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Abstract: We consider D3 branes in presence of an S-fold plane. The latter is a non-

perturbative object, arising from the combined projection of an S-duality twist and a

discrete orbifold of the R-symmetry group. This construction naively gives rise to 4d N = 3

SCFTs. Nevertheless it has been observed that in some cases supersymmetry is enhanced

to N = 4. In this paper we study the explicit counting of degrees of freedom arising from

vector multiplets associated to strings suspended between the D3 branes probing the S-

fold. We propose that, for trivial discrete torsion, there is no vector multiplet associated to

(1, 0) strings stretched between a brane and its image. We then focus on the case of rank 2

N = 3 theory that enhances to SU(3) N = 4 SYM, explicitly spelling out the isomorphism

between the BPS-spectrum of the manifestly N = 3 theory and that of three D3 branes in

flat spacetime. Subsequently, we consider 3-pronged strings in these setups and show how

wall-crossing in the S-fold background implies wall crossing in the flat geometry. This can

be considered a consistency check of the conjectured SUSY enhancement. We also find that

the above isomorphism implies that a (1, 0) string, suspended between a brane and its image

in the S-fold, corresponds to a 3-string junction in the flat geometry. This is in agreement

with our claim on the absence of a vector multiplet associated to such (1, 0) strings. This

is because the 3-string junction in flat geometry gives rise to a 1/4-th BPS multiplet of

the N = 4 algebra. Such multiplets always include particles with spin > 1 as opposed to

a vector multiplet which is restricted by the requirement that the spins must be ≤ 1.
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1 Introduction

In a recent paper [1] the properties of 4d SCFTs with twelve supercharges, i.e. N = 3

theories, have been discussed starting from the constraints imposed by the superconformal

algebra. Surprisingly an explicit realization of such theories has been obtained in [2],

starting from F-theory.1

This discovery attracted quite much interest [4–10]. One of the main reason is that

N = 3 have been overlooked in the past because they are necessarily non-lagrangian

The F-theory construction of [2] is based on the combined action of an S-duality and

an R-symmetry twist. This action corresponds in string theory to introducing a non-

perturbative object, generalizing the action of an orientifold plane. This object has been

named S-fold in [11]. It carries charges under the R and the NS sectors in string theory and,

as discussed in [2], there is a classification in terms of discrete choices of the torsion classes.

The discrete torsion carried by the S-folds has been further discussed in [8], where

it was also shown that in the rank 2 case and in absence of discrete torsion there is a

non-perturbative enhancement of supersymmetry from the manifest N = 3 to N = 4.

Three cases have been observed, corresponding to SU(3), SO(5) and G2 gauge groups

1See also [3] for a construction based on supergravity.
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respectively. The realization of such gauge groups is in an unconventional basis because

the roots carry both electric and magnetic charges under the manifest U(1)2 subgroup of

the gauge symmetry

In this paper we further elaborate on the structure of this enhancement for the SU(3)

case. We develop a dictionary by mapping the masses and the charges associated to the

(p, q) strings connecting the D3 branes in the S-fold geometry and the corresponding states

in SU(3) N = 4 theory. We use this mapping to compare more complicated states, arising

out of 3-pronged junctions. We study the masses of such states in the S-fold geometry and

discuss the relation with the manifest central charge2 appearing in this construction. We

also study the wall crossing in the S-fold geometry and compare with the N = 4 case.

The paper is organized as follows. In section 2 we give a review of the recent develop-

ments in the study of N = 3 theories. In section 3 we discuss the charges of (p, q) strings

in the S-fold geometry. In section 4 we compute the central charges and the masses of such

strings, developing the dictionary between the S-fold case and the flat N = 4 geometry.

In section 5 we introduce the three pronged junctions. We compute the associated walls

of marginal stability in the rank 2 S-fold case and discuss relation with the SU(3) N = 4

theory. In section 6 we conclude by discussing open problems and further directions.

Note Added. While this paper was under preparation, [10] appeared on arXiv. This

paper studies junctions in rank 2 S-folds leading to the enhancement of SUSY. Despite

the apparent similarity of the two approaches our analysis is actually complementary.

While [10] studies junctions in the flat case to infer properties of BPS states in the S-

fold geometry, here we study junctions in the S-fold geometry and map such states to the

flat case.

2 A brief summary of developments so far

Inspired by recent developments in the understanding of non-lagrangian systems, the au-

thors of [1] investigated the possibility of 4d SCFTs with twelve supercharges. These

theories have to be necessarily non-lagrangian. This is because rigid 4d N = 3 SUSY has

a unique non-trivial representation when the spin of its components is restricted to be ≤ 1.

This representation is the vector multiplet, which consists of a single spin-1 gauge field,

four Weyl spinors and 6 real scalars. Therefore, any N = 3 lagrangian has to be written in

terms of these N = 3 vector multiplets. However, the N = 3 vector multiplet is identical to

the N = 4 vector multiplet and therefore it is invariant under 16 supersymmetries. Thus

a lagrangian description of N = 3 will also be invariant under N = 4 supersymmetry.

Genuinely, N = 3 systems therefore are not expected to be described by a lagrangian.

Upon considering the constraints put on N = 3 theories by N = 2 ⊂ N = 3 SUSY and

by comparing them to the properties of N = 4 SYM ( when thought of as trivial examples

of N = 4 SYM), the authors of [1] found that the central charges a and c of these theories

must be equal to each other. They also studied the space of marginal deformations of these

2Here we refer to the central charge of the N = 3 theory as the manifest central charge because the

theory is actually N = 4 and in the S-fold geometry the second central charge is hidden.
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systems and concluded that these theories can not have any N = 3 or N = 2 preserving

exactly marginal deformations. To do so they looked for a SUSY preserving, R-symmetry

invariant, scalar operator of dimension 4 in the spectrum of operators in N = 3 SCFTs.

SUSY invariance of this operator implies that it must be the top component of a SUSY

multiplet. They were able to show that there are only two such SUSY multiplets, both

containing an extra conserved supercurrent. Any such operators if present in the theory

will therefore imply that there is an extra supercurrent . Such a theory will therefore have

N = 4 SUSY. Hence genuinely N = 3 preserving marginal deformations are not possible.

Similar analysis can also be found in [5]. A marginal deformation that preserves only N = 1

SUSY might be possible, although such a possibility was not explored in [1, 5].

It was also shown in [1], that N = 3 theories do not admit any non-R global sym-

metries. This is because the N = 3 supermultiplets containing conserved global non-R

currents also contain an extra conserved supercurrent, in fact they are the same multiplets

that contain the marginal deformations mentioned in the previous paragraph. Basically,

the extra bosonic currents sitting in these multiplets combine with the SU(3)R × U(1)R
symmetry to give the SU(4)R symmetry of N = 4 algebra, while the fermionic currents

combine with the N = 3 supercurrents to give the multiplet of N = 4 supercurrents.

Around the same time, an F-theory construction of N = 3 theories was proposed

in [2]. Their construction is based on a k-fold (called the S-fold in [8]) generalization of the

F-theory lift of the type-IIB orientifolds. Recall, that 4d compactification of F-theory can

be defined in terms of M-theory compactified on an elliptically fibered CY4 and taking a

limit in which the fiber shrinks to size zero. N = 4 theories with orthogonal and symplectic

gauge groups can be realized through M-theory compactification on R1,2 × (C3 × T 2)/Z2.

The F-theory lift of the orientifold is such that the Z2 action on the elliptic fiber in CY4
is realized through an appropriate embedding in its SL(2,Z) transformation. This picture

corresponds to M-theory on R1,2× (C3×T 2)/Zk. Now, the torus, T 2, admits Zk symmetry

only when k = 1, 2, 3, 4, 6 [12, 13]. Thus the above orbifold is only possible for these

values of k. Moreover, for k = 3, 4, 6, the complex structure of T 2 cannot be arbitrary

but must be set equal to τ = e2iπ/k. The finite values of τ indicate that this is a non-

perturbative background of the 10d string theory. The complex structure of the torus

generically becomes a coupling of the 4d theory. The fact that for k = 1, 2 the complex

structure of the torus can be arbitrary then reflects the fact that the coupling constant for

N = 4 theories is a marginal parameter and can be tuned to any desired value. It was

shown in [2] that for k = 3, 4, 6 the 4d theory has only N = 3 SUSY. The requirement

of fixed value for the complex structure of the torus then fits well with the absence of any

N = 3 preserving marginal operators in these theories. In the F-theory limit, this set-up

gives rise to a stack of n D3 branes probing a six dimensional transverse space C3/Zk.
The moduli space of the low energy 4d theory must then be (C3/Zk)n/Sn, where Sn is the

permutation group of n objects.

In [2], it was pointed out that along with k, there are additional parameters that label

the S-folds described above. These labels correspond to discrete torsion [14]. In [8], the

theory obtained by considering n D3 branes probing an S-fold with Zk twist, was found to

be related to the complex reflection groups G(k, p, n), with p being a divisor of k. These
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are generalization of Euclidean reflections to a complex vector space with hermitian inner

product [15–17]. For our purposes here, they can be thought of as generalizations of the

Weyl group of Lie algebras. Indeed the complex reflection group G(1, 1, n) is isomorphic

to Sn which is the Weyl group of the An−1 Lie algebra. This is consistent with the fact

that when k = 1, the S-fold is trivial. We therefore get a stack of n D3 branes on a flat

background and the low energy theory is given by an N = 4 SU(n) gauge theory. Similarly,

G(2, 1, n) is isomorphic to the Weyl group of Bn and Cn type Lie algebras. In this case,

the S-fold becomes an orientifold with an appropriate discrete torsion switched on. On

the other hand, G(2, 2, n) is the Weyl group of Dn Lie algebras. This time the S-fold

becomes an orientifold but without any discrete torsion. As was argued in [8], the label

p in G(k, p, n) can be associated to discrete torsion even when k = 3, 4 and 6, such that

there is no discrete torsion when p = k. It was also argued that for p > 1, there will also

be a Zp discrete gauge symmetry acting on the theory. Keeping all the labels explicit, we

will call such an object as Sk,l-fold, where l = k/p.

The ring of Coulomb branch operators of these theories (with ungauged Zp symmetry)

will then be given by the ring of invariants of G(k, p, n) . By considering the relation

between the central charges and the dimension of Coulomb branch operators, it was shown

in [8] that the central charges a and c of these theories are given by

4a = 4c = 2k

n−1∑
m=1

m+ 2nl − n = kn2 + n(2l − k − 1), l =
k

p
. (2.1)

Now, we recall that for non-lagrangian N = 2 theories we can define an effective number

of vector and hypermultiplets given by

c =
2nv + nh

12
and a =

5nv + nh
24

. (2.2)

We can use this to define an effective number of N = 2 vector and hypermultiplets in the

present theories. We then find that

nv = nh = 4a = 4c = kn2 + n(2l − k − 1) . (2.3)

The fact that nv = nh in our theories should not be surprising. This is because the

N = 3 analog of such quantities will necessarily be given by the effective number of N = 3

vector multiplets (ñv) . Since each such N = 3 vector multiplet will split into an N = 2

vector multiplet and a hypermultiplet, they will therefore appear in pairs thereby giving

nv = nh = ñv = 4a = 4c. When k = p = 2, we find that ñv = 2n2 − n which is the

number of vector multiplets we require to form an adjoint representation of the SO(2n)

gauge symmetry in the N = 4 theory obtained from this orientifold. Similarly, when

k = 2, p = 1, ñv = 2n2 + n which is equal to the number of generators of the Sp(n) (or

equivalently SO(2n+ 1)) gauge symmetry described by such orientifolds. It is not clear if

a similar interpretation of ñv in terms of a root system is possible when k 6= 1, 2.

As we will try to demonstrate later, one possible way to understand ñv is in terms of

vector multiplets arising from (1, 0) strings stretched between the various branes. However,
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Figure 1. Strings stretched between two D3 branes on top of an O3-plane.

because of the non-trivial embedding of Zk inside SL(2,Z), not all of these vector multiplets

will have mutually local electromagnetic charges with respect to the U(1)n symmetries

generated by branes in the stack. This lack of mutual locality then makes it impossible

to be able to write a lagrangian that simultaneously describes all of them as elementary

degrees of freedom (d.o.f.) of the theory.

3 An explicit counting of the degrees of freedom

Here we discuss the BPS states of the rank 2 Z3 S-fold. We start our analysis from

the well known case of n D3 branes probing an O3 plane. This corresponds to the Z2

projection in the language of the S-fold. This picture is useful to develop the intuition on

the strings stretched between the branes in the orbifolded geometry. Then we generalize

the description to the Zk case. We construct the charge lattice of (p, q) strings connecting

the D3 branes (and their images) probing the S-fold.

3.1 A lesson from the orientifold: the Z2 projection

We consider a stack of n D3 branes on top of the O3− plane. This gives rise to an N = 4,

O(n) gauge theory. The Z2 orbifolded geometry of the space transverse to the D3 brane

implies we can construct two non-homotopic paths between any pair of D3 branes. One

way to think about this is that the if one path takes us from the first D3 brane to the

second D3 brane, then the second path takes us from the first D3 brane to the image of

the second D3 brane (see figure 1 for a cartoon of strings connecting two D3 branes on top

of an orientifold). The spectrum of BPS-states in the theory is obtained by (p, q)strings

stretched between the branes along the homotopically distinct paths that connect them.

Each such state can be assigned a 4-vector of electromagnetic charges with respect to the

U(1)2 gauge symmetry generated by the system of two branes. We will label these as

(e1,m1; e2,m2). The (p, q)string along the trivial path gives rise to a state with charges

(p, q;−p,−q) while the string stretched from the first brane to the image of the second

brane will correspond to a BPS-state with charges (p, q; p, q).

– 5 –
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We now consider the vector multiplet states associated to F1 strings stretched between

the D3 branes. This gives an electromagnetic charge (ei,mi; ej ,mj) = (1, 0;−1, 0) for the

state coming from the string connecting the i-th D3 brane to the j-th D3 brane and a

charge (ei,mi; ej ,mj) = (1, 0; 1, 0) for the state coming from the string connecting the i-th

D3 brane to the image of j-th D3 brane. In order to complete the set of states in the adjoint

representation, we’ll also have to consider the d.o.f given by F1 strings going from a D3

brane to itself. Depending upon the type of the orientifold (O3+ vs O3− and Õ3−), we

might or might not have the vector multiplets corresponding to a ±(1, 0) string going from

a D3 brane to its image. In the case of O3+-planes, such vector multiplets are there and

we get an Sp(n) gauge group when all the branes are made coincident with the orientifold.

3.2 Generalization to the Zk case

We now generalize the above description to the case of an Sk,l-fold. This time we consider

a stack of n M2-branes on (C3 × T 2)/Zk. In the F-theory limit, this gives us n D3 branes

probing C3/Zk. Orbifolding will give rise to a k-fold connected geometry or equivalently

k−1-images for each brane. Thus a pair of D3 branes will be connected by k homotopically

distinct paths. (p, q) strings stretched between the branes along these paths will then give

rise to the BPS spectrum of our theory. Once again, let us consider the vector multiplets

associated to (1, 0) strings stretched between a pair of branes branes. This gives us rise to

2k elementary real d.of. We will also have to consider the states arising from strings going

from a D3 brane to itself or to one of its images. Depending upon the value of l, some of

these states might get projected out. We conjecture that when l = 1, all the states going

from a D3 brane to one of its images will be projected out and only the states going from

a D3 brane to itself contribute. On the other hand, when l = k, none of these states get

projected out and all of them will have to be taken into account . The state going from

a D3 brane to it-self give real d.o.f , while the state going from a D3 brane to one of its

image gives a complex d.o.f. Therefore, when l = 1, k, we get 2l − 1 real d.o.f living on a

brane. As shown in [8], l = 1 and l = k are the only values for which an N = 3 S-fold

exists, we therefore do not worry about the rule for projecting out states when 1 < l < k.

The total number of d.o.f in the theory then becomes

# of d.o.f = 2k
n(n− 1)

2
+ (2l − 1)n = kn2 + (2l − k − 1)n, l = 1, k (3.1)

which agrees with (2.1), (2.3).

4 1/2 BPS states and SUSY enhancement

It was conjectured in [8] that 4d rank 2 N = 3 theories with l = 1 and k = 3, 4, 6 are

actually invariant under one more supercharge which makes them isomorphic to 4d N = 4

SYM with gauge group G being SU(3), SO(5) and G2 respectively. One hint that this

might be the case is already provided by the fact that the corresponding complex reflection

group G(k, k, 2) for k = 3, 4 and 6 is isomorphic to the Weyl group of SU(3), SO(5) and

G2 respectively. More convincing evidence for this enhancement was provided in [8].
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In this section we study the matching of (p, q) strings associated to 1/2-BPS states

of N = 4 SYM to those obtained from rank 2 N = 3 theories exhibiting this SUSY

enhancement. We restrict our analysis to the case of the S3,1-fold. We start this section

by fixing some notations and the glossary of relevant formulae for the charge and the mass

of a (p, q) string. Then we study the spectrum of such dyonic states in presence of an

S3,1-fold and obtain the explicit mapping of this spectrum with that of the corresponding

SU(3) N = 4 theories.

4.1 Charges and masses of (p, q) strings

Here we discuss some relevant formulae that will be useful in the rest of the discussion.

More specifically we review the formulae for the tension of a (p, q)string, its electric and

its magnetic charge in terms of the roots and the coroots, the central charge and the BPS

mass formula. The tension of a (p, q)string is given by

Tp,q =

√
gs

2πα′
|p+ qτ | , (4.1)

where

τ =
i

gs
+

χ

2π
=

4πi

g2YM
+
θYM
2π

. (4.2)

Let us consider a rank r theory and let the electric and magnetic quantum numbers of a

given state in this theory be (nae , n
a
m) for a = 1, . . . , r. Also, let 〈φI〉 = vIaH

a for I = 1, . . . , 6

be the vev of the I-th real scalar in the N = 3, 4 vector multiplet. Here Ha is the a-th

Cartan generator of the gauge group. We will use βa to denote the a-th simple root and

β∗a will denote the corresponding coroot. Then the particle created by this state has the

following electric and magnetic charges

QIE = gYM

r∑
a=1

(
naeβ

avIa +
θYM
2π

namβ
∗
av
I
a

)
,

QIM =
4π

gYM

r∑
a=1

namβ
∗
av
I
a .

(4.3)

Let QE and QM be six dimensional (real) vectors with their I-th components being QIE
and QIM , respectively, as given above. We can now use R-symmetry to rotate the vevs vI

such that they are non-zero only when I = 1, 2. In the brane picture this corresponds to

considering all the branes as coplanar. The central charge is then given by

Z = QE + iQM = gYM

r∑
a=1

(naeβ
aza + τnamβ

∗
aza) , (4.4)

with za = (v1a + iv2a). The mass of the corresponding BPS state becomes

M2
BPS = |Z|2 = |QE |2 + |QM |2 + 2|QE ×QM | . (4.5)

Corresponding to za, the position, z′a, of the a-th brane which is given by z′a = 4π
3
2α′za.

If a (p, q)string ends on the n-th image of a brane, (0 ≤ n < k for an Sk,l-fold), then the

– 7 –
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electromagnetic quantum numbers (ne, nm) that it imparts to the BPS state are given by

ne + nmγ = (p+ qγ)γn.3

4.2 1/2-BPS states of rank 2 S3,1-fold and enhancement to SU(3) N = 4 SYM

The U(1)2 subgroup of the gauge symmetry, manifest in the N = 3 construction, should

not be confused with the Cartan subgroup of G. In fact, the manifest U(1)2 symmetry is

realized through some “unconventional” mixing between the electric and magnetic U(1)’s of

the theory. This implies that the roots of the gauge group carry both electric and magnetic

charges with respect to U(1)2 that is visible in the N = 3 formulation. For example, in this

basis, the electromagnetic charges of the 6 non-zero roots of SU(3) theory were given by

(e1,m1; e2,m2) = ±(1, 0;−1, 0), ±(0, 1; 1, 1), ±(1, 1; 0, 1) , (4.6)

The spectrum of dyonic states of the N = 3 theories above, matches with that of the

corresponding N = 4 theories , when the gauge coupling of the N = 4 theories is given by

τYM = − 1
1+γ with γk = 1 [8]. In the rest of this section we make this map explicit for the

case of k = 3 and l = 1. This case is expected to be isomorphic to N = 4 SU(3) SYM.

We establish the above mentioned isomorphism by thinking of the N = 4 SU(3) SYM as

being the low energy theory of a stack of three parallel D3 branes. There is a C3 transverse

to these branes and we can use the SO(6)R of the theory to localize the branes on a complex

plane inside C3. The generic coordinates of the three branes on this complex plane are then

given by 0, z̃1 and z̃2 respectively. The roots are then generated by (1, 0) strings stretched

between the branes. Correspondingly, their central charges will be proportional to ±z̃1,
±z̃2 and ±(z̃1 − z̃2). We can then choose a system of positive roots given by z̃1 − z̃2, z̃2
and z̃1 with the simple roots being z̃1 − z̃2 and z̃2. The same exercise in the N = 3 theory

with the roots as given in (4.6), tells us that the charge vector (1, 0;−1, 0), (0, 1; 1, 1) and

(1, 1; 0, 1) can be chosen to be the positive roots with (1, 0;−1, 0) and (0, 1; 1, 1) being the

simple roots. The isomorphism between the two formulations will preserve the central

charge of the various BPS states. This is because the mass of a BPS state is given by the

absolute value of its central charge. Mass being a physical observable, should not change

irrespective of whether we use the N = 3 construction or the more familiar construction in

terms of a stack of D3 branes. We will further assume that not only the absolute value but

also the phases of the central charges match. This implies that a possible isomorphic map

between the states of the two theories can be realized by mapping (1, 0;−1, 0) to z̃1 − z̃2
and (0, 1; 1, 1) to z̃2. This tells us that,

z̃1 − z̃2 ∝ z1 − z2 ,
z̃2 ∝ ωz1 + (1 + ω)z2 ,

z̃1 ∝ −ω2z1 + ωz2 ,

(4.7)

here ω is the cube root of unity such that ω3 = 1. Let us, for a moment, be agnostic about

the gauge coupling of the N = 4 theory and consider the possible configurations of a state

created by a (p, q) string hanging between two pairs of branes.

3Recall that γ : γk = 1.
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In the first case we have a (p, q) string connecting the brane at the origin and that at

z̃1. This has a central charge

Z(p,q),1 ∝ (p+ qτ)z̃1 . (4.8)

Substituting from (4.7), get

Z(p,q),1 ∝ −ω2(p+ qτ)
(
z1 − ω2z2

)
,

∝
(
p+ pω − qω2τ

)(
z1 − ω2z2

)
.

(4.9)

This can be interpreted as some (p′, q′) string suspended between the first brane (located

at z1) and the second image, located at ω2z2, of the second brane, iff τ = ωn. More

specifically, we get p′ = p− q and q′ = p, if we use the value τ = ω as suggested in [8].

In the second case a (p, q) string is suspended between the origin and z̃2 and it creates

a state with central charge

Z(p,q),2 ∝ (p+ qτ)z̃2

∝ ω(p+ qτ)(z1 − ωz2) ,
∝ (pω + qωτ)(z1 − ωz2) .

(4.10)

Again, this looks like a (p′, q′) string stretched between z1 and the image brane at ωz2 iff

τ = ωn. For τ = ω, this gives p′ = −q and q′ = p− q.
In the third case we have a (p, q) string stretched between z̃1 and z̃2, it yields

Z(p,q),3 ∝ (p+ qτ)(z̃1 − z̃2)
∝ (p+ qτ)(z1 − z2) .

(4.11)

This is equivalent to a (p, q) string hanging between z1 and z2 when τ = ω.

Henceforth, we will choose the gauge coupling of the N = 4 theory to be τ = ω. This is

also the value of the complex structure of the F-theory torus in the S3,1-fold. This implies

that the l.h.s. and r.h.s. in (4.7) become equal instead of being merely proportional i.e.

z̃1 − z̃2 = z1 − z2 ,
z̃2 = ωz1 + (1 + ω)z2 = ω(z1 − ωz2) ,
z̃1 = −ω2z1 + ωz2 = −ω2

(
z1 − ω2z2

)
.

(4.12)

We now consider a state in the S3,1-fold set-up, such that its electromagnetic charge

vector is (n1e, n
1
m;n2e, n

2
m). Its central charge then becomes4

Z = gYM

( (
n1e + τn1m

)
z1 +

(
n2e + τn2m

)
z2

)
(4.13)

Let this correspond to a state with charges (ñ1e, ñ
1
m; ñ2e, ñ

2
m) in the N = 4 SU(3) theory. In

this description, its central charge is

Z = gYM

( (
ñ1e + τ ñ1m

)
z̃1 +

(
ñ2e + τ ñ2m

)
z̃2

)
, (4.14)

4Here by gY M in Sk,l-fold, we mean the constant extracted from substituting the string coupling in (4.2).
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It is important to note that the coupling τ and hence gYM is same in both of our set-ups

above. Requiring the equality of the central charges and using the relations in (4.12) (and

their inverse) along with the fact that τ = ω, we find the following relations between the

electromagnetic charges of a given state

n1e = ñ1e − ñ1m − ñ2m, n1m = ñ1e + ñ2e − ñ2m ,
n2e = ñ2e − ñ1m − ñ2m, n2m = ñ1e + ñ2e − ñ1m ,

(4.15)

or equivalently

ñ1e =
1

3

(
n1e + n1m − 2n2e + n2m

)
, ñ1m =

1

3

(
−n1e + 2n1m − n2e − n2m

)
,

ñ2e =
1

3

(
−2n1e + n1m + n2e + n2m

)
, ñ2m =

1

3

(
−n1e − n1m − n2e + 2n2m

)
.

(4.16)

5 3-pronged string in S-fold background

In this section we refine our discussion on the enhacement of the rank 2 S3,1-fold N = 3

theory to N = 4 by introducing a new character in the game, namely the 3-pronged string

(a.k.a. 3-string junction or simply a 3-string).

As a warm up we first discuss the mass of an F1 string in the S-fold geometry (the

case of a D1 is completely analogous). In the second part of the section we use the same

formalism to compute the mass of the three pronged junction and we compare it with the

central charge, obtained independently.

We then go on to study the walls of marginal stability and wall crossing in the S-

fold background and find its analogue in the N = 4 picture . We conclude this section

by studying the behavior of 3-pronged junctions in the flat geometry probed by three D3

branes, and show how it fits with our understanding of S-folds.

5.1 Warm-up: MBPS of an F1 string probing the rank 2 S3,1 geometry

Let us first consider a system of two D3 branes probing an S3,1-fold. We require the branes

to be coplanar, with their positions being z′1 and z′2 respectively. Their images are located

at ωnz′1 and wnz′2 respectively, with n = 1, 2 and ω3 = 1. In this setup τ = ω = −1
2 +

√
3
2 i.

Here we consider the mass of a (1,0)-string (an F1 string) suspended between the two

branes (see figure 2a). The mass of the string is then given by

M2
F−string =

gs
(2πα′)2

|z′1 − z′2|2 = 4πgs|z1 − z2|2 , (5.1)

where we used the relation z′a = 4π
3
2α′za. This is expected to correspond to the state

with electromagnetic quantum numbers (n1e, n
2
e) = (1,−1) and nam = 0. The corresponding

electric and magnetic charges are

QE = gYM (z1 − z2) ,
QM = 0 .

(5.2)
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(a) (1, 0) string between the two branes. (b) (1, 0) string between the first brane and an

image of the second brane.

Figure 2. (1,0) strings stretching between D3 branes in the S-fold geometry.

By using this result the mass of the corresponding BPS state is

M2
BPS = g2YM |z1 − z2|2 . (5.3)

This matches with the mass of the string after using the fact that g2YM = 4πgs.

Similarly we can consider an F1 string suspended between the first brane and the first

image of the second brane (figure 2b). This implies that the end points of the string are

at z′1 and ωz′2 respectively and its mass if given by

M2
F−string =

gs
(2πα′)2

|z′1 − ωz′2|2 = 4πgs|z1 − ωz2|2 , (5.4)

The end of the string on the first brane gives rise to the quantum numbers (n1e = 1, n1m = 0).

The other end of string ends on the image of the second brane. A (p, q)string ending on

the n-th image will impart quantum numbers given by (nae + namτ)za = −(p + qτ)wnza
(without any sum over a). Thus, in the present case the other end of the string gives us

(n2e, n
2
m) = (0,−1). Thus we expect the corresponding state to have (n1e = 1, n2e = 0, n1m =

0, n2m = −1) and

QE = gYM

(
z1 +

(
−1

2

)
(−z2)

)
= gYM

(
z1 +

1

2
z2

)
,

QM = − 4π

gYM
z2 ,

(5.5)

here we have used the fact that θ
2π = −1

2 . The mass of the corresponding BPS state is

then given by

M2
BPS = |Z|2 = g2YM |z1 +

1

2
z2|2 +

(
4π

gYM

)2

|z2|2 + 8π

∣∣∣∣Im(z1 +
1

2
z2

)
z∗2

∣∣∣∣ . (5.6)

Here we have used the fact that if we write every real 2-vector (a, b) as the complex number

a+ ib, then |v1×v2| = |Im(v1v
∗
2)|. The above expression can be further simplified by using

4π
g2Y M

=
√
3
2 to get

M2
BPS = |Z|2 = g2YM |z1 − ωz2|2 . (5.7)

This matches with the mass of the string after using g2YM = 4πgs.

Similarly, we can check that the mass of a D1 string hanging between the first brane

and the first image of the second brane matches with the mass of a particle with quantum

numbers (n1e = 0, n2e = 1, n1m = 1, n2m = 1).
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(a) The vertex of the 3-string is at the origin. (b) The vertex of the 3-string is at −ω2z2.

Figure 3. The two ways in which a 3-string with (1, 0), (0, 1) and (−1,−1) prongs can be made

to end on the first brane, the second brane and the first image of the second brane.

5.2 The case of the 3-pronged string

Let us now consider a 3-string whose prongs are composed of (1, 0), (0, 1) and (−1,−1)

strings respectively. Using (4.1) and τ = ω, we find that the tension of each prong is
√
gs

2πα′ .

Cancellation of forces at the 3-string vertex then requires that the 3-string be oriented

such that the angle between any pair of prongs is 2π
3 radians. A possible way to suspend

this string between the branes in the S3,1-fold is given by ending the (1, 0)-prong on the

first brane (located at z′1), ending the (0, 1)-prong on the second brane (located at z′2) and

ending the (1, 1)-prong on the first image of the second brane (located at ωz′2). There

are only two possible ways in which such a configuration can exist (see figure 3). This is

because the prongs of the string must enclose and angle of 2π
3 rad. between them. This

implies that If we consider the prongs ending on the second brane and its image then, the

only way these two prongs can enclose an angle of 2π
3 rad. is when the vertex of the 3-string

is either at the origin or at the point −ω2z2.

When the 3-string vertex is located at the origin, the (1, 0) prong lies along the position

vector of ω2z2. Therefore, it must be that z′1 = λω2z′2 with λ ≥ 0 (figure 3a). The length of

the prongs are λ|z′2|, |z′2| and |ωz′2| respectively. This implies that the mass of the string is

M2
3−string =

gs
(2πα′)2

(λ+ 2)2|z′2|2 = 4πgs(λ+ 2)2|z2|2 . (5.8)

The quantum numbers of the corresponding field theory state can be calculated by consid-

ering the following: the (1, 0)-prong ending on the first brane imparts (n1e = 1, n1m = 0), the

(0, 1)-prong ending on the second prong imparts (n2e = 0, n2m = 1) while, as explained ear-

lier, the (−1,−1)-string ending on the first image of the second brane imparts (n2e = 1, n2m =

0). Thus, we expect the net quantum numbers to be (n1e = 1, n2e = 1, n1m = 0, n2m = 1).
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The corresponding charges are

QE = gYM

(
z1 + z2 −

1

2
z2

)
= gYM

(
z1 +

1

2
z2

)
= gYM

(
λω2 +

1

2

)
z2 ,

QM =
4π

gYM
z2 .

(5.9)

The mass and central charge of the BPS state is therefore given by

M2
BPS = |Z|2 = g2YM |z2|2

(∣∣∣∣λω2 +
1

2

∣∣∣∣2 +

(
4π

g2YM

)2

+ 2
4π

g2YM

∣∣∣∣Im(λω2 +
1

2

)∣∣∣∣
)

= g2YM |z2|2
(

1

4
(1− λ)2 +

3

4
λ2 +

3

4
+

3λ

2

)
= g2YM |z2|2

(
λ2 + λ+ 1

)
.

(5.10)

It is easy to check that there is no value of λ > 0 for which the masses in (5.8) and (5.10)

agree with each other. From the map (4.16), between the charges in the S-fold and the

N = 4 theory, we will see that this should correspond to a magnetic monopole of the N = 4

theory. Since monopoles are always 1/2-BPS with respect to N = 4 SUSY, they can not

arise from non-BPS objects of the manifestly N = 3 set-up. This is because the fact that

it is non-BPS with respect to N = 3 algebra implies that all the three supercharges of

the N = 3 algebra act non-trivially on this multiplet which in contradiction with the fact

that only two of the four supercharges of the N = 4 algebra can act non-trivially on a

1/2-BPS multiplet. We therefore conjecture that such string configurations can not exist

in the S-fold.

Similarly, when the 3-string junction is located at −ω2z2, as shown in figure 3b, the

(1, 0) prong lies along the position vector of −ω2z2 and hence the first brane must be

located at z′1 = −λω2z′2 with λ ≥ 1. The length of the prongs will then be (λ− 1)|z′2|, |z′2|
and |ωz′2|. The mass of the string in this configuration is

M2
3−string =

gs
(2πα′)2

(λ+ 1)2|z′2|2 = 4πgs(λ+ 1)2|z2|2 . (5.11)

Changing the position of the 3-string junction does not affect the electromagnetic quantum

numbers that the end of the strings create on the brane. Thus, we can calculate the mass

of the corresponding CFT state by taking λ → −λ in (5.9). This gives the mass of the

BPS state to be

M2
BPS = |Z|2 = g2YM |z2|2

(∣∣∣∣−λω2 +
1

2

∣∣∣∣2 +

(
4π

g2YM

)2

+ 2
4π

g2YM

∣∣∣∣Im(−λω2 +
1

2

)∣∣∣∣
)

= g2YM |z2|2
(

1

4
(1 + λ)2 +

3

4
λ2 +

3

4
+

3λ

2

)
= g2YM |z2|2(λ+ 1)2 .

(5.12)
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(a) Wall crossing in S-fold background. (b) The analogue of figure 4a in flat background

Figure 4. Wall of marginal stability in the S-fold and flat backgrounds.

This matches with (5.11) for all values of λ and represents a 1/3-BPS state with respect

to the manifest N = 3 SUSY algebra. Using (4.16), we can now map the charge vector,

(n1e = 1, n1m = 0;n2e = 1, n2m = 1), of this state from the S-fold geometry to that in

the N = 4 SU(3) gauge theory where it becomes (ñ1e = 0, ñ1m = −1; ñ2e = 0, ñ2m = 0).

We therefore infer that in the SU(3) gauge theory described by 3 D3 branes on a flat

background, the 3-string of figure 3b corresponds to a (0,−1) string stretched between the

brane at the origin and the brane at z̃1 i.e. it represents a 1/2-BPS magnetic monopole of

the SU(3) theory. For the number of degrees of freedom to match in the two descriptions,

it must therefore be that the hidden supercharge of the S-fold set-up acts trivially on the

3-string of the figure 3b.

5.3 Wall crossing

We can also consider walls of marginal stability in the above scenario. For the 3-string

of figure 3b, this corresponds to setting λ = 1 such that z1 = −ω2z2. Doing this reduces

the (1, 0) prong to zero length, the 3-string configuration now consists of a (−1,−1) string

stretched from the brane at z1 = −ω2z2 to the brane at ωz2 and a (0, 1) string stretched

from the brane at z1 = −ω2z2 to the brane at z2 as shown in figure 4a. These two string can

now move independently of each other, thereby giving rise to wall crossing. Using (4.12),

to map to the manifestly N = 4 set-up, we find that the three branes in flat background

are now located at the origin, z̃1 = 2ωz2 and z̃2 = ωz2, respectively. This implies that the

brane at z̃2 is co-linear with and lies mid-way between the brane at the origin and that at z̃1
as shown in figure 4b. The (0,−1) stretched between the latter two branes can now break

on the brane at z̃2 hence triggering wall-crossing in the flat geometry. This can be further

tested by noting that the state corresponding to a (−1,−1, ) string stretched between z1
and ωz2 has a charge vector given by (n1e = 1, n1m = 1;n2e = 1, n2m = 0). Using (4.16), we

find that this corresponds to a state with charge vector (ñ1e = 0, ñ1m = 0; ñ2e = 0, ñ2m = −1)

in the flat geometry i.e. a (0,−1) string going from the brane at the origin to the brane

at z̃2. Similarly, in the S-fold, the (0, 1) string from z1 to z2 gives a state with charges

(n1e = 0, n1m = −1;n2e = 0, n2m = 1). The corresponding state in N = 4 SU(3) SYM has

charges (ñ1e = 0, ñ1m = −1; ñ2e = 0, ñ2m = 1) which is same as that due to a (0,−1) string

going from z̃2 to z̃1.
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We can also consider the scenario when λ in figure 3b is tuned to be such that 0 < λ < 1.

As is evident from the discussion so far, the 3-string does not exist for these values of λ.

In stead it undergoes wall crossing. We therefore end up with a (−1,−1, ) string stretched

between the branes at z1 and ωz2 and a (0, 1) string from the brane at z1 to that at z2. On

the manifestly N = 4 side, this will be described by a (0,−1) string going from the brane

at the origin to the brane at z̃2 and another (0,−1) string going from z̃2 to z̃1

5.4 3-pronged strings in N = 4 SU(3) theory

It is also interesting to consider the 1/4-th BPS states of N = 4 SU(3) theory generated by

3-strings as was done in [18]. We therefore consider 3-string with its prongs having charges:

(1, 0), (0, 1), (−1,−1). Let us consider the following configuration: the prong with charge

(0, 1) ends on the brane at z̃1, the prong with charge (1, 0) ends on the brane at z̃2 and the

prong with charge (−1,−1) ends on the brane at the origin. This corresponds to a state

with electromagnetic charge vector (ñ1e = 0, ñ1m = 1; ñ2e = 1, ñ2m = 0). Using (4.16), we see

that the corresponding charges in the S-fold geometry will be given by (n1e = −1, n1m =

1;n2e = 0, n2m = 0). These charges correspond to a (−1, 0) string stretching from the brane

at z1 to its image in the S-fold at ωz1.

At this point, we wish to remind ourselves of our discussion in section 3, where we had

stated that for l = 1 in S-folds, there can be no N = 3 vector multiplets corresponding to

±(1, 0) strings stretched between a brane and its images in the S-fold. This is consistent

with the above correspondence between the 3-string of N = 4 SU(3) theory and the (−1, 0)

string stretched from the brane at z1 to its image at ωz1. This is because the correspondence

tells us that the multiplet associated to the (−1, 0) string contains excitations with spin

> 1 and therefore it is larger than the N = 3 vector multiplet.

6 Further directions and open questions

In this paper we studied the enhancement of supersymmetry in rank 2 S3,1-fold geometry,

from N = 3 to N = 4. We developed a dictionary between (p, q) strings in the S-fold

geometry and the corresponding states associated to the flat N = 4 geometry. This allowed

us to compute masses and charges also for more complicated 3-strings and compare the

walls of marginal stability between the two descriptions. One of the main difficulties arising

in the analysis is related to the structure of the central charges in the N = 3 and in the

N = 4 algebras. Let us elaborate more on this point.

In theories with N > 1, we can extend the superalgebra by introducing central charges

Zab. The SUSY algebra becomes

{Qaα, Q̄α̇b} = 2δabσ
µ
αα̇Pµ ,

{Qaα, Qbβ} = 2εαβZ
ab ,

{Q̄α̇a, Q̄β̇b} = 2εα̇β̇Z
†
ab .

(6.1)

Here α, α̇ are space-time spinor indices while a, b run from 1 to N . From this we see that

Zab transforms in the two index antisymmetric representation of the SU(N )R symmetry of
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the algebra and when N < 4, it also also carries an R-charge 2 with respect to the U(1)R
symmetry. We can now use the SU(N )R R-transformations to skew-diagonalize the central

charge matrix of a given SUSY multiplet.5 When, N < 4, we can further use the U(1)R
transformations to cancel the phase of one of the charges in the central charge matrix. This

implies that for N = 2, 3, there is single real parameter that appears in the BPS condition

while when N = 4, there are two different central charges formed from 3 real parameters.6

In the rest frame of a particle of mass M , the supercharges can be then expressed in terms

of linear combinations of operators aα , bα , cα , dα and their conjugates, such that when

N = 2, the algebra becomes

{aα, aβ} = {bα, bβ} = {aα, bβ} = 0 ,

{aα, (aβ)†} = 2δαβ(M + Z) ,

{bα, (bβ)†} = 2δαβ(M − Z) ,

(6.2)

while cα and dα will be absent. When N = 3, the algebra of (6.2) will have to be augmented

by the operator cα obeying anti-commutation relations given by

{cα, cβ} = {cα, aβ} = {cα, bβ} = 0 ,

{cα, (cβ)†} = 2δαβM .
(6.3)

On the other hand when N = 4, we will also have operators cα and dα in addition to those

in (6.3). Their algebra will then be given by

{cα, aβ} = {cα, bβ} = {dα, aβ} = {dα, bβ} = 0 ,

{cα, cβ} = {dα, dβ} = {cα, dβ} = 0 ,

{aα, (aβ)†} = 2δαβ

(
M + Z̃

)
,

{bα, (bβ)†} = 2δαβ

(
M − Z̃

)
,

(6.4)

where Z and Z̃ are the central charges obtained after skew-diagonalizing Zab. Since the

charges Z and Z̃ in N = 4 systems, will generically have different magnitudes, the BPS

condition can only be satisfied for the larger of the two of them. The N = 4 BPS states

of this kind will then preserve a single set of SUSY generators and their multiplet will be

generated by the action of the other 3 supersymmetries that continue to act non-trivially

when the BPS condition is saturated. Such BPS states are called 1/4-BPS and they have

a total of 26 d.o.f (bosonic + fermionic) in their multiplets. However, when a state is

such that both the central charges are equal, then the BPS condition implies that the

state remains invariant under two of the four supercharges, giving us a 1/2-BPS multiplet

with a total of 24 on-shell d.o.f . Note that all the multiplets of N = 4 SUSY are CPT

self-conjugate.

5We remind the reader that since central charge commutes with the supercharges, therefore all the

components of a SUSY multiplet have the same central charge.
6The three real parameters controlling the central charges of N = 4 SUSY are given by the magnitudes,

|QE | and |QM |, of the electric and the magnetic charge vectors and the angle ϕ between them.
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On the other hand, in N = 2, 3 theories, there is single BPS condition and therefore,

the action of only a single set of SUSY generators can become trivial. This implies that

the BPS states can be at most 1/2-BPS and 1/3-BPS respectively. Generically, the total

number of degrees of freedom in these multiplets will be 23 when N = 2 (after including

the CPT conjugate states) and 24 when N = 3 (this is a CPT self-conjugate multiplet).

We now consider those N = 3 set-ups that were argued to have an accidental enhance-

ment to N = 4 SUSY. In this case the theory possesses an extra hidden supercharge as

well as an extra hidden central charge. The ratio of mass to the hidden central charge then

tells us if the BPS states will become 1/2-BPS or 1/4-th BPS states in the N = 4 theory.

The counting of total number of d.o.f in the 1/3-BPS states of N = 3 matches with that of

the 1/2-BPS states of N = 4 theories. From this, it is clear that upon SUSY enhancement,

a manifestly 1/3-BPS states of the N = 3 theory will simply uplift to the N = 4 1/2-BPS

states iff they are invariant under the extra hidden supercharges. This also implies that

the BPS bound with respect to the hidden central charge will get saturated. On the other

hand the N = 4 1/4-BPS states have more d.o.f than the N = 3 1/3-BPS states. This

implies the 1/3-BPS states can not uplift directly to 1/4-BPS states of N = 4. The hidden

supercharge must therefore act non-trivially on such a BPS multiplet and pair it up with

other N = 3 multiplets to form an N = 4 1/4-BPS multiplet. In this case, the BPS bound

with respect to the hidden central charge can not be saturated. It can also happen that

a manifestly non-BPS multiplet of N = 3 ends up becoming a 1/4-BPS multiplet iff the

hidden supercharge acts trivially on it. In this case the BPS bound with respect to the

manifest N = 3 central charge is not saturated but that with respect to the hidden central

charge does get saturated.

As was already argued in section 5.2, a non-BPS multiplet of N = 3 theory can never

become a 1/2-BPS multiplet upon SUSY enhancement to an N = 4 theory. This is simply

because the non-BPS nature of the multiplet implies that its components get transformed

into each other under all the three supersymmetries in N = 3 algebra while requiring it to

be 1/2-BPS with respect to enclosing N = 4 algebra would imply that it is invariant under

two of the four supersymmetries. Clearly, both these requirements can not be satisfied at

the same time.

We conclude the analysis by mentioning another interesting problem that we did not

discuss here. It regards the extension of our analysis to the other rank 2 cases leading to

the non-perturbative enhancement of N = 3 SUSY to N = 4. Such cases correspond to the

S4,1-fold and to the S6,1-fold. As mentioned above they enhance to SO(5) and G2 N = 4

SYM respectively. The first case has a perturbative realization in terms of D3 branes and

an Õ3
−

plane and it may be studied along the lines of our analysis. On the other hand, the

second case requires some more care, because a perturbative realization of the G2 theory

is absent in string theory. We hope to come back to these issues in the next future.
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