2)R × U(1)L+R → U(1)Y breaking will still

be present as mentioned above. In this section, we show in a straightforward tree-level

analysis, that the structure of the SM Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix

in the Cabibbo form emerges as a consequence of SU(3)F if VEVs are strategically placed
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in the tri-doublet (L̃I)LR. These VEVs would be allowed at lower scales when keeping the

extra fields in the effective theory after SSB of trinification.

Consider the following VEV setting:

〈(L̃1)LR〉 =
1√
2

(
h1 0

0 h2

)
, 〈(L̃2)LR〉 =

1√
2

(
h3 0

0 0

)
(7.8)

In terms of the full trinification tri-triplet L̃, this means that

〈L̃1〉 =
1√
2




h1 0 0

0 h2 0

0 0 0


 , 〈L̃2〉 =

1√
2




h3 0 0

0 0 0

0 w 0


 , 〈L̃3〉 =

1√
2




0 0 0

0 0 0

0 0 v3


 . (7.9)

where we have also indicated the trinification and LR symmetry breaking VEVs v3 and w.

The VEV setting (7.9) leaves the group

SU(3)C ×U(1)E.M. × {U(1)P ×U(1)B} (7.10)

unbroken, where the global U(1)P is generated by

TP ≡
1√
3

(
T 8

R + T 8
F

)
. (7.11)

For a consistency with the SM, we have to impose the following hierarchy between the

above VEVs

v � w � h1,2,3 ∼ 102 − 103 GeV , (7.12)

such that h1,2,3 would correspond to the SM-breaking Higgs VEVs. In the gauge sector, at

tree level one recovers one massless (photon) state

Aµ =
1

2
√

2

[
GL

8
µ +GR

8
µ −
√

3(GL
3
µ +GR

3
µ)
]
, (7.13)

W± bosons

W±µ = GL
1,2
µ , m2

W '
1

8
g2
∑

i

h2
i , (7.14)

and the Z0 boson

Z0
µ =

1

2
√

10

[
5GL

3
µ − 3GR

3
µ +
√

3(GL
8
µ +GR

8
µ)
]
, m2

Z '
2

10
g2
∑

i

h2
i , (7.15)

in a rough consistency with the SM. Besides, at w scale one finds heavy W ′± and Z ′0 bosons

W ′
±
µ = GR

1,2
µ , m2

W ′ ' 1

8
g2w2 , (7.16)

Z ′
0
µ =

1√
10

[
2GR

3
µ +
√

3(GL
8
µ +GR

8
µ)
]
, m2

Z′ ' 5

16
g2w2 , (7.17)
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which can be recognised as the heavy vector states in table 9. The other nine gauge bosons

corresponding to broken (by v3) generators of [SU(3)]2 → [SU(2)]2 in trinification get

masses at the GUT scale µm ∼ v3 (see table 9).

In the quark sector with QiL = {uiL, diL, Di
L}, we obtain three weak-singlet down-type

quarks Di = {D, S, B} that acquire large (Dirac) tree-level masses

mB '
1√
2
yw , mD ' mS '

1√
2
yv , (7.18)

and hence decouple from the SM. The other three down-type states di = {d, s, b} remain

light

md = 0 , ms ' mb '
1√
2
yh2 , (7.19)

and could thus be identified with masses of down, strange and bottom quarks of the SM,

respectively, such that there is no tree-level splitting between s and b quarks, and d-quark

is massless. Interestingly enough, all the down-type quarks di and Di practically do not

mix with each other to the leading order in small hi/v, hi/w and w/v ratios. Note, while it

is possible to introduce a non-zero tree-level splitting between s and b quarks by imposing

more VEVs in neutral components of two Higgs doublets, a non-zero d-quark mass can

only acquire a non-zero value by an unnaturally small VEV in a neutral component of a

third Higgs doublet, but we do not consider this situation here. All the physical up-type

quarks emerge as mixures of trinification up-type quarks ui = {u1, u2, u3} remain light

u =
u1h1 + u2h3√

h2
1 + h2

3

, c =
−u2h1 + u1h3√

h2
1 + h2

3

, t = u3 , (7.20)

mu = 0 , mc ' mt '
1√
2
y
√
h2

1 + h2
3 , (7.21)

which could be identified with masses of up u, charm c and top t quarks of the SM,

respectively. Again, in the considering scenario, there is no tree-level splitting between c

and t, and it can not be generated at tree level by imposing any additional VEVs. The

observed substantial charm-top and strange-bottom splittings can be in principle generated

radiatively by (i) RG runnings of the corresponding Yukawa couplings which will have

different slopes as long as trinification symmetry is broken, and by (ii) higher-loop effects

which may modify the starting values for the Yukawa couplings at the matching scale. The

quark CKM mixing aquires an approximate Cabbibo form already at tree level

V CKM '




cos θC sin θC 0

− sin θC cos θC 0

0 0 1


 , tan θC =

h1

h3
, (7.22)

which is a remarkable feature of the family symmetry, while small observed distortions of

the Cabbibo mixing could only be generated at a higher-loop level. Non-unitarity correc-

tions to the quark CKM mixing are also suppressed by small hi/v, hi/w and w/v ratios.

This means that phenomenological constraints on those corrections could be important for

setting lower limits on hierarchies between the trinification symmetry breaking scales.
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8 Conclusions

In this work we have introduced a GUT based on the trinification gauge group. By in-

troducing a global SU(3)F family symmetry, our model resolves some of the issues with

previous attempts to work with gauge trinification-based models while also considerably

reduces the number of free parameters.

We found that SSB of the trinification symmetry can be triggered by the VEV of only

one component of a scalar 27-plet and that the minimum is, in a large part of the parameter

space, the global one. We found that radiative breaking of gauge (i.e. SU(2)R ×U(1)L+R)

and global symmetries, that are not present in the SM, was possible in the effective LR-

symmetric model that is left after SSB of trinification. We did so by studying the most

simple scenario (two light scalar multiplets remaining in the effective theory) where the

mass-squared parameter for a scalar field charged under such symmetries could become

negative by means of the RG evolution. By implementing a parameter scan algorithm

using simulated annealing, we were able to efficiently scan the parameter space of the

trinification theory and found regions where the radiative breaking happens in the chosen

effective LR-symmetric model.

We also explored under which circumstances the high-scale theory might reproduce the

masses and hierarchies of the SM at lower energies. We found that the simple scenario used

to understand the radiative symmetry breaking needs to be extended in order to get for ex-

ample CKM mixing and masses for all SM fermions. By having more light scalar multiplets

present in the effective theory, their VEVs could break the remaining global symmetries

which forbid the necessary mass terms in the low-energy theory. We also show that if such

fields are present, the proposed model has good potential to result in a realistic quark mass

spectrum resembling the SM one, while keeping the ingredients necessary to trigger the

radiative breaking shown in this work. It is clear then that future studies should include

one-loop matching, two-loop RG running and the extra scalar multiplets in the effective

theory. Although we have shown the feasibility of radiative breaking and the possibility to

explain the hierarchies in mass parameters for the proposed model, in order to offer a com-

plete consistency with the SM such extended study needs to be performed in future work.
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A RG equations for the LR-symmetric theory

In this appendix we list the one-loop β-functions for the LR symmetric theory described

in section 4. The convention we will follow is that for a given coupling g, the βfunction is

defined as

βg =
dg

dt
(A.1)

where t = log(µ) with µ the renormalisation scale.

A.1 Gauge couplings

(4π)2βgR = −2

3
g3

R (A.2)

(4π)2βgL = −g3
L (A.3)

(4π)2βgL+R =
124

9
g3

L+R (A.4)

(4π)2βgC = −19

3
g3

C (A.5)

A.2 Yukawa couplings

(4π)2βYα =

(
7

2
|Yα|2 + |Yβ |2 + 3|Yγ |2 + 2|Yδ|2 −

9

4
g2

R − 3g2
L+R

)
Yα (A.6)

(4π)2βYβ =

(
|Yα|2 + 3|Yβ |2 + 3|Yγ |2 + |Yε|2 −

9

4
g2

R − 3g2
L+R

)
Yβ (A.7)

(4π)2βYγ =

(
|Yα|2 + |Yβ |2 +

11

2
|Yγ |2 + |Yζ |2 − 8g2

C −
9

4
g2

R −
5

3
g2

L+R

)
Yγ (A.8)

(4π)2βYδ =

(
2|Yα|2 +

7

2
|Yδ|2 + |Yε|2 + 6|Yζ |2 −

9

4
g2

L −
9

4
g2

R

)
Yδ (A.9)

(4π)2βYε =

(
|Yβ |2 + |Yδ|2 + 3|Yε|2 + 6|Yζ |2 −

9

4
g2

L −
9

4
g2

R − 6g2
L+R

)
Yε (A.10)

(4π)2βYζ =

(
1

2
|Yγ |2 + |Yδ|2 + |Yε|2 + 8|Yζ |2 − 8g2

C −
9

4
g2

L −
9

4
g2

R −
2

3
g2

L+R

)
Yζ (A.11)

A.3 Scalar masses

(4π)2βm2
h

=

(
20λa − 8λj + 2|Yδ|2 + 2|Yε|2 + 12|Yζ |2 −

9

2
g2

L −
9

2
g2

R

)
m2
h (A.12)

+ 4 (λg + 2λf )m2
R − 4|Yδ|2m2

Φs

(4π)2βm2
R

=

(
20λb − 8λi + 2|Yα|2 + 2|Yβ |2 + 6|Yγ |2 −

9

2
g2

R − 6g2
L+R

)
m2
R (A.13)

+ 4 (λg + 2λf )m2
h − 4|Yα|2m2

Φs

A.4 Singlet Fermion mass

(4π)2βmΦs
= 4(|Yα|2 + |Yδ|2)mΦs (A.14)
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A.5 Quartic couplings

(4π)2βλa = 32λ2
a + 4λ2

f + 2λ2
g + 4λfλg + 16λ2

j − 16λaλj + 4
(
|Yε|2 + |Yδ|2 + 6|Yζ |2

)
λa

− 2
(
|Yε|4 + |Yδ|4 + 6|Yζ |4

)
− 9

(
g2

L + g2
R

)
λa +

9

8
g4

L +
3

4
g2

Lg
2
R +

9

8
g4

R (A.15)

(4π)2βλb = 32λ2
b + 4λ2

f + 2λ2
g + 4λfλg + 16λ2

i − 16λbλi + 4
(
|Yα|2 + |Yβ |2 + 3|Yγ |2

)
λb

− 2
(
|Yα|4 + |Yβ |4 + 3|Yγ |4

)
− 3

(
3g2

R + 4g2
L+R

)
λb

+
9

8
g4

R + 3g2
Rg

2
L+R + 6g4

L+R (A.16)

(4π)2βλf = 4λ2
f + 2λ2

g + 4 (5λf + 2λg) (λa + λb)− 8 (λf + λg) (λi + λj)

+ 2
(
|Yα|2 + |Yβ |2 + 3|Yγ |2 + |Yδ|2 + |Yε|2 + 6|Yζ |2

)
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[34] P. Athron, D. Stöckinger and A. Voigt, Threshold corrections in the exceptional

supersymmetric Standard Model, Phys. Rev. D 86 (2012) 095012 [arXiv:1209.1470]

[INSPIRE].

[35] Y. Kawamura and T. Miura, Classification of Standard Model particles in E6 orbifold grand

unified theories, Int. J. Mod. Phys. A 28 (2013) 1350055 [arXiv:1301.7469] [INSPIRE].

[36] T.G. Rizzo, Gauge kinetic mixing in the E6SSM, Phys. Rev. D 85 (2012) 055010

[arXiv:1201.2898] [INSPIRE].

[37] J. Reuter and D. Wiesler, Distorted mass edges at LHC from supersymmetric leptoquarks,

Phys. Rev. D 84 (2011) 015012 [arXiv:1010.4215] [INSPIRE].

[38] D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The heterotic string, Phys. Rev. Lett.

54 (1985) 502 [INSPIRE].

[39] E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously broken N = 8 supergravity, Phys.

Lett. B 84 (1979) 83 [INSPIRE].

[40] E. Ma, Particle dichotomy and left-right decomposition of E6 superstring models, Phys. Rev.

D 36 (1987) 274 [INSPIRE].

[41] E. Ma, Neutrino masses in an extended gauge model with E6 particle content, Phys. Lett. B

380 (1996) 286 [hep-ph/9507348] [INSPIRE].

[42] J.E. Kim, Trinification with sin2 θW = 3/8 and seesaw neutrino mass, Phys. Lett. B 591

(2004) 119 [hep-ph/0403196] [INSPIRE].

– 37 –

http://dx.doi.org/10.1103/PhysRevD.84.055006
http://arxiv.org/abs/1102.4363
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4363
http://dx.doi.org/10.1103/PhysRevD.83.075013
http://dx.doi.org/10.1103/PhysRevD.83.075013
http://arxiv.org/abs/1012.5114
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5114
http://dx.doi.org/10.1103/PhysRevD.86.095003
http://arxiv.org/abs/1206.5028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5028
http://dx.doi.org/10.1103/PhysRevD.87.015029
http://dx.doi.org/10.1103/PhysRevD.87.015029
http://arxiv.org/abs/1205.5967
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5967
http://dx.doi.org/10.1016/j.physletb.2013.11.050
http://dx.doi.org/10.1016/j.physletb.2013.11.050
http://arxiv.org/abs/1308.1021
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1021
http://dx.doi.org/10.1103/PhysRevD.89.055010
http://arxiv.org/abs/1309.4738
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4738
http://dx.doi.org/10.1103/PhysRevD.92.075007
http://dx.doi.org/10.1103/PhysRevD.92.075007
http://arxiv.org/abs/1507.02101
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02101
http://dx.doi.org/10.1016/j.physletb.2016.06.040
http://arxiv.org/abs/1512.07040
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07040
http://dx.doi.org/10.1007/JHEP03(2016)139
http://arxiv.org/abs/1601.07242
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.07242
http://dx.doi.org/10.1103/PhysRevD.86.095012
http://arxiv.org/abs/1209.1470
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1470
http://dx.doi.org/10.1142/S0217751X13500553
http://arxiv.org/abs/1301.7469
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7469
http://dx.doi.org/10.1103/PhysRevD.85.099901
http://arxiv.org/abs/1201.2898
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2898
http://dx.doi.org/10.1103/PhysRevD.84.015012
http://arxiv.org/abs/1010.4215
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4215
http://dx.doi.org/10.1103/PhysRevLett.54.502
http://dx.doi.org/10.1103/PhysRevLett.54.502
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,54,502%22
http://dx.doi.org/10.1016/0370-2693(79)90654-3
http://dx.doi.org/10.1016/0370-2693(79)90654-3
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B84,83%22
http://dx.doi.org/10.1103/PhysRevD.36.274
http://dx.doi.org/10.1103/PhysRevD.36.274
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D36,274%22
http://dx.doi.org/10.1016/0370-2693(96)00524-2
http://dx.doi.org/10.1016/0370-2693(96)00524-2
http://arxiv.org/abs/hep-ph/9507348
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9507348
http://dx.doi.org/10.1016/j.physletb.2004.04.017
http://dx.doi.org/10.1016/j.physletb.2004.04.017
http://arxiv.org/abs/hep-ph/0403196
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0403196


J
H
E
P
0
9
(
2
0
1
6
)
1
2
9

[43] C. Cauet, H. Pas, S. Wiesenfeldt, H. Pas and S. Wiesenfeldt, Trinification, the hierarchy

problem and inverse seesaw neutrino masses, Phys. Rev. D 83 (2011) 093008

[arXiv:1012.4083] [INSPIRE].

[44] J. Sayre, S. Wiesenfeldt and S. Willenbrock, Minimal trinification, Phys. Rev. D 73 (2006)

035013 [hep-ph/0601040] [INSPIRE].

[45] C.-S. Huang, J. Jiang, T.-J. Li and W. Liao, N = 2 six-dimensional supersymmetric E6

breaking, Phys. Lett. B 530 (2002) 218 [hep-th/0112046] [INSPIRE].

[46] H. Georgi, Towards a grand unified theory of flavor, Nucl. Phys. B 156 (1979) 126 [INSPIRE].

[47] B. Stech, Trinification phenomenology and the structure of Higgs bosons, JHEP 08 (2014)

139 [arXiv:1403.2714] [INSPIRE].

[48] J. Hetzel and B. Stech, Low-energy phenomenology of trinification: an effective

left-right-symmetric model, Phys. Rev. D 91 (2015) 055026 [arXiv:1502.00919] [INSPIRE].

[49] T. Lee, T. Li and C. Tsai, Hom4PS-2.0: a software package for solving polynomial systems

by the polyhedral homotopy continuation method, Computing 83 (2008) 109.

[50] C.P. Burgess, A Goldstone boson primer, in 11th Summer School and Symposium on Nuclear

Physics (NuSS 98): Effective Theories of Matter, Seoul South Korea June 23–27 1998

[hep-ph/9812468] [INSPIRE].

[51] C.P. Burgess, Goldstone and pseudo-Goldstone bosons in nuclear, particle and condensed

matter physics, Phys. Rept. 330 (2000) 193 [hep-th/9808176] [INSPIRE].

[52] A. Dedes, A.B. Lahanas and K. Tamvakis, Radiative electroweak symmetry breaking in the

MSSM and low-energy threshold, Phys. Rev. D 53 (1996) 3793 [hep-ph/9504239] [INSPIRE].

[53] G. Gamberini, G. Ridolfi and F. Zwirner, On radiative gauge symmetry breaking in the

minimal supersymmetric model, Nucl. Phys. B 331 (1990) 331 [INSPIRE].

[54] M. Carena, S. Pokorski and C.E.M. Wagner, On the unification of couplings in the minimal

supersymmetric Standard Model, Nucl. Phys. B 406 (1993) 59 [hep-ph/9303202] [INSPIRE].

[55] ATLAS collaboration, Search for new resonances in events with one lepton and missing

transverse momentum in pp collisions at
√
s = 13 TeV with the ATLAS detector,

arXiv:1606.03977 [INSPIRE].

[56] ATLAS collaboration, Search for new phenomena in the dilepton final state using

proton-proton collisions at
√
s = 13 TeV with the ATLAS detector, ATLAS-CONF-2015-070,

CERN, Geneva Switzerland (2015).

[57] F. Lyonnet, I. Schienbein, F. Staub and A. Wingerter, PyR@TE: renormalization group

equations for general gauge theories, Comput. Phys. Commun. 185 (2014) 1130

[arXiv:1309.7030] [INSPIRE].

[58] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science

220 (1983) 671 [INSPIRE].

– 38 –

http://dx.doi.org/10.1103/PhysRevD.83.093008
http://arxiv.org/abs/1012.4083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4083
http://dx.doi.org/10.1103/PhysRevD.73.035013
http://dx.doi.org/10.1103/PhysRevD.73.035013
http://arxiv.org/abs/hep-ph/0601040
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601040
http://dx.doi.org/10.1016/S0370-2693(02)01335-7
http://arxiv.org/abs/hep-th/0112046
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112046
http://dx.doi.org/10.1016/0550-3213(79)90497-8
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B156,126%22
http://dx.doi.org/10.1007/JHEP08(2014)139
http://dx.doi.org/10.1007/JHEP08(2014)139
http://arxiv.org/abs/1403.2714
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2714
http://dx.doi.org/10.1103/PhysRevD.91.055026
http://arxiv.org/abs/1502.00919
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00919
http://dx.doi.org/10.1007/s00607-008-0015-6
http://arxiv.org/abs/hep-ph/9812468
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9812468
http://dx.doi.org/10.1016/S0370-1573(99)00111-8
http://arxiv.org/abs/hep-th/9808176
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808176
http://dx.doi.org/10.1103/PhysRevD.53.3793
http://arxiv.org/abs/hep-ph/9504239
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9504239
http://dx.doi.org/10.1016/0550-3213(90)90211-U
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B331,331%22
http://dx.doi.org/10.1016/0550-3213(93)90161-H
http://arxiv.org/abs/hep-ph/9303202
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9303202
http://arxiv.org/abs/1606.03977
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.03977
http://cds.cern.ch/record/2114842
http://dx.doi.org/10.1016/j.cpc.2013.12.002
http://arxiv.org/abs/1309.7030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7030
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://inspirehep.net/search?p=find+J+%22Science,220,671%22

	Introduction
	A quick note on notations

	The GUT-scale [SU(3)]**3 ltimes mathbbZ(3) x lbrace SU(3)(F) rbrace model
	Spontaneous trinification breaking down to a LR-symmetric model
	Colour-singlet scalar sector
	Coloured scalar sector
	Gauge boson sector
	Fermion sector
	Finding the global minimum through homotopy continuation

	The low-scale effective LR-symmetric model
	Minimal particle content of the effective model
	Matching of the scalar potential parameters
	Fermion sector
	Decoupling of ``global'' Goldstone bosons

	Breaking of SU(2)(R) x U(1)(L+R) in the effective model
	Scenario I: breaking to the SM gauge group
	Scenario II: breaking directly to U(1)(E.M.)
	Case A
	Case B


	Numerical results
	Parameter scan
	Simulated annealing
	Choosing the trinification breaking scale

	Regions of parameter space with radiative breaking

	Discussion and future work
	Fermion sector at one-loop
	One-loop corrections to masses of light scalars
	The low-energy LR-symmetric model with additional light Higgs-doublets
	SM quarks
	Colour singlet fermions

	CKM mixing with additional Higgs doublets

	Conclusions
	RG equations for the LR-symmetric theory
	Gauge couplings
	Yukawa couplings 
	Scalar masses
	Singlet Fermion mass
	Quartic couplings


