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1 Introduction

Conformal Field Theories (CFTs) in d ≥ 2 spacetime dimensions are being intensively

studied via the bootstrap program, revived in ref. [1]. The conformal bootstrap has led to

a deeper analytic understanding of (super)conformal field theories [2–8] but also to precise

numerical predictions for critical exponents, see e.g. [9, 10]. A pedagogical treatment of

the subject is given in [11, 12].

A crucial role in this program is played by conformal blocks, special functions that are

determined completely by conformal symmetry. They were first described in the 1970s [13–

16] but have received much attention in recent years after breakthrough results by Dolan

and Osborn [17–19]. Currently, simple expressions for conformal blocks are only known in

even spacetime dimension d. Recent work has led to systematic methods for computing

these blocks in any d [20–23]. Moreover, much is now known about conformal blocks that

appear in four-point functions with spinning operators [24–33] and about superconformal

blocks, see e.g. [34].

In this note we develop a new representation of conformal blocks in d dimensions.

This representation arises from the “dimensional reduction” of a CFT, i.e. the restriction

of the conformal group SO(d+ 1, 1) to a subgroup SO(d, 1) that preserves a hyperplane of

codimension one. Although this is similar in spirit to a Kaluza-Klein reduction, we are not

actually truncating the theory: rather, we simply organize all states in the Hilbert space of

the CFT in representations of SO(d, 1) instead of the full conformal group. In particular,

a d-dimensional conformal block will decompose into infinitely many (d−1)-dimensional

conformal blocks with computable coefficients. As a corollary, this strategy provides an

explicit formula for 3d and 5d conformal blocks in terms of 2F1 hypergeometric functions.

This paper is organized as follows. Section 2 reviews basic facts about conformal blocks

and develops the promised dimensional reduction. In section 2.3, we compare our expansion

in d−1 dimensional blocks to an expansion in 2d blocks. Finally section 3 discusses several
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directions for future work. Appendix A is a consistency check of the formalism developed

in this note, applying it to the four-point function of the free scalar field.

2 Dimensional reduction

Let’s start by recalling the definition of conformal blocks. For concreteness, consider a

scalar operator φ of scaling dimension ∆φ in a unitary d-dimensional CFT. Conformal

invariance requires that its four-point function is of the following form:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
Gφ(u, v)

|x1 − x2|2∆φ |x3 − x4|2∆φ
(2.1)

where the function Gφ(u, v) depends only on two conformally invariant cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, xij := xi − xj . (2.2)

The four-point function (2.1) can be computed using the operator product expan-

sion (OPE):

φ(x)φ(0) =
1

|x|2∆φ
+

∑
O=[∆,`]

λO

|x|2∆φ−∆
C

(`)
∆ (x, ∂)µ1···µ`Oµ1···µ`(0) . (2.3)

Here the sum runs over all primary operators Oµ1...µ`(x) of even spin ` in the theory;

with ∆ we denote their scaling dimension, and the OPE coefficient λO is the constant

of proportionality appearing in the three-point function 〈φφO〉. The differential operator

C
(`)
∆ (x, ∂)µ1···µ` depends only on the quantum numbers ∆ and `. In passing, we note that

unitary puts a lower bound on the possible values that ∆ can have:

∆ ≥

{
(d− 2)/2 ` = 0

`+ d− 2 ` ≥ 1
. (2.4)

By applying the OPE twice to the four-point function (2.1), one can show that Gφ(u, v)

can be written as follows:

Gφ(u, v) = 1 +
∑
O=[∆,`]

(λO)2 G
(`)
∆ (u, v; d) . (2.5)

The functions G
(`)
∆ (u, v; d) are conformal blocks, hence eq. (2.5) is known as a conformal

block (CB) decomposition. As the notation indicates, the blocks only depend on the quan-

tum numbers ∆ and ` and the spacetime dimension d. In practice, they can be computed

by solving a second-order PDE [18] while imposing the following asymptotic behaviour:

G
(`)
∆ (u, v; d) ∼

u→0, v→1
c

(d)
` u∆/2 Ĉ

(ν)
`

(
1− v
2
√
u

)
, (2.6)

where Ĉ
(ν)
j is a rescaled Gegenbauer polynomial with parameter ν := (d− 2)/2:

Ĉ
(ν)
j (ξ) :=

j!

(2ν)j
Geg

(ν)
j (ξ), (x)n := Γ(x+ n)/Γ(x) . (2.7)

– 2 –
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By construction, these functions obey Ĉ
(ν)
j (1) = 1 and have a finite limit as d→ 2, contrary

to the normal Gegenbauer polynomials. A natural choice for the normalization coefficients

c
(d)
` is [24]

c
(d)
` =

(−1)`(2ν)`
2`(ν)`

(2.8)

although we will leave c
(d)
` arbitrary in the rest of this paper.

In even spacetime dimensions, simple expressions for the conformal blocks exist [17–19].

These are easiest to state in the Dolan-Osborn coordinates z, z̄, defined through u = zz̄,

v = (1− z)(1− z̄). On the Euclidean section, z is a complex coordinate and z̄ = z∗ its

conjugate. After defining

k2β(x) := xβ 2F1(β, β; 2β;x) (2.9)

the 2d and 4d conformal blocks are:

G
(`)
∆ (z, z̄; 2) =

c
(2)
`

2

[
k∆+`(z)k∆−`(z̄) + (z ↔ z̄)

]
(2.10a)

G
(`)
∆ (z, z̄; 4) =

c
(4)
`

`+ 1

zz̄

z − z̄
[
k∆+`(z)k∆−`−2(z̄) − (z ↔ z̄)

]
. (2.10b)

No similar formulas in odd d are known, although some simplifications occur when special-

izing to the “diagonal” line z = z̄ [21, 35].

The conformal block G
(`)
∆ has a representation-theoretical meaning: it is the contribu-

tion of a conformal multiplet of dimension ∆ and spin ` to the four-point function (2.1),

containing a primary operator Oµ1···µ`(x) and all of its derivatives. Such a multiplet can be

described in a concrete fashion through the state-operator correspondence. The multiplet

of O is built on top of the primary state |O〉µ1···µ` := limx→0Oµ1...µ`(x)|0〉, where |0〉 is the

CFT vacuum. All other states in the multiplet are obtained by acting on |O〉 with Pµ, the

generator of translations of the conformal algebra. A complete basis1 of these descendants

is spanned by the following states:

(P 2)kPµ1 · · ·PµmP ν1 · · ·P νp |O〉ν1···νp µm+1···µm+r , r = `− p , 0 ≤ p ≤ ` . (2.11)

It is understood that the µ indices must be symmetrized and made traceless. The state

shown in (2.11) then has scaling dimension ∆ + 2k +m+ p and spin `+m− p. It follows

that a descendant of level n — that is to say, with dimension ∆ + n — can have the

following spins:

j = `+ n, `+ n− 2, . . . , max(`− n, `− n mod 2). (2.12)

For a suitable choice of coordinates, there is one-to-one correspondence between a descen-

dant of level n and spin j and a term in the conformal block G
(`)
∆ . To make this concrete,

we pass to the following coordinates:

s := |z| =
√
zz̄ , ξ := cos(arg z) =

z + z̄

2
√
zz̄
. (2.13)

1We are ignoring descendants that transform in mixed or antisymmetric representations of the Lorentz

group, since such descendants do not contribute to a scalar four-point function.
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In the (s, ξ) coordinates, the contribution of a level-n spin-j descendant to the conformal

block can be shown [20] to be proportional to P
(d)
∆+n,j(s, ξ), where

P
(d)
E,j(s, ξ) := sE Ĉ

(ν)
j (ξ) . (2.14)

This is consistent with the fact that Gegenbauer polynomials are d-dimensional spherical

harmonics. Consequently, conformal blocks admit an expansion of the form

G
(`)
∆ (s, ξ; d) =

∞∑
n=0

∑
j

a
(d)
n,j(∆, `) P

(d)
∆+n,j(s, ξ) (2.15)

with j again restricted to the range (2.12). The coefficients a
(d)
n,j are fixed by conformal

invariance, and are known in closed form as 4F3 hypergeometrics evaluated at unity [18].

As advertised, we will break the conformal group down to a subgroup of conformal

transformations in d − 1 dimensions, and we want to analyze the consequences of this

dimensional reduction for conformal blocks. Let us first consider a toy example of what

will happen, namely the restriction of the rotation group SO(d) to SO(d−1). If we think of

SO(d) as the isometry group of the sphere Sd−1, this means that we take the subgroup of

rotations that leave the equator invariant. Under this restriction, the spin-` representation

of SO(d), denoted as [`]d, breaks up into SO(d−1) irreps as follows:

[`]d = [0]d−1 + [1]d−1 + . . .+ [`]d−1 . (2.16)

The branching rule (2.16) can be understood by realizing [`]d as a traceless symmetric

tensor of rank `. For instance, the first d−1 components of a vector vµ ∈ Rd form a vector

representation of SO(d−1), whereas the last component vd transforms as a SO(d−1) scalar.

Since spherical harmonics form a representation of SO(d), the branching rule (2.16)

applies in particular to the (rescaled) Gegenbauer polynomials. Concretely, the spin-`

Gegenbauer polynomial Ĉ
(ν)
` can be written in the following form:

Ĉ
(ν)
` (ξ) =

∑̀
j=0

Zj` Ĉ
(ν−1/2)
j (ξ) (2.17)

since the Ĉ
(ν−1/2)
j are Gegenbauer polynomials in d−1 dimensions. As a matter of fact, only

spins j = `, `− 2, . . . , ` mod 2 appear in the r.h.s. of eq. (2.17), owing to the selection rule

Ĉ
(ν)
j (−ξ) = (−1)j Ĉ

(ν)
j (ξ) . (2.18)

The coefficients Zj` in eq. (2.17) can be computed using explicit expressions for the Gegen-

bauer polynomials [36] together with their orthogonality. This yields

Zj` =
(1/2)p `!

p! j!

(ν)j+p(2ν − 1)j
(ν − 1/2)j+p+1(2ν)`

(j + ν − 1/2) , p ≡ (`− j)/2 . (2.19)
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It will prove useful later in this work to have a bound on the coefficients Zj` . It is easy to

see that all Zj` are positive, provided that d ≥ 2.2 Moreover, the normalization condition

Ĉ
(ν)
` (1) = 1 implies that for fixed ` we have∑

j

Zj` = 1 . (2.20)

We conclude that 0 ≤ Zj` ≤ 1 for all `, j.

Having considered the restriction SO(d)→ SO(d−1), we now turn our attention to the

conformal group SO(d + 1, 1). We will restrict the full group to a subgroup SO(d, 1) that

preserves the hyperplane xd = 0. Doing so, a primary d-dimensional representation breaks

up into infinitely many primary (d−1)-dimensional representations. The argument is the

following. Recall that a state is a primary of SO(d + 1, 1) if and only if it is annihilated

by all d generators of special conformal transformations, which we denote here by Kµ.

Therefore any state that is annihilated by K1, . . . ,Kd−1 but not by Kd is a descendant of

SO(d + 1, 1) but a primary of SO(d, 1). Among all descendants shown in eq. (2.11), the

following states fit that description:

|O; j,m〉α1···αj = (Pd)
m|O〉α1···αj d···d , 0 ≤ j ≤ ` , m = 0, 1, 2, . . . . (2.21)

The state |O; j,m〉 has SO(d − 1) spin j and scaling dimension ∆ + m. We arrive at the

following branching rule: any SO(d + 1, 1) multiplet of dimension ∆ and spin ` splits up

into infinitely many SO(d, 1) multiplets of spin 0 ≤ j ≤ ` and dimension ∆ + m with

m ≥ 0.3

Consequently, a conformal block G
(`)
∆ (u, v; d) can be written as an infinite sum over

the conformal blocks G
(j)
∆+m(u, v; d − 1) with 0 ≤ j ≤ ` and m ≥ 0. There are however

some selection rules that apply, as was the case for the Gegenbauer polynomials. We will

derive these in the ρ kinematics of [39], passing to the (r, η) coordinates defined as

u =

(
4r

1 + 2rη + r2

)2

, v =

(
1− 2rη + r2

1 + 2rη + r2

)2

. (2.22)

In the (r, η) coordinates, conformal blocks have an expansion where only descendants of

even level appear [20]:

G
(`)
∆ (r, η; d) =

∞∑
n=0

∑
j

b
(d)
n,j(∆, `) P

(d)
∆+2n,j(r, η) (2.23)

with j restricted to the range (2.12). The SO(d+1, 1)→ SO(d, 1) branching rule described

above must apply to any coordinate set, in particular to the (r, η) coordinates. By con-

sistency with eq. (2.23), it follows that only SO(d, 1) primaries of even level can appear

2This is a special case of the fact that Gegenbauer polynomials in D dimensions can be written as a

sum over Gegenbauer polynomials in d < D dimensions with positive coefficients, see [37] and references

therein. We thank A. Zhiboedov for pointing this out.
3Such branching rules can also be derived or checked by decomposing the characters of SO(d + 1, 1)

into SO(d, 1) characters, see e.g. [38]. This approach may be useful when dealing with more complicated

representations.
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in the decomposition of G
(`)
∆ (u, v; d). Likewise, only spins j = `, ` − 2, . . . , ` mod 2 can

contribute. In conclusion, there exists a decomposition of G
(`)
∆ of the following form:

G
(`)
∆ (u, v; d) =

∞∑
n=0

∑
j

An,j(∆, `)G(j)
∆+2n(u, v; d− 1) (2.24)

with the sum running over

j = ` , `− 2 , . . . , ` mod 2 . (2.25)

The coefficients An,j(∆, `) are fixed by conformal invariance. In the following section, we

will explain one method to compute them.

2.1 Recursion relation for coefficients

In this section, we will compute the coefficients An,j(∆, `) appearing in eq. (2.24). Our

discussion will rely heavily on the representation (2.15) of conformal blocks in the (s, ξ)

coordinates. In particular, we will use the fact that the coefficients a
(d)
n,j(∆, `) obey a three-

term recursion relation:[
C(d)(∆ + n, j)− C(d)(∆, `)

]
a

(d)
n,j(∆, `)

= β
(d)
j−1(∆ + n− 1) a

(d)
n−1,j−1(∆, `) + γ

(d)
j+1(∆ + n− 1) a

(d)
n−1,j+1(∆, `) . (2.26)

Here C(d)(∆, `) := ∆(∆ − d) + `(` + d − 2) is the eigenvalue of the quadratic conformal

Casimir and

β
(d)
j (x) :=

(x+ j)2(j + 2ν)

2(j + ν)
, γ

(d)
j (x) :=

(x− j − 2ν)2j

2(j + ν)
. (2.27)

We can use this recurrence to compute the coefficients a
(d)
n,j(∆, `) to arbitrary order in n,

starting from the initial condition

a
(d)
0,j (∆, `) = c

(d)
` δj,` (2.28)

that is imposed by eq. (2.6). A comprehensive discussion of this recursion relation is given

in [20].

We will compute the An,j(∆, `) coefficients by formulating a second recursion relation.

As a starting point, remark that the conformal block G
(`)
∆ (s, ξ; d) admits an expansion in

terms of the functions P
(d−1)
∆+n,j(s, ξ). This expansion takes the following form:

G
(`)
∆ (s, ξ; d) =

∞∑
n=0

∑
j

Y
(`)
n,j P

(d−1)
∆+n,j(s, ξ) , j ∈ {`+ n, `+ n− 2, . . . , ` mod 2} (2.29)

for some coefficients Y
(`)
n,j that we will determine. On the one hand, eq. (2.29) can be ob-

tained by applying the Gegenbauer identity (2.19) to the (s, ξ) representation of eq. (2.15).

We can therefore express the coefficients Y
(`)
n,j as follows:

Y
(`)
n,j =

p∗∑
p=0

Zjj+2p a
(d)
n,j+2p(∆, `), p∗ = (`+ n− j)/2 . (2.30)

On the other hand, we can first apply the dimensional reduction formula (2.24) to the

conformal block G
(`)
∆ (u, v; d). Next, we expand every (d− 1)-dimensional block on the

– 6 –
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r.h.s. in terms of the (s, ξ) representation. Doing so leads to a different expression for the

Y
(`)
n,j , namely

Y
(`)
n,j =

bn/2c∑
m=0

∑̀
k=0

Am,k(∆, `) a
(d−1)
n−2m,j(∆ + 2m, k) . (2.31)

The sum over k is also restricted to j + 2m− n ≤ k ≤ j + n− 2m and k ≡ ` mod 2.

Now fix j ∈ {`, `− 2, . . . , ` mod 2} and n ≥ 0. Requiring that the two expressions for

Y
(`)

2n,j agree, we obtain the following identity:

c
(d−1)
j An,j(∆, `) =

q∗∑
q=0

Zjj+2q a
(d)
2n,j+2q(∆, `)−

n−1∑
m=0

∑
k

Am,k(∆, `) a
(d−1)
2n−2m,j(∆ + 2m, k)

(2.32)

where q∗ = (`+ 2n− j)/2 and k is restricted to

max(0, j + 2m− 2n) ≤ k ≤ min(`, j + 2n− 2m), k ≡ ` mod 2 . (2.33)

Notice that the r.h.s. of (2.32) only involves coefficients Am,k(∆, `) with m < n. More-

over, the coefficients a
(d)
2n,j+2q(∆, `) and a

(d−1)
2n−2m,j(∆ + 2m, k) can be computed by means of

the recursion relation (2.26). We can therefore use eq. (2.32) to compute the coefficients

An,j(∆, `) recursively, up to arbitrary n, starting from n = 0. To be precise, Eq, (2.32)

must be understood as a set of b`/2c coupled recursion relations, one for every allowed

value of j. Finally, we remark that the above recursion relation is inhomogeneous, which

means that the “initial condition” A0,j(∆, `) is not arbitrary. Concretely, setting n = 0 in

eq. (2.32) yields

A0,j(∆, `) = Zj`
c

(d)
`

c
(d−1)
j

(2.34)

which is consistent with the asymptotics imposed by eq. (2.6).

Although the recursion relation (2.32) looks complicated, its solution can be written

down in closed form:

An,j(∆, `) = Zj`
c

(d)
`

c
(d−1)
j

(
(∆ + j)/2

)
n

(
(τ + `− j + 1)/2

)
n(

(∆ + j − 1)/2
)
n

(
(τ + `− j)/2

)
n

(2.35)

× (1/2)n
16n n!

(∆− 1)2n

(
(∆ + `)/2

)
n

(τ/2)n
(∆− ν)n(∆− ν − 1/2 + n)n

(
(∆ + `+ 1)/2

)
n

(
(τ + 1)/2

)
n

,

writing τ := ∆− (`+ d− 2) for the conformal twist. While we don’t have a rigorous proof

of this formula, we have checked that it satisfies (2.32) for `, n ≤ 20 and we conjecture that

it holds in general. Clearly eq. (2.35) can be checked in other ways, e.g. using expansions

of conformal blocks in the z or ρ coordinates and in the diagonal limit.

In passing, we notice that for the scalar (` = 0) block, only terms with j = 0 are

allowed in (2.24), and the formula for the coefficients simplifies:

An,0(∆, 0) =
c

(d)
0

c
(d−1)
0

(1/2)n
4n n!

(∆/2)3
n

(∆− ν)n(∆− ν − 1/2 + n)n
(
(∆ + 1)/2

)
n

. (2.36)

A similar simplication occurs for ` = 1.

– 7 –
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Figure 1. Comparison of different conformal block expansions. Horizontal axis: the order of

truncation N , vertical axis: relative error in the numerical value of the conformal block — notice

the logarithmic scale. Solid orange: dimensional reduction with n ≤ N terms; dashed green: ρ-

series with n ≤ N terms; dotted blue: z-series with n ≤ 2N terms. The points are joined by lines

to guide the eye. The left plot shows the 3d scalar block at the point u = v = 1/4 with ∆ = 1, the

right plot corresponds to ∆ = 25.

2.2 Convergence

Equations (2.24) and (2.35) are the main result of this note. At this stage, we want to point

out two important properties of the coefficients An,j . For convenience, we will set c
(d)
` ≡ 1

in what follows. First, we note that all An,j(∆, `) are positive, provided that ∆ satisfies the

unitarity bound (2.4) and d ≥ 2. Second, we remark that An,j decays exponentially fast

with n. To prove this, let’s consider the coefficient An,j(∆, `) as a function of ∆, keeping `, j

and n fixed. We notice that An,j(∆, `) is a rational function of ∆ of the form p(∆)/q(∆),

where p and q are polynomials of equal degree. Furthermore p and q completely factorize

over the reals, with all zeroes at values of ∆ at or below the unitarity bound. This means

that above the unitarity bound, An,j(∆, `) is a slowly varying function of ∆, and it is well

approximated by its value in the limit ∆→∞:

An,j(∆, `) ∼
∆→∞

Zj`
(1/2)n
16n n!

[
1 + O

(
1

∆

)]
. (2.37)

As promised, the coefficient An,j(∆, `) decreases exponentially with n, as ∼ n−1/2 16−n.

Remarkably, this exponential behaviour holds not only asymptotically, but already starts

at n = 1.

So far, we have encountered three different expansions for d-dimensional conformal

blocks: the “z-series” from eq. (2.15), the “ρ-series” from (2.23) and the expansion in

terms of lower-dimensional blocks (2.24). In figure 1 we compare their convergence rates

numerically, by truncating these expansions at finite order N and evaluating them at the

crossing symmetric point u = v = 1/4. The results corroborate that the truncation error

of (2.24) decreases exponentially with N .

For completeness, we can verify that the exponential decay with n also holds for ∆

close to the unitarity bound. For spinning operators (` ≥ 1), the limit τ → 0 is continuous,

meaning that there are no important corrections to (2.37), and the exponential decay at

large n persists. This is confirmed by an explicit expression for An,j at τ = 0 shown in

– 8 –
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appendix A. As is well known, the scalar (` = 0) block diverges at the unitarity bound

∆ = ν, where a level-two descendant becomes null. Using a conformal representation

theory argument [22, 30, 40, 41], we have

G
(0)
∆ (u, v; d) ∼

∆→ν

1

∆− ν
ν3

16(ν + 1)
G

(0)
d/2+1(u, v; d) + . . . (2.38)

omitting terms that are regular as ∆ → ν. Hence near the unitarity bound, G
(0)
∆ is

dominated by a conformal block with ∆ = d/2 + 1, which itself is well above the unitarity

bound. Therefore the estimate (2.37) applies, and we are done. The same conclusion can

be reached by expanding eq. (2.36) around ∆ = ν.

2.3 Comparison to 2d expansion

The dimensional reduction discussed in this paper has a counterpart on the lightcone, i.e.

the Minkowski section of a CFT, where z and z̄ are independent, real variables. Lightcone

kinematics turn out to be particularly simple: in the limit z → 0 at fixed z̄ the conformal

blocks become effectively two-dimensional, up to an unimportant prefactor:

G
(`)
∆ (z, z̄; d) ∼

z→0
c

(d)
`

(ν)`
(2ν)`

z(∆−`)/2 k∆+`(z̄) . (2.39)

The study of CFT crossing equations in this limit has led to many analytic bootstrap

results, initiated in [2, 3] with follow-up work in refs. [42–55].

It may be interesting to systematically compute corrections to the leading-order be-

haviour (2.39). There is a group-theoretical approach to this problem, first discussed in

appendix A of ref. [46] (see also [56]). We will briefly review their argument here. The

idea is to restrict SO(d, 2) — the conformal group in Minkowski signature — to SO(2, 2),

the group of conformal transformations acting on the (z, z̄) plane. On the level of its Lie

algebra, the latter splits into two copies of sl(2), spanned by three chiral generators L0, L±1

and three anti-chiral generators L̄0, L̄±1. Any SO(2, 2) primary state is therefore labeled

by two numbers h, h̄, the eigenvalues of L0 resp. L̄0; such a state lifts to a local operator

with scaling dimension h+ h̄ and spin |h− h̄|.
Under this restriction, any d-dimensional conformal multiplet breaks up into infinitely

many “lightcone primaries”. As with the dimensional reduction discussed in this paper,

this implies that any d-dimensional conformal block can be decomposed into 2d blocks.

Concretely, we have:

G
(`)
∆ (z, z̄; d) =

∑
h,h̄

Ph,h̄(∆, `; d)G
(|h−h̄|)
h+h̄

(z, z̄; 2) (2.40)

for some coefficients Ph,h̄(∆, `; d) fixed by conformal symmetry. Every term in the r.h.s.

corresponds to a different lightcone primary with quantum numbers (h, h̄). In the limit

z → 0, the sum (2.40) is dominated by a single block with h = (∆−`)/2 and h̄ = (∆+`)/2,

all other terms being suppressed by powers of z.

In order to compute corrections to (2.39) it is therefore sufficient to determine the

coefficients Ph,h̄(∆, `; d). This has not been done so far, to our knowledge. We remark

– 9 –
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however that the expression (2.35) for the coefficients An,j(∆, `) is sufficient to determine

the Ph,h̄(∆, `; d) for all integer d. For d = 3 this is obvious: after relabeling h, h̄ in the r.h.s.

of (2.40) in terms of scaling dimensions and spins, the coefficients Ph,h̄ are identical to the

coefficients An,j with d → 3. The generalization to d > 3 is straightforward: in order to

determine the coefficients Ph,h̄(∆, `; d > 3) one has to “dimensionally reduce” d− 2 times.

3 Discussion

This note has presented a new method to compute conformal blocks in d-dimensional

CFTs, by relating them to conformal blocks of CFTs in d − 1 dimensions. In particular,

eqs. (2.24) and (2.35) together form an explicit formula for blocks in odd d: for d = 3

(resp. d = 5) our method leads to an expression in terms of 2d (resp. 4d) blocks shown

in eq. (2.10), which in turn are given by 2F1 hypergeometric functions. Moreover, the

expansion in lower-dimensional blocks converges exponentially fast, which may prove to be

useful for numerical applications.

Currently only two closed-form expressions are known for conformal blocks in odd d:

the z-series expansion (2.15) and a formula that uses Mellin-Barnes integrals [19, 57–59].

The latter involves so-called Mack polynomials that don’t admit very compact expressions.

The coefficients An,j from eq. (2.35) may therefore be easier to deal with in practice. In

particular, they may be useful for the analytic bootstrap [60, 61] in three dimensions, since

the two-dimensional crossing kernel is known in closed form [62].

There are a few obvious ways to extend the results presented in this note. First, it

is possible write down a similar expansion for conformal blocks with non-zero external

dimensions. The resulting expressions are somewhat more complicated, as the selection

rule described below (2.23) does not apply. Second, it is possible to dimensionally reduce

more complicated representations of the Lorentz group. A starting point for this would be

the “seed” conformal blocks in three and four dimensions [29, 31]. An even further gen-

eralization consists of dimensionally reducing superconformal multiplets and the resulting

superconformal blocks. We leave all of these issues for future work.

Acknowledgments
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A Free field theory

A consistency check of the results obtained in this paper is furnished by free scalar field

CFT in d dimensions. We recall that the four-point function of the free scalar φ is

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
Gfree(u, v)

|x12|d−2|x34|d−2
, Gfree(u, v; d) = 1 + uν + (u/v)ν . (A.1)

The above four-point function has a well-known CB decomposition, namely

Gfree(u, v; d) = 1 + 2
∑
` even

f`G
(`)
`+d−2(u, v; d) , f2p =

1

c
(d)
2p

(ν)p(2ν)2p

4p (2p)! (ν − 1/2 + p)p
. (A.2)
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At the same time, we can decompose Gfree(u, v) in terms of d−1 dimensional conformal

blocks. From the d− 1 dimensional point of view, the four-point function (A.2) belongs to

a free field theory with a non-local action, known as a generalized free field [63]. The CB

decomposition has the following form:

Gfree(u, v; d) = 1 + 2
∑
` even

∞∑
n=0

g`,nG
(`)
`+d−2+2n(u, v; d− 1) . (A.3)

The coefficients g`,n appearing here are given by [64]

g`,n =
c

(d)
`

c
(d−1)
`

f` Z
`
` ×

{
1 n = 0

2λn(`) n ≥ 1
, (A.4)

where we introduce the notation

λn(`) :=
(1/2)n
16n n!

(`+ 2ν − 1)2n(`+ ν)n
(`+ ν − 1/2)2n(`+ ν + 1/2)n

. (A.5)

We want to verify that the CB decompositions (A.2) and (A.3) are consistent with the

dimensional reduction formula (2.35). Notice that in (A.2) only operators with twist τ = 0

appear. In the zero-twist limit, the coefficients An,j simplify:

An,j(∆, `) ∼
τ→0

Zj`
c

(d)
`

c
(d−1)
j

×

{
λn(`) j = `

δn,0 j < `
. (A.6)

Hence applying (2.35) to eq. (A.2) gives the following CB decomposition in d−1 dimensions:

Gfree(u, v; d) = 1 + 2
∑
` even

∞∑
n=0

h`,nG
(`)
d−2+`+2n(u, v; d− 1) (A.7)

with coefficients

h`,0 =
c

(d)
`

c
(d−1)
`

Z`` f` , h`,n≥1 =
c

(d)
`

c
(d−1)
`

Z`` f` λn(`) +
c

(d)
`+2n

c
(d−1)
`

Z``+2n f`+2n . (A.8)

Consistency with (A.3) requires that g`,n = h`,n for all `, n. For n = 0 this is obvious, and

for n ≥ 1 this follows from the identity

c
(d)
`+2n Z

`
`+2n f`+2n = c

(d)
` Z`` f` λn(`) . (A.9)

Similar consistency checks could be performed for more complicated four-point func-

tions in free field or generalized free field CFTs.
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