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Abstract: We study the non-perturbative dynamics of the two dimensional O(N) and

Grassmannian sigma models by using compactification with twisted boundary conditions on

R×S1, semi-classical techniques and resurgence. While the O(N) model has no instantons

for N > 3, it has (non-instanton) saddles on R2, which we call 2d-saddles. On R× S1, the

resurgent relation between perturbation theory and non-perturbative physics is encoded

in new saddles, which are associated with the affine root system of the o(N) algebra.

These events may be viewed as fractionalizations of the 2d-saddles. The first beta function

coefficient, given by the dual Coxeter number, can then be intepreted as the sum of the

multiplicities (dual Kac labels) of these fractionalized objects. Surprisingly, the new saddles

in O(N) models in compactified space are in one-to-one correspondence with monopole-

instanton saddles in SO(N) gauge theory on R3 × S1. The Grassmannian sigma models

Gr(N,M) have 2d instantons, which fractionalize into N kink-instantons. The small circle

dynamics of both sigma models can be described as a dilute gas of the one-events and two-

events, bions. One-events are the leading source of a variety of non-perturbative effects, and

produce the strong scale of the 2d theory in the compactified theory. We show that in both

types of sigma models the neutral bion emulates the role of IR-renormalons. We also study

the topological theta angle dependence in both the O(3) model and Gr(N,M), and describe

the multi-branched structure of the observables in terms of the theta-angle dependence of

the saddle amplitudes, providing a microscopic argument for Haldane’s conjecture.

Keywords: Nonperturbative Effects, Field Theories in Lower Dimensions, Sigma Models

ArXiv ePrint: 1505.07803

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2015)199

mailto:gerald.dunne@uconn.edu
mailto:unsal.mithat@gmail.com
http://arxiv.org/abs/1505.07803
http://dx.doi.org/10.1007/JHEP09(2015)199


J
H
E
P
0
9
(
2
0
1
5
)
1
9
9

Contents

1 Introduction 1

1.1 Results for O(N)-model 3

1.2 Results for Grassmannian models 4

2 O(N) sigma model in two dimensional spacetime 4

2.1 Basic properties 4

2.2 Cartan basis and twisted boundary conditions 6

2.3 Embedding O(3) into O(N) 8

2.4 One-events: kink-saddles 10

2.5 Two-events: charged and neutral bions 14

2.6 2-d saddles as a composite at long distances 14

2.7 Euclidean description of the vacuum 15

2.8 Semi-classical realization of IR-renormalons as neutral bions 16

2.9 O(3) model with Θ-angle and topological interference 17

3 Grassmannian model 19

3.1 Explicit construction for Gr(N, 2) 21

3.2 One- and two-events: kink-instantons and bions 22

3.3 Θ-angle dependence in Gr(N, 2) 22

4 Conclusions 25

1 Introduction

There is now growing evidence that resurgent trans-series expansions may provide a non-

perturbative continuum definition of quantum field theory (QFT), at least in their semi-

classical regimes [1–8], and possibly in the strong coupling regime where the operator

product expansion is interpreted as a trans-series. Resurgent trans-series encode infinite

families of relations between distinct sectors, perturbative and non-perturbative. For exam-

ple, in prototypical quantum mechanical systems like the double-well and periodic Mathieu

potentials, well-studied models for instantons and non-perturbative physics, one finds that

in fact all non-perturbative information, to all orders, is encoded in a subtle way in per-

turbation theory [9, 10]. (For a recent direct confirmation, see [11, 12].)

Resurgence has found many applications, for example in differential equations, dy-

namical systems, and fluid mechanics, and it is now widely regarded as a universal ap-

proach to asymptotic problems with a large or small parameter [13–15]. In addition to

the QFT applications [1–8], resurgent analysis has recently been applied to a variety of

problems, such as matrix models, Chern-Simons theories and topological strings [16–19],
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ABJM theory [20–24], the holomorphic anomaly [25, 26], supersymmetric localization [27],

fractionalized classical solutions [28–33], Lefschetz thimbles [34–36], Nekrasov partition

functions [37] and hydrodynamics [38].

Here we apply the resurgence formalism and the physical principle of adiabatic continu-

ity on R×S1 to the simplest asymptotically free QFT with a mass gap, the O(N) non-linear

sigma model in two spacetime dimensions (2d). The O(N) model is of particular interest

because while it is soluble at large N , and is integrable at finite-N [39–42, 44–48], the

non-perturbative structure is not yet fully understood. In particular, integrability assumes

the existence of a mass gap, which needs to be shown at finite-N . Furthermore, the model

has no instantons for N ≥ 4 in 2d, unlike 4d gauge theories. In standard textbooks, this is

often presented as a point where good analogy between 4d gauge theory and 2d O(N) mod-

els break down, deeming them useless as a 2d laboratory to understand non-perturbative

effects. (As shown in this paper, this point of view turns out to be superficial.) It is

actually expected that the O(N) model may possess a different non-perturbative structure

compared to the 2d CPN−1 models, and 4d gauge theories, which do have instantons. We

hope to provide new insights into these problems. We also generalize our earlier work on

two-dimensional CPN−1 models to the Grassmannian models Gr(N,M). The Gr(N,M)

models are interesting because the leading beta function coefficient is β0 = N , indepen-

dent of M , and we show that the non-perturbative physics follows very closely that of

CPN−1 ≡ Gr(N, 1), studied in [3, 4].

Non-perturbative semi-classical physics in gauge theories and sigma models is com-

monly identified with homotopy arguments, such as the following: the O(3) model in 2d

has instantons because π2(S2) = Z. But π2(SN−1) = 0 for N ≥ 4, so the O(N) model with

N ≥ 4 has no instantons. Contrast this with CPN−1 models, for which CP1 ≡ O(3), but

CPN−1 has instantons for all N ≥ 2 [48, 49]. However, the large-N solution of the O(N)

model shows that the Borel plane structure of perturbation theory associated with O(N)

is identical to that of the CPN−1 model [50]. Thus, at least in the large-N limit, perturba-

tion theory must have identical structure in these two theories, reminiscent of the large-N

orbifold-orientifold equivalences in gauge theories [51–53]. According to resurgence theory,

the identical structure of perturbation theory must be mirrored in the non-perturbative

saddles in the problem. We show that the key to understanding this apparent puzzle is

that, although the O(N) model with N ≥ 4 has no instantons, it has smooth finite action

classical solutions of the second-order classical equations of motion [they are saddle points,

not minima, of the action], and these play an important role in non-perturbative physics.

Our motivation is based on our recent work in Yang-Mills and CPN−1 [1–4], where

spatial compactifications on Rd×S1 with appropriate twisted boundary conditions brought

these asymptotically free theories into a calculable semi-classical regime which is connected

adiabatically to the infinite volume limit in the sense of global symmetries, and universality.

In particular, for CPN−1 it was shown explicitly that the leading ambiguity in the Borel

plane of perturbation theory [in the compactified theory] corresponds to neutral bions,

the semi-classical realization of the IR-renormalons, and is cancelled by an ambiguity in

non-perturbative bion amplitudes. This provides an explicit realization of resurgence in a

non-trivial QFT. This analysis was based on bions, correlated fractional instanton/anti-
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instanton molecules with action 2SI
N , where SI is the action of the instanton on R2. Here

we address the important question: what happens in a theory without instantons? In fact,

this question was addressed in earlier work on the SU(N) principal chiral model, which also

has no instantons, and where the 2d uniton saddle (a non-BPS solution to second order

equations of motion) fractionates into N fracton constituents [5, 6, 33]. However, this puzzle

has remained unanswered for the O(N ≥ 4) vector model in 2d, the simplest asymptotically

free QFT.1 There are many related questions: (i) Are there any non-perturbative saddles

in O(N ≥ 4) model? (ii) If there are, what are the actions associated with these saddles?

Are they related to the 2d strong (mass gap) scale Λ where Λ = µe
− 2π
g2(µ)β0 , and renormalon

singularities? (iii) Are there similarities between O(N) gauge theory and O(N) non-linear

sigma models? In this paper, we address all these questions.

1.1 Results for O(N)-model

In the O(N) sigma model on R×S1 endowed with twisted boundary conditions, the leading

non-perturbative saddles are fractional kink-instanton events Kj associated with the affine

root system of the o(N)-algebra. At second order, there are charged and neutral bions,

Bij = [KiKj ], associated with the non-vanishing entries of the extended Cartan matrix.

Neutral bions are semi-classical realizations of IR-renormalons, and produce ambiguous

imaginary non-perturbative amplitudes semiclassically. We also show that the spin wave

condensate, 〈∂µna∂µna〉, the counter-part of the gluon condensate in gauge theory, is cal-

culable in the weak coupling regime. Extending our earlier works on QCD(adj), deformed

Yang-Mills, and CPN−1, we show explicitly that the ambiguity in the spin wave conden-

sate [54], in the semi-classical regime, receives its dominant non-perturbative contribution

from neutral bions. In the bosonic O(N ≥ 4) theory, we find that fractional kink-instantons

generate effects associated with the strong scale Λ, Kj ∼ Λ2 (and not Λβ0), and intimately

related to the mass gap formation in the theory. In 2d theory, despite the triviality of

homotopy group, there exists a non-trivial saddle, solution to the 2d Euclidean equation of

motion. We call this 2d-saddle and denote its amplitude as S2d. The action of 2d-saddle is

quantized in units of 4π
g2 . We show that, in the small-L regime, the kink-instantons may be

viewed as constituents of the 2d-saddle and the two are related via a Lie algebraic formula:

S2d ∼ e−
4π
g2 =

(
Λ

µ

)2β0

∼
r∏

j=0

[Kj ]k
∨
j , β0 = h∨ =

r∑
i=0

k∨i , r = rank[o(N ≥ 4)] (1.1)

where k∨j are the co-marks (dual Kac-labels) given below in (2.5). The crucial point is that

the action of the kink-instantons is 4π
g2β0

and survive the large-N limit, unlike the 2d-saddle

and 2d-instantons in theories with instantons. One may view the vacuum structure of the

O(N) sigma model on R × S1 as a dilute gas of one- and two-events, kink-saddles and

bions. Our analysis also reveals a surprising degree of similarity between the classification

of twisted classical solutions in the O(N) sigma model on R×S1
L and those in O(N) gauge

theory on R3 × S1 [1, 2].

1Ref. [32] considers generalization of O(3) model on R2 to O(N) model in RN−1, so that instantons exists

at any N because πN−1(SN−1) = Z. Ref. [32] finds the instantons as well as fractionalized instantons for

general N . Here, we address only O(N ≥ 4) models with no instantons, on two-manifolds R2 and R× S1.
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1.2 Results for Grassmannian models

The vacuum structure of the Grassmannian sigma models Gr(N,M) on R × S1 can also

be described as a dilute gas of one- and two-events, kink-instantons and bions, whose

actions are SI
N and 2SI

N , respectively, where SI is the action of 2d instanton. The 2d-

instantons play a relatively minor role in the bosonic theory, as they are highly suppressed

in the semi-classical expansion. The dynamics of this theory is very similar to the CPN−1

discussed in our earlier work [3, 4]. Extending the analysis of [3, 4], we provided a detailed

description of the topological Θ-angle dependence of observables. First, we note that

the kink-instanton amplitude is multi-valued as a function of the Θ-angle, similar to the

monopole operators in deformed-Yang-Mills theory [55–57] and N = 1 SYM with soft

supersymmetry breaking mass term [58, 59]. We evaluate various observables, such as

condensates, and show that the observables are 2π periodic multi-branched functions as

expected by general arguments [60, 61]. In the large-N limit, we explicitly demonstrate

the emergence of large-N Θ-angle independence, similar to the Yang-Mills theory [55].

2 O(N) sigma model in two dimensional spacetime

2.1 Basic properties

The O(N) model is a non-linear sigma model with target space T = SN−1. We define the

theory on a two-dimensional manifold, M2, and we consider the plane and the cylinder:

M2 = R2, and M2 = R× S1. We consider mostly the bosonic theory and comment briefly

on the theory with Nf fermionic species. Nf = 1 case is supersymmetric O(N) model. The

bosonic field is represented by a real N -component unit vector, n = (n1, n2, . . . nN )T :

n(x) : M2 → SN−1 ,
N∑
a=1

n2
a(x) = 1 . (2.1)

The classical action of the bosonic model is

S =
1

2g2

∫
M2

(∂µn)2 ,
1

g2
=
N

λ
(2.2)

where we also defined the ’t Hooft coupling λ ≡ Ng2. The n-field is massless classically

and to all orders in perturbation theory for all N . Nevertheless, the quantum theory is

believed to be gapped, as can be shown explicitly in the large-N limit [40–45, 48, 62]. The

quantum theory is asymptotically free, and has a dynamically generated strong scale, Λ,

given by

Λ = µ e
− 2π
β0 g

2(µ) , β0 = N − 2 . (2.3)

Here µ is the UV-cut-off, and β0 is the leading coefficient of renormalization group beta-

function [63, 64]. Introducing Nf fermions to the O(N) model (or any other non-linear

2d sigma model) does not alter the leading order beta function, β0, as it can be deduced

by a simple Feynman diagrammatic argument. So, the O(N) model with any number of

fermions is always asymptotically free.
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The renormalization group β-function coefficient β0 is equal to the dual Coxeter num-

ber h∨ of the corresponding Lie group,

β0 = h∨ =


2M − 2 =

M∑
i=0

k∨i , DM = O(2M)

2M − 1 =

M∑
i=0

k∨i , BM = O(2M + 1)

(2.4)

and can be viewed as a sum of the co-marks or dual Kac labels , k∨i .2 This Lie algebraic

interpretation of β0 has a natural origin in terms of the compactified saddle solutions, as

explained in section 2.6 below. The explicit values of the co-marks are:

DM = O(2M) : (k∨0 , . . . , k
∨
M ) = (1, 1, 2, . . . , 2, 1, 1), M ≥ 4

BM = O(2M + 1) : (k∨0 , . . . , k
∨
M ) = (1, 1, 2, . . . , , 2, 1), M ≥ 3 . (2.5)

The action (2.2) has a global SO(N) symmetry

n(x)→ O n(x) , O ∈ SO(N) (2.6)

which we later use to impose twisted boundary conditions on R× S1.

The O(3) model has stable instanton solutions on R2 with action S2d,I = 4π
g2 . The base

space R2 combined with a point at ∞ can be stereographically projected to a two-sphere,

S2, i.e., topologically, R2 ∪ {∞} ∼ S2. The O(3) instantons are smooth maps S2 → S2,

whose degree takes values in π2(S2) = Z, which is the integer-valued topological charge:

QT =
1

8π

∫
d2xεµνεabc na∂µnb∂νnc ∈ Z . (2.7)

For N ≥ 4, since π2(SN−1) = 0, there are no topologically stable instanton configurations

according to homotopy theory. However, there still exist smooth finite action solutions of

the second-order Euclidean classical equations of motion [65–67]. Indeed, a simple way to

obtain such a solution is to embed an O(3) instanton into O(N) [68, 69]. The action is the

same as that of the O(3) model instanton, and is quantized. However, such a solution has

negative modes when embedded into O(N), indicating that they are saddle points of the

action, not minima [68, 69]. [Note that these classical Euclidean solutions are not particles

— they cannot decay into something else.] These solutions were constructed in [68, 69], but

their physical significance was not explored: our analysis provides a physical interpretation

of these classical saddles. We will call this object 2d-saddle, and denote its amplitude

as S2d. In a strict sense, there are no instantons here, and hopefully, this will eliminate

possible confusions. The action and weight associated with these saddles and its relation

2Our Lie algebra conventions follow appendix A and B of [1, 2], see the general discussion there as well

as the one for DM and BM .
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to renormalization group invariant strong scale Λ (2.3) is given by:3

Ssaddle =
4π

g2
, S2d ∼ e

− 4π
g2(µ) , Λ2β0 = µ2β0S2d, N ≥ 4

SI =
4π

g2
, I2d ∼ e

− 4π
g2(µ) , Λβ0 = µβ0I2d, N = 3 . (2.8)

We also consider the base space to be the spatially compactified cylinder, R× S1
L, and

adding the point at infinity, (R ∪ {∞}) × S1
L, we have S1 × S1

L. This does not ameliorate

the situation, since π(S1 × S1
L, S

N−1) = 0 for N ≥ 4. Therefore, homotopy considerations

suggest that even in the compactified theory there should not be any stable topological

defects. However, this is also naive, since in the small-L regime, a potential is induced on

the target manifold, T = SN−1. There are multiple degenerate minima of the potential

on SN−1 due to twisted boundary condition, and a potential barrier. In the low energy

regime, we will see that there exist a large-class of stable 1d -instantons, as well as correlated

instanton events.

2.2 Cartan basis and twisted boundary conditions

In this section we show that the techniques developed for the CPN−1 model [3, 4], can be

adapted to the O(N) model, with an additional reality condition on the fields. There are

small technical differences between even and odd N . We concentrate first on the simply-

laced case, N = 2M , and define the complex parametrization expressing S2M−1 in CM

rather than in R2M . For each (2i− 1, 2i) plane, we define one complex field, instead of two

real fields,

zi ≡ n2i−1 + i n2i, i = 1, . . .M (2.9)

eigenstates of rotations in the (2i− 1, 2i)-plane H2i−1,2i, the Cartan-subalgebra generators

for O(2M). The action (2.2) can be written as

S =
1

2g2

∫
M2

|∂µzi|2 ,
M∑
i=1

|zi(x)|2 = 1 . (2.10)

This form only makes the SU(M) × U(1) subgroup of SO(2M) manifest, but the full

symmetry is still present.

The rationale behind twisted boundary conditions. As in the CPN−1 model [3, 4]

and U(N) Principal Chiral Model [5, 6], we define suitable twisted boundary conditions for

which the twisted free energy density scales with N as O(N0)T 2, as opposed to O(N1)T 2.

3The following observation is true in examples we studied to date. In theories with instantons and

a strong scale, Λβ0 = µβ0I. In theories in which there are no instantons, Λ2β0 = µ2β0S, where S is a

saddle with satisfies the second order Euclidean equation of motion. In O(3),CPN−1, QCD, SQCD, the

first formula is valid and in O(N > 4) and the Principal Chiral Model (PCM), the second formula holds.

S saddles are known to have negative modes in their fluctuation operator, and in this sense, mimic [II]

correlated events. We interpret S as a singularity in the Borel plane, the counterpart of [II] in bosonic

theories with instantons.
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The rationale behind this is to have the weak-coupling semiclassical theory on the com-

pactified cylinder continuously and adiabatically connected to the gapped R2 theory, which

would not be possible if the free energy scaled as O(N1)T 2, as in the deconfined regime

where the gapless microscopic bosonic and fermionic degrees of freedom are liberated. Our

goal is to capture a regime which resembles the theory on R2 as closely as possible. The

details of this rationale can be found in [3–6].

In terms of the Cartan matrix eigenstates zi (and their fermionic partners), the twisted

boundary conditions amounts to(
(zi)

(zi)
∗

)
(x1, x2 + L) =

(
Ω0

Ω†0

)(
(zi)

(zi)
∗

)
(x1, x2) for O(2M)

 (zi)

(zi)
∗

n2M+1

 (x1, x2 + L) =

Ω0

Ω†0
1


 (zi)

(zi)
∗

n2M+1

 (x1, x2) for O(2M + 1) (2.11)

where L is the spatial compactification scale, and the twist matrix is

Ω0 =


e2πiµ1 0 . . . 0

0 e2πiµ2 . . . 0
...

0 0 . . . e2πiµM

 , 0 ≤ µM ≤ µM−1 ≤ · · · ≤ µ1 ≤
1

2
. (2.12)

The restriction 0 ≤ µj ≤ 1
2 arises from the reality of the original O(N) fields. Note that

for O(2M), all eigenvalues are paired, while for O(2M + 1), only one of the eigenvalues of

the logarithm of twist matrix is actually zero, and unpaired.

These boundary conditions can be traded for a background field for the complex arg(zi)

field, similar to CPM−1 [3, 4]. A field redefinition introduces periodic fields (with tilde on

them) and a background “holonomy”.

z̃i(x1, x2) = e−i2πµix2/Lzi(x1, x2), z̃i(x1, x2 + L) = z̃i(x1, x2), (2.13)

where the action takes the form

S =
1

2g2

∫
R×S1

L

|Dµz̃i|2 , Dµz̃i =

(
∂µ + iδµ2

2πµi
L

)
z̃i . (2.14)

We choose the boundary conditions for which the twist free energy is minimal [3–6]. This

amounts to the choice depicted in figure 1, for which the M eigenvalues are distributed as

uniformly as possible in the interval [0, π]:

(µM , µM−1, . . . , µ2, µ1) =

(
0,

1

2(M − 1)
,

2

2(M − 1)
, . . . ,

M − 2

2(M − 1)
,

1

2

)
. (2.15)

Notice that the eigenvalues appear in ± pairs, due to the reality condition on the fields.

Thus the interval [0, π] is divided into M−1 equal wedges, rather than M , thus the wedges

have angle 2π
2M−2 .
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Figure 1. Twisted boundary condition for the O(2M) (left) and O(2M + 1) (right) models. The

blue points are mirror images of the red ones. ±µ1 and ±µM are coincident, but are split for

convenience of visualization. For O(2M + 1), the eigenvalue at zero does not have a mirror image.

In the figure, the eigenvalue position ei2πµj is denoted by µj .

For odd N , the situation is similar, with a small technical difference that mimics the

different root structure of the associated Lie algebra, since O(2M + 1) is non-simply laced.

Take N = 2M + 1. The twist matrix Ω0 is again an M ×M matrix, but with

(µM , µM−1, . . . , µ2, µ1) =

(
1

2

1

2M − 1
,

1

2

3

2M − 1
,

1

2

5

2M − 1
, . . . ,

1

2

2M − 3

2M − 1
,

1

2

)
. (2.16)

This accounts for the non-simply-laced structure of the algebra, and is represented in

figure 1 (right). Note that the eigenvalue at zero is not paired, and is not dynamical. The

long wedges have angle 2π
2M−1 , and the short wedge (between zero and µM ) has angle π

2M−1 .

Note that the backgrounds (2.15) and (2.16) are same as the Wilson line backgrounds in

gauge theory R3×S1 with one-adjoint representation fermion, i.e, N = 1 SYM with gauge

groups SO(2M) and SO(2M+1) respectively [1, 2]. This analogy, as we will demonstrate in

detail, is also mirrored in the classification of the non-perturbative saddles between sigma

model and gauge theory.

2.3 Embedding O(3) into O(N)

To construct fundamental classical solutions in O(2M) with twisted boundary conditions,

we embed O(3) solutions into O(2M). This is analogous to the construction of topological

instanton or monopole-instanton solutions in gauge theory, built out of SU(2) solutions

embedded into the larger gauge group, e.g. into SU(N). The main idea is that O(3),

similar to SU(2), is rank-1, and is the minimal possible group structure in which a non-

trivial solution can live.

– 8 –
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To this end, we work within the subspaces respecting the appropriate constraints for

the z(x1, x2) field. So, consider only two out of M -components turned on:

z1

z2

...

zj+1

zj+2

...

zM


−→



0

0
...

zj+1

zj+2

...

0


such that |zj+1|2 + |zj+2|2 = 1 . (2.17)

However, the (zj+1, zj+2)T is an O(4) or rank-2 object, with 3 real degrees of freedom,

whereas an O(3) solution should be a rank-1 structure, with 2 degrees of freedom.

We can have an O(3) ∼ CP1 living in O(4) by using a parametrization that is most

convenient for using the twisted boundary conditions:(
zj+1

zj+2

)
=

(
eiφ/2 cos θ2

e−iφ/2 sin θ
2

)
. (2.18)

Here, the coordinates (zj+1, zj+2)T can be obtained by gauging an overall U(1) factor in

the target space S3 of the O(4) model. The CP1 model is equivalent to the O(3) non-linear

σ-model through the simple identification of fields:

~n(x) = z†j+a~σabzj+b (2.19)

where ~σ are the Pauli matrices.

Now we see the effect of the twisted boundary conditions (2.11):(
zj+1

zj+2

)
(x1, x2 + L) =

(
ei2πµj+1zj+1

ei2πµj+2zj+2

)
(x1, x2) . (2.20)

One can undo the twist in favor of a background field and periodic fields (θ, φ) ∈ S2.

Using (2.19), this amounts to the following modification of the S2 coordinates, in terms of

original real fields na that we have used: n1

n2

n3

 =

 sin θ cos (φ+ ξx2)

sin θ sin (φ+ ξx2)

cos θ

 , ξ =
2π

L
(µj+1 − µj+2) . (2.21)

The twisted background emulates a fractional momentum insertion in the compact x2

direction, and this has interesting consequences. The resulting Lagrangian on R× S1 is

given by

S =
1

2g2

∫
R×S1

L

(∂µθ)
2 + sin2 θ(∂µφ+ ξδµ2)2 . (2.22)
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2.4 One-events: kink-saddles

In the small-L semiclassical limit, the 2d QFT reduces to an effective quantum mechanics

(QM) problem, by a Kaluza-Klein decomposition of the fields [3–6]. As L→ 0, the reduced

QM action becomes

S =
1

2g2

∫
R

[
(∂tθ)

2 + sin2 θ(∂tφ1)2 + ξ2 sin2 θ
]

(2.23)

where the effect of the twist-term is to create a potential barrier between the north and

south pole of the two-sphere, S2. The Hamiltonian is given by,

H =
g2

2
P 2
θ +

g2

2 sin2 θ
P 2
φ1

+
ξ2

2g2
sin2 θ . (2.24)

The φ-fluctuations, when quantized, are gapped. Since φ is cyclic coordinate, the Hamil-

tinian is already diagonal in the angular momentum Pφ-basis, with quantum numbers

mφ = 0,±1,±2, . . .. Since the gap in the φ-sector is of the order g2/L, and the low energy

physics is governed by non-perturbatively small energy splitting, we set mφ = 0 from here

on. This is the justification of the Born-Oppenheimer approximation. Thus, it suffices to

study the action

S =
1

2g2

∫
R

[
(∂tθ)

2 + ξ2 sin2 θ
]
, (2.25)

except for the study of affine-kink saddle (and related ones) to be discussed below. Explicit

solutions are expressed in terms of Sine-Gordon kinks, as in the CPN−1 model [3, 4].

Simply laced o(2M) case. The kink-saddles are associated with the roots of the Lie

algebra. Again we first illustrate with the simply-laced O(2M). The minimal action saddles

are in one-to-one correspondence with the affine root system

∆aff =
{
αi = ei − ei+1, αM = eM−1 + eM , α0 = −e1 − e2

}
(2.26)

where i = 1, . . . ,M − 1 and ei, i = 1, . . . ,M is the unit vector in the ith direction. These

saddles are associated with the tunneling in field space between the following configurations:

K1 :


1

0
...

0

0

 −→


0

1
...

0

0

 , K2 :


0

1

0
...

0

 −→


0

0

1
...

0

 , . . . ,KM−1 :


0

0
...

1

0

 −→


0

0
...

0

1



KM :


0

0
...

1

0

 −→


0

0
...

0

−1

 K0 :


−1

0
...

0

0

 −→


0

1
...

0

0

 , (2.27)
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Since O(2M) is simply laced, the actions of the 1d-saddles are proportional to the distance

between the eigenvalues of −i log Ω0. With our choice of ordering of µi, the action of the

1d-saddle events for i = 0, 1, . . . ,M is given by

SKi ≡ S0 =
2ξ

g2
=

4π

g2
(αi.µ) =

4π

g2(2M − 2)
=

4π

g2β0
(2.28)

where we used special notation (following [1, 2])

αj .µ := αj .µ+ δj,0 =

{
(αj .µ), j = 1, . . . ,M

(α0.µ) + 1, j = 0

}
. (2.29)

This means, special care is needed for the affine root, α0. One may be tempted to think

that the action for the α0 kink-saddle is the absolute value of 4π(µ1+µ2)
g2 = 4π(2M−3)

g2(2M−2)
, which

is (2M−3) times larger than the others. However, this is not the least action configuration

associated with ∆z = α0 tunneling event. In fact, recall that the twisted background

behaves as a fractional momentum insertion in the compact direction. Combined with

n = 1 units of Kaluza-Klein momentum for the φ field, and then, performing a “twisted”

dimensional reduction, one obtains

S =
1

2g2

∫
R

[
(∂tθ)

2 + (2π(1 + α0.µ))2 sin2 θ
]
, (2.30)

and the minimal action of the tunneling event associated with α0 is given by (2.28). This

classical solution is the counter-part of the twisted monopole-instanton in gauge theory on

R3 × S1 [1, 2, 70, 71].

Non-simply laced o(2M + 1) case. The minimal action saddles are in one-to-one

correspondence with the affine root system

∆aff =
{
αi = ei − ei+1, αM = eM , α0 = −e1 − e2

}
(2.31)

where i = 1, . . . ,M − 1. Note that all roots but αM has length square-root two. The

length of αM is just one. This has a small effect in determination of the action of kink-

instantons. (2.28) used in the action of the kink-instantons is valid only for simply-laced

case. A formula for the kink-instanton action valid for both simply and non-simply laced

algebras is given by:

SKi =
4π

g2

(
2(αj .µ)

αj .αj

)
=

4π

g2


(αj .µ), j = 1, . . . ,M − 1

(α0.µ) + 1, j = 0

2(αM .µ), j = M

 =
4π

g2(2M − 1)
=

4π

g2β0

(2.32)

i.e, there is an extra factor of two for the short root. In the penultimate step, we used the

background (2.15) where the actions of all the kink-instantons become equal.

Figure 2 describes two properties at once. One is that it describes the eigenvalues

of the log of the twist matrix given in (2.11) for both O(2M) and O(2M + 1) cases, and
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µ1µ2µ3µM−1µM −µ1

e1e2e3eM −e1−eM

α1

α2

α0αM−1

αM

−π π0

−e1e1

µ1 −µ1

eM−1

αM−2

−µM

µ1µ2µ3µM−1µM −µ1

e1e2e3eM −e1−eM

α1

α2

α0

αM−1

αM

−π π
0

−e1e1

µ1 −µ1

eM−1

−µM

Figure 2. Minimal action saddles associated with the affine root system of the simply-laced o(2M)

algebra (top) and the root system of the non-simply laced o(2M + 1) algebra (bottom). In the

simply laced case, the action of the saddles are proportional to the eigenvalue differences. In the

non-simply laced case, the short root (and its KK-tower) requires more care, as discussed in the text.
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Figure 3. Figure 2 can be reinterpreted in terms of the Dynkin diagrams of DM = O(2M) and

BM = O(2M + 1). The shaded circles denote the affine affine roots, and are present because the

theory is compactified on a circle. There is a short root in the non-simply-laced O(2M + 1) case.

The above diagrams should be used for BM≥3 = O((2M + 1) ≥ 7), and DM≥4 = O((2M) ≥ 8),

with lower rank cases requiring slightly more care due to additional symmetries.

the background it is associated with. To each eigenvalue, µi, there exits a corresponding

eigenvector ei (of the Cartan sub-algebra generators), and we associate 0 vector with frozen

eigenvalue, µ0 = 0. Given this picture, the elementary kink-saddles acquire a nice interpre-

tation as the solid lines connecting the nearest neighbor vector spaces, and correspond to

the simple and affine roots. In this sense, this picture is dual to the affine Dynkin diagram

(figure 3).

Figure 2 depicts only one kink-saddle of a given type. Physically, the tunneling events

(kink-saddles) connecting nearby vacua proliferate (as shown in a subsequent figure 4).

This figure then becomes the description of the Euclidean vacuum at leading semi-classical

order.

Figure 2 is also exact counterpart of the non-trivial Wilson line holonomy (vertical

lines) and corresponding monopole-instantons associated with roots (horizontal black lines)

in SO(2M) and SO(2M +1) gauge theory compactified on a circle [1, 2]. Equivalently, it is

the counterpart of the orientifold construction in terms of D-branes [72]. This is essentially

the explanation of the surprising fact that gauge theory on R3 × S1 and sigma model on

R1 × S1 have equivalent representations in terms of non-perturbative saddles.

– 13 –
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Figure 4. A snap-shot of the dilute gas of one- and two-events, kink-saddles (associated with

roots) and bions (associated with non-zero entries of the extended Cartan matrix), respectively.

The amplitude of the neutral bions are two-fold ambiguous, fixing the ambiguity of perturbation

theory.

2.5 Two-events: charged and neutral bions

The classification of bions, the correlated two-events, is identical to the CPN−1 model. Two

defects are universal and are in one-to-one correspondence with the non-vanishing entries

of the extended Cartan matrix. So, the only difference with respect to the CPN−1 case

is the replacement of the SU(N) extended Cartan matrix with the O(N) one. For the

discussion of the correlated amplitudes and derivations, see [3, 4].

• Charged bions: for each non-vanishing negative entry of the extended Cartan matrix,

Âij < 0, there exists a bion Bij = [KiKj ] ∼ e−2S0 , associated with the tunneling

event

z̃ −→ z̃ + αi − αj αi ∈ Γ∨r . (2.33)

• Neutral bions: for each non-vanishing positive entry of the extended Cartan matrix,

Âii > 0, and there exists a bion Bii,± = [KiKi]± with vanishing topological charge

and associated with the tunneling-anti-tunneling event

z̃ −→ z̃ + αi − αi αi ∈ Γ∨r . (2.34)

The neutral bion amplitude is two-fold ambiguous in the bosonic model.

2.6 2-d saddles as a composite at long distances

In 2-dimensions, instantons are exact BPS solutions for the O(3) model, but for O(N)

with N ≥ 4, they satisfy the second-order Euclidean equations of motion, and possess

negative modes in the fluctuation operator around them. Despite this, the action of these

configurations is quantized in units of instanton action. These are harmonic maps, and

as such, they are finite action extrema of the given action functional. To distinguish from
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instantons which are solutions to first order equations, we will refer to these as saddles.

They are the analog of the “unitons” of the Principal Chiral Model [5, 6, 73–75]:4

Ssaddle =
4π

g2
. (2.35)

The 1d-kink saddles of the previous section may be viewed as the constituents of these 2d

saddles. The relation is Lie algebraic, and applies to both O(2M) and O(2M + 1). There

exists a unique positive integral linear relation among the simple and affine co-roots,

r∑
j=0

k∨j α
∨
j = 0, α∨j ≡

2

(α, α)
α, r = rank[o(N)] (2.36)

with k∨0 = 1, where k∨j are called the dual Kac labels (or co-marks), and α∨j are co-

roots, elements of the dual vector space, associated with each root. This mathematical

relation defines the physical relation between the 2d saddle and its constituent kink-saddles.

Combining k∨j kink-saddles of type Kj for j = 0, . . . , r we obtain the amplitude:

S2d ∼
r∏

j=0

[Kj ]k
∨
j = e

− 4π
g2β0

∑r
j=0 k

∨
j = e

− 4π
g2β0

h∨
= e
− 4π
g2 . (2.37)

In the last step, we used the fact that the beta-function coefficient β0 is exactly equal to

the dual Coxeter number h∨. Thus, the 2d saddle may be viewed, at least in the weak

coupling regime, as fractionalizing into r + 1 kink-saddles with multiplicities equal to the

co-marks, k∨j .

2.7 Euclidean description of the vacuum

The Euclidean vacuum of the O(N) model may be viewed as a dilute gas of one-, two-, etc

events, a snap-shot of which is depicted in figure 4. The density of the k-event is e
−k 4π

g2β0 ,

thus, the densities are hierarchical. Most of the interesting non-perturbative phenomena

are sourced by one and two-events, e.g, mass gap, semi-classical realization of renormalons.

The small-LNΛ theory, constructed by using twisted boundary conditions remembers

the strong scale and dynamics of the two-dimensional theory to a large-degree. The non-

perturbative gap in the spectrum of the theory in the regime LNΛ . 1 is a kink-saddle

effect and is given by

mg ∼ (LN)−1e−SKαi = (LN)−1e
− 4π
g2β0 = Λ(ΛLN) . (2.38)

The weak coupling semi-classical approximation breaks down at LNΛ ∼ 1, where the

semi-classical gap reaches ∼ Λ. One may surmise that the gap is saturated at this scale

for LNΛ & 1. At the two-event level, the neutral bion is two-fold ambiguous, and this

ambiguity cancels exactly the ambiguity of perturbation theory in the small-S1 regime.

4In the case of O(4) model, target space is S3, same as the SU(2) PCM. In that case, the O(4) saddle

is exactly same as SU(2) uniton.
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We would like to comment briefly why this picture is relatively surprising. Historically,

O(N > 3) model is viewed as a theory with no instantons. Sometimes, it is also erroneously

asserted that O(N) model is a field theory with a mass gap, but with no non-perturbative

saddles. Both perspectives are often presented as a point of divergence from the interesting

4d gauge theories. Consequently, more interest is given to theories with instantons. The

picture that emerges by combining resurgence and continuity instructs us that in O(N)

model, the classification of saddles in O(N) model on R × S1 is essentially isomorphic to

the one of gauge theory on R3 × S1.

2.8 Semi-classical realization of IR-renormalons as neutral bions

The operator product expansion (OPE) connects perturbative information with non-pertur-

bative condensates. The rate of the factorial divergences associated with infrared (IR)

renormalons are identified with certain condensates of specific dimensions [76–82]. On

R2, the exact large-N solution provides a rigorous realization of this idea. The first IR

renormalon Borel singularity in O(N) model and the OPE spin-wave condensate are related

as [50]

tR
2

IR = 2× 4π

β0 g2(Q2)
↔ 〈O1〉 = 〈∂µna∂µna〉 ↔

(
Λ2

Q2

)
, (2.39)

where β0 is the first coefficient of the β function. Equivalently, one can state that the O1

vev is two-fold ambiguous: let θ = arg(g2).

〈O1〉θ=0± = c1Λ2 ± id1Λ2 , (2.40)

This ambiguity arises because arg(g2) = 0 is a Stokes lines. This ambiguity cancels the

ambiguity in the Borel resummation of perturbation theory along the Stokes line. On R2

there is no known semi-classical understanding of this ambiguity.

Note that the 2d-saddle we discussed around (2.8) may have negative modes and may

also have ambiguities. This is morally similar to the instanton-anti-instanton ambiguity

in the theories with instantons. This singularity, similar to the instanton-anti-instanton

singularity, is rather far from the origin of the Borel plane, it can only give a very sup-

pressed power law correction especially at large-N , S2d ∼
(

Λ2

Q2

)β0

. Clearly, the renormalon

singularity discussed above is approximately N -times closer to the origin.

Our semi-classical analysis of the O(N) model, using spatial compactification to the

cylinder R × S1
L along with adiabatic continuity, provides a semi-classical realization of

the leading IR-renormalon in the small-circle regime. Due to asymptotic freedom, in this

weak-coupling semi-classical domain we can calculate the non-perturbative contribution

to 〈O1〉. In the Euclidean path integral representation, the condensate 〈O1〉 receives its

leading non-perturbative contribution from the kink-saddles. Figure 4 represents a snap-

shot of the Euclidean vacuum of the theory. It is, as described already, a dilute gas of

one-events, two-events, three-events etc.

Calculating the vacuum expectation value O1 at leading order in semi-classics is equiv-

alent to finding the average of the action density 1
2∂µn

a∂µn
a over all space. The action
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density is concentrated within the characteristic size rK of the kink-saddles. The con-

densate, at leading semi-classical order, is therefore proportional to the density of the

kink-saddle events. Both kink-saddles and anti-kink saddles contribute to O1 in the same

manner 〈O1〉 ∝
∑

j SKj
(
Kj +Kj

)
∝ SKe−S0 where S0 = 4π

g2β0
. Note the appearance of the

β0 factor in the exponent, associated with the fractionalization of the kink-saddles.

More interesting effects arise at second order in a semi-classical expansion. There

are both charged and neutral bion events contributing to the condensate, Bij = [KiKj ],
Bii,± = [KiKi]±. The action of both events is 2S0 = 8π

g2β0
. The crucial point is that the

neutral bion event is two-fold ambiguous, and this ambiguity is associated with the leading

order growth (and hence ambiguity) of the perturbation theory.

t
R×S1

L
IR = 2× 4π

β0 g2(LN)
↔ Bii,± ∼ e

− 8π
g2β0 ± iπe−

8π
g2β0 ∼ (ΛL)4 ± i(ΛL)4 . (2.41)

Studying perturbation theory at small circle in the effective dimensionally reduced QM

system produces an ambiguity exactly the same as in (2.41), but opposite in sign. This is

exactly the same effect as was observed in the CPN−1 model [3, 4]. Indeed, we see that the

ambiguity in the spin-wave condensate calculated on R× S1
L is sourced by neutral bions.

Im〈∂µna∂µna〉± ∝ ImBii,± = Im[KiKi]± . (2.42)

In the small-L regime, the Borel plane singularities for the O(N ≥ 4) models is diluted

by a factor of two, with respect to the singularities on R2 (similar to PCM model [5, 6])

while for O(3) model, the location of singularities remain unchanged. It remains an open

question to understand the flow of singularity location as a function of compactification

radius.

2.9 O(3) model with Θ-angle and topological interference

The O(3) model, unlike the O(N ≥ 4) model, admits a topological theta angle, and re-

latedly, instantons. In the O(3) model, there are two minimal action fractionalized kink-

instantons, each with topological charge Q = 1
2 [83–85]. Since the Θ angle is periodic

by 2π, the kink-instanton amplitudes are multi-branched, two-branched in this case. The

amplitudes associated with these events are:

K1,k = e−SI/2ei
Θ+2πk

2 , K1,k = e−SI/2e−i
Θ+2πk

2 ,

K2,k = e−SI/2ei
Θ+2πk

2 , K2,k = e−SI/2e−i
Θ+2πk

2 . (2.43)

where k = 0, 1. Under a 2π shift of the Θ angle, the kink amplitude transforms as

Θ→ Θ + 2π : Ka,k → Ka,k+1 (2.44)

reflecting the two-branched structure: each kink-instanton amplitude returns to itself under

a 4π shift. On the other hand, the full 2d instanton may be viewed as a composite of the

these kink-instantons, and as expected, it is independent of branch, manifestly periodic by

2π. Under a 2π shift of the Θ angle, the instanton amplitude is invariant:

Θ→ Θ + 2π : I ∼ K1,kK2,k ∼ e−SIeiΘ → K1,k+1K2,k+1 ∼ I . (2.45)
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Figure 5. The Θ angle dependence of various observables: Left: spin wave condensate O1(Θ) and

mass gap mg(Θ). Right: topological chage density condensate OT (Θ) in O(3) model. Each is a

two-branched function. O1(Θ) has a cusp at Θ = π associated with a change of branch. OT (Θ) has

a discontinuity at Θ = π.

The non-perturbatively induced mass gap of the theory is the non-perturbative energy

splitting between the ground state and the first excited state. This is an effect which is

induced by kink-instantons at leading order, similar to the discussion for the CP1 in [3, 4].

The Θ angle dependence of the mass gap at leading order in semi-classics is given by a

two-branched function, see figure 5:

mg(Θ) = Maxk

[
Λ cos

Θ + 2πk

2
+O(e−2S0)

]
. (2.46)

Note that the density of the two types of kink-saddle is identical at any Θ, and is propor-

tional to |Ki,k| = e−SI/2, and independent of Θ-angle. Despite the fact that the mass gap

is sourced at leading order by kink-saddles, whose density is Θ-independent, the mass gap

has a non-trivial Θ-angle dependence, as a result of the topological interference effect [55],

which also provides a microscopic explanation for Haldane’s conjecture [86]. For Θ = 0,

mass gap is maximal. For Θ = π, mass gap vanishes at leading order in semi-classics

because of the destructive interference, (K1 + K2)|Θ=π = 0. At sub-leading order, an ex-

ponentially smaller mass gap may be induced, this is sub-leading compared to the effects

considered here. This result of semi-classics provides evidence in favor of Haldane’s conjec-

ture, identifying Θ = 2πS, where S is spin. Indeed, Haldane claimed that the integer spin

theory (Θ = 0) is gapped, while the half-integer spin theory (Θ = π), is gapless [86]. Our

leading semi-classical result and topological interference effect is in concordance with this.

As already mentioned for general O(N), in the Euclidean path integral representation.

the condensate O1(Θ) = 〈12∂µna∂µna〉 receives the leading non-perturbative contribution

from kink-instantons. Figure 4 represents a snap-shot of the Euclidean vacuum of the

theory. It is, as described already, a dilute gas of one and two-events. Calculating the

vacuum expectation value O1(Θ) at Θ = 0 and at leading order in semi-classics is equivalent

to finding the average of the action density 1
2∂µn

a∂µn
a over all space. Introducing Θ 6= 0

is equivalent to a complex phase for the fugacity of topological defects, a complex fugacity.

The action density is concentrated within the characteristic size rK of the kink-instanton.
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The kink-instantons contribute in the same way to O1(Θ) and topological charge den-

sity condensate OT (Θ) = 〈 1
8π εµνεabcna∂µnb∂νnc〉 as +SKKa,k, because both configuration

has the same action density. On the other hand, the anti-kink-instantons contribute to

O1(Θ) as +SKKa,k while they contribute to OT (Θ) as −SKKa,k, because the topological

charge densities of the two configurations are opposite in sign. Therefore, the leading

contribution to these two condensates takes the form:

O1(Θ) ∝ +SKExtk
(
Ka,k +Ka,k

)
∝ SKe−SI/2Extk cos

Θ + 2πk

2

OT (Θ) ∝ +SKExtk
(
Ka,k −Ka,k

)
∝ SKe−SI/2Extk sin

Θ + 2πk

2
(2.47)

where by Extk, we mean that the vacuum energy should be extremized among the two-

branches, and the observable should always be calculated at the genuine vacuum branch.

The O(3)-model Lagrangian has an exact CP-symmetry at Θ = 0 and at Θ = π. Under

CP-symmetry, iΘQT → −iΘQT , and this is a symmetry if and only if Θ = 0, π, because

Θ is periodic by 2π.

At Θ = 0, the O1(Θ) condensate is maximal, and the OT (Θ) condensate vanishes. The

reason for the vanishing of the latter is that kinks and anti-kinks contribute oppositely to

the topological charge density condensate. A consequence of this is unbroken CP-symmetry.

At Θ = π, the O1(Θ) condensate vanishes, due to topological interference, and the

OT (Θ) condensate is discontinuous, i.e., it jumps. This discontinuity and jump are not

related to resurgence. Instead, OT is an order parameter for CP-symmetry, and this sym-

metry is believed to be spontaneously broken at Θ = π on R2, taking one of the two

possible values: 〈OT 〉 = ±Λ2, and two isolated vacua. Our leading semi-classical analysis

confirms this expectation.

3 Grassmannian model

The Grassmannian model, denoted as Gr(N,M), is a 2d non-linear sigma model with

complex Grassmannian target space:

Gr(N,M) =
U(N)

U(N −M)×U(M)
. (3.1)

These models have instantons [49, 87, 88]. For M = 1, Gr(N,M) reduces to the CPN−1

model whose non-perturbative resurgent properties were studied in [3, 4]. There a key

feature of the analysis was the fractionalization of CPN−1 instantons into N fundamental

kink-instanton components when compactifed with twisted boundary conditions, and the

correspondence with the beta function coefficient β0 = N for CPN−1. Here we show

that the situation for the Grassmannian models Gr(N,M) with M ≥ 2 is actually quite

similar. Some aspects of classifying bion solutions in Grassmannian models have also

appeared in [31], but here we study the fractionalizations associated with adiabatic spatial

compactification. The beta function coefficient β0 = N , independent of M , and the twisting

is again associated with the global U(N) symmetry group. Moreover, the construction of
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classical solutions is quite similar for all Gr(N,M). But there are some interesting technical

differences, which we outline in this section. For example, it is not immediately clear what

is the most useful parametrization of the Gr(N,M) manifold such that we can see the

fractionalization of 2d instanton into kink-instantons in its simplest form. It turns out that

once this is achieved, the construction of two-events (neutral and charged bions) and the

relation of these semi-classical configurations to renormalons follows the universal pattern

of gauge theory and other non-linear sigma models, such as CPN−1.

For ease of presentation, we first introduce some notation. We define the theory on

a two-dimenisonal manifold, the plane M2 = R2, and the spatially compactified cylinder

M2 = R×S1
L. Our methods easily generalize to theories with Nf fermionic species, similar

to [3, 4]. The bosonic field is defined as the map:

z(x) : M2 → Gr(N,M) ≡ U(N)

U(N −M)×U(M)
. (3.2)

The real dimension of the Gr(N,M) manifold is equal to the number of microscopic inde-

pendent degrees of freedom in the model:

dimRGr(N,M) = N2 − [(N −M)2 +M2] = 2M(N −M) . (3.3)

This aspect is interesting, because as M interpolates from O(N0) to O(N1), the number

of degrees of freedom interpolates from being O(N1) to O(N2). The theory moves from a

vector-like to a matrix-like large-N limit. Explicitly, z(x) is an N ×M matrix

(z)ja(x), j = 1, . . . , N, a = 1, . . .M (3.4)

obeying the constraint:

z†z = 1M×M . (3.5)

The action of the bosonic model is

S =
2

g2

∫
M2

t̃r |Dµz|2 − i
Θ

2π

∫
M2

εµν t̃r∂µz
†∂νz , Dµz = ∂µz − zAµ (3.6)

where Aµ = z†∂µz is an M ×M auxiliary gauge field, Dµz = ∂µz− zAµ is gauge covariant

derivative, and Θ is topological theta-angle. The traces is over the space of M×M matrices.

with the convention t̃r = 1
M tr. The action (3.6) has a global U(N) symmetry, and a local

U(M) gauge redundancy under which the elementary field transforms as:

z(x)→ ΩNz(x)ΩM (x) , ΩN ∈ U(N), ΩM ∈ U(M), (3.7)

We will use (3.7) to impose twisted boundary conditions on the cylinder R× S1
L.

The z(x)-field is massless classically, and also to all orders in perturbation theory.

The bosonic theory on M2 = R2 is believed to possess a mass gap quantum mechanically,

although the mechanism via which a mass gap is formed is unknown on R2. The the-

ory possess 2d instantons, solutions to the self-duality equations, Dµz = ±iεµνDνz, with

quantized action and relation to strong scale:

SI =
4π

g2
, I2d ∼ e

− 4π
g2(µ) , Λβ0 = µβ0I2d, any (N,M) . (3.8)
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The leading perturbative beta function coefficients is

β0 = N for Gr(N,M) (3.9)

independent of M . It is also unchanged by the inclusion of Nf fermion flavors. The theory

is asymptotically free for all (N,M) and for all Nf .

Here, we study this Gr(N,M) theory in a semi-classically calculable regime, on R×S1
L

with twisted boundary conditions:

z(x1, x2 + L) = Ω0
Nz(x1, x2)Ω0

M

zja(x1, x2 + L) = e2πiµjzja(x1, x2)e−2πiωa . (3.10)

The choice of ωa is irrelevant, because the U(M) “symmetry” is actually a (gauge) redun-

dancy, while the U(N) symmetry is a global one. Explicit calculation also shows that this

is indeed the case.

3.1 Explicit construction for Gr(N, 2)

Below, we give details of the explicit construction of kink-instanton solutions for Gr(N, 2),

the first class of non-CPN−1 Grassmannian theories. In order to find the counter-part of

the kink-instantons in CPN−1, we first project to subspaces in which the minimal tunneling

events take place:

z =



z11 z12

z21 z22

...
...

...
...

zN1 zN2


−→ z =



0 0
...

...

zj1 zj2
zj+1,1 zj+1,2

...
...

0 0


. (3.11)

The first column of (3.11) can be picked as a representation of CPN−1. Once this is done,

the constraint (3.5) restricts the form of the second column:

z =



0 0
...

...

eiφj1 cos θ2 −eiφj2 sin θ
2

eiφj+1,1 sin θ
2 e

iφj+1,2 cos θ2
...

...

0 0


such that, φj1 − φj+1,1 = φj2 − φj+1,2 . (3.12)

In this parametrization, twisted boundary conditions act only on arg zja = φj,a.

φja(x1, x2 + L) = φja(x1, x2) + 2πµj − 2πωa . (3.13)

The Lagrangian is a trace over a 2× 2 matrix, whose diagonals are Laa, a = 1, 2

Laa =
1

2g2

[
(∂µθ)

2 + sin2 θ(∂µ(φja − φj+1,a) + ξδµ2)2
]
, ξ = 2π(µj − µj+1) (3.14)
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where the twisted boundary conditions are undone in favor of a background field. Note

that in the combination (φja − φj+1,a), the dependence on ωa drops out. This is because

the U(2) “symmetry” is a local redundancy, as opposed to being a genuine symmetry.

Thus, L11 = L22.

3.2 One- and two-events: kink-instantons and bions

The action (3.14) is essentially the same as what appeared in the CP1 model. When

reduced to quantum mechanics, we obtain the same quantum mechanical action (2.23). It

has obvious minimal action kink-instanton solutions associated with the simple roots of the

u(N) algebra. There is also a kink-instanton event associated with the affine root, whose

demonstration is identical to the discussion of CP1.

Kink-instanton events interpolate between the minima of the action and their explicit

form is given by

K1 :


1 0

0 1

0 0
...

...

0 0

 −→


0 −1

1 0

0 0
...

...

0 0

 K2 :


0 0

1 0

0 1
...

...

0 0

 −→


0 0

0 −1

1 0
...

...

0 0

 , . . . ,

KN−1 :


0 0
...

...

0 0

1 0

0 1

 −→


0 0
...

...

0 0

0 −1

1 0

 KN :


0 1

0 0
...

...

0 0

1 0

 −→


1 0

0 0
...

...

0 0

0 −1

 . (3.15)

In the space of fields, these tunneling events correspond to the change in the z field by an

amount:

Kj : ej + fj+1 → ej+1 − fj ∆z = z(∞)− z(−∞) ≡ αj = ej+1 − ej − fj+1 − fj .
(3.16)

The non-perturbative weight associated with these kink-instanton saddles is given by

Kj ∼ e−SI/N = e
− 4π
g2N , j = 0, 1, . . . , N − 1 . (3.17)

The connection between these twisted semi-classical solutions and the IR renormalons in

perturbation theory then follows exactly the same construction as for the CPN−1 mod-

el [3, 4].

3.3 Θ-angle dependence in Gr(N, 2)

Gr(N, 2) model admits the addition of a topological theta-term to the microscopic La-

grangian, iΘQT , written explicitly in (3.6). For a 2d instanton, the topological charge is

QT = 1. As discussed above, there are N minimal action kink-instantons, each with topo-

logical charge QT = 1
N . Since Θ angle is periodic by 2π, the kink-instanton amplitudes
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are multi-branched (here N -branched), just as for the monopole-instanton amplitudes in

(deformed) Yang-Mills theory on R3 × S1
L [55, 56]. The amplitudes associated with such

kink-instanton or kink-anti-instanton events are:

Kj,k = e−SI/Nei
Θ+2πk
N , Kj,k = e−SI/Ne−i

Θ+2πk
N , k = 1, . . . , N (3.18)

for each j = 0, 1, . . . , N−1. Under a 2π shift of the Θ angle, each kink-instanton amplitude

transforms cyclically:

Θ→ Θ + 2π : Kj,k → Kj,k+1 (3.19)

reflecting the N -branched structure. Kj,k returns to itself after 2πN shifts in Θ, Kj,N+k =

Kj,k. The 2d instanton is a composite of the N -kink instantons, and as expected, it is

independent of branch:

I ∼
N−1∏
j=0

[Kj,k]k
∨
j =

N−1∏
j=0

Kj,k = e−SIeiΘ = e
− 4π
g2 +iΘ

. (3.20)

Under a 2π shift of the Θ angle, the instanton amplitude is invariant: I → I.

The discussion of the condensates follows almost verbatim that of the O(3) model in

section 2.9. Consider the operators,

O1 = L, OT = QT , (3.21)

and their vacuum expectation values, i.e., the condensates. The leading semi-classical

contribution to these two condensates takes the form:

O1(Θ) ∝ +SKExtk
(
Kj,k +Kj,k

)
∝ SKe−SI/NExtk cos

Θ + 2πk

N

OT (Θ) ∝ +SKExtk
(
Kj,k −Kj,k

)
∝ SKe−SI/NExtk sin

Θ + 2πk

N
(3.22)

where by Extk, we mean that the vacuum energy should be extremized among N branches,

and the observable should always be calculated at the genuine vacuum branch. For generic

Θ, the vacuum branch is unique, and only for Θ = π, it is two-fold degenerate, where there

exist two vacua as described below. The condensates are plotted in figure 6.

The Gr(N, 2)-model Lagrangian has an exact CP-symmetry at Θ = 0 and at Θ = π.

Under CP-symmetry, iΘQT → −iΘQT , and this is a symmetry if and only if Θ = 0, π,

because Θ is periodic by 2π. This symmetry is believed to be spontaneously broken at

Θ = π on R2.

In the semi-classical domain, the highest deviation of the physical observables from

their value at Θ = 0 happens at Θ = π.

O1(Θ = π) ∝ Λ2(ΛLN)−1 cos
π

N
−→︸︷︷︸

ΛLN∼1

Λ2 cos
π

N

OT (Θ = π) ∝ ±Λ2(ΛLN)−1 sin
π

N
−→︸︷︷︸

ΛLN∼1

±Λ2 sin
π

N
. (3.23)
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Q
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Figure 6. The Θ angle dependence of condensate O1(Θ), and topological chage density condensate

OT (Θ) in Gr(N, 2) model for N = 6 (top) and N = 16 (bottom). Both are N -branched function.

O1(Θ) has a cusp at Θ = π associated with a change of branch. OT (Θ) has a discontinuity at Θ = π.

This is an interesting result for two different reasons, one related to CP-realization, and

the other large-N dynamics.

At Θ = π, the O1(Θ) condensate has a cusp, and reaches to its minimum, while the

OT (Θ) condensate is discontinuous. As in O(3) case, this discontinuity is not related to

resurgence. Instead, OT is an order parameter for CP-symmetry, and this symmetry is

believed to be spontaneously broken at Θ = π on R2, taking one of the two possible values:

〈OT 〉 ∝ ±Λ2. Our leading semi-classical analysis confirms this expectation. In quantum

mechanics, these two sectors are similar to different superselection sectors.

At the scale where the weak-coupling approximation breaks-down, ΛLN ∼ 1, both

the O1 and OT condensates reach to their “natural” Λ2 scaling. However, the maximum

(in magnitude) value that OT can take while staying on the vacuum branch is actually

suppressed by a factor of sin π
N ∼ 1

N . On the other hand, for O1(Θ), the maximal deviation

(with respect to Θ = 0) that it exhibit while staying on the vacuum branch is actually

suppressed by a factor of 1/N2, see figure 6 for N=6 and 16, for example.

In the N = ∞ limit, all (non-extensive) observables with O(N0) scaling must be

independent of the Θ-angle, as shown in [55]. Indeed, using (3.22) we observe that

O1(Θ) = c1Λ2, OT (Θ) = 0 at N =∞. (3.24)

This is an implication of large-N theta-angle independence. This also means that sponta-

neous CP-breaking does not appear at leading large-N dynamics, and only appears at 1/N
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level. This anticipation based on the semi-classics can be studied exactly by using exact

large-N solution of the model.

4 Conclusions

Our results for the O(N) model compactified on R1 × S1 are surprising, in part because

they show remarkable similarities with gauge theories. While the 2d O(N) sigma models

have been studied for decades, it has generally been believed that the analogy between

these non-linear sigma models and four-dimensional gauge theories, in particular QCD,

breaks down once one considers O(N) models with N ≥ 4, because these sigma models

do not have instantons. Our results indicate a different picture than this historical one.

We have provided a physical interpretation of the 2d-saddles (non-instanton finite action

classical solutions) in these sigma models. We have shown that in a controlled weak-

coupling semi-classical analysis of 2d sigma models on R1 × S1, there exist kink-saddles in

one-to-one correspondence with the affine root system of the o(N) algebra. Furthermore, we

have shown the existence of a resurgent structure in which classical kink-anti-kink saddles

produce non-perturbative contributions which cancel ambiguities arising from the Borel

non-summability of perturbation theory. This may be viewed as a semi-classical realization

of the IR-renormalon, and may also provide a key part of the bridge to renormalons and

the operator product expansion.

Comparing with earlier work in SO(N) gauge theories [1, 2], we also observe that there

exists a one-to-one mapping between kink-saddles in the O(N) sigma models on R1 × S1

and monopole-instantons in O(N) gauge theories on R3 × S1. This can be summarized

in an elegant Lie algebraic relation between the 2d-saddle, and kink-saddle amplitudes,

identical to the relation between 4d-instanton and monopole-instanton amplitudes:

S2d ∼
r∏

j=0

[Kj ]k
∨
j vs. I4d ∼

r∏
j=0

[Mj ]
k∨j , where h∨ =

r∑
i=0

k∨i . (4.1)

It is natural to expect that the appearance of the dual Kac-labels as degeneracies of the

kinks (or monopoles) inside either the 2d-saddle (or 4d-instanton) is a universal phe-

nomenon. In other words, the 2d saddles fractionalize in the weak-coupling analysis of

the twisted-compactified theory, in a manner directly related to the associated beta func-

tion, providing a key part of the bridge to renormalons and the operator product expansion.

This provides a new way to interpret the fact that the leading beta function coefficient is

given generally by the dual Coxeter number: β0 = h∨.

We have also analyzed the dependence on the topological theta angle in the O(3) and

Gr(N,M) models, explaining the multi-branched structure of observables in terms of the

multi-branched structure of the kink-amplitudes. The results obtained via our formalism

are consistent with what is known in the large N limit.

Our analysis gives a concrete physical interpretation of finite action saddle solutions,

and motivates future work to understand more systematically the fluctuation modes about

non-BPS saddles in these sigma models and also in Yang-Mills theories where finite action

non-BPS saddles exist, but for which much less is known about their classification and

fluctuations [89–93].
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Cusp anomalous dimension in N = 4 SYM. The O(6) model where the field is

valued on S5, is also important in the context of gauge-string duality [94]. It is known

that the strong coupling expansion of the cusp anomalous dimension in N = 4 super-

symmetric Yang-Mills is given by a Borel-non-summable asymptotic expansion [95, 96].

Borel resummation of the cusp-anomalous dimension is ambiguous with a jump given by

Sϕ=0+Γcusp − Sϕ=0−Γcusp ∼ ie
−2π

g2 ∼ im2. In this work, we have given evidence that ob-

servables in the O(6) theory are resurgent and the ambiguities cancel, and in particular,

the neutral bion [Bii]ϕ=0± is two-fold ambiguous, and cancels the ambiguity of perturbation

theory in the semi-classical regime, Im Sϕ=0±E0 + Im [Bii]ϕ=0± = 0. In the strong coupling

regime, this is presumably replaced by Im Sϕ=0±E0 + Im〈∂µna∂µna〉ϕ=0± = 0, because of

the relation (2.42) connecting the condensate appearing in the OPE to a semi-classical

configuration. In our context, it is clear in the semi-classical domain that the first order

effect in the semi-classical expansion, namely the kink-saddles, leads to the mass gap, and

the second order effect in semi-classics lead to the cancellation of the ambiguity in the

vacuum energy, and this is ultimately related to renormalons. Our work suggests that the

strong coupling expansion of the cusp-anomalous dimension is actually resurgent. It would

be interesting to interpret the renormalons or neutral bion from the string theory side.

(Note added. While this paper was being revised for publication, two papers concerning

the cusp anomalous dimension appeared [98, 99].)

Fermions, hidden topological angle and vanishing condensates. Although we did

not discuss details of the inclusion of fermions, this can be done along the lines of our earlier

work on CPN−1 [3, 4]. One effect that is not discussed in [3, 4] in the presence of fermions

is the implication of hidden topological angles for the spin wave condensate. Consider for

example, the Nf = 1 case, corresponding to the supersymmetric version of the O(N) model

or Gr(N,M) model. The spin-wave condensate is an order parameter for supersymmetry

breaking, as can be deduced from the trace anomaly relation. Since the Witten index

of these theories is, respectively, IW = 2, and IW = N , supersymmetry is unbroken.

As a result, the spin-wave condensate must vanish. The microscopic mechanism for the

vanishing of the condensate is actually interesting and follows the same pattern as in the

examples in [97]. The kink-saddles do not contribute to the condensate because of the effect

of fermionic zero modes. However, at second order in the semi-classical expansion, there

are neutral bions and charged bions, which do contribute to the spin-wave condensate. As

explained in [3, 4], Bii is unambiguous in the Nf = 1 case, but there is a a hidden topological

angle in the Bii ∼ e−2S0+iπ amplitude relative to the Bij ∼ e−2S0 amplitude [97]. This is

the microscopic mechanism for the cancellation of the spin-wave condensate in the Nf = 1

theory.
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[1] P.C. Argyres and M. Ünsal, A semiclassical realization of infrared renormalons, Phys. Rev.

Lett. 109 (2012) 121601 [arXiv:1204.1661] [INSPIRE].
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