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1 Introduction

It’s strongly believed that N = 4 SYM theory is integrable. There are a huge amount of

supprotive evidences in the literature starting from [2], where the relation between spin

chain Hamiltonian and the dilatation operator of the theory was established, for detailed

review, see [3]. Among one of the most exciting achievements revealing the power of the

integrability is the so-called Quantum Spectral Curve (QSC) approach [4, 5] which provides

efficient technique for computing anomalous dimension of a gauge invariant operators of

the theory.

Due to conformal symmetry, the computation of general correlation functions of N = 4

SYM can be reduced to computation of two- and three-point functions by means of the

operator product expansion (OPE). In this sense these two quantities are the fundamental

blocks of the theory. Two-point functions of gauge invariant operators, again due to the

conformal symmetry, are completely defined by the value of the corresponding anomalous

dimension, and thus can be computed in terms of QSC technique. However for the moment

there is no such an efficient analogue for computing three-point functions. Nevertheless

significant progress have been done in this direction starting from [6, 7] and later developed

systematically in [8], where the three-point functions of the su(2) sector at tree level were

considered and, using the mapping between spin chains and gauge invariant operators, the

computation of the structure constants was reduced to computation of the scalar products

between two off-shell Bethe-states. This method was improved in [9] for some special

configuration, which allows to express the structure constant in terms of on-shell/off-shell

scalar products and can be computed by Slavnov determinants. Later this result was

extended to one loop [10, 11] and other rank-one sectors also were investigated [12, 13].

The great advancement was made very recently in [14], where the authors proposed all-loop

procedure for the structure constant in N = 4 SYM. Another interesting direction inspired

by the light-cone string field theory was initiated in [15], where the authors interpreted the

OPE coefficients as “generalized Neumann coefficients” and proposed a set of bootstrap

axioms for these generalized Neumann coefficients. In parallel, the spin vertex approach was

developed in [16–18] which can be seen as a weak coupling counterpart of the string vertex.

Apart from direct approach, there is another method for the computation of three-point

functions by means of their relations with the form factors. This approach was initiated

in [19, 20], where the set of the axioms for the world-sheet form factor of the light-cone gauge

fixed AdS5 × S5 string theory was proposed. Recently in [1] the symmetric HHL (heavy-

heavy-light) correlator at strong coupling of the su(2) sector was considered. The proposals

for computing the HHL three-point functions were first formulated in [21, 22]. The au-

thors of [1] showed that the prescription in [21] was inadequate and proposed an improved

prescription. Using this new prescription the authors computed several examples of the

three-point correlators and showed that their volume dependence exactly coincide with the

finite volume structure of the appropriate form factor. Guided by this result they proposed

a conjecture that this finite volume dependence should hold at any coupling of the theory.

The conjecture consists two parts. First, the finite volume dependence (neglecting

wrapping) of a symmetric HHL structure constant is completely encoded into diagonal

– 2 –
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minors of the Gaudin determinant of a heavy state and have the following form dictated

by results of form factor theory ([23]):

CHHL=

fO+
∑
i
ρN ({i})fO(1, . . . , î, . . . , N)+

∑
i,j
ρN ({i, j})fO(1, . . . , î, . . . , ĵ, . . . , N)+. . .

ρN ({1, . . . , N})
,

(1.1)

and ρN ({i, j, . . .})’s are diagonal minors of the determinant:

ρN ({1, . . . , N}) = det
j,k

(
∂

∂uj

(
Lpk(u) +

∑
l 6=k

1

i
logS(ul, uk)

))
. (1.2)

Second part of the conjecture, also coming from the form factor approach, is that the

coefficients fOk in the expansion (1.1) are diagonal infinite volume form factors of a light

operator O. In this paper we test the first part of the conjecture at weak coupling limit and

show that the form (1.1) of the finite volume dependence holds at tree level as well as at one

loop. At the same time the second part of the conjecture allowed us to predict expressions

for diagonal infinite volume form factors by extracting corresponding coefficients from the

expansion (1.1).

The structure of the paper is the following. In section 2 we set up the problem. In

section 3, we will describe in detail the map between the field theory operator Oα and

the spin chain operator Ôα. In section 4, we review the integrability tools that we need,

which includes algebraic Bethe ansatz (ABA), the scalar products between Bethe states

and the solution of quantum inverse scattering problem (QISP). In section 5, we review

the form factor formalism and the finite volume corrections. In section 6 and 7, we give a

proof of the finite volume structure of the three-point function conjectured in [1] at tree

level. In section 8 we compute some examples of the symmetric HHL correlator and list

expressions for the corresponding infinite volume form factors. In section 9 we give general

arguments proving that the same finite volume structure holds as well at one loop. Finally

we conclude and discuss future directions to pursue in section 10.

2 Set-up

The central object of our paper is the symmetric HHL three-point correlation function

of gauge invariant operators, by which we mean that two heavy1 (the length L � 1)

operators are conjugated to each other and the third operator has a few number of sites.

The technique, which we are going to use, is due to the relation between the gauge invariant

operators and the spin chains. Following [24], the symmetric structure constant can be

mapped to diagonal matrix element of a spin chain operator. We take the heavy operators

to be the eigenstates of the su(2) sector dilatation operator and conjugated to each other.

They are constructed from the following scalar fields

O1 : {Z,X}, O1̄ : {Z̄, X̄}. (2.1)

1Although we call it “heavy” the results obtained in this paper are valid for small values of L as well.
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At tree-level, we consider operators with definite one-loop anomalous dimension [8]. The

one-loop dilatation operator in the su(2) sector is the Heisenberg XXX1/2 spin chain Hamil-

tonian whose eigenstates can be constructed by Bethe Ansatz techniques. Since we are con-

sidering diagonal matrix elements, the wave functions of the two operators are conjugate

to each other. The third operator will be denoted hereafter by Oα. In this paper, we con-

sider Oα in the compact sector. Only the zero R-charge terms give non-zero contribution.

Therefore, we are interested in the operators of the following form

TrZZ̄, TrXX̄, TrXZZ̄X̄, · · · (2.2)

This kind of operators are in the so(4) sector of N = 4 SYM theory. In addition, we require

Oα have definite anomalous dimension. The three-point function is fixed by conformal

symmetry up to the structure constant Cα

〈O1(x1)Oα(x2)O1̄(x3)〉 =
L2Lα
Nc

N1

√
NαCα

|x12|∆12 |x13|∆13 |x23|∆23
(2.3)

where

xµij = xµi − x
µ
j , ∆ij =

1

2
(∆i + ∆j −∆k), (2.4)

and L is the length of O1 while Lα is the length of the operator Oα. The two-point functions

are normalized as

〈O1(x1)O1̄(x2)〉 =
LN1

|x12|2∆1
, 〈Oα(x1)Oα(x2)〉 =

LαNα
|x12|2∆α

(2.5)

The structure constant Cα can be expressed in terms of correlation functions of the Heisen-

berg spin chain

Cα =
〈u|Ôα|u〉
〈u|u〉

(2.6)

where |u〉 ≡ |{u1, · · · , uN}〉 denotes an on-shell Bethe state, corresponding to the heavy

operator, and Ôα = Ôα(σ±i , σ
z
i ) is an operator made of local spin operators. In this way,

the computation of three-point function in planar N = 4 SYM theory is recast into the

calculation of correlation functions in the Heisenberg spin chain.

3 From field theory correlation functions to spin chain matrix elements

In this section, we summarize how to write the field theoretic operators Oα in terms of

spin chain operators Ôα. Let us introduce the following notation

Z ≡ φ0, X ≡ φ1, Z̄ ≡ φ̄0, X̄ ≡ φ̄1. (3.1)

The light operator is the linear combination of the single trace operators Tr φi1 φ̄i2 φ̄i3 · · · .
By planarity, only operators of the following form will contribute to the three-point function

Trφi11 · · ·φ
il
l φ̄

jl
l+1 · · · φ̄

j1
2l , ik, jk = 0, 1. (3.2)

– 4 –
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where the indices 1, · · · , 2l denotes the position on the third spin chain and 2l = Lα is the

length of the third operator. The zero R-charge condition is given by

l∑
n=1

(in − jn) = 0. (3.3)

It is not hard to see that the operator (3.2) can be mapped to the following spin operator [24]

Trφi11 · · ·φ
il
l φ̄

jl
l+1 · · · φ̄

j1
2l −→ Ei1+1,j1+1

n+l−1 · · ·Eil+1,jl+1
n . (3.4)

where the indices n, · · · , n − l + 1 denote the positions on the long spin chain, and the

operators Eabn are the basis 2 × 2 matrices (Eabn )ij = δaiδbj in the local quantum space

Hn = C2. The operators Eabn are related to the local spin operators as follows

E11
n ≡

1

2
(I + σzn), E12

n ≡ σ+
n , E21

n ≡ σ−n , E22
n ≡

1

2
(I− σzn). (3.5)

Here σ±n , σ
z
n are the usual Pauli matrices acting on the space spanned by | ↑〉 and | ↓〉. By

the mapping (3.4), we can translate the field theory operators into the spin operators. As

an example, we consider the Konishi operator

OK = TrXX̄ + TrY Ȳ + TrZZ̄. (3.6)

Since the heavy operators are in the su(2) sector, the contraction with Y and Ȳ are zero

and can be neglected. The Konishi operator can be mapped to the following spin operator

OK −→ ÔK = E11
n + E22

n = I. (3.7)

Therefore we see that at tree level the structure constant, with the light operator being

the Konishi operator, is trivial

CK =
〈u|ÔK |u〉
〈u|u〉

= 1. (3.8)

In order to obtain non-trivial structure constant, the light operator must have at least

Lα = 4. This corresponds to the insertion of two spin operators between the Bethe states.

An example for length-4 operator is given in figure 1.

The main focus of the current paper is the length-4 field theory operators, which

corresponds to operators in the spin chain which acts on two neighboring sites. These are

the simplest non-trivial cases which can be studied thoroughly. We use Lα and ls to denote

the lengths of field theory operators and spin chain operators, it is obvious that Lα = 2ls.

In order to have non-zero diagonal matrix element in (2.6), the spin chain operator

should not alter the total spin of the state it acts on. At ls = 1, there are two independent

operator, satisfying this condition, the identity and

o1(n) = E11
n . (3.9)

– 5 –
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Figure 1. An example of the mapping between field operators to spin chain operators. The

operator in the field theory O = TrZXZ̄X̄ is mapped to the spin chain operator Ô = E21
n E12

n+1.

For ls = 2, there are six independent operators: the unity, o1(n), o1(n+ 1)2 and the other

three operators are the following

o1
2(n) = E11

n E11
n+1, o2

2(n) = E12
n E21

n+1. o3
2(n) = E21

n E12
n+1. (3.10)

For later convenience we also introduce the following operator

o4
2 = E22

n E22
n+1 = (I− E11

n )(I− E11
n+1) = I− o1(n)− o1(n+ 1) + o1

2(n). (3.11)

In what follows, we will study in detail the diagonal matrix elements of the spin operators

o1 and oi2 (i = 1, 2, 3, 4).

4 The algebraic Bethe ansatz approach

In this section, we review the algebraic Bethe Ansatz (ABA) approach to the correlation

functions in the XXX1/2 Heisenberg spin chain, see [25–27] and references therein. This

approach is based on two main elements: the Slavnov determinant formula and the solution

of the Quantum Inverse Scattering Problem (QISP). The Slavnov formula states that the

scalar product of any Bethe state with an on-shell one can be written in terms of a determi-

nant. The solution of the QISP enable us to express the local spin operators in terms of the

elements of the monodromy matrix, which are non-local operators acting on the spin chain.

2Due to translation invariance of the spin chain at the level of correlation functions these two operators

obviously coincide.

– 6 –
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4.1 Algebraic Bethe ansatz

In this subsection we give a brief review of the algebraic Bethe Ansatz method which also

serves to fix our conventions. For more detailed and pedagogical discussions we refer the

readers to [28]. The central object in ABA is the quantum R-matrix. For the Heisenberg

XXX1/2 spin chain, the R-matrix is given by

Rab(u) = u Iab + iPab =


u+ i 0 0 0

0 u i 0

0 i u 0

0 0 0 u+ i


ab

(4.1)

where Iab and Pab are identity and permutation operators acting on the space C2
a ⊗ C2

b ,

respectively. It has a complex parameter which is usually referred to as the spectral pa-

rameter. Consider a spin chain of length L. At each site of the spin chain we define the

Lax matrix

Lan(u− θn) = Ran(u− θn − i/2), n = 1, · · · , L (4.2)

where n and a denote the quantum space and auxiliary space, respectively. The parameter

θn is called the inhomogeneity associated to the site n. In the case of the homogeneous

Heisenberg spin chain all the inhomogeneities are set to be zero, θn = 0. The Lax operator

obeys an important property that it satisfies the following braiding relation, called the

RLL relation

Rab(u− v)Lan(u)Lbn(v) = Lbn(v)Lan(u)Rab(u− v). (4.3)

Taking the ordered product of Lax operators at all sites, we obtain the monodromy matrix

Ta(u) =

L∏
n=1

Lan(u− θn). (4.4)

It can be represented in the auxiliary space as a 2 × 2 matrix

T (u) =

(
A(u) B(u)

C(u) D(u)

)
. (4.5)

By construction, the monodromy matrix is a non-local object and its elements are operators

which act on the whole spin chain. From the RLL relation (4.3) and the definition of the

monodromy matrix (4.4), one can show that the monodromy matrix satisfies a similar

relation, called the RTT relation

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v). (4.6)

Once written in terms of the components, the RTT relation leads to a quadratic algebra,

between the ABA operators A, B, C, D. The most relevant relations for us are

A(v)B(u) = f(u− v)B(u)A(v) + g(v − u)B(v)A(u), (4.7)

D(v)B(u) = f(v − u)B(u)D(v) + g(u− v)B(v)D(u),

– 7 –
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[C(v), B(u)] = g(u− v)[A(v)D(u)−A(u)D(v)]

where the functions f(u) and g(u) are

f(u) =
u+ i

u
, g(u) =

i

u
. (4.8)

All the conserved charges of the system are encoded into the transfer matrix, which is

defined to be the trace of monodromy matrix in the auxiliary space

T (u) = Tra T (u) = A(u) +D(u). (4.9)

The eigenstates of the transfer matrix simultaneously diagonalize all the conserved charges,

including the Hamiltonian. In order to diagonalize it, one starts with a ferromagnetic

reference state, called the psuedovacuum |Ω〉 = | ↑L〉, such that

A(u)|Ω〉 = a(u)|Ω〉, D(u)|Ω〉 = d(u)|Ω〉, C(u)|Ω〉 = 0. (4.10)

For later convenience, we define the Baxter polynomials

Qθ(u) =

L∏
n=1

(u− θn), Q±θ = Qθ(u± i/2). (4.11)

Then we have

a(u) = Q+
θ (u), d(u) = Q−θ (u). (4.12)

The eigenstates of the transfer matrix are generated by the action of a sequence of B-

operators on the pseudovacuum

|u〉 = B(u1) · · ·B(uN )|Ω〉 (4.13)

provided that the rapidities u = {u1, · · · , uN} satisfy the Bethe Ansatz equation (BAE)

a(uk)

d(uk)
=

N∏
j=1
j 6=k

uk − uj + i

uk − uj − i
, k = 1, · · · , N. (4.14)

These elementary excitations are commonly referred to as magnons. If the rapidities sat-

isfy (4.14), the corresponding Bethe state |u〉 is called on-shell, otherwise it is called off-

shell. The on-shell Bethe states diagonalize the transfer matrix

T (u)|u〉 = tu(u)|u〉 (4.15)

with the eigenvalue

tu(u) = a(u)
Qu(u− i)
Qu(u)

+ d(u)
Qu(u+ i)

Qu(u)
. (4.16)

Here, similarly we have defined the Baxter polynomial for the rapidities

Qu(u) =

N∏
k=1

(u− uk). (4.17)

In this paper, we will compute the matrix elements of spin chain operators between two

Bethe states. To this end, it is important to have a manageable expression for the scalar

products between Bethe states.

– 8 –
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4.2 Slavnov determinant and Gaudin norm

The scalar product of Bethe states is defined as

〈v|u〉 = 〈Ω|
N∏
j=1

C(vj)
N∏
k=1

B(uk)|Ω〉. (4.18)

The Slavnov theorem [29] states that, if one of the Bethe states, say |u〉 is on-shell, the

scalar product (4.18) is given by

〈v|u〉 =
N∏
j=1

a(vj)d(uj)Su,v, (4.19)

where

Su,v =
detjk Ω(uj , vk)

detjk
1

uj−vk+i

(4.20)

The matrix element Ω(uj , vk) is given by

Ω(uj , vk) = t(uj − vk)− e2ipu(vk)t(vk − uj) (4.21)

= i
(uj − vk − i)− (uj − vk + i)e2ipu(vk)

(uj − vk)[(uj − vk)2 + 1]

where pu(v) is the pseudomomentum

e2ipu(u) ≡ d(u)

a(u)

Qu(u+ i)

Qu(u− i)
. (4.22)

and t(u) is

t(u) =
1

u
− 1

u+ i
. (4.23)

In terms of the pseudomomentum, the Bethe Ansatz equation takes a particularly simple

form

e2ipu(uk) = −1. (4.24)

In the Slavnov formula, the rapidities {v} can be any set of complex numbers. Let us

now consider the case when some of the vk’s coincide with the Bethe roots, namely vk = uk
for some k. The matrix element reads as

Ω(uj , uk) =
2i

(uj − uk)2 + 1
− iδjk

(
N∑
l=1

2

(uj − ul)2 + 1
−

L∑
m=1

1

(uj − θm)2 + 1/4

)
(4.25)

When all {v} coincide with {u}, the scalar product corresponds to the norm of the

Bethe state. This norm is given by the Gaudin formula which takes the form of a Jacobian

determinant. Let us define the following quantity

Φk(u) = p(uk)L− i
N∑
j 6=k

logS(uk − uj) (4.26)

– 9 –
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where the momentum and the two-body scattering matrix of the Heisenberg spin chain are

p(u) = − i
L

log
a(u)

d(u)
, S(u− v) =

u− v − i
u− v + i

. (4.27)

In terms of the function Φk(u), the Bethe Ansatz equation (4.14) reads as

Φk(u) = 2πIk, k = 1, . . . , N (4.28)

where Ik ∈ Z are the Bethe quantum numbers. The Jacobian for the change of variables

between uk and Ik is given by

ρN ({1, . . . , N}) =

∣∣∣∣∂Φk(u)

∂uj

∣∣∣∣ = det
jk
iΩ(uj , uk). (4.29)

The norm of an on-shell N -magnon Bethe states is proportional to ρN ({1, · · · , N}), explic-

itly

〈u|u〉 =

 N∏
j=1

a(uj)d(uj)
N∏
j<k

1 + (uj − uk)2

(uj − uk)2

 ρN ({1, . . . , N}) (4.30)

We will see below that the Jacobian ρN ({1, · · · , N}) and its sub-diagonal counterparts take

into account all the finite volume corrections of the diagonal matrix elements.

4.3 The solution of quantum inverse scattering problem

In the ABA approach, the idea to compute the diagonal matrix element 〈u|Ôn|u〉 is to

act the spin chain operator Ôn on the bra state, so that the ket Bethe state |u〉 is left

on-shell. The operator Ôn is typically a multilocal operator in the sense that it acts on a

finite interval of the spin chain. In order to apply the Slavnov formula, the bra state also

needs to be a Bethe state, although we do not require it to be on-shell. The solution of the

quantum inverse scattering problem (QISP) relates the local spin operators to the matrix

elements of the monodromy matrix. These latter are non-local operators. In addition,

from the Yangian algebra (4.7), it is clear that the action of A, B, C, D operators on a

Bethe state always gives a sum over Bethe states. Therefore, using the solution of QISP

we can translate any local operator Ôn into a sequence of ABA operators, and the state

〈u|Ôn can be written as a sum of dual Bethe states. This enable us to apply the Slavnov

formula discussed in the last subsection. We present the main statement of the solution of

QISP in this subsection and refer to [26] for the proof and details.

Let Eabn (a, b = 1, 2) be the operators defined in (3.5) which act on the local quantum

space Hn = C2. They can be represented by the elements of monodromy matrix as

Eabn =

{
n−1∏
k=1

T (θk + i/2)

}
T ab(θn + i/2)

{
n∏
k=1

T (θk + i/2)

}−1

(4.31)

where

T 11(u) = A(u), T 12(u) = B(u), T 21(u) = C(u), T 22(u) = D(u). (4.32)

– 10 –
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Once inserted inside a correlator, the transfer matrices in (4.31) act on a Bethe state and

can be replaced by their eigenvalues

〈u|Eabn |u〉 =
〈u|T ab(θn + i/2)|u〉

tu(θn + i/2)
(4.33)

where tu(u) is given by (4.16). At u = θn + i/2, we have

tu(θn + i/2) = Qθ(θn + i)
Q−u (θn)

Q+
u (θn)

. (4.34)

The generalization of (4.33) to a string of l + 1 operators is straightforward

〈u|Ea0b0n · · ·Ealbln+l|u〉 =

(
l∏

k=0

Q+
u (θn+k)

Qθ(θn+k + i)Q−u (θn+k)

)
〈u|

l∏
k=0

T akbkn+k (θn+k + i/2)|u〉 (4.35)

We can now compute the r.h.s. of (4.35) by using the Yangian algebra and the Slavnov

formula.

5 Finite volume diagonal form factors

The interest in the volume dependence of diagonal matrix elements of local operators is

due to their appearance in different physical quantities. They are central objects in the cal-

culation of finite temperature one-point functions [30, 31], as well as they play an essential

role in the form factor perturbation theory [32]. The short distance behavior of correlation

functions also involves the vacuum expectation values as basic ingredients [33]. Recently,

it was conjectured [1] that the Heavy-Heavy-Light symmetric structure constants of the

AdS/CFT correspondence (2.6) are also related to these quantities. This latter case is of the

central interest of the current paper. To better understand this conjecture, in this section

we summarize the theory of form factors in integrable models, starting from the infinite vol-

ume description and then take into account the finite volume corrections, up to wrapping.

5.1 Form factors in infinite volume

We consider a 1 + 1 dimensional integrable quantum field theory defined by its S-matrix.

For simplicity we restrict ourselves to diagonally scattering theories with a self-conjugated

particle, the generalization to any diagonally scattering theory is straightforward. For a

detailed review of the general case see [34].

The infinite volume states can be characterized by the set of momenta of particles.

In 1 + 1 dimension it is convenient to label the particles by their rapidities ui, the energy

ε(u) and momentum p(u) being a single valued functions. In the remote past, an in state

consists of particles of ordered rapidities: the fastest one is the leftmost while the slowest

is the rightmost. Contrarily, the particles in an out state are reversely ordered,

|u1, · · · , uN 〉 =

{
|u1, · · · , uN 〉in u1 > · · · > uN

|u1, · · · , uN 〉out u1 < · · · < uN
(5.1)
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The infinite volume states that differ only in the order of rapidities are related by the two

particle S-matrix3

|u1, · · · , ui, ui+1, · · · , uN 〉 = S(ui, ui+1) |u1, · · · , ui+1, ui, · · · , uN 〉 (5.2)

The energy of a multiparticle state is the sum of the one particle energies

E(u1, · · · , uN ) =
N∑
i=1

ε(ui). (5.3)

In infinite volume we normalize the in states as

in〈u′1, · · · , u′M |u1, · · · , uN 〉in = (2π)NδNM δ(u1 − u′1) · · · δ(uN − u′N ), (5.4)

and the norm of a general state can be determined from (5.4) by (5.2).

Let us consider the matrix elements of a local operator O(t, x) between asymptotic

states. The space-time dependence can be easily factored out

out
〈
u′1, · · · , u′M

∣∣O(x, t) |u1, · · · , uN〉in=eit∆E−ix∆P out
〈
u′1, · · · , u′M

∣∣O(0, 0) |u1, · · · , uN〉in ,

where

∆E =
M∑
j=1

ε(u′j)−
N∑
k=1

ε(uk), (5.5)

∆P =

M∑
j=1

p(u′j)−
N∑
k=1

p(uk),

and we define the form factor of operator O as

FOM,N

(
u′1, · · · , u′M |u1, · · · , uN

)
= out

〈
u′1, · · · , u′M

∣∣O(0, 0) |u1, · · · , uN 〉in (5.6)

The form factors are a priori defined for ordered set of incoming and outgoing rapidities

but can be analytically continued by (5.2). A form factor is a meromorphic function in all

variables and each pole has a physical origin [34].

Suppose that the theory possesses crossing symmetry, i.e. a transformation which maps

an outgoing particle with rapidity u to an incoming anti-particle with rapidity ū. The

crossing symmetry implies the crossing equation for the form factors which, in case of a

single self-conjugated particle, reads as

FOM,N

(
u′1, · · · , u′M |u1, · · · , uN

)
= FOM−1,N+1

(
u′1, · · · , u′M−1|ūM , u1, · · · , uN

)
(5.7)

+

N∑
k=1

〈
u′M |uk

〉 k−1∏
l=1

S (ul, uk)F
O
M−1,N−1

(
u′1, · · · , u′M−1|u1, · · · , ûk, · · · , uN

)
where the terms on the second line of (5.7) describe disconnected processes that occur if

one of the incoming and outgoing particle has the same rapidity. The hat ûk denotes that

3Although the states with non-ordered rapidities are not physical.
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uk is missing from the list of rapidities. By using the crossing relation all form factors can

be expressed in terms of elementary form factors

FON (u1, · · · , uN ) = 〈0|O(0, 0)|u1, · · · , uN 〉. (5.8)

These elementary form factors satisfy several functional relations, called the form factor

axioms. As these axioms are not relevant for the aims of this paper we will not list them

here but rather refer to [34] for relativistic models and [19] for the AdS/CFT case.

5.1.1 Diagonal form factors

The diagonal form factor of the local operator O, defined as

in〈u1, · · · , uN |O(0, 0)|u1, · · · , uN 〉in, (5.9)

is singular due to the disconnected terms in the crossing relation (5.7). To avoid the sin-

gularities we regularize it by slightly shifting the outgoing rapidities. After crossing we get

FO2N (ū1 + ε1, · · · , ūN + εN , uN , · · · , u1) = 〈0|O|ū1 + ε1, · · · , ūN + ε1, u1, · · · , uN 〉in (5.10)

The diagonal limit, εi → 0, of (5.10) is not well-defined. It was first noticed in [32] that the

singular parts vanish in the limit when all εi → 0, but the result depends on the direction

of the limit. Its general structure can be written as

FO2N (ū1 + ε1, · · · , ūN + εN , uN , · · · , u1) (5.11)

=

N∏
i=1

1

εi
·
N∑
i1=1

N∑
i2=1

· · ·
N∑

iN=1

ai1i2···iN (u1, · · · , uN ) εi1εi2 · · · εiN + · · ·

where ai1i2...iN is a completely symmetric tensor of rank N . The ellipsis denote terms which

vanish in the εi → 0 limit.

There are two generally used regularization scheme in the literature. The first is the

so-called symmetric evaluation when we set all εi to be the same

FO,s2N (u1, · · · , uN ) = lim
ε→0

FO2N (ū1 + ε, · · · , ūN + ε, uN , · · · , u1) . (5.12)

The second scheme is called connected, in which the diagonal form factors are defined as

the finite part of (5.11), i.e. the ε-independent term,

FO,c2N (u1, · · · , uN ) = N ! a12···N . (5.13)

Both the symmetric and the connected diagonal form factors are completely symmetric in

the rapidity variables u1, · · · , uN . Of course these two quantities are not independent and

each can be expressed with use of the other [23].

– 13 –
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5.2 Diagonal form factors in finite volume

In this section we will summarize the results about the volume dependence of the diag-

onal form factors in all polynomial orders in the inverse of the volume, neglecting the

exponentially small wrapping corrections, following [23, 35].

In finite volume L, the rapidities are quantized and a generic multiparticle state can

be labeled by the Bethe quantum numbers |{I1, · · · , IN}〉L. In finite volume we cannot

order the particles by spatial separation in the remote past or future, as we did in the

infinite volume case (5.2). In finite volume the states are completely symmetric under

the exchange of particles and can be characterized by the set of quantum numbers. We

adapt our notation to the conventions used in [23, 35] and order the quantum numbers

in a monotonly decreasing sequence, I1 ≥ · · · ≥ IN .4 The quantized rapidities with the

quantum numbers {I1, · · · , IN} are solutions of the corresponding Bethe Ansatz equations.

Similarly to (4.26) we define

Φj({u1, · · · , uN}) = p(uj)L− i
∑
k=1
k 6=j

logS(uk, uj) , (5.14)

and the quantization condition reads as

Φj({u1, · · · , uN}) = 2πIj , j = 1, · · · , N. (5.15)

These finite volume states are orthogonal to each other

L〈{J1, · · · , , JM}|{I1, · · · , IN}〉L ∝ δNM δI1,J1 · · · δIN ,JN (5.16)

and their normalization is a question of convention.

One can change from the quantum number representation of states to the rapidity

representation which gives the direct connection between the finite and infinite volume

states [35]. This change of variables involves the Jacobian, which is the density of N -

particle states, defined as

%N (u1, · · · , uN )L = detJ (N)(u1, · · · , uN )L (5.17)

J (N)
k,l (u1, · · · , uN )L =

∂Φk(u1, · · · , uN )

∂ul
, k, l = 1, · · · , N .

where we explicitly indicated the volume dependence of these quantities. The determi-

nant (5.17) is closely related to the Gaudin norm of Bethe states (4.30).5 Then the relation

between the infinite and finite volume states reads as

|{I1, · · · , IN}〉L =
1√

%N (u1, · · · , uN )L
∏
i<j S(ui, uj)

|u1, · · · , uN 〉 (5.18)

4Apart from the free boson case all known S-matrix obey the property S(u, u) = −1 which is an effective

Pauli exclusion. In this cases we have I1 > · · · > IN .
5The Gaudin norm itself is not physical as it depends on the conventions. However, in any convention,

it is proportional to the Jacobian (5.17).

– 14 –



J
H
E
P
0
9
(
2
0
1
5
)
1
2
5

where the rapidities {ui} are the solutions of the Bethe Ansatz equations (5.14) correspond-

ing to the quantum numbers {I1, · · · , IN}. This identification holds up to exponential

corrections. The product of S-matrices in the denominator ensures that the finite volume

state is indeed symmetric under the exchange of particles.

Defining the system in finite volume regularizes all the divergences appearing in the

diagonal limit of form factors (5.11), thus the normalized finite volume diagonal matrix

element
L〈{I1, · · · , IN}|O(0, 0)|{I1, · · · , IN}〉L

L〈{I1, · · · , IN}|{I1, · · · , IN}〉L
(5.19)

is finite, completely well defined and does not depend on the normalization of states.

However, it is a challenging task to relate them to the infinite volume ones in the general

case [30, 31]. The problem become considerably simpler if we neglect the exponentially

small wrapping corrections.

Up to wrapping, the finite volume N -particle diagonal form factor (5.19) can be ex-

pressed as a sum over the bipartite partitions of the full set {1, 2, · · · , N}, involving the

infinite volume form factors and some kind of densities of states. As the diagonal form

factors in infinite volume depend on the regularization scheme, this series is also scheme

dependent. In case of the connected evaluation the relation reads as [23, 36]

L〈{I1, · · · , IN}|O(0, 0)|{I1, · · · , IN}〉L
L〈{I1, · · · , IN}|{I1, · · · , IN}〉L

=
1

ρN ({1, · · · , N})
∑

α⊆{1,...,N}

fO ({uk}k∈ᾱ) ρN (α)

(5.20)

where ᾱ denotes the complement of α in the full set. The functions appearing on the right

hand side are exactly the connected diagonal form factors

fO(u1, · · · , ul) = FO,c2l (u1, · · · , ul) (5.21)

The functions ρN are defined as the diagonal minor determinants of the N -particle Jaco-

bian (5.17),

ρN (α) = det
k,l∈α

J (N)
k,l (u1, · · · , uN )L , α ⊆ {1, · · · , N}. (5.22)

They can also be referred to as partial Gaudin norms. As special cases we have

ρN ({1, · · · , N}) = %N (u1, · · · , uN )L ; ρN (∅) = 1. (5.23)

We want to emphasize that the function ρN (α) depend on all the N rapidities. The set

of rapidities {ui} in the right hand side of (5.20) is the solution of the Bethe Ansatz

equations (5.14) corresponding to the quantum numbers {I1, · · · , IN}. Thus, the explicit

volume dependence is encoded only into the factors ρN , the connected form factors fO

depend on the volume only implicitly via the Bethe Ansatz equations.

As the connected and symmetric diagonal form factors are not independent, we can

express the finite volume matrix element in the symmetric regularization scheme. In this

case the series take the form [35]

L〈{I1, · · · , IN}|O(0, 0)|{I1, · · · , IN}〉L
L〈{I1, · · · , IN}|{I1, · · · , IN}〉L

=
1

ρN ({1, · · · , N})
∑

α⊆{1,...,n}

F s2|ᾱ| ({uk}k∈ᾱ) ρ|α| (α) .

(5.24)
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Here again, the rapidities {ui} are the solutions of the Bethe Ansatz equations (5.14) with

the quantum numbers {I1, · · · , IN}. The ρ|α| functions appearing in the sum are the |α|-
particle densities of state (5.23), (5.17) evaluated at the rapidities {ui}i∈α. Note that,

contrary to the connected expansion, they depend only on the rapidities labeled by the set

α. The explicit volume dependence is carried only by the ρ functions.

5.2.1 Form factor of densities of conserved charges

An important special case of local operators is the density of a conserved quantity,

Q =

∫ L

0
J(x, t)dx

where Q acts diagonally and additively on the multiparticle states. Its density therefore

satisfies

L〈{I1, · · · , IN}|J(0, 0)|{I1, · · · , IN}〉L
L〈{I1, · · · , IN}|{I1, · · · , IN}〉L

=
1

L

N∑
j=1

q(uj),

where {ui} are the solutions of the Bethe Ansatz equations (5.14) corresponding to the

quantum numbers {I1, · · · , IN}, and q(u) is the one-particle eigenvalue of the operator Q.

A compact expression for the connected diagonal form factors of these densities was

presented in [30, 36], however the proof was found recently [37]. The connected form factors

can be cast into the form

F J,c2N (u1 · · · , uN ) =
∑
σ∈SN

p′(uσ(1))ϕ(uσ(1), uσ(2))ϕ(uσ(2), uσ(3)) · · ·ϕ(uσ(N−1), uσ(N))q(uσ(N))

(5.25)

where the summation runs over all the permutation of the set {1, · · · , N}. Here, p′ denotes

the derivative of the momentum w.r.t. the rapidity,

p′(u) =
∂

∂u
p(u).

For massive relativistic models we have p(u) = m sinhu and ε(u) = m coshu, so that

p′(u) = ε(u) and (5.25) reduces to the expression presented in [30, 36]. However, in the

case of the Heisenberg XXX1/2 spin chain an extra sign appears, p′(u) = −ε(u).

5.3 Conjecture for the symmetric structure constants

Based on explicit calculations the authors of [1] conjectured that the Heavy-Heavy-Light

symmetric structure constant in the su(2) sector of N = 4 SYM is equal to a finite volume

form factor and its volume dependence (up to wrapping corrections) at any coupling has the

form (1.1). Let us suppose that the two, conjugated heavy operators correspond to a multi-

particle state, labeled by the rapidities {ui}, in finite, but large volume L, such that the ex-

ponential corrections are negligible. Then the symmetric structure constant are conjectured

to be the finite volume diagonal form factor of the vertex operator O of the light operator,

Cα = L〈u1, · · · , uN |O|u1, · · · , uN 〉L (5.26)

that can be expressed in terms of the infinite volume quantities (5.20) and (5.24).
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6 Matrix elements of spin operators

In this section we study the diagonal matrix elements of spin operators of the Heisenberg

spin chain using the ABA and the solution of QISP discussed in section 4. We show that,

in general, the matrix elements can be written as linear combinations of a special kind

of Slavnov determinant. In section 7, we show that this determinant has the structure

conjectured in [1], namely it can be written as linear combinations of diagonal minors of

Gaudin determinants (5.20). We call the procedure of expanding quantities in terms of

diagonal minors of Gaudin determinants the finite volume expansion, as it captures all the

finite volume dependence. We will discuss the case ls = 1, 2 in detail and comment on the

general ls > 2 case.

6.1 Form factors of length-2 operators

We have shown in section 3 that all the length-2 diagonal matrix elements can be written

as linear combinations of the following building blocks

Fo1 = 〈u|o1(n)|u〉, Foi2 = 〈u|oi2(n)|u〉, i = 1, . . . , 3 (6.1)

where the local operators o1(n) and oi2(n) are given in (3.9) and (3.10). According to (4.35),

these matrix elements are proportional to the following quantities

Fo1 ∝ FA ≡ 〈u|A(θn + i/2)|u〉. (6.2)

Fo12 ∝ FAA ≡ 〈u|A(θn + i/2)A(θn+1 + i/2)|u〉, (6.3)

Fo22 ∝ FBC ≡ 〈u|B(θn + i/2)C(θn+1 + i/2)|u〉,

Fo32 ∝ FCB ≡ 〈u|C(θn + i/2)B(θn+1 + i/2)|u〉,

Fo42 ∝ FDD ≡ 〈u|D(θn + i/2)D(θn+1 + i/2)|u〉.

In order to compute the building blocks (6.2) and (6.2), we act all the operators on

the ket state |u〉. The action of A and D on a Bethe state is

A(v)|u〉 = a(v)
Qu(v − i)
Qu(v)

|u〉+
N∑
n=1

Mn(v) |{u, v} \ {un}〉, (6.4)

D(v)|u〉 = d(v)
Qu(v + i)

Qu(v)
|u〉+

N∑
n=1

Nn(v) |{u, v} \ {un}〉

where Mk(v), Nk(v) are given by

Mk(v) =
ia(un)

v − un

N∏
j 6=n

un − uj − i
un − uj

, (6.5)

Nk(v) =
id(un)

un − v

N∏
j 6=n

un − uj + i

un − uj
.
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These relations can be derived from the Yangian algebra (4.7). From (6.4) we see that the

action of the operators A and D on a Bethe state preserve the number of magnons. In

addition to the original Bethe state |u〉, there is a sum of Bethe states |{u, v}\{uk}〉 where

one of the rapidities uk is replaced by the spectral parameter v of the operator. These are

called the unwanted terms and are off-shell for generic v. On the other hand, they are not

too far from the on-shell Bethe state |u〉 since most of the rapidities remain unchanged.

The action of the C operator on the Bethe state is more involved

C(v)|u〉 =
N∑
n=1

Kn |{u} \ {un}〉+
∑
k>n

Kkn |{u, v} \ {uk, un}〉 (6.6)

where

Kn =
ia(v)d(un)

un − v

N∏
j 6=n

uj − un − i
uj − un

· uj − v + i

uj − v
+ (6.7)

+
ia(un)d(v)

v − un

N∏
j 6=n

uj − un + i

uj − un
· uj − v − i

uj − v

Kkn =
d(uk)a(un)

(uk − v)(un − v)

uk − un + i

uk − un

∏
j 6=k,n

uj − uk − i
uj − uk

· uj − un + i

uj − un
+

+
d(un)a(uk)

(un − v)(uk − v)

uk − un − i
uk − un

∏
j 6=k,n

uj − uk + i

uj − uk
· uj − un − i

uj − un

The coefficients Kn and Kkn can be expressed in terms of Mn and Nn

Kn(v) = Mn(v)N0(v)
v − un

v − un + i
+ M0(v)Nn(v)

v − un
v − un − i

, (6.8)

Knk(v) = Mk(v)Nn(v)
un − uk

un − uk + i
+ Mn(v)Nk(v)

un − uk
un − uk − i

if we define

M0 ≡ a(v)
Qu(v − i)
Qu(v)

, N0 ≡ d(v)
Qu(v + i)

Qu(v)
. (6.9)

From (6.6) it is clear that C reduces the number of magnons by one. For diagonal matrix

elements, any C operator has to be accompanied by a B operator in order to preserve Sz,

and obtain non-vanishing results. For length-2 operators the only possibilities are B(u)C(v)

and C(u)B(v). Both combinations preserve the number of magnons but will lead to a sum

of unwanted terms with one or two magnons replaced by the spectral parameters of the

operators.

6.2 Form factors of length ls operators

In general, the action of ls ABA operators on a Bethe state generates unwanted terms with

at most ls rapidities replaced by the spectral parameters of the operators. In particular,

it is clear now that all the building blocks (6.2) and (6.3) can be written as the scalar

products of the following three types

〈u|u〉, 〈u|{u, θ+
n } \ {uk}〉, 〈u|{u, θ+

n , θ
+
n+1} \ {uj , uk}〉. (6.10)
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where we have used the notation θ+
n = θn + i/2. The first scalar product is the Gaudin

norm (4.30). The finite volume dependence of other two determinants is the subject of

discussion in section 7.

The discussion of the previous subsection can be generalized to the diagonal matrix

elements of the operators with ls > 2. As before, any such matrix element can be spanned

by some building blocks such as FA···A, FBCA···A, FD···D. Of course, the number of the

building blocks grows with the length of the operator.

We act all the ABA operators on the ket state which give rise to the unwanted terms

|{u, θ+
n , . . . , θ

+
n+M} \ {uk1 , . . . , ukM }〉, M ≤ ls. (6.11)

Thus the diagonal matrix element of any length-ls operator can be written as a linear

combination of the following scalar products

〈u|{u, θ+
n , . . . , θ

+
n+M} \ {uk1 , . . . , ukM }〉, M ≤ ls. (6.12)

The number of terms and the complexity of the coefficients will grow quickly with the

increase of number of magnons and length of the operators, nevertheless the structure is

robust.

7 Finite volume expansion

In this section, we analyze the structure of the scalar products (6.12) and show that any of

them can be expanded in terms of diagonal minors of Gaudin norms. We call this procedure

the finite volume expansion.

Above mentioned scalar products can be computed by the Slavnov determinant for-

mula. In the Slavnov determinant (4.20), the denominator is a simple Cauchy deter-

minant and can be computed readily. We therefore focus on the non-trivial numerator

detjk Ω(uj , vk). Let us first consider the scalar product for the case of length-2 operators,

〈u|{u, θn, θn+1} \ {uj , uk}〉. The determinant takes the following form

det Ω =

∣∣∣∣∣∣∣∣∣∣
i φ11 · · · Ω1j · · · Ω1k · · · i φ1N

i φ21 · · · Ω2j · · · Ω2k · · · i φ2N
...

. . .
...

. . .
...

. . .
...

i φN1 · · · ΩNj · · · ΩNk · · · i φNN

∣∣∣∣∣∣∣∣∣∣
. (7.1)

where we have defined i φjk = Ω(uj , uk) and Ωik = Ωik(ui, θn + i/2). The procedure is

straightforward: perform Laplace expansion with respect to the column or row that does not

have any element of the form φnn repeatedly, until one can not do it further. Note that after

one Laplace expansion, we will obtain sub-determinants. We shall also perform the same

procedure for all the sub-determinants until it terminates. This procedure will terminate

when all the determinants in the expression take the form of diagonal minors (5.22) of
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Gaudin norm (5.17)

ρN ({i1, · · · , im}) = (−1)m

∣∣∣∣∣∣∣∣∣∣
φi1i1 · · · · · · · · ·
· · · φi2i2 · · · · · ·
...

...
. . .

...

· · · · · · · · · φimim

∣∣∣∣∣∣∣∣∣∣
(7.2)

Therefore, the following expansion holds

〈u|{u, θn, θn+1} \ {uj , uk}〉 =
∑
α⊆A
F(ᾱ) ρN (α), (7.3)

where A = {1, . . . , ĵ, . . . , k̂, . . . , N}6 and the summation runs over all possible subsets α of

A. Here ᾱ is the complement of α in A. For an explicit and simple example, see appendix A.

Finally we need to justify why we call this procedure “finite volume expansion”. From

a simple analysis below, it is clear that all the explicit L dependence are contained in the

diagonal minors of the Gaudin norm. In the ABA approach, the diagonal matrix elements

are given in terms of the following functions: the eigenvalue of the diagonal elements of the

transfer matrix, a(u) and d(u), the products of functions f(u−v) and g(u−v) (6.4), (6.6),

and the matrix elements in the Slavnov determinant formula Ωjk and φjk. Under proper

normalization, the functions a(u) and d(u) always appear in the expression as the ratio

a(u)/d(u) = eipL. In fact, this kind of phase factor is either canceled by the same factors

from the norm, or be replaced by products of scattering matrices using the Bethe Ansatz

equations and they do not appear in the final expression. The products of f(u − v) and

g(u− v) functions do not depend on L. The matrix element Ωjk defined in (4.21) also has

no dependence on L. Finally, φjk with j 6= k reads

φjk = φ(uj , uk) =
2

(uj − uk)2 + 1
, j 6= k, (7.4)

again, do not depend on L. The only dependence on L is hidden in the diagonal element

φnn. Recall that we have

φnn =

L∑
m=1

1

(un − θm)2 + 1/4
−

N∑
l=1
l 6=n

φnl (7.5)

In the homogeneous limit, where θm = 0 (m = 1, · · · , L), the first term of (7.5) becomes

L/(u2
n + 1/4) which depends linearly on L. When we perform the Laplace expansion, we

carefully avoid expansion with this kind of terms and they only appear in the diagonal

minor ρN (α). Therefore, the finite volume corrections are all contained in ρN (α). This is

one part of the conjecture in [1].7

We have shown in section 6 that any diagonal matrix element can be written as a linear

combination of specific determinant with coefficients that do not depend explicitly on L. As

6Here ĵ and k̂ mean these two indices are absent.
7There the authors used an equivalent description of the diagonal matrix element (5.26) in terms of the

symmetric expansion (5.24), instead the connected one (5.20) that we used here.
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we showed above, these determinants allow finite volume expansion, thus we can perform

the finite volume expansion of any diagonal matrix element in the Heisenberg spin chain. As

was shown in section 3, the diagonal matrix elements correspond to three-point functions

of HHL type. Therefore we have shown that the structure of finite volume dependence of

three-point functions conjectured in [1] is also valid at weak coupling at the leading order in

the su(2) sector. In section 9, we will show that the structure also holds at one-loop level.

This is only half of the story. In the conjecture [1], each coefficient F(ᾱ) of ρ(α) is

identified with the form factor of the same operator in infinite volume. In order to check

this statement, it is desirable to have a formulation of the diagonal matrix elements of

the Heisenberg spin chain directly in infinite volume. However, we are not aware of such

a formulation, although it seems possible to do it in the framework of coordinate Bethe

Ansatz. In principle, the infinite volume form factors for our case can also be obtained

by first solving the Klose-McLoughlin axioms [19] and then take the weak coupling limit.

However, no solution has been found up to now. Because of these reasons, we are not

able to confirm that the coefficients we obtain from finite volume expansion are indeed the

infinite volume form factors.

It is still of interest to know the explicit form of coefficients from our finite volume

expansion. These will be our predictions for the diagonal form factors in the infinite volume

theory. We perform the finite volume expansion for all the diagonal matrix elements of

length-1 and length-2 operators and extract the coefficients. The results exhibit a nice

structure and will be presented in section 8.

8 Infinite volume form factors

First, let us comment on the identity operator. As any multi-magnon diagonal matrix

element of the identity operator equals to 1, matching it with the series (5.20), one can

easily derive that all infinite volume connected form factors vanish except from the vacuum

expectation value,

f I(∅) = 1 ; f I(u1, . . . , uN ) = 0 , N ≥ 1. (8.1)

We should also discuss separately the simple case of the vacuum expectation values of

spin chain operators. In the series (5.20), the zero magnon diagonal matrix element only

contains the vacuum expectation value of the given operator in the infinite volume theory.

So that, for the length-1 and length-2 operators one can easily find

fo1(∅) = fo
1
2(∅) = 1 , fo

2
2(∅) = fo

3
2(∅) = fo

4
2(∅) = 0. (8.2)

It holds also in the general case. Let us take the operators Eab
n , (a, b = 1, 2) as a basis

on the local quantum space, and linearly extend it to ls neighboring site. Then only one,

among this 4ls basis element, has non-vanishing vacuum expectation value, namely the one

containing E11 at each site.

In the rest of this section, we will perform the finite volume expansion for the diagonal

matrix elements of length-1 and length-2 operators. We will discuss a simple example,

namely the case of length-1 operator with 2 magnons in detail and present the results for

more complicated form factors.
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8.1 An example: length-1 operator with -2 magnons

We consider the finite volume diagonal matrix element for the operator o1(n) = E11
n with

two magnons

Fo1L (u1, u2) =
〈u1, u2|o1(n)|u1, u2〉
〈u1, u2|u1, u2〉

. (8.3)

It has the following structure in finite volume

Fo1L (u1, u2) =
1

ρ2({1, 2})
(ρ2({1, 2}) + fo1(u2) ρ2({1}) + fo1(u1) ρ2({2}) + fo1(u1, u2))

(8.4)

where fo1(u) is to be identified with the connected diagonal form factor of o1 in the infinite

volume theory (5.13).

We proceed as described in the previous sections. Using the solution of QISP, we have

Fo1L (u1, u2) =
1

tu(θ+
n )

〈u1, u2|A(θ+
n )|u1, u2〉

〈u1, u2|u1, u2〉
, (8.5)

where the denominator is the Gaudin norm (4.30),

〈u1, u2|u1, u2〉 =

 2∏
j=1

a(uj)d(uj)

 1 + (u1 − u2)2

(u1 − u2)2
ρ2({1, 2}). (8.6)

From (6.4),

〈u1, u2|A(θ+
n )|u1, u2〉 = M0(θ+

n )〈u1, u2|u1, u2〉 (8.7)

+ M1(θ+
n )〈u1, u2|u2, θ

+
n 〉+ M2(θ+

n )〈u1, u2|u1, θ
+
n 〉.

We introduce some notations in order to simplify the expressions. Let us define

Cu,v =

∏N
j=1 a(vj)d(uj)

detjk
1

uj−vk+i

, (8.8)

so that

〈v|u〉 = Cu,v det
jk

Ω(uj , vk). (8.9)

By perform the finite volume expansion for the three scalar products, we obtain

〈u1, u2|A(θ+
n )|u1, u2〉 = −C{u1,u2},{u1,u2}M0(θ+

n ) ρ2({1, 2}) (8.10)

− iC{u1,u2},{u1,θ+n }M2(θ+
n )Ω(u2, θ

+
n ) ρ2({1})

− iC{u1,u2},{u2,θ+n }M1(θ+
n )Ω(u1, θ

+
n ) ρ2({2})

− φ12

(
C{u1,u2},{u2,θ+n }Ω(u2, θ

+
n )M1(θ+

n ) + C{u1,u2},{u1,θ+n }Ω(u1, θ
+
n )M2(θ+

n )
)

Plugging (8.10) into (8.5) and comparing to the expansion (8.4), we obtain the expression

for the various form factors in infinite volume

fo1(u1) = i
C{u1,u2},{u2,θ+n }

C{u1,u2},{u1,u2}

M1(θ+
n )

M0(θ+
n )

Ω(u1, θ
+
n ) (8.11)
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Figure 2. Diagrammatic representation of one term in (8.13) with 4 magnons.

fo1(u2) = i
C{u1,u2},{u1,θ+n }

C{u1,u2},{u1,u2}

M2(θ+
n )

M0(θ+
n )

Ω(u2, θ
+
n )

fo1(u1, u2) =
φ12

C{u1,u2},{u1,u2}M0(θ+
n )

(
C{u1,u2},{u2,θ+n }Ω(u2, θ

+
n )M1(θ+

n )

+C{u1,u2},{u1,θ+n }Ω(u1, θ
+
n )M2(θ+

n )
)

Substituting the explicit expressions in (8.11) and, at the end, taking the homogeneous limit

θn → 0, we obtain very compact results for the infinite volume connected form factors,

fo1(uk) =
1

u2
k + 1/4

, k = 1, 2 (8.12)

fo1(u1, u2) =

(
1

u2
1 + 1/4

+
1

u2
2 + 1/4

)
2

1 + (u1 − u2)2
.

8.2 Length-1 operator with N magnons

We can perform the same calculation as in the previous subsection and extract the form

factors with more magnons. The process becomes cumbersome for higher number of parti-

cles. However, from the first few magnon cases, we are able to observe a nice pattern of the

connected form factors. The N -magnon connected diagonal form factor for o1(n) is given as

fo1(u1, . . . , uN ) = ε1 φ12 φ23 . . . φN−1,N + permutations (8.13)

where εk is the energy of the magnon with rapidity uk and φjk can be seen as some “prop-

agator” defined as

εk = ε(uk) =
1

u2
k + 1/4

, φjk =
2

1 + (uj − uk)2
, j 6= k. (8.14)

The expression (8.13) can be represented by the diagrams in figure 2. Each node is labeled

by a number from 1 to N . The leftmost node is associated with the energy of its label.

The lines between two neighboring nodes are associated with a propagator. Multiplying

the factors we obtain the value of the diagram. Summing over all the permutations of the

labeling gives the result for infinite volume form factor fo1 . The result for an N magnon

state is thus a sum over N ! terms.

The structure of fo1 is exactly the structure of the connected form factors of conserved

charge densities (5.25). This is not surprising, since o1(n) = 1
2(I+ σzn) is indeed a length-1

conserved charge density of the Heisenberg spin chain. The nice feature is that once we

know the one particle eigenvalue q(u) of the charge, we can immediately write down the

expression for the corresponding infinite volume form factors. We remark here that our

result (8.13) is consistent with the determinant formula of [25].
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Figure 3. Different kinds of diagrams encoding length-2 form factors.

8.3 Length-2 form factors of N magnons

The calculation of infinite volume matrix elements can be performed following the same

line as in section 8.1 but the process is more involved. Nevertheless, we again found some

patterns for the various matrix elements which we present below. The structure for the

length-2 operators can be encoded into diagrams similar to the one in figure 2. However,

in this case we have two types of them, as are shown in figure 3.

Each diagonal matrix element is given by two kinds of diagrams. This structure was

tested for all length-2 operators up to 5 magnons and we conjecture that it holds for any

number of magnons. The first kind is depicted in the blue region. We label the nodes

by number from 1 to N . The leftmost node is associated with ε(uj) while the rightmost

node is associated with a function denoted by fO(uk), and it depends on the operator. The

other kind, depicted in the green region, is more interesting. The leftmost and rightmost

nodes are associated with εj and ε′k where ε′(u) = ∂
∂uε(u). In addition, for a given label of

the nodes, one needs to sum over the diagrams which replaces one of the propagators by

a “directed propagator”, ψOij = ψO(ui, uj). The directed propagator is antisymmetric with

respect to its arguments ψOij = −ψOji and its explicit form depends on the operator under

consideration.

In summarizing, the infinite volume diagonal matrix element of a length-2 operator,

fO(u1, · · · , uN ), is characterized by two functions fO(u) and ψO(u, v). The result for N -

magnon is given by

fO(u1, . . . , uN ) =
(
ε1 φ12 . . . φN−1,N fON + permutations

)
+

(
N−1∑
i=1

ε1 φ12 . . . ψ
O
i,i+1 . . . φN−1,N ε

′
N + permutations

)
(8.15)

We list the data for oi2 (3.9), (3.10) is the following:

fo
1
2(u) = 2 ψo

1
2(u, v) = −(u− v)(uv − 1/4)φ(u, v)

fo
2
2(u) = −u− i/2

u+ i/2
ψo

2
2(u, v) = (u− v)(u− i/2)(v − i/2)φ(u, v)
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fo
3
2(u) = −u+ i/2

u− i/2
ψo

3
2(u, v) = (u− v)(u+ i/2)(v + i/2)φ(u, v)

fo
4
2(u) = 0 ψo

4
2(u, v) = −(u− v)(uv − 1/4)φ(u, v) (8.16)

Let us comment on this results (8.16). These data for the operators can be read off simply

from the computation of 2 magnon case. Therefore, one should simply compute the 2-

magnon matrix elements and perform the finite volume expansion to extract the data.

Once the functions in (8.16) are known, we can write down any diagonal form factor of

length-2 operators in the infinite volume. Any length-2 operator is a linear combination of

the identity operator, o1 and oi2,

On = b I + c0 o1(n) + c̃0 o1(n+ 1) +
3∑
i=1

ci o
i
2(n) (8.17)

where b, c0 and ci (i = 1, 2, 3) are some numbers. Then the data of O is simply given by

fO(u) = c0 + c̃0 +

3∑
i=1

ci f
oi2(u), ψO(u, v) =

3∑
i=1

ci ψ
oi2(u, v), (8.18)

and its vacuum expectation value is

fO(∅) = b+ c0 + c̃0 + c1. (8.19)

For example, the operator o4
2 is not independent

o4
2(n) = I− o1(n)− o1(n+ 1) + o1

2(n).

Note that by translational invariance, o1(n) gives the same result as o1(n+1) when comput-

ing the form factors. It is easy to check that this resolution is consistent with (8.2), (8.16).

The diagonal matrix elements of the operators o2
2 and o3

2 are related by complex conjugation

which is also manifest in (8.16).

8.4 Examples of length-2 operators

We compute two examples below. First, the matrix elements of the length-2 conserve

charge density, which is the permutation operator Pk,k+1, or equivalently the Hamiltonian

density Hk,k+1 = Ik,k+1 − Pk,k+1. We will see that the data for the permutation operator

simplifies and the final result takes exactly the form predicted in (5.25). This is a non-

trivial check of our functions (8.16). Another example is an HHL three-point function,

with the light operator being the rotated BMN vacuum of length 4.

Permutation operator. The permutation operator Pk,k+1 is a length-2 operator of the

Heisenberg spin chain. It can be written in terms of the operators oi2 with equal weights

Pk,k+1 =
2∑

i,j=1

Eijk Ejik+1 =
4∑
i=1

oi2. (8.20)
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According to (8.18), the data of permutation operator is given by

fP(u) = ε(u) =
1

u2 + 1/4
, ψP(u, v) = 0, fP (∅) = 1. (8.21)

The infinite volume form factor (8.15) with the entires (8.21) has the structure as a con-

served charge should have (5.25), with the one particle eigenvalue of the corresponding

charge being −ε(u).

A three-point function with Oα = Tr Z̃Z̃Z̃Z̃. As another example, we compute a

HHL three-point function with the light operator being Oα = Õ = Tr Z̃Z̃Z̃Z̃, which is the

rotated BMN vacuum. The scalar field Z̃ is defined as

Z̃ = Z + Z̄ + i(X + X̄). (8.22)

Following our strategy, we first map the field theory operator to the spin chain operator

Õ using (3.4). Then we write the operator Õ in terms of linear combinations of the basis

operators o1, o
i
2 (i = 1, . . . , 3). This enable us to write down the data for the operator Õ

and thus the infinite volume form factor. We have8

Õn = 4(I− 2o1(n)− 2o1(n+ 1) + 4o1
2(n)− o2

2(n)− o3
2(n)). (8.23)

Using the representation (8.23) and also the data (8.16), we get for the operator Õ

fÕ(u) =
96u2 + 8

4u2 + 1
, ψÕ(u, v) = −6(u− v)(4uv − 1)φ(u, v). (8.24)

The corresponding infinite volume form factors can be obtained from the general prescrip-

tion (8.15) for the length-2 form factors.

9 Matrix elements at one loop

In this section, we generalize the above considerations from tree level to one loop. We

show that the form factors at one loop can again be written in terms of a finite number

of “building blocks”. These building blocks are matrix elements of the inhomogeneous

Heisenberg XXX1/2 spin chain with the inhomogeneities fixed to some specific values,

called the BDS values, and can be written in terms of scalar products (6.12) for which one

can perform the finite volume expansion, as at the tree level.

There are several new features for three-point functions at higher loops. The dilatation

operator in the su(2) sector is no longer the Hamiltonian of the Heisenberg XXX1/2 spin

chain, but becomes long-range interacting, called the BDS spin chain [38]. Therefore the

two large operators correspond to the eigenvectors of the BDS spin chain. The BDS spin

chain is related to a special inhomogeneous Heisenberg XXX1/2 spin chain by a unitary

transformation [11, 39]. Therefore its eigenstates can be obtained from the eigenstates

8Factor of 4 appeared due to the symmetry of the Õ.
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Figure 4. The quantum corrections are taken into account by operator insertions at the splitting

points. At one-loop in the so(6) sector, the insertion takes the form of one-loop Hamiltonian density.

of the inhomogeneous Heisenberg spin chain by performing the unitary transformation,

namely |u〉BDS = S|u;θBDS〉. The BDS values of the inhomogeneities are given by

θBDS
k = 2g sin

2πk

L
, k = 1, · · · , L (9.1)

where g is the coupling constant. The unitary operator S has been worked out in [11] up

to g2 order

S = exp i

L∑
k=1

[
νkHk +

i

2
ρk[H]k

]
, (9.2)

where Hk ≡ Ik,k+1 − Pk,k+1 and [H]k ≡ [Hk,Hk+1]. The parameters νk and ρk are related

to the inhomogeneities by

νk = −
k∑
j=1

θj , ρk = 2g2k − θkνk −
k∑
j=1

θ2
j , k = 1, · · · , L. (9.3)

It is obvious that νk ∼ g and ρk ∼ g2.

Another new feature is that the quantum corrections manifest themselves as operator

insertions at the splitting points [6, 7], as is shown in figure 4. The operator insertions take

the form of the Hamiltonian density of the spin chain. In our set up we need insertions for

the so(6) sector, since the light operator belongs to so(4), which is not closed at one loop.

At one loop level, we need to take into account the aforementioned new features.

In what follows, we first discuss the effect of the operator insertions and show that the

three-point function under consideration can be reduced into the calculation of correlation

functions of the BDS spin chain. Then we consider the effect of the S operator on the

spin operators and reduce the correlation functions of BDS spin chain into the correlation

functions of the inhomogeneous Heisenberg XXX1/2 spin chain. As we discussed in the tree

level case, the matrix elements of the inhomogeneous Heisenberg spin chain can be written

in terms of scalar products (6.12), and we can perform the finite volume expansion.
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9.1 The effects of one-loop operator insertions

For each spin chain state, there are two operator insertions at the two splitting points. We

first discuss the effects of insertions for the “light” operator Oα. The one-loop insertion

takes the form of the Hamiltonian density

H
so(6)
l = Kl,l+1 + 2Il,l+1 − 2Pl,l+1 (9.4)

where Il,l+1, Pl,l+1 and Kl,l+1 are the identity, permutation and trace operators. They act

on the so(6) spin chain states as

Il,l+1| . . . φilφ
j
l+1 . . .〉 = | . . . φilφ

j
l+1 . . .〉, (9.5)

Pl,l+1| . . . φilφ
j
l+1 . . .〉 = | . . . φjlφ

i
l+1 . . .〉,

Kl,l+1| . . . φilφ
j
l+1 . . .〉 = δij

6∑
k=1

| . . . φkl φkl+1 . . .〉.

At one loop level, the light operator should be an eigenvalue of the two-loop dilatation

operator. The so(6) sector is closed only at one-loop so in principle one needs fields outside

the so(6) sector, like fermionic fields, to construct the eigenstates of the two loop dilatation

operator. However, when computing the three-point functions, the Feymann diagrams, in-

volving fields apart from {X,Z, Y, X̄, Z̄, Ȳ }, will not contribute at one loop order. Thus,

the only new fields which we have to take into account at one loop are Y and Ȳ . It’s easy to

see from figure 5 that the light operator, in the presence of one-loop insertions, can again be

written in terms of local spin chain operators σ±, σz, due to the fact that the heavy opera-

tors are still can be expressed as su(2) spin chain states. Therefore, our considerations be-

fore can be generalized here. To summarize, the one-loop structure constants can be recast

to the calculation of matrix elements of the BDS spin chain BDS〈u|Ô(σ±, σz; g2)|u〉BDS.

Now we consider the operator insertions for the heavy states. The effect of these

insertions is increasing the length of the spin chain operator, as is shown in (6).

This can be seen easily by noticing that

Pk,k+1 =
2∑

i,j=1

Eijm ⊗ Ejim+1 (9.6)

For example, we have the following

? E11
mHm ? = (?E11

m ?)− (?E11
mE11

m+1 ?)− (?E11
mE12

m+1 ?) (9.7)

where the star stands for some strings of operators.

9.2 The effects of the unitary S operator

In this subsection, we discuss the action of unitary operator S on the spin operators. We

are interested in the following quantity

〈u;θBDS|S−1Ôl+1(σ±, σz)S|u;θBDS〉. (9.8)
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Figure 5. An example of mapping the light operator to the spin chain operator at one-loop in the

presence of one-loop insertion.

Figure 6. The effect of operator insertions for the heavy operators. They increase the length of

the spin operator by 1. The red cross denotes the splitting point.
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Figure 7. The length preserving action generated by [H]k on the spin chain vertex.

Figure 8. The length changing action generated by [H]k on the spin chain vertex. In this example,

it increases the length of the spin chain operator by 2.

The S operator takes an exponential form S = exp F̂, thus we have

S−1Ôl+1(σ±, σz)S = Ôl+1(σ±, σz)− [F̂, Ôl+1(σ±, σz)] +
1

2
[F̂, [F̂, Ôl+1(σ±, σz)]] +O(g3)

(9.9)

where we have truncated up to O(g2) order. The action of S operator on the spin chain

operator can be divided into two types. The first type is length preserving, it originates

from the operators Hk and [H]k that act within the range of the spin chain operator Ôl+1,

which gives rise to an operator with the same length, this is depicted in figure 7.

The other type of the action increases the length of the operator by 1 or 2, which are

generated from the operators at the boundary of the spin chain operator. There are two

kinds of length changing processes at one loop. One process is generated by a single Hk or

[H]k, which is given in figure 8.

The other process is generated by two Hk’s, one example of which is given in figure 9.

– 30 –



J
H
E
P
0
9
(
2
0
1
5
)
1
2
5

Figure 9. The length changing action generated by two Hk’s on both ends of the spin chain vertex.

The length of the spin operator also increases by 2 in this example.

From our analysis we see that the action of the S operator on the spin chain operators,

in general, increases the length of the spin chain operator. Up to O(g2) order, the length

of the operator increases at most by 2.

S−1 Ôl(σ
±, σz) S = Ô′l(σ

±, σz) + Ô′l+1(σ±, σz) + Ô′l+2(σ±, σz) +O(g3) (9.10)

This implies that in order to compute the form factor of length l operator for BDS spin

chain, we need to compute the form factors of length l + 2, l + 1 and l operators in the

inhomogeneous Heisenberg XXX1/2 spin chain.

Once we write the three-point function in terms of matrix elements of the inhomoge-

neous XXX1/2 spin chain, we can perform the finite volume expansion and organize the

results in the form conjectured in [1]. At one loop, the matrix element of Gaudin norm is

modified. The equations (4.26), (4.27) and (4.29) are still valid, but the eigenvalues a(u)

and d(u) are corrected

a(u) =

L∏
k=1

(u− θBDS
k + i/2) = x(u+ i/2)L +O(g2L), (9.11)

d(u) =
L∏
k=1

(u− θBDS
k + i/2) = x(u− i/2)L +O(g2L),

where x(u) is the Zhukowsky map given by

x(u) +
g2

x(u)
= u. (9.12)

By replacing

p(uk) =
uk + i/2

uk − i/2
−→ x(uk + i/2)

x(uk − i/2)
(9.13)

in (4.26) and expanding the result up to O(g2) order, we obtain the Gaudin norm at one-

loop, ρ1-loop
n . In fact, the replacement (9.13) gives the correct Gaudin norm up to wrapping
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orders [10, 11]. Our conclusion is that the structure conjectured in [1] is also valid at one

loop level with respect to the one-loop Gaudin norm.

Of course the coefficients or the infinite volume form factors at one-loop will be more

complicated. It is an interesting question to see how the infinite volume form factors are

deformed at one loop and whether it is possible to bootstrap to all loops.

10 Conclusion

In this paper we considered symmetric HHL correlators at weak coupling of the su(2) sector

of N = 4 SYM theory. Using the formalism of computing matrix element of XXX1/2 spin

chain (see e.g. [25]), we showed that at tree level, as well as at one loop, the finite volume

dependence (up to the wrapping corrections) of this kind of correlator is given by the

expression conjectured in [1]. Apart from giving the general arguments of the proof we

computed the simplest non-trivial correlators at tree level, which correspond to the case

when the length of the light operator is equal to 4. The structure of the coefficients of the

finite volume expansion allowed us to conjecture their form for any number of excitations

of the heavy operator. We showed that these coefficients can be expressed in terms of

several functions of the rapidities defined by the light operator. Another aspect of the

conjecture proposed in [1] suggests that the coefficients of the above mentioned finite volume

expansion can be interpreted as appropriate infinite volume form factors. Therefore our

explicit calculation provides us with concrete proposal for the infinite volume form factor.

As a continuation of our work it would be interesting to see how the coefficients in

the finite volume expansion are deformed at one loop. As an obstacle, one should mention

that, as it follows from section 9, the complexity of the simplest one-loop computation

is equivalent to a tree level computation with a light operator of the length equal to 6,

and the calculation becomes much more involved. On the other hand, the recent result

of [14] suggests an all-loop method for computing three-point correlators. And it would be

interesting to merge their method with the approach developing in this paper and check

the conjecture of [1] at all loop. In addition, it would give us all-loop prediction for the

diagonal infinite volume form factors.

Another interesting direction to pursue is to try to see whether the same structure of

the finite volume dependence holds for symmetric HHL correlators of the other sectors of

N=4 SYM.
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was supported by the Lendület Grant LP2012-18/2015, and the French-Hungarian bilateral

grant TET 12 FR-1-2013-0024.

A An example of finite volume expansion

In this appendix, we give an explicit example in order to illustrate how to perform the

finite volume expansion of the special scalar products defined in section 7. The scalar

product under consideration is 〈{u1, u2, u3, u4}|{u1, θ, u3, u4}〉, where {u1, u2, u3, u4} is a

set of Bethe roots. Consider the numerator of the Slavnov determinant formula (4.20),

〈{u1, u2, u3, u4}|{u1, θ, u3, u4}〉 ∝

∣∣∣∣∣∣∣∣∣
φ11 Ω12 φ13 φ14

φ21 Ω22 φ23 φ24

φ31 Ω32 φ33 φ34

φ41 Ω42 φ43 φ44

∣∣∣∣∣∣∣∣∣ (A.1)

We first perform the Laplace expansion for the second column, which gives

− Ω12

∣∣∣∣∣∣∣
φ21 φ23 φ24

φ31 φ33 φ34

φ41 φ43 φ44

∣∣∣∣∣∣∣+ Ω22

∣∣∣∣∣∣∣
φ11 φ13 φ14

φ31 φ33 φ34

φ41 φ43 φ44

∣∣∣∣∣∣∣ (A.2)

− Ω32

∣∣∣∣∣∣∣
φ11 φ13 φ14

φ21 φ23 φ24

φ41 φ43 φ44

∣∣∣∣∣∣∣+ Ω42

∣∣∣∣∣∣∣
φ11 φ13 φ14

φ21 φ23 φ24

φ31 φ33 φ34

∣∣∣∣∣∣∣
The Laplace expansion gives rise to 4 terms, which we shall denote Ti, i = 1, · · · , 4. For

T1, we do Laplace expansion by the first column

T1 = −Ω12 {φ21ρ4({3, 4})− φ31(φ23ρ4({4})− φ24φ43) + φ41(φ23φ34 − φ24ρ4({3}))}
= −Ω12φ21 ρ4({3, 4}) + Ω12φ41φ23 ρ4({3}) + Ω12φ31φ23 ρ4({4})
− Ω12(φ31φ24φ43 + φ41φ24φ34)

The second term already takes the form of diagonal minor of the Gaudin norm

T2 = Ω22 ρ4({1, 3, 4}) (A.3)

For the third term, we perform Laplace expansion with respect to the second column

T3 = −Ω32φ23 ρ4({1, 4}) + Ω32φ43φ24 ρ4({1}) + Ω32φ13φ21 ρ4({4})
− Ω32(φ13φ24φ41 + φ43φ14φ21)

For the last term, we perform Laplace expansion with respect to the last column

T4 = −Ω42φ24 ρ4({1, 3}) + Ω42φ34φ23 ρ4({1}) + Ω42φ14φ21 ρ4({3})
− Ω42(φ14φ23φ31 + φ34φ13φ21)
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Collecting terms from the above calculation, we obtain the finite volume expansion of the

scalar product

〈{u1, u2, u3, u4}|{u1, θ, u3, u4}〉 ∝ (A.4)

Ω22 ρ4({1, 3, 4})− Ω42φ24 ρ4({1, 3})− Ω32φ23 ρ4({1, 4})− Ω12φ21 ρ4({3, 4})
+ (Ω32φ43φ24 + Ω42φ34φ23) ρ4({1}) + (Ω42φ14φ21 + Ω12φ41φ24) ρ4({3})
+ (Ω12φ31φ23 + Ω32φ13φ21) ρ4({4})− Ω12(φ31φ24φ43 + φ41φ23φ34)

− Ω32(φ13φ24φ41 + φ43φ14φ21)− Ω42(φ14φ23φ31 + φ34φ13φ21)

In fact, it is not hard to convince ourselves that the similar expansion can be performed for

general scalar products defined in section 7. For length-2 operators, we have the following

finite volume expansion

〈u|{u, θn, θn+1} \ {uj , uk}〉 =
∑
α⊆A

Fᾱ ρ(α), A = {1, 2, . . . , ĵ, . . . , k̂, . . . , N} (A.5)

In general, the terms of the expansion grows quickly with the number of excitations and

the expansion coefficients Fᾱ might get quite involved.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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