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1 Introduction

The study of mixing and CP violation in the K0–K0 system was crucial for the development

of the standard model (SM). The comparison of the measurement of the CP violating

parameter in K0–K0 mixing, εK , with its SM calculation provides important constraints

on the CKM matrix. The observable εK also probes some of the highest new physics (NP)

scales, and it gives severe constraints on explicit models of flavor. Moreover, to distinguish

between possible NP interpretations of flavor anomalies, it is particularly important to

know the level of consistency between the constraints on the flavor sector from K and B

decay measurements.

What are the current limiting factors of the εK sensitivity to NP? How can we possibly

improve them, now and in the future? The level to which we can answer these questions

will have a major impact on our understanding of flavor. These limiting factors have to

be looked for in the SM prediction of εK , whose uncertainty is more than an order of

magnitude above the half percent precision of the experimental measurement. Part of the

SM uncertainty in the εK prediction is parametric, i.e., due to the relatively poor knowledge

of some of the CKM parameters, most notably A (or equivalently |Vcb|). This knowledge

will be substantially improved by future measurements at Belle II and LHCb [1, 2], which

will hopefully also resolve tensions between inclusive and exclusive determinations of |Vcb|
and |Vub| [3].
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Besides |Vcb|, the largest uncertainty in the SM prediction for εK originates from the

calculation of ηcc, the QCD correction to the box diagram with two charm quarks. The

NNLO calculation of this quantity [4] found a large correction and a poorly behaved pertur-

bation series, 1, 1.38, 1.87, at leading, next-to-leading, and next-to-next-to-leading orders,

respectively, and thus quoted ηcc = 1.87± 0.76, and |εK | = (1.81± 0.28)× 10−3. Thus, to

what extent ηcc is determined by short distance physics may be questioned. This resulted

in different groups treating ηcc differently. For example CKMfitter [5, 6] uses ηcc quoted

in ref. [4], whereas UTfit [7, 8] uses the NLO calculation of ηcc [9]. This contributes to the

visibly different εK regions in CKMfitter and UTfit plots. Ref. [10] instead argued that

ηcc = 1.70± 0.21 was a reasonable estimate, assuming the dominance of ∆mK by the SM

contribution, and using an estimate of the long-distance contribution to ∆mK . Note also

that the behavior of the perturbation series, which matters for the uncertainty estimate of

ηcc, is scheme dependent. The perturbative QCD calculations of the ηct = 0.496(47) [11]

and ηtt = 0.5765(65) [12] correction factors to the box diagrams with internal tt and ct

quarks, respectively, appear to be better behaved.

In this paper we show that one can eliminate ηcc from the theoretical prediction of

εK , by setting the contribution of that term to the mixing amplitude, M12, purely real.

While physical results are independent of such conventions, numerically some dependence

remains (similar to other scheme dependences), because M12 and Γ12 are calculated using

different methods. We discuss the implications of this choice on the SM uncertainty of εK
and on the resulting constraints on NP, both at present and in the future.

This paper is organized as follows: in section 2 we review some definitions and for-

malism, making clear the approximations and phase-dependences involved. In section 3

we show how to remove the ηcc contribution from εK , and discuss the resulting modified

predictions for εK . In section 4 we comment on implications for constraints on new physics.

In section 5 summarize our findings, and conclude.

2 The state of the εK art

2.1 Definitions

The neutral kaon mass eigenstates are linear combinations of |K0〉 = |ds̄〉 and |K0〉 = |d̄s〉.
The time evolution of these states is described by the Schrödinger equation,

i
d

dt

(
K0

K0

)
=

(
M − i Γ

2

)(
K0

K0

)
, (2.1)

where the mass (M) and the decay (Γ) mixing matrices are 2× 2 Hermitian matrices. The

mass eigenstates are usually labeled with their lifetimes1

|KS,L〉 = p|K0〉 ± q|K0〉 , (2.2)

1The sign of q is a convention, degenerate with the choice of the phase θ = 0 or π in eq. (2.6). Setting

the coefficients of |K0〉 identical in |KL〉 and |KS〉, as done in eq. (2.2), sets another non-physical overall

phase to zero.
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and they are the eigenvectors of M − iΓ/2. To write eq. (2.2) we have assumed CPT

symmetry, as we do in the rest of this paper. The correspondence between the long/short

lived and the heavy/light states is

KL = Kheavy , KS = Klight . (2.3)

Let us define

∆m = mL −mS > 0 , (2.4)

and

∆Γ = ΓL − ΓS ' −ΓS < 0 . (2.5)

Throughout this paper we keep explicitly the CP transformation phase

CP |K0〉 = eiθ|K0〉 , CP |K0〉 = e−iθ|K0〉 , (2.6)

since both the θ = 0 and θ = π choices are often used in the literature, and the cancellation

of this is interesting to follow. The choice of the phase θ is not to be confused with the

phase convention for the kaon and quark fields.

Let us define the decay amplitudes

Af = 〈f |H|K0〉 = |Af | ei(φf+δf ) , Āf = 〈f |H|K0〉 = |Af | ei(−φf+δf−θ) , (2.7)

where φf and δf are the weak and strong phases respectively, and the amplitude ratios2

ηf ≡
〈f |H|KL〉
〈f |H|KS〉

〈K0|KS〉
〈K0|KL〉

=
1− (q/p)(Āf/Af )

1 + (q/p)(Āf/Af )
. (2.8)

In terms of ηf for f = π+π− and π0π0, εK and ε′ are defined as

εK =
2η+− + η00

3
, ε′ =

η+− − η00

3
. (2.9)

It is η+− and η00 which are measured (and ε′/ε is extracted from |η00/η+−|2 ' 1−6 Re(ε′/ε),

valid for |ε′/ε| � 1).

For a theoretical discussion, since K → ππ decays are dominated by the isospin I = 0

two-pion state over I = 2, it is convenient to define

ηI =
〈(ππ)I |H|KL〉
〈(ππ)I |H|KS〉

〈K0|KS〉
〈K0|KL〉

, ω ≡ 〈(ππ)I=2|H|KS〉
〈(ππ)I=0|H|KS〉

. (2.10)

The CP violating quantities εK and ε′ can also be defined as

εK = η0 , ε′ =
ω√
2

(η2 − η0) . (2.11)

The definitions in eqs. (2.9) and (2.11) are equivalent up to differences of order |ωε′| ∼ 10−7,

i.e., to a relative error of 10−4 for εK , and 1/22 for ε′ (see table 1, and use |ω| = |A2/A0|[1+

O(|εK |)] ' 1/22). Neglecting isospin violation, we can further write

η+− =
η0 + η2 ω/

√
2

1 + ω/
√

2
, η00 =

η0 −
√

2 η2 ω

1−
√

2ω
. (2.12)

2The definition ηf = 〈f |H|KL〉/〈f |H|KS〉 is often used in the literature, and measured magnitudes

and phases are quoted. However, there is an arbitrary unphysical relative phase between |KL〉 and |KS〉.
Effectively eq. (2.8) is measured in the interference of |KL〉 and |KS〉 decays in regeneration experiments.
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2.2 εK , phase convention independently

We summarize here how to express εK in terms of the off-diagonal elements of the mass and

width mixing matrices, M12 and Γ12 (see refs. [13, 14] for more details). We pay attention

to write expressions that are independent of the phase conventions for the kaon and quark

fields, and we state explicitly the approximations used.

The semileptonic CP asymmetry

δL =
Γ(KL → π−`+ν)− Γ(KL → π+`−ν̄)

Γ(KL → π−`+ν) + Γ(KL → π+`−ν̄)
= (3.32± 0.06)× 10−3 [3] , (2.13)

measures CP violation in mixing, in the limit when Aπ+`−ν̄ = Āπ−`+ν = 0 and |Aπ−`+ν | =
|Āπ+`−ν̄ |. Note that these assumptions, valid in the SM to great accuracy, are not precisely

tested yet, as the ratio x+ = A(K0 → π−`+ν)/A(K0 → π+`−ν̄) is only constrained at

the 10−3 level [3].3 In this limit, the definition in eq. (2.13), and solving the eigenvalue

equations imply

δL =
1− |q/p|2

1 + |q/p|2
=

2 Re(εK)

1 + |εK |2
=

2 Im(M∗12Γ12)

4|M12|2 + |Γ12|2
, (2.14)

where we neglected relative higher orders in |ω|ε′/ε. The expressions for the mass and

width differences that follow from the eigenvalue equations are

∆m = 2|M12| , ∆Γ = −2|Γ12| , (2.15)

and are valid up to relative orders δ2
L. The relative phase between M12 and Γ12 is π+O(δL),

since eq. (2.14) implies that its sine is small, and the eigenvalue equation 4 Re(M∗12Γ12) =

∆m∆Γ < 0 implies that its cosine is negative.

Equations (2.14) and (2.15) exhaust the information regarding kaon mixing, and

Im(εK) is related to CP violation in interference of decay with and without mixing. Still,

εK is the observable used to constrain CP violation in K0 mixing. The reason is that εK
is measured with about 4 times smaller relative uncertainty than δL, and the phase of εK
also depends only on mixing parameters. Indeed, the following relation for the phase φε,

φε ' arctan
2|M12|
|Γ12|

, (2.16)

is valid up to relative orders δ2
L and |ω2ε′/ε|, and up to ratios of amplitudes to more than

two-body final states, that do not exceed a relative contribution of 10−2 to φε (see ref. [15]

and the updated measurements in ref. [3] for details). The quantity arctan(−2∆m/∆Γ) =

43.52◦ is often referred to as “superweak phase”, and differs from the measured value of

φε by one part in 104, so that the error of eq. (2.16) neither exceeds that level. Using

eq. (2.14) for Re(εK) and eq. (2.16) for φε we obtain

εK =
eiφε sinφε

2
arg

(
− M12

Γ12

)
= eiφε sinφε

Im(−M12/Γ12)

2 |M12/Γ12|
= eiφε cosφε Im(−M12/Γ12) .

(2.17)

3This is historically called the ∆s = ∆Q rule. In the SM it is only violated by higher orders in the weak

interaction; when we discuss NP scenarios below, we neglect the impact of NP on tree-level SM processes.
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Clearly, εK only depends on M12/Γ12, which is physical, while the phases of M12 and Γ12

separately are not. The neglected higher order terms in eq. (2.17) are also independent of

phase conventions.

The standard model predictions for M12 and Γ12 are calculated separately, using dif-

ferent methods, resulting in intermediate steps that depend on phase conventions. (In

contrast, in the case of B0 and B0
s mixing, both M12 and Γ12 are computed by perturba-

tive QCD methods, hence the cancellations of conventions is more apparent. In K0 mixing,

the use of chiral perturbation theory, and the separate estimation of short and long dis-

tance contributions obscure the cancellations.) The conventions that lead to the “usual”

εK formula is reviewed in the rest of this section. In section 3 we use the freedom of this

choice to study and minimize the uncertainties of εK .

2.3 εK in the standard phase convention

To connect the phase convention independent manifestly physical expressions in eq. (2.17)

to actual calculations, we need to consider how M12 and Γ12 are computed. They are

given by

M12 =
1

2mK
〈K0|H|K0〉 , Γ12 =

∑
f

A∗(K0 → f)A(K0 → f) , (2.18)

where f denote common final states of K0 and K0 decay. Usually M12 is written as the

short-distance calculation combined with the matrix element of the four-quark operator

O1 = (d̄LγµsL)2 in the vacuum insertion approximation, times a “bag parameter”, BK ,

plus corrections. The definition of BK involves θ via [13, 16]

〈K0|(d̄LγµsL)(d̄Lγ
µsL)|K0〉 = −e−iθ 2

3
BK(µ)f2

Km
2
K , (2.19)

where BK(µ) is the usual positive real quantity. One further defines B̂K , to remove the

µ-dependence of BK(µ). The width mixing, Γ12, is dominated by

A∗0Ā0 = e−iθ |A0|2 e−2iφ0 , (2.20)

while the subleading contributions are suppressed by |A2/A0|2 ' 2 × 10−3 and B(KS →
f 6= ππ) < 10−3. Equations (2.19) and (2.20) show that θ drops out of M12/Γ12, as it must.

In an often used CP phase convention which we also use hereafter, θ = π [17], and

then with the usual CKM phase conventions [3], M12 is near the positive real axis and

Γ12 is near the negative real axis. The weak phase, φ0, of the isospin-zero amplitude, A0,

depends on hadronic matrix elements of several operators in the effective Hamiltonian. It

is convenient and customary to define

ξ =
Im(A0 e

−iδ0)

Re(A0 e−iδ0)
. (2.21)

Without specifying phase conventions, ξ can take any values between −∞ and +∞, because

φ0 is convention dependent. In phase conventions in which |ξ| � 1 and Re(A0 e
−iδ0) > 0,

– 5 –
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one has ξ = arg(A0 e
−iδ0) = −1

2 arg(−Γ12) up to relative orders ξ2 (in addition to the

phase-independent relative orders B(KS → f 6= ππ) and |A2/A0|2). Then

arg(−M12/Γ12) = arg(M12)− arg(−Γ12) ' 2 ImM12

2|M12|
+ 2ξ , (2.22)

is valid to the required accuracy in phase conventions satisfying {argM12 , arg Γ12} =

O(δL)� 1 (mod π). Thus, starting from the manifestly convention independent eq. (2.17),

choosing θ = π and weak phases such that |ξ| � 1, we recover the often quoted expression,

εK = eiφε sinφε

(
ImM12

∆m
+ ξ

)
= eiφε sinφε

(
ImMSD

12

∆m
+ ξ +

ImMLD
12

∆m

)
=
κε e

iφε

√
2

ImMSD
12

∆m
.

(2.23)

We have explicitly separated the short-distance ∆s = 2 contribution, MSD
12 , from ξ, and

from the long-distance contribution, MLD
12 . The last term implicitly defines κε, which is

often written as [18, 19]

κε =
√

2 sinφε

(
1 + ρ

ξ√
2 |εK |

)
. (2.24)

2.4 Estimating ξ and ρ

Currently available estimates of ξ use either lattice QCD calculations, or the measured

value of the direct CP -violating quantity, ε′, or a combination of the two. It must be

emphasized that using ε′ as an input is only valid assuming that it is determined by the

SM. (As discussed below, it is possible that ε′ is affected by NP but εK is not, and vice

versa.)

One can write ε′ as

ε′ =
i√
2

∣∣∣∣A2

A0

∣∣∣∣ ei(δ2−δ0) sin(φ2 − φ0) , (2.25)

valid up to relative orders |A2/A0| and |εK |. This expression is phase convention indepen-

dent, as φ2 − φ0 and δ2 − δ0 are physical, and correctly implies φε′ = π/2 + δ2 − δ0 =

(42.3± 1.5)◦. In phase conventions in which φ0 and φ2 are both tiny,

ε′ =
eiφε′√

2

∣∣∣∣A2

A0

∣∣∣∣ [ Im(A2 e
−iδ2)

|A2|
− ξ
]
. (2.26)

This yields

ξ =
Im(A2 e

−iδ2)

|A2|
−
√

2 |εK |
∣∣∣∣A0

A2

∣∣∣∣ ∣∣∣∣ ε′εK
∣∣∣∣ , (2.27)

where the relative errors in both eqs. (2.26) and (2.27), which depend on the phase con-

vention, are of order ξ2. The second term in eq. (2.27) is well-known experimentally, and

this expression allows using lattice calculations of A2 instead of A0 to estimate ξ.

Using the lattice QCD result Im(A2 e
−iδ2) = −6.99(0.20)(0.84) × 10−13 GeV [20], we

obtain

ξ = −(1.65± 0.17)× 10−4 (input from ε′/ε measurement). (2.28)

– 6 –
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In contrast, the lattice calculation Im(A0 e
−iδ0) = 1.90(1.22)(1.04)× 10−11 GeV [21], using

eq. (2.21), yields

ξ = −(0.57± 0.48)× 10−4 (no input from ε′/ε measurement). (2.29)

This difference is equivalent to the statement that the lattice QCD calculations [20, 21] show

about a 2.5σ tension with ε′, which can be further sharpened using additional inputs [22].

From eqs. (2.23) and (2.24), the parameter ρ is defined as

ρ = 1 +
1

ξ

Im(MLD
12 )

∆m
. (2.30)

Without a lattice computation of MLD
12 , ρ can be estimated in the framework of chiral

perturbation theory (χPT) [18] (see also [23–25]). First, one argues that all important

dispersive diagrams share the same phase [18, 23], so that the phase of the absorptive and

dispersive parts are related via

ImMLD
12

ReMLD
12

' ImΓLD
12

ReΓLD
12

' −2ξ(1± 0.5) . (2.31)

Here we keep using the 50% uncertainty quoted in ref. [18] to account for the non-aligned

contributions. The dominant contribution to ReMLD
12 comes from the ππ loop, which has

been estimated as [18]

ReMLD
12

∆m
' ReM

(ππ)
12

∆m
' 0.2± 0.1 . (2.32)

(Preliminary lattice calculations [26] hint at a smaller role for the 2π state than the χPT

estimate; refining this is important.) Equations (2.31) and (2.32) finally imply

ρ = 1− 2(0.2± 0.14) = 0.6± 0.3 . (2.33)

2.5 Short distance contribution and usual evaluation of εK

Given eqs. (2.23) and (2.24) and estimates of ξ and ρ, the only remaining ingredient in

making a SM prediction for εK is the expression for the short-distance contribution to M12

for θ = π,

MSD
12 =

∆m√
2
Ĉε

[
λ∗2t ηttS0(xt) + 2λ∗cλ

∗
t ηctS0(xt, xc) + λ∗2c ηccxc

]
, (2.34)

where λq = VqdV
∗
qs, xq = [mq(mq)/mW ]2, the Inami-Lim functions S0 can be found, e.g.,

in ref. [17], and4

Ĉε =
G2
F

6
√

2π2

mK m
2
W

∆m
f2
KB̂K = (2.806± 0.049)× 104 . (2.35)

4The uncertainty of Ĉε(= CεB̂K) is dominated by those of f2
K and B̂K . Their contributions are now

comparable, making the past separation of Cε and B̂K less motivated.
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Taking the imaginary part of MSD
12 , we obtain from eq. (2.23)

εK = κε e
iφε Ĉε |Vcb|2λ2 η̄

{
|Vcb|2

[
(1− ρ̄)−λ2(ρ̄− ρ̄2− η̄2)

]
ηttS0(xt) + ηctS0(xt, xc)− ηccxc

}
,

(2.36)

where we neglected O(λ14) terms in the CKM expansion.5 As is usually done, we replaced

λ4A2 by |Vcb|2, which is valid in the SM, as Vcb = Aλ2 +O(λ8) [5, 6]. The O(λ2) correction

to the leading order result, proportional to (ρ̄− ρ̄2− η̄2), is severely suppressed accidentally,

because ρ̄/(ρ̄2 + η̄2) = sin2 α − 1
2 sin 2α cotβ (α and β being the standard CKM angles)

and α is near 90◦.

Below we refer to the expression for εK in eq. (2.36) as the “usual evaluation”. We

discuss its central values and error budget together with that of our evaluation of εK , in

section 3.2.

3 Removing ηcc from εK

3.1 Rephasing the evaluation of εK

With respect to the “standard” phase convention that lead to eq. (2.36), one can rephase

the kaon fields as

|K0〉 → |K0〉′ = eiλc/|λc||K0〉, |K0〉 → |K0〉′ = e−iλc/|λc||K0〉 , (3.1)

which has the effect of multiplying the expression for MSD
12 in eq. (2.34) by λ2

c/|λc|2, thus

making the ηcc contribution purely real.6 Since |Im(λc)/Re(λc)| < 10−3, this rephasing has

a negligible impact on the short distance contribution to ∆m. However, the impact on εK
is significant, which we study next.

All the results of section 2.2 are still valid, being independent of phase conventions.

The results of section 2.3 and eq. (2.23) in particular are valid as well, since despite the

O(1) changes in argM12 and arg Γ12, their orders of magnitude are unchanged. In fact, in

every step the phase-dependent errors never exceed a relative amount of O(ξ2), and in the

new phase convention ξ′ < 10−3 still holds (see below).

The consequences of the rephasing defined in eq. (3.1) are

ImM12 → ImM ′12 = ImM12
Reλ2

c

|λ2
c |

+ ReM12
Imλ2

c

|λ2
c |
' ImM12 + 2λ4A2η̄ReM12 , (3.2)

ξ → ξ′ = −1

2

Im(Γ12λ
2
c)

Re(Γ12λ2
c)
' −1

2

(
ImΓ12

ReΓ12
+

Imλ2
c

Reλ2
c

)
' ξ − λ4A2η̄ . (3.3)

5We use the expansion of the CKM matrix valid to all orders [5, 6], which implies

λc = −λ
[
1− λ2

2
+O(λ4)

]
− iη̄A2λ5

[
1 +

λ2

2
+O(λ4)

]
,

λt = −A2λ5

[
1− ρ̄+

λ2

2
(1− 3ρ̄+ 2ρ̄2 + 2η̄2) +O(λ4)

]
+ iη̄A2λ5

[
1 +

λ2

2
+O(λ4)

]
, (2.37)

6The definition of kaons in terms of quarks introduces two further non-physical arbitrary phases α and

α̃ (|K0〉 = eiα|ds̄〉, |K0〉 = eiα̃|d̄s〉). If they are set to zero, then eq. (3.1) can also be obtained by choosing

a CKM matrix convention where VcdV
∗
cs is real, e.g., V ′CKM = VCKM × diag

(
1, λc/|λc|, 1

)
.
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Both in ImM ′12 and in ξ′, the uncertainties due to neglected terms are negligible. Thus,

the short-distance contribution to M12 becomes

MSD
12
′ =

∆m√
2
Ĉε

[
λ∗2t λ

2
c

|λc|2
ηttS0(xt) + 2λcλ

∗
t ηctS0(xt, xc) + |λc|2 ηccxc

]
, (3.4)

and the ηcc term does not contribute to the imaginary part.

For the long-distance contribution to M12, we can use the same estimate as in ref. [18]

to obtain ρ = 0.6± 0.3, as reviewed in section 2.4. We then obtain

ImMLD
12
′ = −2

[
ξ(1± 0.5)− λ4A2η̄

]
ReMLD

12 = −2(ξ′ ± 0.5 ξ) ReMLD
12 , (3.5)

where in the first equality we used eqs. (2.31) and (3.2), and in the second equality eq. (3.3).

For simplicity, we define

κ′ε =
√

2 sinφε ×
(

1 + ρ′
ξ′√

2|εK |

)
, (3.6)

with

ρ′ = 1 +
1

ξ′
Im(MLD′

12 )

∆m
= 1− 2

(
1± 0.5

ξ

ξ′

)
(0.2± 0.1) , (3.7)

where in the second equality we used eqs. (3.5) and (2.32). Numerically, we find

ρ′ = 0.6± 0.2 , (3.8)

where the uncertainty of ρ′ coming from the CKM inputs (contained in ξ′) is negligible.

Thus, we finally obtain

εK = κ′ε e
iφε Ĉε |Vcb|2λ2 η̄

{
|Vcb|2

[
(1− ρ̄)− λ2(ρ̄− ρ̄2− η̄2)

]
ηttS0(xt) + ηctS0(xt, xc)

}
, (3.9)

to which we refer below as “our evaluation”. For convenience, we report our evaluation in

a ready-to-use form in eqs. (5.2)–(5.4) in section 5.

3.2 Numerical results and discussion

We collect in table 1 the inputs used from experimental measurements, as well as from

perturbative and lattice computations. Concerning CKM parameters, the SM prediction

of εK is obtained using the parameters that result from the full CKM fit. In fact, their

best-fit values are practically unaffected by the exclusion of εK from the fit inputs [30]. If

one wants instead to account for possible NP contributions in the CKM fit, and obtain a

prediction for εK that is as independent as possible of such NP, then one should use the

values of the CKM parameters that come from a fit to tree-level observables only. In this

second approach, the only assumption about NP is that it affects negligibly observables

that are dominated by tree-level processes in the SM. We show the values of the CKM

parameters in these two cases in table 2.7 The increased uncertainty in |Vcb| and η̄, when

not determined from the CKM fit, reflects the tension between exclusive and inclusive

determinations of |Vcb| and |Vub|.
7CKMfitter [6] performs several fits, using only tree-level observables to determine η̄ and ρ̄. Conser-

vatively, we use the one where the only angle measurement included is γ(DK), and that combines the

measured values of |Vub|, for consistency with our treatment of |Vcb|. CKMfitter plots the fit results, with-

out quoting numerical results. The values in table 2 are read off from the plot, which is sufficient for our

purposes, given the large uncertainties.
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Parameter value source

∆m 3.484(6)× 10−12 MeV [3]

mK0 497.614(24) MeV [3]

∆Γ 7.3382(33)× 10−12 MeV [3]

|εK | (2.228± 0.011)× 10−3 [3]

φε (43.52± 0.05)◦ [3]

|ε′/ε| (1.66± 0.23)× 10−3 [3]

|A0/A2| 22.45(6) [3, 27]

|A0| 3.32(2)× 10−7 GeV [3, 27]

ηcc 1.87(76) [4]

ηct 0.496(47) [11]

ηtt 0.5765(65) [12]

mt(mt) 162.3(2.3) GeV [28]

mc(mc) 1.275(25) GeV [3]

B̂K 0.7661(99) [29]

fK 156.3(0.9) MeV [29]

Im (A2e
−iδ2) −6.99(0.20)(0.84)× 10−13 GeV [20]

Im (A0e
−iδ0) −1.90(1.22)(1.04)× 10−11 GeV [21]

Table 1. Inputs used for the calculation of εK .

CKM parameters SM CKM fit [6] tree-level only

λ 0.22543± 0.00037 0.2253± 0.0008 [3]

|Vcb|(= Aλ2) (41.80± 0.51)× 10−3 (41.1± 1.3)× 10−3 [3]

η̄ 0.3540± 0.0073 0.38± 0.04 [6]

ρ̄ 0.1504± 0.0091 0.115± 0.065 [6]

Table 2. The CKM parameters used as inputs. Using the SM CKM fit results assumes that the

SM determines all observables. The tree-level inputs are applicable even if TeV-scale new physics

affects the loop-mediated processes.

Thus, the usual evaluation eq. (2.36) and our evaluation eq. (3.9) lead to the SM

predictions for εK shown in table 3. When interested in the SM prediction for εK , we use the

more precise value of ξ, determined using the measured value of ε′/ε as an input (in line with

the assumption that the SM accounts for all flavor measurements). In the determination

where we allow for NP, instead, we use the lattice value of Im(A0) to determine ξ, instead

of the measured ε′/ε. For convenience, we also report in table 3 the values of ξ, κε and

ξ′, κ′ε in our evaluation that correspond to these choices. Finally, the various sources of

uncertainties in εK and their relative impacts are shown in table 4. The total error of εK
is obtained by adding all contributions in quadrature.
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CKM inputs |εK | × 103 κ
(′)
ε ξ(′) × 104

Usual evaluation
tree-level 2.30± 0.42 0.963± 0.010 −0.57± 0.48

SM CKM fit 2.16± 0.22 0.943± 0.016 −1.65± 0.17

Our evaluation
tree-level 2.38± 0.37 0.844± 0.044 −6.99± 0.92

SM CKM fit 2.24± 0.19 0.829± 0.049 −7.83± 0.26

Table 3. Present value of εK in the usual evaluation (upper part) and in our evaluation (lower

part). For convenience, we also show the values of the quantities κε and ξ defined in eqs. (2.24)

and (2.21) in the upper part, and κ′ε and ξ′ defined in eqs. (3.6) and (3.3) in the lower part.

CKM inputs ηcc ηct κ
(′)
ε mt mc f2

KB̂K |Vcb| η̄ ρ̄ |∆εK/εK |tot.

Usual evaluation
tree-level 7.3% 4.0% 1.1% 1.7% 0.8% 1.7% 11.1% 10.4% 5.4% 18.4%

SM CKM fit 7.4% 4.0% 1.7% 1.7% 0.8% 1.7% 4.2% 2.0% 0.8% 10.2%

Our evaluation
tree-level — 3.4% 5.2% 1.5% 1.2% 1.7% 9.5% 8.9% 4.5% 15.6%

SM CKM fit — 3.4% 5.9% 1.5% 1.3% 1.7% 3.6% 1.7% 0.7% 8.4%

Table 4. The present error budget of εK in the usual evaluation (upper part) and using our

evaluation (lower part). The parameters with a corresponding uncertainty above 1% are shown.

As expected, the central values of εK in table 3 vary according to the strategy used

to compute εK (our vs. usual evaluation, and SM CKM fit vs. tree-level inputs). The

central values are actually all within 1σ of each other, and of the experimental central

value |εK |(exp) = 2.228 × 10−3. Note that the latest determination of Vcb from B → D`ν̄,

|Vcb| = 40.8(1.0)×10−3 [31], reduces the tension with its inclusive determination (however,

that from B → D∗`ν̄ remains lower; see, e.g., ref. [32] for more discussions). Table 3 also

shows that in our evaluation the uncertainty in the long distance contribution to εK (i.e.,

κ
(′)
ε 6= 1) is relatively more important than in the usual evaluation. In the latter case,

the ηcc term contributes to εK with a negative sign, and its removal in our evaluation

is compensated by an increase in the imaginary part of the long-distance contribution.

Table 4 makes the usefulness of our evaluation of εK manifest:

� Given state-of-the-art inputs, our evaluation eq. (3.9) slightly reduces the relative

uncertainties of εK with respect to the usual one in eq. (2.36);

� The gain in relative uncertainty from the removal of ηcc is partially compensated by

an increase in the uncertainty from κε, which is dominated by the uncertainty of the

long-distance contribution Im(MLD
12 ). (See sections 2.4 and 3.1 for its estimate, in

the usual and in our evaluation respectively.)

These observations highlight the importance of achieving a better theoretical control

of the long-distance contribution to M12. While some progress could already be attained

with tools like χPT, a significant step forward probably requires an effort from lattice QCD

(recent attempts in this direction have appeared in refs. [26, 33, 34]). The importance of

such an effort is even greater considering future prospects for the εK uncertainty, which,

with the removal of ηcc, is dominated by the CKM parameters. Within the next decade it
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should be possible to measure |Vcb| with an uncertainty of about 0.3 × 10−3 [1, 35], to be

compared with 1.3× 10−3 in table 2. This would correspond to a reduced contribution to

the εK error budget, ∣∣∣∣∆εKεK
∣∣∣∣
∆|Vcb|=0.3×10−3

= 2.2% , (3.10)

in our evaluation of εK (2.6% in the usual one). Similarly, tree-dominated measurements

will determine γ and |Vub| with much better precision [1, 2, 35], which will translate to

an uncertainty of εK due to CKM elements comparable to the current SM CKM fit in

table 4. Finally, different lattice QCD calculations of B̂K obtain different results for its

uncertainty [36–38], which, however, do not exceed the 2–3% percent level and are thus

subdominant in the error budget of εK . (A more acute tension is present for the bag

parameters of non-SM operators, see section 4.)

3.3 Further comments on the rephasing

We collect here some remarks that are not strictly necessary to the previous discussion,

but that might help to make it clearer.

◦ Looking at table 3, it may appear counterintuitive that larger ξ uncertainties corre-

spond to more precise values of κε. That is the case because, when the ξ uncertainty

is larger, the ξ central value is accidentally smaller. The larger impact on the κε
uncertainty comes from ρ, which multiplies ξ, and so its central value also impacts

the error budget.

◦ The rephasing of kaon and quark fields is independent of the freedom to remove the

charm or up (or top) contribution, via unitarity of the CKM matrix. The standard

choice is to eliminate the u-quark contribution, λu = −λt−λc, which we also followed.

The possibility to use CKM unitarity to remove λc, instead of λu, has been empha-

sized in ref. [33] (see appendix A of that paper). With that choice, MSD
12 contains

terms proportional to λ∗2t , λ∗2u and λ∗tλ
∗
u, and the second one will not contribute to

εK , since λu is real in the standard phase convention.

However, the expression for εK obtained using λc = −λt−λu cannot yet be used

to make precise predictions, since the coefficients analogous to ηtt and ηct have not

been computed. Ref. [33] argued that they would not have large uncertainties, and

that the related lattice calculations would become more accurate, due to the suppres-

sion of the perturbative contribution for momenta smaller than mc. While this could

justify pursuing that path, using λc = −λt−λu renders the top contribution sensitive

to the mc scale, which is generically associated with larger uncertainties. Our eval-

uation relies instead on well established results, and allows immediate quantitative

predictions.

◦ One may wonder if a rephasing other than that in eq. (3.1) could reduce the εK
uncertainty even further. Instead of eq. (3.1), an optimal choice might reduce but

not eliminate the ηcc contribution to ImMSD
12 , and the combined uncertainty due to
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ηcc and κε may decrease. To explore this, let us define the general rephasing

|K0〉 → |K0〉′ = ei a λc/|λc||K0〉, |K0〉 → |K0〉′ = e−i a λc/|λc||K0〉 , (3.11)

where the usual evaluation corresponds to a = 0, and our evaluation to a = 1. We can

choose a to minimize the total uncertainty of εK . We find that the optimal values are

a ≈ 1.0 and a ≈ 0.7 for the cases of tree-level and SM CKM fit inputs, respectively.

The resulting total uncertainties for the latter case is |∆εK/εK |total = 7.9%, to be

compared with 8.4% of the case a = 1 in table 4. The corresponding central εK value

is 2.23× 10−3.

4 Constraints on new physics

If a pattern of deviations from the SM is given, like in a specific model of flavor, then the

correct strategy to study flavor and CP constraints would be to perform a fit to the SM +

NP parameters (see, e.g., ref. [35]). Here we would like to derive consequences for NP that

are of a more general validity, and do not need the specification of a model. Therefore,

we take an effective field theory (EFT) approach, and comment on explicit NP models at

the end of this section. We parametrize the NP contribution to K0 mixing in terms of

dimension-six operators, suppressed by a mass scale squared, Λ2. The operator basis we

consider consists of O1, defined before eq. (2.19), and

O2 = (d̄RsL)2, O3 = (d̄αRs
β
L)(d̄βRs

α
L) , O4 = (d̄RsL)(d̄LsR) , O5 = (d̄αRs

β
L)(d̄βLs

α
R) ,

(4.1)

where α, β are color indices, that are implicit when their contraction is between Lorentz-

contracted fields. The observable most sensitive to O1,...,5 is εK , so our procedure is con-

sistent (∆m, also sensitive to NP in K0 mixing, suffers from larger long-distance and ηcc
uncertainties).

To derive bounds on the operators in eq. (4.1), we need both their matrix elements

between two kaon states at a certain low scale µ, and the running of their Wilson coefficients

from Λ down to that scale. The matrix elements are defined in terms of the bag parameters,

with B1 = BK of eq. (2.19), and

〈K0|Oi(µ)|K0〉 =
ai
4
Bi(µ)

m4
Kf

2
K

[ms(µ) +md(µ)]2
, i = 2, . . . , 5 , (4.2)

with ai = {−5/3, 1/3, 2, 2/3}. Recent calculations obtained partly consistent results [37,

39–41], while a 30–40% tension between calculations of B4 and B5 remains (as it was already

the case nearly a decade ago [42, 43]). For definiteness, we use here the values obtained in

ref. [37] (in the MS scheme), shown in table 5, together with the quark masses used.

We assume that only one operator deviates from the SM at the high scale Λ, with a

purely imaginary coefficient. We run it down to the scale µ = 3 GeV, at which the matrix

elements are given. Because of the large uncertainties of the bag parameters Bi, we use the

LO running and mixing of the Wilson coefficients of O1,...,5 [44, 45] (see refs. [46, 47] for a

consistent treatment of the Wilson coefficients together with the bag parameters at NLO).
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Quark masses (at 3 GeV) Bag parameters (at 3 GeV)

ms md B1 B2 B3 B4 B5

86.5 MeV 4.4 MeV 0.506 0.46 0.79 0.78 0.49

Table 5. Inputs used for setting bounds on NP from εK . Both the bag parameters [37] and the

quark masses are in the MS scheme; the latter are obtained by NLO running from the values at

2 GeV given in ref. [3].

Im(Ci)
(3 TeV)2

Λ2 < X O1 O2 O3 O4 O5

tree-level X = 2.4× 10−8 3.3× 10−10 1.2× 10−9 7.5× 10−11 2.4× 10−10

SM CKM fit X = 1.2× 10−8 1.7× 10−10 6.2× 10−10 3.9× 10−11 1.2× 10−10

Table 6. Upper bounds from εK on the imaginary parts of the Wilson coefficients of the operators

O1,...,5, run down to 3 GeV from a scale of 3 TeV. For each operator we give the bound both from

the tree-level CKM inputs and from the SM CKM inputs.

We then express the constraints from εK as lower bounds on Λ, requiring the NP

contribution to the experimental measured value of εK to be less than twice the theoretical

uncertainties in table 4, i.e., 31% for tree-level inputs and 16% for SM CKM fit inputs

(keeping in mind the last point of section 3.3). We ignore the differences between the

experimental central value of εK and the theoretical predictions, because it is small and

depends anyway on the CKM parameters resulting from a specific fit, and because this

way the constraint on NP is independent of its sign.

The results are shown in figure 1, both for the SM CKM fit and for tree-level inputs,

as darker (right) and lighter (left) histograms, respectively. From the point of view of NP,

the former case assumes εK to be the most sensitive observable to flavor violation, and the

second one is more conservative and only requires NP not to substantially affect processes

that are tree-level in the SM. The operator most constrained by εK is O4, which probes

scales near 106 TeV.

In addition we show, in table 6, the resulting bounds on the imaginary part of the

Wilson coefficients Ci of the operators Oi, for a fixed scale Λ = 3 TeV. That is useful for

the reader interested in models with new degrees of freedom not too far from the TeV scale.

In fact, the running from the scales shown in figure 1 down to 3 TeV is a sizable effect,

which yields differences of order 50% or larger in the constraints on the Wilson coefficients.

The same differences are, instead, below the 10% level if the running is performed from

3 TeV to, say, 1 or 10 TeV.

We end this section with comments concerning the sensitivity of εK to explicit and

widely studied NP flavor models:

� Composite Higgs models with partial compositeness (see, e.g., [48]) constitute a case

where εK is the most sensitive observable to flavor and CP violation [49, 50], unless

a flavor symmetry is imposed on the strong sector [50–53]. Then it is reasonable to

derive bounds from εK using inputs from a CKM fit that assumes the SM, and corre-
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Figure 1. Lower bounds from εK on the new physics scale Λ suppressing each of the operators

O1,...,5, in units of 105 TeV. For each operator we give on the left (lighter green) the bound from

tree-level CKM inputs, on the right (darker green) the bound from SM CKM inputs.

sponds to the ∼ 8% theory error in table 4. This procedure implies for example that,

in the language of ref. [50] and with an anarchic flavor structure in the strong sector,

εK constrains composite fermion resonances to have masses larger than ∼ 30 TeV.

� Other motivated cases are models realizing a “CKM-like” pattern of flavor and CP vi-

olation, with SM-like suppressions for the operators present in the SM, and vanishing

O2,...,5. As argued in ref. [54], they consist either in U(3)3 [55–57], or in U(2)3 [52, 58]

models, all the other symmetries being equivalent to them. In these models there is

not a clear hierarchy between observables in sensitivity to NP. The correct procedure

to analyze the impact of flavor and CP violation is, therefore, to perform a fit to the

SM+NP flavor parameters, using the theoretical prediction of εK (see eqs. (5.2)–(5.4)

for ready-to-use expressions).

� More specifically, while in general the scales probed by εK are higher than those

probed by ε′/ε, in CKM-like models an EFT analysis shows [59] that ε′/ε is more

sensitive to NP than εK . However, in concrete realizations it is not difficult to reverse

this conclusion, for example in supersymmetry with the first two generations heavier

than the third one [59].

5 Conclusions and outlook

Without any clear deviation from the CKM picture of flavor and CP violation, it is hard, if

not impossible, to shed light on a more fundamental theory of flavor. Among all observables,

εK probes some of the highest energies, and puts some of the most severe constraints on

explicit flavor models. It is therefore important to improve its SM prediction, which has a

much larger uncertainty than its experimental determination.

– 15 –



J
H
E
P
0
9
(
2
0
1
6
)
0
8
3

The theory uncertainty of εK depends on the uncertainty of CKM parameters, most

notably on that of A (or equivalently |Vcb|). The largest non-parametric uncertainty until

now has been due to the perturbative QCD correction to the box diagram with two charm

quarks, ηcc. We showed that the dependence of εK on ηcc can be removed via a rephasing

of the kaon fields, which makes this contribution to M12 purely real. In other words, in our

phase convention, the contribution to εK from dimension-six operators always contains the

top mass scale. The resulting uncertainty of the SM prediction of εK is slightly reduced

and, perhaps more importantly, the largest source of non-parametric error now comes from

the long distance contribution to M12. Thus, our formulation highlights the importance

to achieve a better theoretical control of the latter, possibly using lattice QCD. The case

is further strengthened by the precision with which the CKM inputs are expected to be

measured at Belle II and LHCb.

In section 2, we reviewed the derivation of the SM prediction for εK , explicitly ex-

hibiting the phase convention dependences and the approximations used. Our evaluation

is presented in section 3, together with its numerical consequences for the central values

and uncertainties of εK summarized in table 3. The detailed error budget of εK , in our

evaluation, is compared with the conventional one in table 4.

Finally, we provided updated constraints on new physics contributions to εK in sec-

tion 4, taking full advantage of the rephasing freedom. We also discussed how they apply to

CKM-like models, and to composite Higgs models with an anarchic flavor structure. The

constraints in figure 1 and table 6 provide a well-defined quantification of the εK sensitivity

to NP, and are obtained from imposing

|εK |(NP) <

0.31 |εK |(exp) (tree-level inputs) ,

0.16 |εK |(exp) (SM CKM fit inputs) ,
(5.1)

as discussed in section 4.

Such an analysis ignores the pattern and correlations typical of specific NP realizations.

For the convenience of the reader interested in such an analysis, that needs the CKM

parameters coming from its own SM + NP fit, we report here our ready-to-use expression

for εK without ηcc,

εK = κ′ε e
iφε Ĉε |Vcb|2λ2 η̄

{
|Vcb|2

[
(1− ρ̄)− λ2(ρ̄− ρ̄2− η̄2)

]
ηttS0(xt) + ηctS0(xt, xc)

}
, (5.2)

where κ′ε is given using either the measured ε′/ε value as an input or using only SM lattice

inputs by

κ′ε =

0.834− 0.11∆± (0.047 + 0.036∆) , (ε′/ε and lattice Im(A2) input) ,

0.854− 0.11∆± (0.041 + 0.035∆) , (lattice Im(A0) input) ,
(5.3)

and

∆ =
η̄

0.35

(
|Vcb|

41× 10−3

)2

− 1 . (5.4)

Equations (5.2) and (5.3), and the inputs in table 1 (which imply Ĉε = (2.806±0.049)×104),

allow making predictions for εK for the preferred values of CKM parameters λ, |Vcb| = Aλ2,

η̄, and ρ̄.
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