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1 Introduction

An important question in conformal field theory (CFT) is to what extent a theory can

be identified in terms of its constraints and symmetries. The bootstrap hypothesis [1–3]

is based on the crossing symmetry. Recently in 4d CFT the crossing symmetry has been

used to obtain an upper bound on the weights of the fields that appear in the operator

product expansion of scalar operators [4]–[8] and a lower bound on the stress tensor central

charge [9, 10]. Similarly an upper bound on the scaling dimension of the first scalar

operator appearing in the OPE of two quasi-primary scalar operators has been obtained

in two dimensions [4].

In two dimensions, the infinite dimensional group of the conformal symmetry makes

the bootstrap project more efficient. Furthermore, the partition function of a 2d CFT

should be invariant under modular transformations. The modular group PSL(2,Z) is the

disconnected diffeomorphism group of the torus

(τ, τ̄)→ (τ ′, τ̄ ′) =

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d

)
,

(
a b

c d

)
∈ PSL(2,Z), (1.1)
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where τ = τ1 + iτ2 is the complex structure taking value in the upper half plane (τ2 ≥ 0)

and τ̄ = τ1 − iτ2. The generators of the modular group are

T : (τ, τ̄)→ (τ + 1, τ̄ + 1), S : (τ, τ̄)→
(
−1

τ
,−1

τ̄

)
. (1.2)

Invariance under T -transformation (henceforth T -invariance) constrains the spin of states

and the difference between the left and right central charges of the conformal field theory.

S-invariance constrains the density of states and the spectrum of the theory.

In [11] the S-invariance of partition function has been used to estimate the density of

states in the saddle-point approximation for a unitary CFT. It is seen that the density of

states at conformal dimension h grows exponentially with the square root of h [12]. The

Cardy formula is a key ingredient in the AdS3/CFT2 correspondence; it reproduces the

Bekenstein-Hawking entropy of the BTZ-black holes [13].1 S-invariance has been also used

to compute the ‘logarithmic correction’ [12] and ‘the beyond the logarithmic corrections’

to the Cardy formula [15]. In [16] it is shown that in theories with sparse light spec-

trum and large central charge, the Cardy formula also works for energies greater than the

central charge.

Recently, the modular invariance of partition function has been used in order to obtain

an upper bound on conformal dimensions of the primary fields. In [17] for holomorphically

factorizable models whose left and right central charges are multiples of 24, an upper bound

on the lowest primary fields has been obtained,

∆ ≤ min

(
cL
24

+ 1,
cR
24

+ 1

)
. (1.3)

This upper bound is saturated in extremal CFTs [18, 19]. Extremal CFT’s are promising

holographic duals to the pure gravity with negative cosmological constant [17, 20]. The

vacuum state corresponds to the AdS space, and the primary fields above the vacuum

correspond to the BTZ black hole. Modular invariance is enough to determine the partition

function of an extremal CFT. For c = 24 an extremal CFT is known and its uniqueness has

been conjectured [21, 22]. The holomorphic and anti-holomorphic parts of the partition

function are modular functions. A modular function can be written in terms of a polynomial

in the Klein function J [23]. While for the other values of the central charge the partition

functions are known it is not clear whether such CFTs exist [24].

In general, for CFT’s in which there is no chiral algebra beyond the Virasoro al-

gebra and c � 1, the following upper bound on the lowest primary operator has been

obtained [25]–[28]

∆ ≤ ctot

12
+O(1), ctot := cL + cR. (1.4)

In fact for asymptotically large central charge this inequality is valid for ∆n with n ≤
e
πc
12 [29, 30]. The upper bound (1.4) can be computed by using the medium temperature

1The asymptotic symmetry group of an asymptotically AdS3 spacetime with radius ` in Planck units is

given by two copies of the Virasoro algebra whose central charge ∼ ` [14]. The validity of the semi-classical

gravity requires that `� 1.
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expansion. This method uses the S-invariance of the partition function at the self-dual

point τ = −τ̄ = i [25]. Considering a small neighborhood of τ = −τ̄ = i

τ = i es, τ̄ = −i es, (1.5)

in the limit s→ 0, one obtains an infinite set of constraints on the partition function:(
τ
∂

∂τ

)NR (
τ̄
∂

∂τ̄

)NL
Z(τ, τ̄)

∣∣∣∣∣
τ=−τ̄=i

= 0 for NL +NR = odd. (1.6)

Combining the constraints that can be obtained by different selections of (NL, NR) leads

to certain universal constraints on the spectrum [25, 29–32].

In this work we use the medium temperature expansion method in a different manner.

We note that eq. (1.6) indicates that for any (smooth) odd function f(x, y) = −f(−x,−y)

f

(
τ
∂

∂τ
, τ̄

∂

∂τ̄

)
Z(τ, τ̄)

∣∣∣∣
τ=−τ̄=i

= 0. (1.7)

This observation leads to an interesting result: corresponding to every S-invariant non-

chiral partition function Z(τ, τ̄), there exist an S-invariant chiral function Z(τ). The

map Z(τ, τ̄)→ Z(τ) can be interpreted as the chiralization of the partition function. The

chiral function corresponding to the non-chiral partition function can be easily obtain by

inserting τ̄ = −τ in Z(τ, τ̄). That is,

Z(τ) := Z(τ,−τ). (1.8)

This equation implies that Z(τ) can be obtained by analytic continuation of the ‘canonical’

partition function

Zcanonical(β) := Z(τ, τ̄)|
τ=−τ̄= iβ

2π
. (1.9)

to the complex β-plane. The behavior of the chiral function Z(τ) under T transformation

depends on the spectrum of the main theory.

Focusing on a special class of CFTs whose primary operators have half integer scaling

dimensions (henceforth HI-CFT), we show that the corresponding chiral partition function

is an eigen-function of T whose eigen-value is e
−iπctot

12 .

T : Z(τ)→ e
−iπctot

12 Z(τ). (1.10)

Since Z(τ) is by construction S-invariant, the identity (ST )3 = 1 implies that ctot ∈ 8Z.

Thus, in such theories cL and cR are inevitably multiples of 4. We show that the correspond-

ing chiral partition function Z(τ) can be determined in terms of 1 + [ k3 ] positive integers.

Z(τ) = Jk/3
[ k
3

]∑
r=0

nrJ
−r, nr ∈ N. (1.11)

Since the degree of degeneracy of levels in Z(τ, τ̄) and Z(τ) are equivalent (as can be

inferred from eq. (1.9)), eq. (1.11) implies that the degree of degeneracy of high-energy levels

in Z(τ, τ̄) can be uniquely determined in terms of the degeneracy in the low energy states.
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The organization of the paper is as follows. In sections 2 we review the effect of two

constraints on the partition function. One of them is the T -invariance and the other one

is the simple fact that partition function should be real-valued. In section 3 we study the

S-invariance of partition function and use the medium temperature expansion to obtain

the chiralization map. Sections 4 and 5 are devoted to the HI-CFT’s. We study the

chiral partition function Z(τ) in section 4, and identify a subclass of HI-CFT partition

functions in terms of free-fermions in section 5. Some technical details are relegated to the

appendices. Our main results are summarized in section 6.

2 Constraints on the spin values

Consider a two dimensional unitary CFT on a circle of length 2π. The partition function

of the theory at temperature 1
β and chemical potential µc is as follows

Z(β, µc) := Tr e−βH+iµP =
∑
∆,j

ρ(∆, j)e−β(∆− ctot
24 )eiµ(j−

cdif
24 ), (2.1)

in which µ := µcβ, H is the Hamiltonian and P is the momentum on the compact spatial

direction. The eigenvalues of H and P are ∆− ctot
24 and j − cdif

24 respectively [33].

ctot := cL + cR, cdif := cL − cR, (2.2)

where cL and cR are the left and right central charges. This partition function can be

interpreted as a CFT partition function on a torus whose complex structure is given by

τ :=
µ+ iβ

2π
, τ̄ :=

µ− iβ
2π

. (2.3)

In this picture, the conformal weights are given by

h :=
1

2
(∆ + j), h̄ :=

1

2
(∆− j), (2.4)

and the partition function can be written as follows.2

Z(τ, τ̄) = q
−cL
24 q̄

−cR
24

∑
h,h̄=0

ρ(h, h̄) qhq̄h̄, (2.5)

in which

q := e2iπτ , q̄ := e−2iπτ̄ . (2.6)

Henceforward we assume the following:

• The partition function is invariant under modular transformation;

• The spectrum contains the identity operator h = h̄ = 0;

2In a unitary CFT h ≥ 0 and h̄ ≥ 0. Therefore, −∆ ≤ j ≤ ∆.
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• The density of states ρ(h, h̄) are positive integer numbers;

• The partition function is real.

In the following, we show that T -invariance indicates that the spin j ∈ Z and cdif ∈ 24Z.

Furthermore we show that since the partition function is real-valued, at each energy level,

the number of states with spin j and −j + cdif
12 are equivalent.

2.1 T -invariance of partition function

Under T transformation

µ→ µ+ 2π, β → β. (2.7)

Therefore, T -invariance of the partition function requires that∑
∆,j

ρ(∆, j)e−β(∆− ctot
24 )eiµ(j−

cdif
24 ) =

∑
∆,j

ρ(∆, j)e−β(∆− ctot
24 )ei(µ+2π)(j− cdif

24 ). (2.8)

For µ = 0 eq. (2.8) gives

∑
∆,j

ρ(∆, j)e−β(∆− ctot
24

)

[
1− cos 2π

(
j − cdif

24

)]
= 0, (2.9)

∑
∆,j

ρ(∆, j)e−β(∆− ctot
24

) sin 2π

(
j − cdif

24

)
= 0. (2.10)

The summands in (2.9) are non-negative. Consequently j − cdif
24 is necessarily an integer.

The vacuum state (j = 0) enforces that cdif ∈ 24Z. Therefore, j ∈ Z. From eq. (2.8) one

verifies that these conditions are also sufficient.

2.2 Partition function is real-valued

The imaginary part of the partition function (2.1) is zero.

∑
∆

∑
j∈J∆

ρ(∆, j)e−β(∆− ctot
24 ) sin

[
µ

(
j − cdif

24

)]
= 0, (2.11)

where J∆ ⊂ [−∆,∆] denotes the set of spins of states with energy ∆. From the T -

invariance we already know that j − cdif
24 ∈ Z. Using the orthogonality of sin

[(
j − cdif

24

)
µ
]

(as a function of µ) in eq. (2.11) one obtains

∑
∆

[
ρ(∆, j)− ρ

(
∆,−j +

cdif

12

)]
e−β(∆− ctot

24 ) = 0. (2.12)

Assuming the ordering ∆1 < ∆2 < · · · , eq. (2.12) reads

ρ(∆1, j)− ρ
(

∆1,−j +
cdif

12

)
+
∑

∆=∆2

[
ρ(∆, j)− ρ

(
∆,−j +

cdif

12

)]
e−β(∆−∆1) = 0. (2.13)
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By considering the β →∞ limit one verifies that

ρ(∆1, j) = ρ

(
∆1,−j +

cdif

12

)
. (2.14)

Using eq. (2.14) in eq. (2.13), the same argument implies that ρ(∆2, j) = ρ
(
∆2,−j + cdif

12

)
.

Iteration gives,

ρ(∆m, j) = ρ

(
∆m,−j +

cdif

12

)
. (2.15)

Since j − cdif
24 is the momentum eigen-value, we conclude that

Corollary 2.1. A 2d CFT whose partition function is real-valued and T -invariant is par-

ity even.

3 Invariance of partition function under S-transformation

S-invariance of the partition function,

Z(τ, τ̄) = Z

(
−1

τ
,−1

τ̄

)
, (3.1)

implies that [25],3(
τ
∂

∂τ

)NL (
τ̄
∂

∂τ̄

)NR
Z(τ, τ̄) = (−1)NL+NR

(
ω
∂

∂ω

)NL (
ω̄
∂

∂ω̄

)NR
Z (ω, ω̄) , (3.2)

in which

ω := −1

τ
, ω̄ := −1

τ̄
. (3.3)

At the self dual point τ = ω = i, and τ̄ = ω̄ = −i, this condition reads

D̂NL
L D̂NR

R Z(τ, τ̄)

∣∣∣∣
τ=+i,τ̄=−i

= 0 for NL +NR = odd, (3.4)

where D̂L = τ ∂
∂τ and D̂R = τ̄ ∂

∂τ̄ are respectively the left and the right dilatation operators.

For a holomorphic test function F(τ)

exD̂F(τ) = F(exτ), x ∈ C. (3.5)

Eq. (3.4) implies that for any (smooth) odd function f(−xL,−xR) = −f(xL, xR)

f(D̂L, D̂R)Z(τ, τ̄)

∣∣∣∣
τ=i,τ̄=−i

= 0. (3.6)

Using f1(D̂L, D̂R) = sinh(xLD̂L) cosh(xRD̂R) and f2(D̂L, D̂R) = cosh(xLD̂L) sinh(xRD̂R)

and for xL, xR ∈ C one verifies that

Z(uL, uR) + Z

(
uL,
−1

uR

)
− Z

(
−1

uL
, uR

)
− Z

(
−1

uL
,
−1

uR

)
= 0, (3.7)

Z(uL, uR)− Z
(
uL,
−1

uR

)
+ Z

(
−1

uL
, uR

)
− Z

(
−1

uL
,
−1

uR

)
= 0, (3.8)

3We assume that the partition function is a smooth function of β and µ i.e. there are no phase transitions.
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where uL = iexL and uR = −ieixR .4 An immediate result of the identities (3.7) and (3.8) is

Corollary 3.1. Every S-invariant partition function Z(τ, τ̄) is extended S-invariant, i.e.

Z(uL, uR) = Z

(
−1

uL
,
−1

uR

)
, (3.10)

where uL and uR are two independent C parameters taking value in the upper half-plane

and in the lower half-plane respectively.

3.1 Chiralization of the partition function

Consider the case uL = −uR = τ and define

Z(τ) := Z(τ,−τ). (3.11)

Eq. (2.5) (for q = q̄) gives

Z(τ) = q−
ctot
24

∑
∆=0

ρ̂(∆)q∆, (3.12)

where5

ρ̂(∆) :=
∑
j∈J∆

ρ(∆, j). (3.13)

From (3.10) we learn that the function Z(τ) is invariant under S-transformation.

In summary,

Corollary 3.2. Corresponding to every S-invariant partition function Z(τ, τ̄), there is a

an S-invariant chiral function Z(τ) := Z(τ,−τ).

We call the map

ch : Z(τ, τ̄)→ Z(τ), (3.14)

the chiralization map and Z(τ) the ch-image of Z(τ, τ̄). Table 1 shows some example of

the known partition function and the corresponding ch-images.

4Since the growth of ρ(h, h̄) in eq. (2.5) is controlled by the Cardy formula, the partition function

Z(uL, uR) = e−
πiuLcL

12 e
πiuRcR

24

∑
h,h̄=0

ρ(h, h̄)e2πiuLhe−2πiuRh̄, (3.9)

is convergent if the imaginary parts of uL and uR are positive and negative respectively. We assume that

Z(uL, uR) gives a biholomorphic analytic continuation of Z(β, µ) to complex uL in the upper half-plane

and uR in the lower half-plane.
5Z(τ) corresponds to the analytic continuation of the canonical partition function Zcanonical(β) defined

in eq. (1.9) to the complex β-plane. It is known that Zcanonical(β) is a real analytic function [34], thus Z(τ)

is well-defined. The S-invariance of Z(τ) is also indicated by the S-invariance of Zcanonical(β).

– 7 –
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Model Z(τ, τ̄) ch-image

Ising model 1
2

(∣∣∣ θ2η ∣∣∣+
∣∣∣ θ3η ∣∣∣+

∣∣∣ θ4η ∣∣∣) 1
2

(
θ2
η + θ3

η + θ4
η

)
Free boson 1√

τi
1

|η(τ)|2
1√
−iτ

1
(η(τ))2

Free boson on a circle of r = 1 1
2

(∣∣∣ θ2η ∣∣∣2 +
∣∣∣ θ3η ∣∣∣2 +

∣∣∣ θ4η ∣∣∣2) 1
2

[ (
θ2
η

)2
+
(
θ3
η

)2
+
(
θ4
η

)2 ]
Table 1. Examples of non-chiral partition functions and the corresponding ch-images.

4 CFT’s with half-integer conformal weights

In this section we investigate a family of CFT’s in which ∆ ∈ Z. Since j ∈ Z, the

corresponding conformal weights are half-integers. Hence we call such a CFT an HI-CFT.

In the following Z(τ, τ̄) and Z(τ) denote the partition function of an HI-CFT and the

corresponding ch-image respectively.

From eq. (3.12) one verifies that

T : Z(τ)→ e−iπ
ctot
12 Z(τ). (4.1)

Since Z(τ) is S-invariant, using the identity (TS)3 = 1 one obtains

e−2πi
ctot

8 = 1. (4.2)

Consequently,

ctot ∈ 8N. (4.3)

From the T -invariance of Z(τ, τ̄) we have learned that cdif ∈ 24Z. Therefore,

Corollary 4.1. For an HI-CFT

cL ∈ 4N, cR ∈ 4N. (4.4)

Now we are ready to obtain the basis for Z(τ). Let’s start with cL, cR ∈ 12N. In

that case ctot ∈ 24Z and Z(τ) defined by eq. (3.12) is a well-defined modular invariant

meromorphic function in the upper half plane. Therefore it can be given as a polynomial

in the Klein function J [23],

Z =
0∑

r=− ctot
24

arJ
−r. (4.5)

The Klein function can be written in terms of the Jacobi Theta functions θi(τ) (i = 2, 3, 4)

and the Dedekind function η(τ).

J = j3 (4.6)

= q−1 + 744 + 196884 q + · · · , (4.7)

– 8 –
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where

j(τ) :=
1

2

[(
θ2(τ)

η(τ)

)8

+

(
θ3(τ)

η(τ)

)8

+

(
θ4(τ)

η(τ)

)8
]

= q
−1
3 (1 + 248 q + · · · ) . (4.8)

In the following we show that for ctot ∈ 8N, Z(τ) can be written in terms of a polynomial

in j.

Lemma 4.2. Let f (r)
(
{a(r)}, τ

)
be an S-invariant function with Fourier expansion

f (r)
(
{a(r)}, τ

)
= q

−p
3

[
0∑

n=−r
a(r)
n qn +

∞∑
n=1

a(r)
n qn

]
, p ∈ {0, 1, 2}. (4.9)

in the upper half τ -plane. Then

a. f (r)
(
{a(r)}, τ

)
is T 3-invariant.

b. It is a polynomial in j.

Proof. T 3-invariance is obvious. Eq. (4.7) and eq. (4.8) imply that there exist {a(r−1)}
such that

q
−p
3

∞∑
n=−r

a(r)
n qn = a

(r)
−r j

p Jr + q
−p
3

∞∑
n=−r+1

a(r−1)
n qn. (4.10)

Therefore,

f (r)
(
{a(r)}, τ

)
= a(r)

r jp Jr + f (r−1)
(
{a(r−1)}, τ

)
. (4.11)

The order of the poles of f (r)
(
{a(r)}, τ

)
and f (r−1)

(
{a(r−1)}, τ

)
are r and r − 1 respec-

tively. The S-invariance of f (r)
(
{a(r)}, τ

)
, j and J imply that f (r−1)

(
{a(r−1)}, τ

)
is also

S-invariant. By iteration one obtains

f (r)
(
{a(r)}, τ

)
= jp

[
a

(r)
−rJ

r + a
(r−1)
−(r−1)J

r−1 + · · ·+ a
(0)
0

]
+ f (−1)

(
{a(−1)}, τ

)
, (4.12)

where

f (−1)
(
{a(−1)}, τ

)
= q1− p

3

∑
m≥1

a(−1)
m qm−1. (4.13)

The function
[
f (−1)

(
{a(−1)}, τ

)]3
is modular invariant. It has no pole in the upper half

plane and is zero at τ = i∞. Thus it is zero in the upper half plane.

Corollary 4.3. The ch-image of the HI-CFT partition function with total central charge

ctot = 8k, has an expansion in terms of j as follows

Z(τ) = jk
[k/3]∑
r=0

nrJ
−r, nr ∈ N. (4.14)

– 9 –
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central charge ch-Image of partition function

k = 1 j = q
−1
3 (1 + 248q + 4124q2 + 34752q3 + · · · )

k = 2 j2 = q
−2
3 (1 + 496q + 69752q2 + 2115008q3 + · · · )

k = 3 J + n1 = q−1
[
1 + (744 + n1)q + 196884q2 + 21493760q3 + · · ·

]
Table 2. The ch-image of the HI-CFT partition function with ctot ∈ {8, 16, 24}.

The degeneracy of the vacuum state is given by n0. In the following we assume that

n0 = 1. Eq. (4.14) shows that Z(τ), and consequently the number of states with energy

∆ i.e. ρ̂(∆) can be uniquely determined if ctot and the integers nr, or equivalently, the

low-energy (i.e. ∆ ≤
[
k
3

]
) density of states are given.6

Finally, consider an HI-CFT whose ch-image Z(τ) is extremal, i.e. Z(τ) =

q−k/3 [1 +O(q)]. In that case, the coefficients nr can be uniquely determined in terms

of the central charge. Furthermore, the scaling dimension of the first primary field after

identity is ∆1 = ctot
24 + 1, which is in agreement with the upper bound given in eq. (1.4).

4.1 AdS/CFT correspondence

It is known that the Cardy formula reproduces the Bekenstein-Hawking entropy at ∆ � 1.

In [17] it has been observed that for k ∈ 3N,7 the number of primary fields is given by the

Cardy formula

ρ̂(∆) ∼= eS(k,∆), S(k,∆) := 4π

√
k
(
∆− k

3

)
3

. (4.15)

Therefore it is natural to assume that the primary fields correspond to the micro-states of

the BTZ black hole.

In table 2 the Fourier expansion of the ch-image is given for ctot = 8, 16, 24. The

coefficients of the expansions determine the density of state ρ̂(∆) which equals the number

of states with energy ∆ and spin j ∈ [−∆,∆]. For k = 1, 2, 3 the first high energy state

(i.e. ∆ = 1 +
[
k
3

]
) has weight ∆ = 1, 1, 2 respectively. It is an interesting observation that

the corresponding number of states can be estimated by the Cardy formula.

5 A basis for HI-CFT partition function

In the previous section we have observed that the ch-image of the HI-CFT partition function

is a polynomial in j. Motivated by the fact that j is the ch-image of 1
2

∑3
i=1

∣∣∣ θiη ∣∣∣8 in this

section we study a class of HI-CFT’s whose partition functions can be given as a polynomial

in
√

θi
η and

√
θ̄i
η .

6The existence and the uniqueness of such CFT’s is an open problem.
7In our conventions, ctot = 8k while in [17] ctot = 24k.
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The functions
√

θi
η have the following Fourier expansion.√

ϑ2

η
= q

−1
48

+ 1
16

∞∑
n=0

C
( 1

16
)

n qn, (5.1)√
ϑ3

η
= q

−1
48

( ∞∑
n=0

C(0)
n qn +

∞∑
n=1

C
( 1

2
)

n qn+ 1
2

)
, (5.2)√

ϑ4

η
= q

−1
48

( ∞∑
n=0

C(0)
n qn −

∞∑
n=1

C
( 1

2
)

n qn+ 1
2

)
, (5.3)

where

C(i)
n ∈ N, i = 0,

1

16
,

1

2
. (5.4)

The S-transformation of the Dedekind function η and the Theta functions are as follows.

θ2 → (−iτ)1/2θ4, θ4 → (−iτ)1/2θ2, (5.5)

θ3 → (−iτ)1/2θ3, η → (−iτ)1/2η. (5.6)

T -transformation of these functions is given by,

θ2 → eiπ/4θ2, θ3 ↔ θ4, η → eiπ/12η. (5.7)

Since an HI-CFT only contains primary fields with half integer scaling dimension, from

eqs. (5.1)–(5.7) one infers that the corresponding partition function is a polynomial in x,

y and z defined as follows.

x :=

(√
ϑ2

η

)8

= q
−1
6

+ 1
2C(q), (5.8)

y :=

(√
ϑ3

η

)8

= q
−1
6

[
A(q) + q

1
2B(q)

]
, (5.9)

z :=

(√
ϑ4

η

)8

= q
−1
6

[
A(q)− q

1
2B(q)

]
, (5.10)

where A(q), B(q) and C(q) are polynomials in q with positive integer coefficients. The

functions x, y and z are not independent. They are related through the standard relations

between the Theta functions and Dedekind function.

x− y + z = 0, (5.11)

xyz = 16. (5.12)

By using eq. (5.12) and the transformation rules

S : y → y, x↔ z, (5.13)

T : x→ e2iπ/3x, y → e−iπ/3z, z → e−iπ/3y, (5.14)
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one can show that the most general modular covariant combination of x, y, z can be written

as follows.

Ra,b,c,d = xcx̄a
(
ydz̄b + αzdȳb

)
(5.15)

+ycȳa
(
βzdx̄b + β̃xdz̄b

)
+zcz̄a

(
γxdȳb + γ̃ydx̄b

)
,

where a, b, c and d are some positive integer number and α, β, β̃, γ and γ̃ are complex

number. By covariance we mean that

S : Ra,b,c,d → eiσRa,b,c,d, (5.16)

T : Ra,b,c,d → eiδRa,b,c,d, (5.17)

where σ and δ are real numbers. Eq. (5.16) implies that

γ̃ = eiσ, γ̃2 = e2iσ = 1, γ = eiσα, β̃ = eiσβ. (5.18)

Using (5.17) and (5.18) one obtains,

eiδ = (−1)a+ce
iπ
3

(a+b−c−d)α, β = (−1)a+c+d, (5.19)

γ̃ = (−1)b+dα, α2 = 1. (5.20)

Consequently,

R±a,b,c,d = xcx̄a
(

(−y)dz̄b ± zd(−ȳ)b
)

(5.21)

+(−y)c(−ȳ)a
(
zdx̄b ± xdz̄b

)
+zcz̄a

(
xd(−ȳ)b ± (−y)dx̄b

)
,

where we have dropped an overall phase (−1)d. R−a,b,c,d and R+
a,b,c,d are respectively odd

and even under S-transformation.

SR±a,b,c,d = ±R±a,b,c,d. (5.22)

S-invariance of the partition function implies that Z(τ, τ̄) should be an even function in

R−a,b,c,d. In appendix A we show that R−a,b,c,dR
−
a′,b′,c′,d′ is a linear combination of R+

a,b,c,d.

Hence, we concentrate on polynomials in R+
a,b,c,d and drop the + sign for simplicity.

Noting that

j =
1

2
(x2 + y2 + z2), (5.23)

one can use eq. (5.11) to show that

j = x2 + yz = z2 + xy = y2 − xz. (5.24)
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These identities together with eq. (5.12) result in the following recurrence relations.

Ra+2,b,c,d = j̄Ra,b,c,d − 16Ra−1,b,c,d, (5.25)

Ra,b+2,c,d = j̄Ra,b,c,d − 16Ra,b−1,c,d, (5.26)

Ra,b,c+2,d = jRa,b,c,d − 16Ra,b,c−1,d, (5.27)

Ra,b,c,d+2 = jRa,b,c,d − 16Ra,b,c,d−1. (5.28)

Eqs. (5.25)–(5.28) show that every Ra,b,c,d is a polynomial in j, j̄,

h :=
1

2

(
|x|2 + |y|2 + |z|2

)
, (5.29)

and

k := x2x̄− y2ȳ + z2z̄. (5.30)

To show it, we first consider the chiral function

Rc,d := R0,0,c,d = xc
(

(−y)d + zd) + (−y)c(zd + xd) + zc(xd + (−y)d
)
. (5.31)

Noting that

R0,0 = 6, R1,0 = 0, R2,0 = 4j, (5.32)

R0,1 = 0, R1,1 = − 2j, R2,1 = 48, (5.33)

R0,2 = 4j, R1,2 = 48, R2,2 = 2j2, (5.34)

one verifies that j is the single generator of Rc,d.

In appendix B we show that

Ra,b,0,1 = −Rb,a,1,0 −Ra,b,1,0, (5.35)

Ra,b,1,1 = −jRa,b,0,0 +Rb,a,2,0, (5.36)

Ra,b,0,2 = 2jRa,b,0,0 −Ra,b,2,0 −Rb,a,2,0, (5.37)

Ra,b,2,2 = j2Ra,b,0,0 − jRb,a,2,0 − 16Rb,a,1,0, (5.38)

Ra,b,1,2 = −jRa,b,0,1 +Rb,a,2,1. (5.39)

Thus all of Ra,b,c,d can be obtained in terms of Ra,b,c′,d′ where {c′, d′} ∈
{(1, 0), (2, 0), (2, 1)}. Using the identity

R̄a,b,c,d = Rc,d,a,b, (5.40)

one can also determine R2,0,1,0, R2,1,1,0, and R2,1,2,0 in terms of R1,0,2,0, R1,0,2,1, and R2,0,2,1

respectively. Using eq. (5.36) one can determine R1,1,1,0, R1,1,2,0 and R1,1,2,1. Similarly,

eq. (5.38) can be used to compute R2,2,1,0, R2,2,2,0 and R2,2,2,1. Therefore all that we need
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to compute Ra,b,c,d are the following functions.

R1,0,1,0 = − 2R0,1,1,0 = 4h, R0,1,2,0 = R̄0,2,1,0 = −1

2
R1,0,2,0 = −k,

R1,2,1,0 = − R̄1,0,2,1 = 2 j̄ h, R0,1,2,1 = 0,

R2,0,2,0 =
8h2

3
+

4|j|2

3
, R0,2,2,0 = − 4h2

3
+

10|j|2

3
,

R2,0,2,1 = − j̄k + 32j, R0,2,2,1 = 32̄j,

R2,1,2,1 =
8

3
|j|2 h− 8h3

3
+ 6(16)2. (5.41)

In summery every Ra,b,c,d is a polynomial in h, k and k̄ as follows

R = g0 + g1h + g2h
2 + g3h

3 + g4k + g5k̄, (5.42)

where gi = gi(j, j̄) are polynomials in j and j̄.

Since the HI-CFT partition function is modular invariant, we investigate the invariance

of R under T transformation. h is modular invariant. j and k are eigen-functions of T with

eigen-values e
−2πi

3 and e
2πi
3 respectively. In order to determine gi, (i = 0 · · · 5), we write

them as follows

gi = F
(0)
i +

(
F

(1)
i j + F

(2)
i j2 + h.c.

)
, i = 0, 1, 2, 3, (5.43)

g4 = F
(0)
4 + F

(1)
4 j + F

(2)
4 j2 +G

(1)
4 j̄ +G

(2)
4 j̄2, (5.44)

g5 = ḡ4. (5.45)

where F
(a)
i and G

(a)
4 are polynomials in |j|2, J and J̄ . In writing eqs. (5.43)–(5.45) we have

noted that R as a partition function should be real-valued. Using eqs. (5.43)–(5.45) in

eq. (5.42) and the identity TR + T 2R = 2R one obtains[
3∑
i=0

(
jF

(1)
i + j2F

(2)
i

)
hi +

(
F

(0)
4 + F

(2)
4 j2 +G

(1)
4 j̄
)
k

]
+ c.c. = 0. (5.46)

Therefore, every HI-CFT partition function can be written as

Z(τ, τ̄) =
3∑
i=0

F
(0)
i hi +

[(
F

(1)
4 j +G

(2)
4 j̄2

)
k + c.c.

]
. (5.47)

Noting that the ch-image of h is j and the ch-image of k equals −48,8 one easily verifies

that the ch-image of Z(τ, τ̄) is a function of j in agreement with corollary 4.3.

8The ch-image of k is 1
2
R0,0,3,0 which can be easily computed by using eq. (5.27).
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5.1 Examples of HI-CFT Partition function

In this section we study HI-CFT’s with ctot = 8, 16.9

• ctot = 8. In this case there is only one partition function

Z(τ, τ̄) = h =
1

2

ϑ2
4(τ)ϑ̄2

4
(τ̄) + ϑ3

4(τ)ϑ̄3
4
(τ̄) + ϑ4

4(τ)ϑ̄4
4
(τ̄)

η4(τ)η̄4(τ̄)
, (5.48)

which corresponds to 8 right-handed and 8 left-handed fermions. The corresponding

ch-image is

Z(τ) =
1

2

ϑ2
8 + ϑ3

8 + ϑ4
8

η8(τ)
= j. (5.49)

• ctot = 16. In this case the partition function is not unique.

Z(τ, τ̄) =
1

a+ b

(
ah2 + b |j|2

)
. (5.50)

The ch-image of Z(τ, τ̄) is j2 (independent of a and b). The factor 1
a+b indicates that

there is a single vacuum state. The coefficients a an b should be determined in such a

way that the density of states are positive integers. By inspecting the first few terms

in the Fourier expansion of Z(τ, τ̄), one can obtain the following necessary condition.

384a

a+ b
= n,

56a+ 248b

a+ b
= m, (5.51)

in which m and n are nonnegative integers. This gives

m,n ∈ 8Z 2m′ + n′ = 62, (5.52)

where m′ := m
8 and n′ := n

8 . Using eq. (5.52) in eq. (5.50) one obtains

Z(τ, τ̄) =
1

24

[
(31−m′)h2 + (m′ − 7) |j|2

]
. (5.53)

For 7 ≤ m′ ≤ 31 the energy densities are obviously positive integers. We have not

been able to exclude the partition functions corresponding to 0 ≤ m′ ≤ 6. Therefore,

we are optimistic that there should be 32 different HI-CFT’s with ctot = 16.

6 Summary

In this work we have studied modular invariant partition functions of unitary CFT’s whose

conformal weights are half-integers, hence HI-CFT’s. By using the medium temperature

expansion we have obtained a chiralization map which maps every S-invariant non-chiral

partition function to an S-invariant chiral partition function. We have used the chiralization

map to show that the left and right central charges of an HI-CFT are multiples of 4.

Furthermore, we have shown that the partition function after chiralization can be written

9cdif ∈ 24Z implies that the corresponding left and right central charges are cL = cR = 4 and cL = cR = 8

respectively.
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as a polynomial in j = J1/3, where J is the Klein function. In this way we have realized that

the degree of degeneracy of the high energy levels ∆ >
[
cL+cR

24

]
can be uniquely determined

in terms 1 +
[
cL+cR

24

]
integers corresponding to the degeneracy in the low energy states.

We have identified a class of HI-CFT’s whose partition functions can be given in terms

of the Jacobi Theta function θi and the Dedekind function η. In eq. (5.47) we have given

the most general form of such partition functions.
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A S-invariant combinations of Ra,b,c,d

The multiplication rule for R−a,b,c,d can be obtained as follows.

R−a,b,c,dR
−
a′,b′,c′,d′ = R+

a+a′,b+b′,c+c′,d+d′ (A.1)

−
[
xc+c

′
(−y)d

′
zdx̄a+a′(−ȳ)bz̄b

′
+ xc+c

′
(−y)dzd

′
x̄a+a′(−ȳ)b

′
z̄b

+xd
′
(−y)c+c

′
zdx̄b(−ȳ)a+a′ z̄b

′
+ xd(−y)c+c

′
zd
′
x̄b
′
(−ȳ)a+a′ z̄b

+xd(−y)d
′
zc+c

′
x̄b
′
(−ȳ)bz̄a+a′ + xd

′
(−y)dzc+c

′
x̄b(−ȳ)b

′
z̄a+a′

]
+
[
xc(−y)c

′+dzd
′
x̄a+b′(−ȳ)a

′
z̄b + xc(−y)d

′
zc
′+dx̄a+b′(−ȳ)bz̄a

′

+xd
′
(−y)czc

′+dx̄b(−ȳ)a+b′ z̄a
′
+ xd

′
(−y)d+c′zcx̄b(−ȳ)a

′
z̄a+b′

+xc
′+d(−y)czd

′
x̄a
′
(−ȳ)a+b′ z̄b + xc

′+d(−y)d
′
zcx̄a

′
(−ȳ)bz̄a+b′

]
+
[
xc
′
(−y)c+d

′
zdx̄a

′+b(−ȳ)az̄b
′
+ xc

′
(−y)dzc+d

′
x̄a
′+b(−ȳ)b

′
z̄a

+xd(−y)c
′
zc+d

′
x̄b
′
(−ȳ)a

′+bz̄a + xd(−y)d
′+czc

′
x̄b
′
(−ȳ)az̄a

′+b

+xc+d
′
(−y)c

′
zd
′
x̄a(−ȳ)a

′+bz̄b
′
+ xc+d

′
(−y)dzc

′
x̄a(−ȳ)b

′
z̄a
′+b
]

−
[
xc+d

′
(−y)c

′+dx̄a(−ȳ)a
′
z̄b+b

′
+ xc+d

′
zc
′+dx̄a(−ȳ)b+b

′
z̄a
′

+(−y)c+d
′
zc
′+dx̄b+b

′
(−ȳ)az̄a

′
+ (−y)d+c′zc+d

′
x̄b+b

′
(−ȳ)a

′
z̄a

+xc
′+d(−y)c+d

′
x̄a
′
(−ȳ)az̄b+b

′
+ xc

′+dzc
′+dx̄a

′
(−ȳ)b+b

′
z̄a
]

−
[
xc(−y)c

′
zd+d′ x̄a+b′(−ȳ)a

′+b + xc(−y)d+d′zc
′
x̄a+b′ z̄a

′+b

+xd+d′(−y)czc
′
(−ȳ)a+b′ z̄a

′+b + xd+d′(−y)c
′
zc(−ȳ)a

′+bz̄a+b

+xc
′
(−y)czd+d′ x̄a

′+b(−ȳ)a+b′ + xc
′
(−y)d+d′zcx̄a

′+bz̄a+b′
]
.

We have separated the above terms in 5 combinations. We show that each combination is

an R+. It is clear that these terms have the following structure.

I(a, b, c, d, a′, b′, c′, d′) = xa(−y)bzcx̄a
′
(−ȳ)b

′
z̄c
′
+ xa(−y)czbx̄a

′
(−ȳ)c

′
z̄b
′

+xb(−y)azcx̄b
′
(−ȳ)a

′
z̄c
′
+ xc(−y)azbx̄c

′
(−ȳ)b

′
z̄a
′

+xb(−y)czax̄b
′
(−ȳ)c

′
z̄a
′
+ xc(−y)bzax̄c

′
(−ȳ)b

′
z̄a
′
.
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where

I(a, b, c, a′, b′, c′) = I(b, a, c, b′, a′, c′) = I(c, b, a, c′, b′, a′). (A.2)

In order to proceed we need to classify different orderings of a, b, c and (a′, b′, c′). In general,

there are nine of them as follows

1. a ≤ b, c a′ ≤ b′, c′, (A.3)

2. b ≤ a, c b′ ≤ a′, c′,
3. c ≤ a, b c′ ≤ a′, b′,
4. a ≤ b, c b′ ≤ a′, c′,
5. b ≤ a, c a′ ≤ b′, c′,
6. c ≤ a, b a′ ≤ b′, c′,
7. a ≤ b, c c′ ≤ a′, b′,
8. b ≤ a, c c′ ≤ a′, b′,
9. c ≤ a, b b′ ≤ a′, c′,

We first consider cases 1, 4 and 7.

1. I(a, b, c, a′, b′, c′) = 16a+a′(−1)b+c
c−a∑
k=0

(c− a)!

k!(c− a− k)!
R+
b′−a′,c′−a′,b−a+k,c−a−k, (A.4)

4. I(a, b, c, a′, b′, c′) = (−16)a+b′R+
c′−b′,a′−b′,c−a,b−a, (A.5)

7. I(a, b, c, a′, b′, c′) = (−16)a+c′R+
b′−c′,a′−c′,b−a,c−a. (A.6)

By using eq. (A.2) and eq. (A.4) and switching (a↔ b, a′ ↔ b′), and (a↔ c, a′ ↔ c′), one

can resolve the cases 2 and 3. Similarly, the cases 5 and 6 and the cases 8 and 9 can be

obtained from the cases 4 and 7 respectively.

B Basis for Ra,b,c,d

In this appendix we prove eqs. (5.35)–(5.39).

By definition,

Ra,b,0,1 = x̄a
(

(−y)z̄b + z(−ȳ)b
)

+ (−ȳ)a(xz̄b + zx̄b)

+z̄a
(

(−y)x̄b + x(−ȳ)b
)
. (B.1)

Thus, the identity (5.11) gives eq. (5.35). Similarly,

Ra,b,1,1 = xx̄a
(

(−y)z̄b + z(−ȳ)b
)

+ (−y)(−ȳ)a(xz̄b + zx̄b)

+zz̄a
(

(−y)x̄b + x(−ȳ)b
)
. (B.2)
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Therefore eq. (5.36) is a result of the identity (5.24). Eq. (5.37) can be verified by using

eq. (5.23) in

Ra,b,0,2 = x̄a
(
y2z̄b + z2(−ȳ)b

)
+ (−ȳ)a(x2z̄b + z2x̄b)

+z̄a
(
y2x̄b + x2(−ȳ)b

)
, (B.3)

eq. (5.24) and eq. (5.12) give

z4 = z2(j− xy) = jz2 − 16z. (B.4)

Therefore,

x2y2 = j2 − jz2 − 16z. (B.5)

Similarly,

x2z2 = j2 − jy2 + 16y, (B.6)

y2z2 = j2 − jx2 − 16x. (B.7)

Using eqs. (B.5)–(B.7) in

Ra,b,2,2 = x2x̄a
(
y2z̄b + z2(−ȳ)b

)
+ y2(−ȳ)a(x2z̄b + z2x̄b)

+z2z̄a
(
y2x̄b + x2(−ȳ)b

)
, (B.8)

one obtains eq. (5.38). Finally, using the identity

xx̄a
[
y2z̄b + z2(−ȳ)b

]
= x̄a

[
(−y)

(
−j + z2

)
z̄b +

(
−j + y2

)
z(−ȳ)b

]
, (B.9)

in

Ra,b,1,2 = xx̄a
(
y2z̄b + z2(−ȳ)b

)
+ (−y)(−ȳ)a(x2z̄b + z2x̄b)

+zz̄a
(
y2x̄b + x2(−ȳ)b

)
, (B.10)

one obtains eq. (5.39).
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