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Abstract: The entanglement entropy in three-dimensional conformal field theories (CFTs)

receives a logarithmic contribution characterized by a regulator-independent function a(θ)

when the entangling surface contains a sharp corner with opening angle θ. In the limit

of a smooth surface (θ → π), this corner contribution vanishes as a(θ) = σ (θ − π)2. In

arXiv:1505.04804, we provided evidence for the conjecture that for any d = 3 CFT, this

corner coefficient σ is determined by CT , the coefficient appearing in the two-point function

of the stress tensor. Here, we argue that this is an instance of a much more general relation

connecting the analogous corner coefficient σn appearing in the nth Rényi entropy and the

scaling dimension hn of the corresponding twist operator. In particular, we find the simple

relation hn/σn = (n − 1)π. We show how it reduces to our previous result as n → 1,

and explicitly check its validity for free scalars and fermions. With this new relation, we

show that as n → 0, σn yields the coefficient of the thermal entropy, cS. We also reveal a

surprising duality relating the corner coefficients of the scalar and the fermion. Further,

we use our result to predict σn for holographic CFTs dual to four-dimensional Einstein

gravity. Our findings generalize to other dimensions, and we emphasize the connection to

the interval Rényi entropies of d = 2 CFTs.
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1 Introduction & main results

Understanding the structure of quantum entanglement in complex systems has become an

active area of study in a variety of areas of physics, including condensed matter physics,

e.g., [1–5]; quantum field theory, e.g., [6–10]; and quantum gravity, e.g., [11–21]. For these

investigations, the entanglement entropy SEE and Rényi entropies Sn [22, 23] have proven

to be two particularly useful measures of the relevant degrees of freedom. In the context

of quantum field theory, these are defined for a spatial region V with:

Sn(V ) =
1

1− n
log Tr ρnV , SEE(V ) = lim

n→1
Sn(V ) = −Tr (ρV log ρV ) , (1.1)

where ρV is the reduced density matrix computed by integrating out the degrees of freedom

in the complementary region V .

In the present paper, we will focus on the Rényi entropy in three-dimensional conformal

field theories (CFTs), which takes the form

Sn = Bn
`

δ
− an(θ) log( `/δ ) + cn +O

(
δ/`
)
, (1.2)

where δ is a UV cut-off and ` is a length scale characteristic of the size of the region V —

see figure 1a. The result is dominated by the first contribution, the celebrated ‘area law’

term, but the corresponding coefficient Bn depends on the details of the UV regulator. The

subleading logarithmic contribution appears when the entangling surface (i.e., the boundary

of V ) contains a sharp corner of opening angle θ, as in figure 1a. The corresponding corner

function an(θ) is regulator independent and hence it is a useful quantity to characterize the

underlying CFT. For instance, several groups have numerically studied the corner function

using lattice Hamiltonians [24–33], and obtained results independent of the lattice details

which probe the low energy degrees of freedom.

As the corner function an(θ) is central to our investigation, let us summarize a few of

its key properties: if eq. (1.2) is evaluated for the vacuum state, reflection positivity [34, 35]

constrains an(θ) to be a positive convex function of θ, i.e.,

an(θ) ≥ 0 , ∂θan(θ) ≤ 0 , ∂2θan(θ) ≥ 0 , (1.3)

in the range 0 ≤ θ ≤ π. In fact, reflection positivity gives rise to an infinite tower of

nonlinear higher-derivative constraints as well [34].1 Further, this function satisfies an(θ) =

an(2π − θ) if eq. (1.2) is evaluated for a pure state, e.g., in the vacuum state of the CFT.

The form of an(θ) is also constrained on general grounds in the limits where the corner

becomes very sharp (θ → 0) and where it becomes almost smooth (θ → π, figure 1b) [8–10]:

an(θ → 0) =
κn
θ
, an(θ → π) = σn (π − θ)2 . (1.4)

This behaviour is schematically illustrated in figure 2a. Hence these limits define two

regulator-independent coefficients, κn and σn, which are representative of the CFT.

1We thank Horacio Casini for explaining these points. We discuss the nonlinear constraints further in

section 6.
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(a) (b)

Figure 1. a) Region V whose boundary contains a sharp corner with opening angle θ. b) The

contribution to the Rényi entropy Sn from a corner in the almost smooth limit yields a great deal

of insight into the degrees of freedom of the CFT via the coefficient σn.

In studying the corner contribution in the entanglement entropy [36, 37], we recently

conjectured that the smooth-corner coefficient σ1 has a universal form in general three-

dimensional CFTs,

σ1 =
π2

24
CT , (1.5)

where CT is the central charge appearing in the two-point function of the stress tensor

— see eq. (1.12). We have verified that this relation holds for a free conformally coupled

scalar and a free massless fermion, as well as for an eight-parameter family of strongly

coupled holographic CFTs [36, 37]. A more general holographic proof appears in [38, 39].

Our primary result here is the generalization of eq. (1.5) to arbitrary values of the Rényi

index n > 0:

σn =
1

π

hn
n− 1

, (1.6)

where hn is the scaling dimension of the twist operator τn appearing in calculations of

Sn(V ). It is defined in the n-fold replicated theory as the surface operator on the boundary

of V which acts to permute the n copies of the original QFT — see section 2 for more details.

A first test of eq. (1.6) is to verify that we recover eq. (1.5) from this new relation in

the limit n → 1. To do so, we make two observations: first, the twist operator becomes

trivial at n = 1 and hence the scaling dimension hn vanishes in this limit. Second, at n = 1

the first derivative of hn with respect to n is proportional to the central charge CT in any

d-dimensional CFT [40, 41]. In d = 3, the precise relation is

∂nhn|n=1 =
π3

24
CT . (1.7)

Therefore in the vicinity of n = 1, the scaling dimension can be expanded as

hn
n→1
=

π3

24
CT (n− 1) +O

(
(n− 1)2

)
. (1.8)

Now it is straightforward to see that substituting this expression into eq. (1.6) and taking

the limit n→ 1 precisely reproduces the original relation (1.5).

Further, we have been able to verify eq. (1.6) for a free conformally coupled scalar field

and for a free massless fermion. In particular, as we discuss in the following, we can evaluate
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the corner coefficient σn using the results of [8–10, 42] while the scaling dimension hn can

be determined with the results of [40, 41]. We demonstrate that these two independent

calculations yield complete agreement with eq. (1.6) for any integer values of n > 1. Since

the methods involved in these two calculations are so completely disparate, we find this

agreement to be very strong evidence for the new conjecture.

Before moving to detailed discussions, let us draw an interesting parallel with two-

dimensional CFTs where twist operators are well understood. In the case of d = 2, the

twist operator is a local primary operator with scaling dimension [6, 7, 43]:

h(2)
n =

c

12

(
n− 1

n

)
, (1.9)

where c is the Virasoro central charge of the theory. The Rényi entropy of a single interval

is calculated by first evaluating the correlator of two twist operators inserted at each of the

endpoints and the final result can be written as

Sd=2
n = 2 σ(2)

n log( `/δ ) + · · · , where σ(2)
n ≡

h(2)
n

n− 1
. (1.10)

In this expression, ` is the length of the interval and δ, the UV cut-off. The factor of two

here comes from having two endpoints [43]. Hence, there is a striking similarity between

the coefficient of the logarithmic contribution in d = 2 and in d = 3 — in the limit θ → π

for the latter. The parallel extends to the n → 1 limit, where one recovers the well-

known result Sd=2
EE = (c/3) log(`/δ) by applying the two-dimensional analog2 of eq. (1.7):

∂nhn|n=1 = c/6. While it calls for some deeper physical insight, this interesting connection

serves as a stepping stone from the well-known results for d = 2 to new considerations of

Rényi entropies in higher dimensions — see further discussion in sections 4 and 7.

1.1 Main results

Eq. (1.6) is our main result. In particular, we conjecture this to be a relation valid for

general CFTs in d = 3. We thus predict that the corner coefficient of the Rényi entropies

in the smooth limit σn is proportional to the scaling dimension hn of the twist operator.

Most of the remainder of the paper is devoted to supporting this new conjecture, and to

extract various consequences from it.

Eq. (1.6) incorporates our previous conjecture (1.5) when n = 1, as we discussed above.

Using independent computations of σn [8–10, 42] and hn [40, 41], we have verified that (1.6)

holds exactly for a free scalar and for a free massless Dirac fermion at integer values of n

(up to n = 500) as well as in the n→∞ limit. Further, since we have a simple expression

for hn that holds for any real n, we can predict the behavior of σn for non-integer n. This

is plotted in figure 3 for the free complex scalar and Dirac fermion. Figure 3 also includes

σn for a holographic CFT dual to Einstein gravity. This is a prediction of our conjecture

as hn is known for these holographic theories, but direct access to σn is currently limited

2Eq. (2.5) provides the general equation relating ∂nhn|n=1 and CT in d dimensions. The above result

follows from simply substituting d = 2 and also CT = c/(2π2).
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κn/θ 1/n2
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σn(θ −π)2

an(θ)
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24
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Figure 2. Schematics for the corner entanglement function in general CFTs in d= 3 spacetime

dimensions. a) Rényi corner contribution an(θ) versus the Rényi index n and opening angle θ, with

the asymptotics for θ → 0, π and n→ 0. b) Smooth-corner coefficient σn versus n. The divergence

at small n is determined by the flat-space thermal entropy density: sflat = cS T
2.

to n = 1. Indeed, the celebrated Ryu-Takayanagi prescription [18–21] only provides a

holographic description of entanglement entropy.

A general formula for the scaling dimensions hn in dimensions d ≥ 2 was obtained

in [41] — see (2.4) below. As we explain in section 3, hn is expressed in terms of the thermal

energy density E(T ) of the CFT on the hyperbolic space Hd−1 (the simplest geometry with

constant negative curvature). Using eq. (1.6), we find a new formula for the Rényi corner

coefficient:

σn =
n

n− 1
R3 (E(T0)− E(T0/n)) , (1.11)

where R is the curvature radius of the hyperbolic plane H2, which also determines the

temperature T0 = 1/(2πR). Note that neither σn nor hn depend on R, and that this

expression is always positive since the energy density E(T ) increases with temperature.

Eq. (1.11) allows for explicit calculations of the Rényi corner coefficient σn for any n > 0,

including non-integer values of n. It also sheds light on the physical content of σn. For

example, following the analysis of [41], it yields our earlier conjecture (1.5) where σ1 is

proportional to CT , the central charge appearing in the vacuum two-point function of the

stress tensor:

〈Tµν(x)Tηκ(0)〉 =
CT

x2d
Iµν,ηκ(x) , (1.12)

where Iµν,ηκ(x) is a dimensionless tensor, whose structure is fixed by conformal symme-

try [44]. As noted above, the desired result follows from expanding hn around n = 1 in

eq. (1.6). Further, in the limit n → 0, we find that the corner coefficient yields another

important physical constant, the coefficient cS which controls the thermal entropy density

of the CFT (in flat space), i.e., sflat = cS T
d−1. In particular, we show that eq. (1.11) yields

lim
n→0

σn =
cS

12π3
1

n2
. (1.13)
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Figure 3. Log-log plot of σn/CT versus the Rényi index n for the free complex scalar, free Dirac

fermion, and holographic theories. Strikingly, the latter two are almost equal. We note that all

three lines must cross at n = 1, where one recovers the universal ratio, σ1/CT = π2/24 ' 0.411.

In section 6 we extend this result by establishing that the corner function an(θ) diverges

as 1/n2 for any opening angle. In the opposite limit, i.e., as n→∞, eq. (1.11) becomes

σ∞ = R3 (E(T0)− E(0)) > 0 . (1.14)

This quantity does not seem to lend itself to an interpretation in terms of flat space ob-

servables, in contrast to the n → 0, 1 limits. In section 6, we show that this asymptotic

behavior extends to finite angles, i.e., a∞(θ) is finite for all θ. In figure 2b, we show the

generic dependence of the σn coefficient on the Rényi index n as deduced from eq. (1.6).

In figure 3, we have normalized the σn by the corresponding central charges CT , which

makes them cross at n = 1 by eq. (1.5). The three curves all exhibit a similar dependence

on n. In particular, they diverge as 1/n2 for n→ 0, and asymptote to constant values for

n → ∞. A salient feature of figure 3 is that the curves only coincide at n = 1, meaning

that the ratio σn/CT is only universal for the entanglement entropy, as was independently

observed in [42].

Interestingly, the free fermion and holographic curves in figure 3 are hardly distin-

guishable in the whole range of values, with the agreement becoming even better for values

0 < n ≤ 1. In particular, this shows that the ratios cS/CT are very close to each other in

both theories. The exact values are

cfS
C f
T

= 12πζ(3) ' 45.3165 ,
cholS

Chol
T

=
4π5

27
' 45.3362 . (1.15)

While the irrational numbers involved in both cases are different, the final results differ by

only approximately 0.04%.
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Our results for σn also reveal a surprising duality relating the corner coefficients of the

complex scalar σcsn and fermion σfn:

n2 σcs, fn = σf, cs1/n , (1.16)

which is valid for any real positive n. As we show in proving this result, it requires that the

corresponding thermal partition functions (on S1 × H2) are related in a relatively simple

way. This surprising relation (1.16) also implies further connections between the two free

theories, e.g., the above expression can be rewritten in terms of the conformal dimensions

of the corresponding twist operators, yielding nhcs, fn = −hf, cs1/n .

The remainder of the paper is organized as follows: in section 2, we review some results

concerning twist operators and their conformal dimensions hn. In section 3, we compute

hn for a free conformally coupled complex scalar and a massless Dirac fermion in three

dimensions. We compare these results with those obtained previously for the Rényi corner

coefficient σn, finding perfect agreement with our conjecture (1.6). In this section, we also

compute the coefficients κn, arising in the sharp corner limit (θ → 0), for the free fields.

These coefficients play a central role in section 6 — see below. Given our results for σn,

in section 4, we discuss a surprising duality for the corner coefficients of the scalar and the

fermion theories. In section 5, we use our conjecture to produce a new expression for σn
in holographic CFTs dual to Einstein gravity. In section 6, we study the n dependence for

corners of arbitrary opening angles. Then, for a given index n, we propose a method for

estimating the curve an(θ) using the coefficients κn and σn alone. We apply this approach

to construct interpolating functions for the scalar and the fermion for n = 1, 2, 3 and in

the limit n → ∞, and we show that they accurately fit the lattice values in the cases in

which these are available. A number of technical details are provided in the appendices: in

appendix A, we evaluate certain integral expressions for the scaling dimensions in the free

field theories to express hn in terms of finite closed-form sums, valid for odd n. Using the

integral expressions for hn, we also provide explicit values of σn for certain rational values

of the Rényi index, which provides an interesting demonstration of the duality between the

coefficients for the scalar and fermion theories. In appendix B, we describe the details of

calculations for the κn presented in section 3. Appendix C explains the origin of a relation

observed in [42] between the limit of the corner coefficient at large n and the thermal

partition function on S1×H2 in the same limit. In appendix D, we provide a general proof

of the duality between the corner coefficients of the free scalar and fermion theories. In

appendix E, we connect the Rényi corner coefficients to the Rényi entropies Sn for a circle,

using the relation [41] between these entropies and the twist scaling dimensions hn.

2 Twist operators

As noted in the introduction, twist operators were originally defined in discussing Rényi

entropies in two-dimensional CFTs [6, 7]. Twist operators are well understood in this

context since they are local primary operators. They can be formally defined for quantum

field theories (QFTs) in any number of dimensions, with the replica method, e.g., see [40,

41, 45]. However, in higher dimensions, they become nonlocal surface operators and their

– 7 –
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properties are less well understood. The replica method begins by evaluating the reduced

density matrix ρV as a Euclidean path integral where independent boundary conditions

are fixed on the region V as it is approached from above and below in Euclidean time, i.e.,

with tE → 0±. This path integral for the partition function Zn is then extended to the

Euclidean path integral on a n-sheeted geometry [6, 7], where the consecutive sheets are

sewn together on cuts running over V , to represent

Tr[ ρnV ] =
Zn
Zn1

. (2.1)

The denominator is introduced here to ensure the correct normalization, i.e., Tr[ρV ] = 1.

In defining the twist operator τn[V ], the above construction is replaced by a path integral

over n copies of the underlying QFT on a single copy of the geometry. The twist operator is

then defined as the codimension-two surface operator extending over the entangling surface,

i.e., the boundary of the region V , whose expectation value yields

〈 τn 〉n = Tr[ ρnV ] , (2.2)

where the subscript n on the expectation value on the left-hand side indicates that it is

taken in the n-fold replicated QFT. Further, here and in the following, we omit the V

dependence of τn to alleviate the notation. Hence eq. (2.2) implies that τn opens a branch

cut over the region V which connects consecutive copies of the QFT in the n-fold replicated

theory. Closely related to the twist operator, the so-called swap operator was introduced

to compute Rényi entropies on the lattice [46].

In the case of a CFT, the conformal scaling dimension hn of the twist operator is

defined by the coefficient of the leading power-law divergence in the correlator 〈Tµν τn〉n
as the location of Tµν approaches that of τn [40, 41]. In the case of a twist operator on an

infinite (hyper)plane, as is illustrated in figure 4, this correlator reads

〈Tab τn〉n = −hn
2π

δab
yd

, 〈Tai τn〉n = 0 ,

〈Tij τn〉n =
hn
2π

(d− 1)δij − d n̂in̂j
yd

, (2.3)

where the indices i, j and a, b denote the two transverse directions and the d-2 parallel

directions to the twist operator.3 Further, y is the perpendicular distance from the stress

tensor insertion to the twist operator and n̂i is the unit vector orthogonally directed from

τn to the stress tensor. Note that Tµν here denotes the stress tensor for the entire n-fold

replicated CFT.

While the above expressions are only valid for a twist operator on a (hyper)plane, we

stress that in general the leading singularity takes this form whenever y � `, where ` is

any scale entering in the description of the geometry of the entangling surface. Hence the

scaling dimension hn is a fixed coefficient which is characteristic of all twist operators τn (in

a given CFT), independent of the details of the geometry of the corresponding entangling

surface. Finally, let us add that h1 = 0 since the twist operator τn becomes trivial for n = 1.

3Let us add that implicitly the above expressions are normalized by dividing by 〈τn〉n but we left this

normalization implicit to avoid the clutter that would otherwise be created.

– 8 –
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Figure 4. Planar twist operators τn in d = 2, 3, 4 used in the definition of the twist scaling

dimension hn, via eq. (2.3). They have support on the boundary (in red) of the entangling region

V , which is at time tE = 0. The stress tensor Tµν insertions lie a distance y from the twist operators.

In d > 2, the use of planar boundaries here is a matter of convenience, as hn can be extracted from

any entangling surface ∂V by taking y → 0.

2.1 Insights from hyperbolic space

In refs. [40, 47], the entanglement and Rényi entropies for a spherical entangling region V =

Sd−1 in general CFTs were studied using a conformal mapping from the conformal vacuum

in flat space to a thermal ensemble on the hyperbolic cylinder. The Euclidean version of

this transformation maps a n-fold cover of Rd to the thermal spacetime S1×Hd−1. The flat

space geometry has branch cuts beginning at a sphere of radius R, and in the hyperbolic

geometry, the radius of curvature of Hd−1 is R and the period of S1 is 2πRn. Using this

construction, the conformal dimension hn can be expressed in terms of the thermal energy

density E(T ) of the (non-replicated) CFT on the hyperbolic space Hd−1 [40, 41]:

hn =
2π n

d− 1
Rd (E(T0)− E(T0/n)) , (2.4)

where T0 = 1/(2πR). Note that the conformal dimension is independent of R since this

radius is the only scale in the above expression, i.e., both of the energy densities above

are proportional to 1/Rd. Of course, the R independence is required since hn is a di-

mensionless coefficient and as described above, it is independent of the geometry of the

entangling surface.

With the above definition (2.4), it is clear that setting n = 1 yields h1 = 0. However,

as noted in the introduction, studying the limit n→ 1 of this expression also allows one to

prove [41]

∂nhn|n=1 = 2π
d
2
+1 Γ(d/2)

Γ(d+ 2)
CT , (2.5)

where CT is the central charged appearing in the two-point correlator (1.12) of the stress

tensor.

In the n→ 0 limit, the temperature diverges for the second energy density in eq. (2.4)

and this contribution dominates the result for the conformal dimension. Further, at large

temperatures, the curvature of the hyperbolic space becomes unimportant and to leading

– 9 –
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order this energy density will match that in flat space [48]. In particular, for a d-dimensional

CFT, the thermal energy density in flat space directly relates to the entropy density,

sflat = cS T
d−1, which defines a useful coefficient cS that characterizes the number of degrees

of freedom in the CFT. The corresponding thermal energy density in flat space is then

given by Eflat(T ) = d−1
d cS T

d and hence, with E(T ) ' Eflat(T ) [1 + O(1/(RT )2)] at high

temperatures, eq. (2.4) yields

lim
n→0

hn = −cS
d

(
1

2π n

)d−1
. (2.6)

The negative sign arises here because n < 1. Thus, in this limit, the conformal dimension

of the twist operator diverges with (d-1) power of the Rényi index, and is proportional to

the flat-space thermal entropy coefficient. In particular, we can see this behaviour arises

in two dimensions from eq. (1.9). The small-n behaviour of the twist dimension is then

h(2)

n→0 = −c/(12n) and comparing with eq. (2.6), we can extract cS = π c/3, which precisely

agrees with the well-known result for this coefficient in d = 2 [49].

In the opposite limit, n→∞, the temperature vanishes in the second term in eq. (2.4),

leaving

lim
n→∞

hn =
2π n

d− 1
Rd (E(T0)− E(0)) , (2.7)

which shows that hn grows linearly with n when the Rényi index is large, independent

of the dimension d. Let us comment here that the physical interpretation of the factor

E(T0) − E(0) in eq. (2.7) depends on the details of the renormalization scheme used in

defining the energy density E(T ). For example, using a heat kernel regularization with free

fields in the next section, we will find E(0) = 0, and hence eq. (2.7) yields h∞ ∝ E(T0).

However, with the holographic calculations described in section 5, one finds E(T0) = 0 and

hence in eq. (2.7), one is left with h∞ ∝ −E(0). In this case, E(0) < 0 is interpreted as

the Casimir energy density for the boundary CFT on the hyperbolic space. In any event,

these ambiguities for the values of the individual energy densities in eqs. (2.4) and (2.7)

are eliminated in the difference E(T0)− E(T0/n) and so they do not affect the value of the

scaling dimension of the twist operator.

3 Free fields

In this section, we present explicit the free field calculations which verify our new conjec-

ture (1.6) relating σn to hn. Hence in the following, we restrict the discussion to three

spacetime dimensions, in which case, τn is a line operator as shown in figure 4. We begin

by computing the scaling dimensions of the twist operators hn corresponding to a free

complex4 scalar and a free Dirac fermion in three dimensions. This allows us to simply

compute the smooth corner coefficient σn for any real n > 0. We use this to confirm our

conjecture in the case of free CFTs, and examine some physical limits of σn. In this section,

we also compute the coefficients κn appearing in the opposite limit, i.e., that corresponding

4Note that our discussion in [36] involved a real scalar, for which the values of hn and σn are half those

given here. We consider a complex scalar here to facilitate the comparison with the free fermion.
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to a very sharp corner with θ → 0. We will use the latter in section 6 to estimate the value

of the corner functions an(θ) for arbitrary values of the opening angle.

3.1 Twist operators

Recall that the scaling dimension of the twist operator τn in a general CFT can be evaluated

with the expression in eq. (2.4), which in three dimensions reduces to

hn = π nR3 (E(T0)− E(T0/n)) , (3.1)

where E(T ) is the thermal energy density of the CFT on the hyperbolic cylinder S1 ×H2.

Recall that in this curved space geometry, R is the radius of curvature of H2, and the

period of S1 is set to the inverse of corresponding temperature, with T0 = 1/(2πR). Now,

our first step will be to determine the partition function of the theory on the hyperbolic

cylinder and then the desired thermal energy densities can be evaluated as

E(T ) =
T 2

VH2

∂

∂T
logZ(T ) , (3.2)

where VH2 is the regulated area of the hyperbolic plane H2. To be precise, we have [40, 50]

VH2 = 2πR2

(
R

δ
− 1 +O(δ/R)

)
. (3.3)

Through the conformal transformation discussed in section 2.1, UV divergences in the en-

tanglement entropy or the Rényi entropy in R3 become IR divergences of the corresponding

(total) thermal entropy on the hyperbolic plane H2. Therefore, in order to identify quan-

tities in a meaningful way, the UV cut-off in the flat space calculations must be mapped

to the IR cut-off in the calculations on the hyperbolic cylinder. Hence, we see the short

distance cut-off δ (in flat space) appearing in the regulated area above.

The partition functions for free fields on the (Euclidean) manifold S1×H2 are readily

calculated using heat kernel techniques and the results for the conformally coupled complex

scalar and a massless Dirac fermion are given respectively by [41]5

logZcs(T ) =
VH2T

2R

∫ ∞
0

du

u3 sinh2 u

u2 + sinh2 u (u cothu− 2)

sinh(u/(2πRT ))
, (3.4)

logZ f(T ) =
VH2T

2R

∫ ∞
0

du

u3 sinhu

2 sinhu− u (u cothu+ 1)

tanh(u/(2πRT ))
,

where again R is the radius of curvature of the hyperbolic plane and the temperature T

corresponds to the inverse period of the circle S1. It is now straightforward to evaluate the

scaling dimension (2.4) of the corresponding twist operators using eq. (3.2) and the final

expressions can be written as

hcsn =
1

4πn2

∫ ∞
0

du

sinhu

[
cosh(u/n)

sinh3(u/n)
− n3 coshu

sinh3 u

]
, (3.5)

hfn =
1

8πn2

∫ ∞
0

du

tanhu

[
n3

2 + sinh2 u

sinh3 u
− 2 + sinh2(u/n)

sinh3(u/n)

]
.

5We emphasize that both of these expressions are UV finite (i.e., the potential singularities as x → 0

are removed). We also note that both yield E(0) = 0 and a nonzero value for E(T0) — see comments below

eq. (2.7).
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n n→ 0 1+ε 2 3 4 5 6 n→∞

hcsn − ζ(3)
4π3

1
n2

π
128ε

1
24π

1
27
√
3

3π+8
192π

√
25−2

√
5

125
81+34

√
3π

1944π
3ζ(3)
16π3 n

hfn −3ζ(3)
16π3

1
n2

π
128ε

1
64

5
108
√
3

1+6
√
2

256

√
425+58

√
5

500
261+20

√
3

5184
ζ(3)
4π3 n

Table 1. Scaling dimensions hn of the twist operator at various values of n for a massless complex

scalar and a massless Dirac fermion. In the third column |ε| � 1. For non-integer n, see table 5.

In appendix A, we show that these integrals can be evaluated for odd values of n, and

expressed in terms of sums involving trigonometric functions. In any event, the above

expressions can be easily evaluated for different values of n, and we will use this to test

the conjecture (1.6) relating hn to the corner coefficient σn in the next subsection. Some

explicit results are collected in table 1.

Following our general discussion above, let us comment further on some of the results

in the table. First, we consider the limit n→ 0 for which eq. (2.6) becomes

lim
n→0

hn = − cS
12π2

1

n2
. (3.6)

By evaluating the integrals for small n, we find that our free field results have the desired

form, with both of the scaling dimensions diverging as 1/n2 — see table 1. Further,

examining the overall coefficient of these divergences, eq. (3.6) indicates that

ccsS =
3ζ(3)

π
and cfS =

9ζ(3)

4π
, (3.7)

for the thermal entropy coefficient of the complex scalar and the Dirac fermion, respec-

tively. One can easily verify that these values precisely match the expected thermal entropy

coefficients for both fields, e.g., see [51]. Another interesting limit to consider is n → 1.

While the scaling dimension vanishes at precisely n = 1, evaluating eq. (3.5) in the vicinity

of this point, we find

hcsn |n=1+ε =
π

128
ε− 17π

1920
ε2 +O(ε3) , (3.8)

hfn

∣∣∣
n=1+ε

=
π

128
ε− 13π

1920
ε2 +O(ε3) .

Now recall that eq. (2.5) determined the leading coefficient in terms of the central charge

CT . In particular, we have ∂nhn|n=1 = π3

24CT for d = 3. Now given Ccs, f
T = 3/(16π2) [44],

this latter result yields ∂nhn|n=1 = π/128 for both fields, in agreement with the above

expansions. Finally, the scaling dimension exhibits the expected linear growth with the

Rényi index as n→∞. In particular, we find:

lim
n→∞

hcsn =
3ζ(3)

16π3
n and lim

n→∞
hfn =

ζ(3)

4π3
n . (3.9)

3.2 Corner Rényi entropies

The regulator independent contributions to the entanglement and Rényi entropies produced

by a sharp corner in the entangling surface for d = 3 free conformally coupled scalars

– 12 –
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and free Dirac fermions were studied in a series of papers by Casini and Huerta [8–10].

However, the expressions for, e.g., the Rényi coefficients σn were left in a very complicated

and implicit form. Motivated by our original conjecture (1.5) relating σ1 and CT , and

the possibility that a similar universal relation could also exist for σn, the results for σcs, fn

were recently reduced to simple and closed-form expressions at integer n [42]. These new

expressions were used to easily evaluate the first coefficients with n ≥ 1, as well as determine

the n→∞ behaviour. In this section, we use these results to confirm our new conjecture,

verifying that eq. (1.6) holds for both the scalar and the fermion.

In the second part of this section, we consider the coefficients κcs, fn , which control the

corner contribution of the Rényi entropy in the limit θ → 0. In particular, we evaluate

the corresponding expressions for n = 2, 3, 4, and at large n — see also appendix B. In

section 6, we will use these coefficients, along with the σcs, fn , to construct simple interpo-

lating functions to approximate the corner function acs, fn (θ) for all angles.

3.2.1 Smooth surface limit

The expressions for σcs, fn appearing in [8–10] were recently shown to reduce to the following

simple sums (for integer n) [42]:

σcsn =
n−1∑
k=1

k(n− k)(n− 2k) tan
(
πk
n

)
12πn3(n− 1)

, σfn =

(n−1)/2∑
k=−(n−1)/2

k(n2 − 4k2) tan
(
πk
n

)
24πn3(n− 1)

. (3.10)

Now combining eq. (3.1) for the conformal dimension hn with our new conjecture (1.6), we

find a new general formula for the corner coefficient in terms of the thermal energy density

on the hyperbolic cylinder:

σn =
n

n− 1
R3 (E(T0)− E(T0/n)) . (3.11)

In particular, focusing on the free fields, we can use the expressions (3.5) for hn to produce

the following prediction for the corner coefficients in these theories

σcsn =
1

4π2n2(n− 1)

∫ ∞
0

du

sinhu

[
cosh(u/n)

sinh3(u/n)
− n3 coshu

sinh3 u

]
, (3.12)

σfn =
1

8π2n2(n− 1)

∫ ∞
0

du

tanhu

[
n3

2 + sinh2 u

sinh3 u
− 2 + sinh2(u/n)

sinh3(u/n)

]
.

We have explicitly evaluated these integrals for a few values of n in table 1, and also numer-

ically plotted the coefficients for continuous n in figure 3. In appendix A, we also evaluate

the integrals analytically for odd n > 1 to express these corner coefficients as certain closed

sums — see eqs. (A.4) and (A.8). Our new closed-form sums agree with eq. (3.10) for all

odd integer values that we have checked, 1 < n ≤ 500, but take a very different form from

the latter. It would be desirable to explicitly prove that both are equal for all odd integers.

In any event, we have also verified that the above integrals (3.12) exactly reproduce the

values obtained from eq. (3.10) for n = 1, 2, · · · , 500, as well as in the limit n→∞. In that

limit, we have also verified that the subleading terms agree, as we discuss below. We find
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n n→ 0 1 2 3 4 5 6 n→∞

σcsn
ζ(3)
4π4

1
n2

1
128

1
24π2

1
54
√
3π

3π+8
576π2

√
25−2

√
5

500π
81+34

√
3π

9720π2
3ζ(3)
16π4

σfn
3ζ(3)
16π4

1
n2

1
128

1
64π

5
216
√
3π

1+6
√
2

768π

√
425+58

√
5

2000π
261+20

√
3

25920π
ζ(3)
4π4

Table 2. Corner coefficient σn for various Rényi indices for the complex scalar and Dirac CFTs

in d = 3.

that this agreement provides strong evidence for our conjecture (1.6) relating the corner

coefficient σn and the scaling dimension hn of the corresponding twist operators.

Of course, we can also use this agreement to combine the relation hn = π(n − 1)σn
with eq. (3.10) to express the scaling dimensions hcs ,fn in terms of sums:

hcsn =
n−1∑
k=1

k(n− k)(n− 2k) tan
(
πk
n

)
12n3

, hfn =

(n−1)/2∑
k=−(n−1)/2

k(n2 − 4k2) tan
(
πk
n

)
24n3

,(3.13)

which is valid for all integer values of n > 1.

One advantage of the integral expressions (3.12) for σcs ,fn over the sums in eq. (3.10)

is that they allow us to evaluate the corner coefficients for non-integer values of n. For

example, we can examine how these coefficients vary in the vicinity of n = 1, i.e.,

σcsn
∣∣
n=1+ε

=
1

128
− 17

1920
ε+O(ε2) , (3.14)

σfn
∣∣
n=1+ε

=
1

128
− 13

1920
ε+O(ε2) .

Hence we see that the agreement between the two coefficients at n = 1 does not extend

beyond this precise point, as expected from eq. (3.8). We can also consider the limit n→ 0,

which yields

lim
n→0

σcsn '
ζ(3)

4π4
1

n2
, and lim

n→0
σfn '

3ζ(3)

16π4
1

n2
. (3.15)

Of course, these results are simply related to the corresponding limit of the scaling dimen-

sions in eq. (3.6), and hence the corner coefficients are proportional to cS and diverge as

1/n2 in this limit.

Next, we note that while the hn diverge linearly with n as n→∞ in eq. (3.9), the σn
asymptote to the constant values σcs, f∞ given in table 2. The detailed large-n asymptotic

behavior of both corner coefficients can be determined from eq. (3.12) and reads:6

lim
n→∞

σn = σ∞

(
1 +

1

n

)[
1 +

b2
n2
− b4
n4

+O
(

1

n6

)]
, (3.16)

6We note that for the scalar, the large-n expansion can be performed directly on the corresponding

integral in eq. (3.12). However, the analogous calculation for the fermion does not produce a consistent

expansion. Rather in this case, we took advantage of an alternative representation of σf
n which makes use

of the expression for logZf(T ) given in [52] — see eq. (7.5) and appendix D.
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where

bcs2 = 1 , bcs4 = −1 +
π4

45ζ(3)
' 0.8008 ,

bf2 = 1− π2

12ζ(3)
' 0.3158 , (3.17)

bf4 = −1 +
π2(120 + 7π2)

1440ζ(3)
' 0.0781 .

We further find that the series in brackets only contains even powers of 1/n, with terms

that alternate in sign. These analytical results for the asymptotics agree with the numerical

analysis presented in [42] of the sums in eq. (3.10). This analysis yielded precise estimates

for bcs, f2 , which coincide with the values given above. Based on their numerical fits, the

authors of [42] conjectured that the terms in the large-n expansions appear in pairs with

identical coefficients, which leads to the overall factor of 1 + 1/n in eq. (3.16). Here the

large-n expansion of our integral expressions allow us to confirm the appearance of this

factor analytically. As an aside, we observe that the same factor 1 + 1/n fully determines

the n dependence of the universal coefficient of the d = 2 Rényi entropy in eq. (1.10).

Overall, the large-n asymptotic analysis discussed above provides further support for our

main conjecture (1.6) relating hn and σn.

Ref. [42] further observed that for both of the free fields

lim
n→∞

σn =
1

4π2
F∞ , (3.18)

where the coefficient F∞ is related to the logarithm of the partition function on S1 ×H2,

as calculated in [52]. Given the connection (1.6) between the corner coefficient and the

scaling dimension, the origin of the above relation can be traced to the facts that the scaling

dimension can be expressed in terms of the energy density on the hyperbolic geometry H2,

as in eq. (3.1), and that the energy density is determined by a derivative of log Z(T ) with

respect to the temperature, as in eq. (3.2). We defer the precise details to appendix C

because producing the exact result in eq. (3.18) requires taking into account differences

between our present conventions and those in [52]. Our analysis in the appendix establishes

that eq. (3.18) is a general relation that holds for any three-dimensional CFT.

3.2.2 Sharp corner limit

The main goal of our paper is to establish the relation (1.6) between the scaling dimen-

sions of twist operators and the corner coefficients σn, arising for almost smooth corners.

However, it is also interesting to study the opposite limit of the corner function an(θ), cor-

responding to a very small opening angle, i.e., θ → 0. In this limit, the corner contributions

are characterized by the coefficients κn defined by

an(θ → 0) = κn/θ . (3.19)

We will evaluate the first few κcs, fn here and use the results to produce simple functions to

approximate acs, fn (θ) for all angles, in section 6. Further, we will explicitly show that these

simple functions provide an excellent approximation to the exact an(θ) for n = 1, 2, 3.
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n 1 2 3 4 n→∞

κcsn 0.0794 0.0455996(1) 0.037339(1) 0.033798(1) 0.0262(2)

κfn 0.0722 0.0472338(1) 0.040662(1) 0.0376674(1) 0.030(4)

Table 3. Sharp-corner coefficient for various Rényi indices for the massless complex scalar and

massless Dirac fermion in d = 3.

Interestingly, in the case of free fields, the κn coefficients are related to the so-called

“entropic c-functions” for a family of corresponding massive free fields in d = 2 [8–10]. In

particular, they can be evaluated as

κcs, fn =
1

π

∫ ∞
0
dt ccs, fn (t) , (3.20)

where the ccs, fn (t) are the universal functions

ccs, fn (m`) = `
dSn(m`)

d`
, (3.21)

where Sn(m`) are the Rényi entropies of d = 2 free fields with mass m for a single interval

of length `. We leave the details of the calculations of the ccs, fn (t) to appendix B. The final

expressions for the coefficients κcs, fn can be written as

κcsn =
1

π(n− 1)

n−1∑
k=1

∫ ∞
0
dt
t2u′2k/n, cs − u2k/n, cs((1− 2k/n)2 + t2(1 + u2k/n, cs))

2(1 + u2k/n, cs)
, (3.22)

κfn =
2

π(n− 1)

(n−1)/2∑
k>0

∫ ∞
0
dt
t2u′2k/n, f − u2k/n, f(4(k/n)2 + t2(1− u2k/n, f))

2(1− u2k/n, f)
, (3.23)

which applies for integer n > 1. The functions uk/n,cs, f(t) are solutions to the differential

equations (B.4) and (B.6) given in the appendix, subject to the boundary conditions (B.5)

and (B.7) in each case. Evaluating the expressions in eqs. (3.22) and (3.23) for n =

2, 3, 4,∞, we obtain the numerical results shown in table 3.

As also described in the appendix, κcs, f corresponding to the special case n = 1 are

evaluated using a similar approach using two-dimensional entropic c-functions. The values

of these coefficients were evaluated by [8–10] and also appear in table 3 under n = 1.

3.3 n and θ factorization?

One can ask whether the Rényi index n and θ dependences of the corner function an(θ)

factorize, namely,

an(θ)
?
= f(n) a1(θ) , (3.24)

where f(n=1) = 1 and a1(θ) is the corner function appearing at n = 1 (i.e., in the entan-

glement entropy). Such factorization occurs for the corner contribution in the extensive

mutual information model [45, 53, 54], which can be written as

aExt
n (θ) =

1

∂nhn|n=1

hn
n− 1

aExt
1 (θ) , where aExt

1 (θ) =
π2

8
CT [1 + (π − θ) cot θ] . (3.25)
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This result follows from a straightforward generalization of our calculations for n=1 in [36].

We note that the precise form of hn is undetermined for this model, apart from the general

constraints valid for any CFT. Factorization also occurs in a more concrete setting in a

class of quantum critical Lifshitz theories with dynamical exponent z = 2, which have

a corner function characterizing their corner entanglement just like CFTs. Moore and

Fradkin [55] indeed found that f(n) ≡ 1, i.e., the corner function an(θ) is independent of

n for all angles.7,8

Using our above results, we find that the factorization (3.24) does not hold for the

free complex scalar or for the Dirac fermion. Indeed, if eq. (3.24) were to hold, we would

have the equality κn/κ1 = σn/σ1. It is sufficient to examine the n = 2 case to find a

contradiction:

κcs2 /κ
cs
1 = 0.574 , σcs2 /σ

cs
1 = 0.540 ,

κf2/κ
f
1 = 0.654 , σf2/σ

f
1 = 0.637 . (3.26)

The deviations from factorization here are relatively small, i.e., about 6% for the complex

scalar and 3% for the fermion. However, these deviations are much greater than the

numerical uncertainties in our evaluation of the corresponding κn coefficients — recall that

the σn are exact.

The failure of the factorization here is reminiscent of a similar non-factorization found

in [40] for the Rényi entropies of spherical regions in higher dimensional CFTs. There the

authors considered the question of whether or not the coefficient of the universal contri-

bution in these Rényi entropies took the form fd(n) a∗d, where a∗d is a constant determined

by the specific data of the underlying CFT but fd(n) is some function of the Rényi index

which is the same for any CFT in d dimensions. This kind of factorization is found in

the Rényi entropy of a single interval in two dimensions, as can be inferred from eqs. (1.9)

and (1.10). However, by examining a variety of holographic models, ref. [40] found that

this factorization fails in any number of spacetime dimensions beyond two.

4 Bose-Fermi duality

In this section, we study duality relations between the universal entanglement coefficients

at Rényi indices n and 1/n, in both d = 2 and 3, the latter being our main focus. First,

let us make some observations comparing the corner coefficients σn of the complex scalar

and the Dirac fermion in d = 3. We note that the ratio σcsn /σ
f
n monotonically decreases as

n runs from 0 to ∞, i.e.,

σcsn→0

σfn→0

=
4

3
,

σcs1
σf1

= 1 ,
σcs∞
σf∞

=
3

4
. (4.1)

7We thank S. Furukawa for pointing this out.
8It has been numerically shown that non-analycities can arise in the n-dependence of the corner function

of certain Lifshitz QCPs when these are studied using lattice realizations [56, 57]. However, there is no

evidence that such singular effects arise in the ideal (fixed point) field theories describing those QCPs [55].

We thank Joel Moore for bringing this point to our attention.
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Interestingly, the values corresponding to the complex scalar and the Dirac fermion are

closely related in the opposite limits of small and large n:

n2 σcsn
∣∣
n→0

= σf∞ , n2 σfn

∣∣∣
n→0

= σcs∞ . (4.2)

This is not coincidental as these relations constitute special cases of a new duality between

the corner coefficients of the two free CFTs:

n2 σcs, fn = σf, cs1/n , n>0, n ∈ R. (4.3)

The duality interchanges the boson and fermion coefficients, together with n ↔ 1/n. In

particular σcsn is fully determined by σfn, and vice versa. In appendix D, we prove this

relation for any positive real Rényi index, assuming our conjecture (1.6). As an immediate

consequence of this duality, we can use our large-n expansion eq. (3.16) to get the following

expansion in the opposite limit:

σcs, fn→0 =
σf, cs∞
n2

(1 + n)
[
1 + bf, cs2 n2 − bf, cs4 n4 +O

(
n6
)]
, (4.4)

with the same coefficients bf, csk as in eq. (3.17). Of course, combined with eq. (3.6), these

results imply that the coefficient σ∞ of one theory is determined by the thermal entropy

coefficient cS of the “dual theory”.

This surprising duality between the corner coefficients in the two free theories has

numerous other consequences. For example, we can rewrite it in terms of the conformal

dimensions of the corresponding twist operators as

nhcs, fn = −hf, cs1/n . (4.5)

We can go further and use eqs. (1.13) and (1.14) to establish relations between the thermal

entropy coefficient of each field with the thermal energy density on the hyperbolic plane

H2 at T0 of the other:9

Ecs, f(T0) =
cf, css

12π3R3
, (4.6)

where again T0 = 1/(2πR). In fact, combining eqs. (3.1) and (4.5), we find a more general

relation between the energy densities of the two theories at generic temperatures on the

hyperbolic cylinder,

Ecs, f(T 2
0 /T )− Ecs, f(T0) = −T

3

T 3
0

(
E f, cs(T )− E f, cs(T0)

)
. (4.7)

In appendix D, we establish a general relation for the logarithm of the partition functions

of the two theories on S1×H2 and so there may be interesting relations, similar to eq. (4.7),

for other thermal quantities.10 These relations are relating the properties of one theory at

9The form of this result relies on Ecs, f(T =0) = 0 in our conventions. In appendix D, we have adopted

the conventions of [52] in which Ecs, f(T0) = 0 instead. As explained below eq. (2.7) and in the appendix C,

the differences arise from the choice of the renormalization scheme for the partition function on S1 ×H2.
10There may also be interesting relations for the circle Rényi entropies using the results in appendix E

— a topic we leave for future work.
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temperature T to the other at T 2
0 /T . Hence, in this regard, our duality is somewhat analo-

gous to the Kramers-Wannier duality [58], which relates quantities in the two-dimensional

Ising model at low and high temperatures.

We point out that a duality closer in spirit to Kramers-Wannier can be obtained by

considering the free CFT containing both the complex scalar and the Dirac fermion. This

CFT has N = 2 supersymmetry, as it consists of a free chiral multiplet. Now, the corner

function an(θ) is additive in that case as free fields factorize, implying σfreeN=2
n = σcsn + σfn.

The above Bose-Fermi duality (4.3) thus leads to

n2 σfreeN=2
n = σfreeN=2

1/n , n>0, n ∈ R , (4.8)

which is a self-duality connecting σfreeN=2
q at q = n and 1/n. In particular, in this theory, σ∞

acquires a concrete physical meaning as it is determined by the flat-space thermal entropy

coefficient cS of the same theory. It would be interesting to investigate the fate of this

self-duality in the interacting N = 2 supersymmetric CFT, i.e., the chiral Wess-Zumino

model, which can be obtained by perturbing the theory of the free chiral multiplet.

It is further natural to ask: do similar entanglement dualities exist in dimensions other

than d = 3? Below we point out that this indeed occurs in d = 2.

4.1 Entanglement self-duality in d = 2

For any CFT in d = 2, we have the following self-duality relation for the twist dimension:

h(2)
n = −h(2)

1/n , (4.9)

as follows from eq. (1.9). This can then be rewritten in terms of the coefficient σ(2)
n of the

logarithmic contribution to the Rényi entropy of a single interval as

nσ(2)
n = σ(2)

1/n , (4.10)

where we recall from eq. (1.10) that

σ(2)
n =

h(2)
n

n− 1
=

c

12

(
1 +

1

n

)
. (4.11)

The relation (4.10) is clearly reminiscent of the d = 3 Bose-Fermi duality presented above,

and in particular of its manifestation as the self-duality in the free supersymmetric theory

in eq. (4.8). As a special case of (4.10), we have a Bose-Fermi duality between a free Dirac

fermion and a real scalar (compact or not): nσ(2), s
n = σ(2), f

1/n , as both have c = 1.

Given the above results in d = 2, 3, we are led to propose that relations of the form

nd−1σ(d)
n ∼ σ(d)

1/n or nd−2h(d)
n ∼ −h(d)

1/n might occur as well in other higher-dimensional

theories. The dualities may connect n to 1/n in two different theories, as in eq. (4.3), or

within the same theory, as in eqs. (4.8) and (4.10).
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5 Holography

Let us now consider strongly coupled holographic CFTs dual to Einstein gravity. We will

use known results for the twist dimension hholn to obtain the n-dependence of the corner

coefficient σholn . We begin with the AdS/CFT correspondence in its simplest setting, where

it describes a given d-dimensional boundary CFT in terms of (d + 1)-dimensional gravity

in the bulk with the action

I =
1

16πG

∫
dd+1x

√
g

[
d(d− 1)

L2
+R

]
, (5.1)

where G is the (d+1)-dimensional Newton’s constant, L is the AdSd+1 radius, and R is the

Ricci scalar. In order to obtain hholn , we need to consider the thermal ensemble of the CFT

on the hyperbolic geometry appearing in the construction of [47], which is then equivalent to

a topological black hole [59–64] with a hyperbolic horizon. Using this connection together

with eq. (2.4), the scaling dimension of twist operators in the corresponding holographic

CFTs was evaluated as [40]

hholn =
Ld−1

8G
n

(√
d2n2 − 2dn2 + 1 + 1

dn

)d−21−

(√
d2n2 − 2dn2 + 1 + 1

)2
d2 n2

 . (5.2)

In the following, we will focus our attention on the case of a three-dimensional boundary

theory. Of course, one particular example of such a boundary CFT would be the supersym-

metric gauge theory constructed in [65], in an appropriate large N and strong coupling limit.

Setting d= 3 in eq. (5.2) and using the conjectured relation (1.6), we can predict the

following form for the Rényi corner coefficient in these holographic CFTs:

σholn =
L2

108πG

(3n2 − 2)
√

1 + 3n2 − 2

n2(n− 1)
. (5.3)

Of course, at present, there is no method available by which we may evaluate these coef-

ficients directly in a holographic framework. This expression can be easily used to com-

pute the corner coefficient for arbitrary values of n, and some results are presented in

table 4. In the table, we normalized the corner coefficient by dividing by the central charge

Chol
T = 3L2/(π3G) [66, 67]. We recover the expected result for the corner coefficient in the

entanglement entropy (i.e., with n = 1). That is, σhol1 /Chol
T = π2/24 [36, 37]. Let us note at

this point that the numerical values for the σn/CT in the holographic CFT are remarkably

similar those for the free Dirac fermion, as shown in figure 3. The relative error is no more

than 2.6% for n ≥ 1 and 0.2% in the range 0 ≤ n ≤ 1.

Turning now to the limits n→ 0 and n→ 1, we find

σholn→0 =
L2

27πG

[
1

n2
+

1

n
+O

(
n0
)]
,

σholn

∣∣
n=1+ε

=
L2

8πG

[
1− 7

8
ε+O(ε2)

]
, (5.4)
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n n→ 0 1 2 3 4 5 6 n→∞

σholn /Chol
T

π2

81n2
π2

24
π2(5
√
13−1)

648
π2(25

√
7−1)

2916
5π2

243
π2(73

√
19−1)

16200
π2(53

√
109−1)

29160
π2

36
√
3

Table 4. Corner coefficient for various Rényi indices in holographic CFTs dual to Einstein gravity.

Comparing the n→ 0 limit above with eq. (1.13), we find

cholS =
4π2L2

9G
. (5.5)

This result exactly matches the thermal entropy coefficient for the holographic CFT cal-

culated from a planar AdS4 black hole in the bulk, e.g., see [37].

In the large-n limit, we find:

σholn = σhol∞

(
1 +

1

n

)[
1 +

b2
n2
− b4
n4

+O
(

1

n6

)]
− 2σhol∞

3
√

3n3
, (5.6)

where

b2 =
1

2
, b4 =

2

3
√

3
− 3

8
' 0.01 and σhol∞ =

L2

12
√

3πG
=

π2

36
√

3
Chol

T . (5.7)

We emphasize that we have shown analytically that the overall factor of (1 + 1/n) appears

in the first term of eq. (5.6). Of course, this was the structure conjectured for the large-n

expansions in eq. (3.16) for the free scalar and fermion CFTs. However in contrast to

the free CFTs, the second term proportional to 1/n3 spoils this simple n-dependence for

the holographic CFTs. As explained in eq. (1.14), the coefficient σ∞ is proportional to

E(T0)− E(0), a difference of thermal energy densities on the hyperbolic cylinder. We note

that the holographic calculations yield E(T0) = 0 and E(0) = −L2/(12
√

3πGR3) here [68].

These results contrast to those for the corresponding free field energy densities in section 3,

where E(0) vanishes while E(T0) does not.

Let us close this section by mentioning that our results here should be easily general-

izable to other holographic theories. In particular, it would be interesting to study these

corner contributions for holographic theories whose bulk action contains higher-curvature

terms, e.g., using the results of [40].

6 Corners with arbitrary opening angles

In sections 3 and 5, we saw that the corner coefficient σn has an interesting systematic

dependence on the Rényi index. Below, we argue that this dependence is a general prop-

erty of the entire corner function an(θ), at all opening angles θ. Further, in this section,

we provide an efficient approach to approximating the angular dependence of the corner

function an(θ), using knowledge of the coefficients κn and σn, which control the asymptotic

behaviour in the limits θ → 0 and π, respectively.
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6.1 General n dependence

We now go beyond the nearly smooth limit and establish some general properties of the

Rényi index dependence of the corner function an(θ), valid for any opening angle θ. With-

out loss of generality, we consider a region V containing a single corner with opening angle

0 < θ < π but that is otherwise smooth, as in figure 1a. As it will be useful below, we

recall that the Rényi entropy associated with V is then given by an expression of the form

shown in eq. (1.2), i.e.,

Sn(V ) = B̃n
A(∂V )

δ
− an(θ) log (A(∂V )/δ) + · · · , (6.1)

where we have written the leading term in a geometric fashion, with A(∂V ) being the total

length of the entangling surface, and δ a UV cutoff.

Let us begin by considering the n → 0 limit of the corner function. Here we begin

by adapting the arguments that were encountered in section 2.1 for the present discussion.

First, we step back to consider a circular region with an entirely smooth boundary. The

problem of evaluating the Rényi entropy for such a region in the vacuum of a general

CFT can be mapped to one of examining a thermal ensemble on hyperbolic space H2.

However, it was observed by [48] that in the n → 0 limit the result is dominated by the

high temperature behaviour, which in fact matches that in flat space. Hence we have that

the Rényi entropy for a circular entangling curve in three dimensions diverges as Sn ∼ 1/n2.

In particular then, this argument indicates that as n → 0, the coefficient B̃n in eq. (6.1)

diverges as 1/n2 for a circular entangling surface. However, this coefficient is independent

of the details of the geometry and so the same divergence appears in the leading area law

contribution to the Rényi entropy for any entangling surface. Now note that the corner

makes a negative contribution to Sn with the second term in eq. (6.1) but the total Rényi

entropy must always be positive. Hence we conclude that as n → 0, an(θ) can diverge at

most as fast as 1/np, with p ≤ 2. Indeed, as θ → π, we have an(θ) ' σn (θ − π)2 where

σn diverges precisely as 1/n2, eq. (1.13). Next, we can use the fact that an(θ) decreases

monotonically for 0 < θ < π, eq. (1.3), to establish that for all angles an(θ) diverges at

least as fast as 1/np with p ≥ 2. Combining these two inequalities we are lead to p = 2,

i.e., the corner function diverges as 1/n2 for any θ as n→ 0.

Next we consider the opposite limit, n→∞. In this case, we know that σn asymptotes

to a finite value σ∞ > 0. Hence at this point, we again invoke the monotonically decreasing

behaviour of the corner function to infer that an→∞(θ) must either tend to a finite value or

diverge, i.e., it will behave as nq with q ≥ 0 in the large-n limit. However, if an→∞(θ) was

growing (with q > 0), the positivity of Sn would require that the coefficient B̃n of the area

law term and hence the entire Rényi entropy are also growing with n at least as fast as

the corner function. However, it follows from considerations of information theory that Sn
must satisfy various inequalities [69, 70] and in particular, one finds that ∂nSn ≤ 0. That

is, the Rényi entropy can not grow with increasing n (at any point). Therefore, we are led

to the conclusion that the corner function remains finite as n→∞ (i.e., q = 0), again for

any opening angle. Our calculations for the free CFTs confirm this result since the sharp

corner coefficients κn of the complex scalar and the Dirac fermion approach finite values

as n→∞, see section 3.2.2.
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The general asymptotics of the corner function found above for the limits n → 0 and

∞, as well as the behaviour for large and small angles, are schematically illustrated in

figure 2a.

6.2 Simple approximations for an(θ)

In this subsection we address the following question: for a given Rényi index n, can one

efficiently approximate the angle dependence of the corner function an(θ)? We will show

that by knowing the asymptotic coefficients κn and σn alone, one can construct a simple

closed-form expression for an(θ) that is not only very accurate for all θ, but also exact as

θ → 0, π. We will use two physically motivated functions that obey the correct asymptotics

as our building blocks:

ã(1)(θ) =
(θ − π)2

θ(2π − θ)
, (6.2)

ã(2)(θ) = 1 + (π − θ) cot θ . (6.3)

The first one is the simplest algebraic function with a quadratic zero at θ = π and with

the pole at θ = 0, as an(θ) is expected to have on general grounds — see eq. (1.4). The ad-

ditional factor of (2π − θ) in the denominator ensures the function satisfies the constraint

ã(1)(θ) = ã(1)(2π − θ), as required for the Rényi entropy of pure states. Interestingly,

precisely the same function yields the corner function an(θ) of certain Lifshitz quantum

critical points [55]. The second function ã(2) corresponds to the functional form of the

corner contribution in the extensive mutual information model [45, 53, 54], as described

above at eq. (3.25). Both functions satisfy the expected constraints in eq. (1.3). How-

ever, we note that they also satisfy a stronger constraint obtained for the entanglement

entropy coefficient a1(θ) using strong subadditivity and Lorentz invariance [8–10, 71], i.e.,

∂2θ ã
(i)(θ) ≥ |∂θã(i)(θ)|/ sin θ for 0 ≤ θ ≤ π. Further, as mentioned in the introduction, reflec-

tion positivity also imposes a infinite tower of nonlinear constraints on the corner functions

an(θ) [34]. These constraints can be schematically written as det({∂j+k+2
θ an(θ)}M−1j,k=0) ≥ 0,

with M ≥ 1 and θ ∈ [0, π]. For example, with M = 1, this reduces to the linear constraint

∂2θan ≥ 0, but the second inequality with M = 2 reads:

∂2θan ∂
4
θan − (∂3θan)2 ≥ 0 . (6.4)

We have managed to explicitly verify that our basis functions ã(1)(θ) and ã(2)(θ) in eq. (6.2)

satisfy these non-linear constraints for M = 2, . . . , 6.

We now construct an approximation ãn(θ) for the corner functions with a simple linear

combination of ã(1) and ã(2):

an(θ) ' ãn(θ) ≡ λ(1)n ã(1)(θ) + λ(2)n ã(2)(θ) , (6.5)

where the constants λ
(i)
n are fixed by requiring the right-hand side of eq. (6.5) to have the

same asymptotics as an(θ) in the limits θ → 0 and π. Taylor expanding ã(1), ã(2) in the

these limits, we obtain:

θ → 0 :
π

2
λ(1)n + πλ(2)n = κn , (6.6)

θ → π :
1

π2
λ(1)n +

1

3
λ(2)n = σn .
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Figure 5. Holographic corner function ahol1 (θ) [72] normalized by Chol
T , and the approximate form

obtained by interpolating the asymptotics with eq. (6.5). The two lines can hardly be distinguished.

The inset shows the ratio of the exact and extrapolated functions.
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Figure 6. Closed-form approximations for the corner function an(θ) at n = 1, 2, 3 and n =∞ for

(a) the free complex scalar and (b) the free Dirac fermion. The dots were obtained from numerical

lattice calculations [8–10]. The approximate functions obey the exact asymptotics as θ → 0, π.

The unique solution of eq. (6.6) for the two unknown coefficients is then:

λ(1)n = 2π
κn − 3πσn
π2 − 6

, λ(2)n = − 3

π

2κn − π3σn
π2 − 6

. (6.7)

The holographic CFT dual to Einstein gravity provides a simple test of this ap-

proach (6.5), at least for n = 1. For this theory, we have an integral expression to evaluate

ahol1 (θ) for any angle [72], and the necessary coefficients are κhol1 = Γ(3/4)4 L2/(2πG) and

σhol1 = L2/(8πG), e.g., see [37]. In figure 5, we show the curves for the exact result for

ahol1 (θ)/Chol
T and the approximate function also normalized by Chol

T = 3L2/(π3G). The

agreement is seen to be excellent, with the relative error being less than 1% over the entire

range of angles.
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We can also use the values of σn and κn computed in the section 3.2 to construct ap-

proximations of an(θ) for the free complex scalar and the free Dirac fermion. Now in prin-

ciple, the an(θ) functions can also be determined exactly for these free fields, as described

in [8–10]. Unfortunately, their results are written implicitly in terms of several functions

which must be determined through a complicated system of coupled non-linear algebraic

and differential equations. We explicitly used this approach to test our approximation for

acs2 (θ) for the complex scalar, and we found that the difference between our approximation

and the ‘exact’ curve was comparable to our numerical errors in evaluating an(θ) with the

method of [8–10]. The numerical errors were of the order of 0.20% while the maximum

difference between the two curves was approximately 0.33%. Clearly, these results suggest

that our approach produces a faithful approximation to an(θ) for the free fields. In figure 6,

we show our approximate corner functions for n = 1, 2, 3 and ∞, both for the free scalar

and fermion. The figure also includes the results of lattice simulations for θ = π/4, π/2

and 3π/4, in the cases where these are known,11 and again, we see that our interpolat-

ing curves agree very well with these lattice points. As an additional check, acs4 (π/2) was

recently estimated to be 0.0086(2) by numerically studying the Goldstone phase of antifer-

romagnets on the square lattice [33]. Using a different system, a numerical linked cluster

expansion [73] yielded 0.0094(2). These values are in excellent agreement with our estimate

0.0094, obtained with the simple interpolating method described in this section.

Finally, we comment on the reasons behind the excellent accuracy of our interpolations.

As noted in eq. (1.3), an(θ) is a monotonic convex function of θ. Thus we may expect that

once the behavior in the vicinity of the endpoints θ = 0 and π is fixed (by our knowledge

of κn and σn), little freedom remains at intermediate angles. Our findings confirm this

suspicion. Besides, we have checked that all the interpolating functions shown in figures 5

and 6 satisfy the first six inequalities arising from reflection positivity mentioned above.

7 Discussion

In this paper, we have introduced a generalized version of the conjecture presented in [36,

37] for the coefficient appearing in the universal contribution in the entanglement entropy

for an almost smooth corner,

σ1 =
π2

24
CT . (7.1)

In particular, we proposed that the analogous Rényi corner coefficients σn — see eq. (1.4)

— are related to the scaling dimension hn of the corresponding twist operators τn by

σn =
1

π

hn
n− 1

. (7.2)

This expression reduces to our previous conjecture in the limit n → 1, and is therefore

supported in this limit by the extensive results presented in [36–39, 42], corresponding to

11We thank Horacio Casini for providing these lattice results, as well as his assistance in directly evaluating

acs
2 (θ) using the method of [8–10]. We obtained acs

2 (θ) for 0.6 < θ < 3.0, but do not show it in figure 6

since given the uncertainties described in the main text, the result would be indistinguishable from the

approximate interpolation in the plot.
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free scalars and fermions, as well as a general proof for holographic theories. Here we have

checked the generalized version of the conjecture for a free conformally coupled complex

scalar and a free massless Dirac fermion for integer Rényi indices 1 ≤ n ≤ 500, as well

as in the limit n → ∞. The calculations involved in the evaluation of σn and hn for the

free fields are very different, both conceptually and computationally, which motivates us to

conjecture that eq. (7.2) is a universal expression for general three-dimensional CFTs. It

would also be interesting to explore how these expressions get modified in non-conformal

theories, see e.g., [55, 74, 75].

Further, based on the properties of hn at small n, we have obtained that

lim
n→0

σn =
1

12π3
cS
n2

, (7.3)

which yields a key observable, namely the thermal entropy density coefficient cS of the

original CFT. As an interesting application of this result, we find that σn for the O(N)

Wilson-Fisher IR fixed point in the N →∞ limit differs from its value at the UV Gaussian

fixed point. Indeed, the ratio of the entropy coefficients at N →∞ is cIRS /cUV
S = 4/5 [76].

Hence σn already distinguishes the entanglement structure of these two CFTs even in the

absence of finite N corrections, in contrast to the RG monotone F [77, 78].12 This suggests

that the full corner function an(θ) differs at other values of n and θ between the N→∞
IR and UV fixed points. It will be interesting to verify this claim.

Our original motivation for the new conjecture (1.6) was as follows: essentially, the

corner coefficient σn describes the universal response of the Rényi entropy to a small de-

formation of the (originally smooth) entangling surface, as shown in figure 1b. This small

displacement of the twist operator can be accomplished by making appropriate insertions

of the stress tensor, following the approach of [79–81] — see also [82–84]. Hence in the case

of the entanglement entropy, the response is determined by correlators of the stress tensor

and the entanglement Hamiltonian [79–81, 85]. Since the latter is given by an integral of

the stress tensor over the region V [47], the calculation actually involves correlators of the

stress tensor with itself and hence it is natural that the response is controlled by the central

charge CT as in eq. (1.5). In the case of the Rényi entropy (with n 6= 1), the corresponding

calculation instead involves correlators of the stress tensor and the twist operator and so

this reasoning naturally suggests that the response would be determined by the scaling

dimension hn as in eq. (1.6). This reasoning also outlines a path potentially leading to

a proof of our new conjecture, however, the detailed calculations are subtle and we must

leave this topic for future work [86].

In eq. (1.10), we observed that the universal contribution in the Rényi entropy of an

interval in a two-dimensional CFT also contains a factor of hn/(n − 1). This suggests

that the form given in eq. (7.2) generalizes to higher dimension as well. In particular,

using the results of [83, 84, 87], we have shown that the higher dimensional analogs of σ1
describing the universal contribution in the entanglement entropy for an almost smooth

cone is proportional to the central charge CT for general holographic CFTs in any number

12Of course, the scaling dimension hn of the twist operator serves the same purpose.
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of dimensions [39].13 Further, as shown in eq. (2.5), ∂nhn|n=1 is also related to CT in general

dimensions. Hence, it is natural to suggest that eq. (7.2) will have a higher dimensional

counterpart for the coefficients σ(d)
n controlling the response of the Rényi entropy to an

almost smooth conical defect in the entangling surface of the form

σ(d)
n = g(d)

h(d)
n

n− 1
, (7.4)

where g(d) is a geometric factor that depends on the spacetime dimension, and h(d)
n is

the scaling dimension of the corresponding twist operators in d dimensions. Proving this

conjecture would give a new perspective on the geometric character of Rényi entropies in

higher dimensions [82–84, 88].

In section 4, we observed an intriguing duality between the corner coefficients of the

free scalar and the free fermion. In particular, this relates the corner coefficients for inverse

values of the Rényi index through the simple expression n2σcs, fn = σf, cs1/n , which we proved

in appendix D. Further implications of this duality include that the energy density of one

theory on the hyperbolic cylinder at temperature T is related to the corresponding energy

density of the dual theory at T 2
0 /T , as in eq. (4.7). It would be interesting to explore the

physical implications of this new duality in more depth. Similarly, it would be worthwhile

to search for similar relations for other theories in other spacetime dimensions.

Our proof of the Bose-Fermi duality makes use of the representation of log Zcs, f given

in [52] — see appendices C and D. This allows us to give the following alternative repre-

sentation of σcs ,fn

σcsn =
n

4π2(n− 1)

[
3ζ(3)

4π2
− 2

π2

∫ ∞
0
dλ λ2 tanhλ (coth(nλ)− 1)

]
, (7.5)

σfn =
n

4π2(n− 1)

[
ζ(3)

π2
+

2

π2

∫ ∞
0
dλ λ2 cothλ (tanh(nλ)− 1)

]
.

It would be interesting prove the equivalence of these integral expressions with those in

eq. (3.12), which were used in the main text. Alternatively, it also appears that these

expressions may be somewhat simpler to relate to the sums in eq. (3.10), than those

in eq. (3.12).

In this section 6, we devised an approach to constructing a simple analytic function

which gives a (very) good approximation to the entire corner function an(θ) for all angles.

These functions make an informed interpolation between the asymptotic limits (1.4) at

θ → 0 and π. Hence the only data necessary to construct these approximations is the

almost smooth corner coefficient σn and the small angle coefficient κn in eq. (1.4). Of

course, our conjecture (7.2) indicates that the coefficient σn can be accessed by a different

calculation. In particular, the scaling dimension hn is determined by the leading singularity

in correlation function of the stress tensor with a twist operator, as shown in eq. (2.3).

Similarly, the small angle coefficient κn can be accessed by an alternative calculation. In

particular, as described in [8–10, 37], the same coefficient controls the universal contribution

in the Rényi entropy of an narrow strip. It would be interesting to investigate situations

13Similar observations were recently made in [38, 74].
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where these two alternate calculations would allow the corner contribution to be determined

more simply than by evaluating the Rényi entropy for entangling surfaces with corners of

varying angles.
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A Evaluation of hn for the free CFTs

In this appendix, we evaluate the integral expressions in eq. (3.5) for the scaling dimension

of the twist operator with odd Rényi index n > 1, in the free conformal field theories.

Using the same integrals along with eq. (1.6), we also evaluate σn in closed-form for various

rational non-integer values of n. These results provide an interesting explicit check of the

Bose-Fermi duality discussed in section 4, and proven in appendix D.

A.1 Complex scalar

We begin with the conformal dimension hn in the theory of a free complex scalar, which

may be written as:

hcsn =
1

8πn2

∫ ∞
−∞

du

sinhu

[
cosh(u/n)

sinh3(u/n)
− n3 coshu

sinh3 u

]
. (A.1)

Here we have used the fact that the integrand is even to extend the range of integration

over the entire real line. In passing, we also note that the integrand is finite at the origin,

where it becomes (n4 − 1)/(15n) + O(u2). Further we note that the integrand decays

exponentially fast as u→ ±∞. Next we observe that if we shift the contour in the complex

u plane from the real axis to =(u) = iπn, then the integrand is invariant up to an overall

phase of einπ = (−)n. Hence for odd n, we may re-express the conformal weight in terms

of complex contour integral which runs along the contour C, illustrated in figure 7:

hcsn =
1

16πn2

∮
C

du

sinhu

[
cosh(u/n)

sinh3(u/n)
− n3 coshu

sinh3 u

]
. (A.2)

Thus the result will be expressed in terms of the residues of the poles found to lie within

the contour C. The integrand within the contour is only singular along the imaginary axis

where sinhu vanishes, i.e., at u = iπk with k = 1, 2, · · · , n − 1. The second term in the
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C

u

iπ n

Figure 7. The integration contour C in the complex u plane. Poles occur at u = iπk, for all integers

k that are not multiples of n. Here we illustrate the case n = 3, with two poles lying inside C.

integrand actually has a quartic and quadratic pole at each of these points but neither of

these contribute to the closed contour integral. Hence only the first term contributes with

the result

hcsn =
1

8n2

n−1∑
k=1

(−)k+1 cos(πk/n)

sin3(πk/n)
. (A.3)

We note again that this result only applies for odd values of n. One can confirm that

this sum vanishes for n even, as expected. We have also explicitly verified that the above

expression reproduces the value of hcsn given by directly evaluating the integral in eq. (3.5)

for odd values of n up to n = 500. Combined with the new conjecture (1.6), the above

expression yields the following sum for the corresponding corner coefficient (for odd n > 1):

σcsn =
1

8πn2(n− 1)

n−1∑
k=1

(−)k+1 cos(πk/n)

sin3(πk/n)
. (A.4)

Unfortunately, the sum appearing here does not seem to be simply related to that appearing

in eq. (3.10).

A.2 Dirac fermion

Now we consider the conformal dimension of the twist operator in the theory of a free

Dirac fermion. Again the integrand in eq. (3.5) is even and so we extend the integral to

the entire real line:

hfn =
1

16πn2

∫ ∞
−∞

du

tanhu

[
n3

2 + sinh2 u

sinh3 u
− 2 + sinh2(u/n)

sinh3(u/n)

]
. (A.5)

Again, we note that the integrand is finite at the origin, where it becomes 7(n4−1)/(30n)+

O(u2). Further we note that the integrand decays exponentially fast as u→ ±∞. Next we

observe that if we shift the contour in the complex u plane from the real axis to =(u) = iπn,

then the integrand is invariant up to an overall change of sign, but only for odd n. Hence

we may re-express the conformal weight in terms of complex contour integral which runs

along the contour C, illustrated in figure 7:

hfn =
1

32πn2

∮
C

du

tanhu

[
n3

2 + sinh2 u

sinh3 u
− 2 + sinh2(u/n)

sinh3(u/n)

]
. (A.6)
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n 1/6 1/5 1/4 1/3 2/3 1/2 3/2

σcsn
261+20

√
3

720π

√
425+58

√
5

80π
1+6
√
2

48π
5

24π
√
3

20
√
3π−81

216π2
1

16π
243−128

√
3

1296π

σfn
81+34

√
3π

270π2

√
25−2

√
5

20π
8+3π
36π2

1
6π
√
3

243−128
√
3

576π
1

6π2
20
√
3π−81

486π2

Table 5. Corner coefficient σn for various rational values of the Rényi index for the complex scalar

and Dirac CFTs in d = 3.

Hence the result can again be expressed in terms of the residues of the poles found to lie

within the contour C. The integrand in C is only singular along the imaginary axis where

sinh(u) vanishes, i.e., at u = iπk with k = 1, 2, · · · , n − 1. Again, the first term in the

integrand actually has a quartic and quadratic pole at each of these points and neither of

these contribute to the closed contour integral. Hence only the second term contributes

with the result

hfn =
1

16n2

n−1∑
k=1

[
2

sin3(πk/n)
− 1

sin(πk/n)

]
. (A.7)

Again, this result only applies for n odd. In this case, the sum does not vanish for n even,

but the result should not be taken as the correct value of hfn. We have again explicitly

verified that this sum reproduces the value of hfn found by directly evaluating the integral

in eq. (3.5) for odd values of n up to n = 500. Combining the above sum with the new

conjecture (1.6), we find the following expression for the corresponding corner coefficient

(for odd n > 1):

σfn =
1

16πn2(n− 1)

n−1∑
k=1

[
2

sin3(πk/n)
− 1

sin(πk/n)

]
. (A.8)

Here again, this new sum does not seem to be simply related to the sum in eq. (3.10) for

the same coefficients.

A.3 Rational values of n

Using our integrals (3.5) for the scaling dimensions hn of the free scalar and fermion, we

can evaluate σn in closed-form at various rational non-integer values of n. We list select

results in table 5. Comparing the results for n = 2/3 and 3/2, we see that they explicitly

satisfy the Bose-Fermi duality n2σscn = σf1/n in eq. (4.3). Similarly, comparing n = 1/6,

1/5, 1/4, 1/3 and 1/2 with the dual results in table 2, we see that they obey the same

duality relation. We provide a general proof of the duality eq. (4.3) in appendix D.

B Sharp corner coefficient calculation

In section 3.2.2, we computed the sharp corner coefficients κn, n = 2, 3, 4 and n = ∞ for

the complex scalar and the Dirac fermion. Here we explain how these calculations are

performed following the approach of [8–10]. In particular, we exploit the relation between
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these coefficients and the so-called ‘entropic c-functions’ for a family of corresponding

massive free fields in d = 2. As was noted in section 3.2.2, the κcs, fn coefficients are given by

κcs, fn =

∫ ∞
0

dt

π
ccs, fn (t) , where ccs, fn (m`) = `

dScs, f
n (m`)

d`
, (B.1)

where Scs, f
n (m`) are the Rényi entropies of d = 2 free fields with mass m for a single interval

of length `. The cn(t) for the complex scalar and the Dirac fermion can be evaluated as

ccsn =
1

1− n

n−1∑
k=1

ωcs
k/n(t) , cfn =

2

1− n

(n−1)/2∑
k>0

ωf
k/n(t) , (B.2)

respectively, where the ωcs, f
a are given by

ωa(t) = −
∫ ∞
t

dy y u2a(y) , (B.3)

and the functions ua(y) satisfy, respectively, the differential equations

u′′a, cs(t) +
u′a, cs(t)

t
− ua, cs(t)

1+u2a, cs(t)
u′

2
a, cs(t)−ua, sc(t)(1+u2a, cs(t))−

(2a−1)2

t2
ua, cs(t)

1+u2a, cs(t)
= 0,

(B.4)

ua, cs(t→ 0) =
−1

t(log(t/2) + 2γE + (ψ[a] + ψ[1− a])/2)
, (B.5)

ua, cs(t→∞) =
2

π
sin(aπ)K1−2a(t) ,

and

u′′a, f(t) +
u′a, f(t)

t
+

ua, f(t)

1− u2a, f(t)
u′

2
a, f(t)− ua, f(t)(1− u2a, f(t))−

4a2

t2
ua, f(t)

1− u2a, f(t)
= 0 , (B.6)

ua, f(t→ 0) = −2a(log(t/2) + 2γE + (ψ[a] + ψ[−a])/2) , (B.7)

ua, f(t→∞) =
2

π
sin(aπ)K2a(t) .

The differential equations can also be used to eliminate the integral in eq. (B.3) producing

ωcs
a (t) = −

t2u′2a, cs − u2a, cs((1− 2a)2 + t2(1 + u2a, cs))

2(1 + u2a, cs)
, (B.8)

ωf
a(t) = −

t2u′2a, f − u2a, f(4a2 + t2(1− u2a, f))
2(1− u2a, f)

. (B.9)

The final expressions for the κcs, fn are then given in eq. (3.22). Hence, our approach is to

numerically solve eqs. (B.4) and (B.6) subject to the boundary conditions (B.5) and (B.7),

respectively, and then use the results to evaluate eq. (3.22).

Let us add here that we can evaluate κcs, f corresponding to the special case n = 1 with

a similar approach using two-dimensional entropic c-functions. In particular, we have

κcs, f =

∫ ∞
0

dt

π
ccs, f(t) , (B.10)
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with

ccs(t) = −π
∫ ∞
0

db

cosh2(πb)
ωcs
1/2−ib(t) , (B.11)

cf(t) = 2π

∫ ∞
0

db

sinh2(πb)
ωf
−ib(t) . (B.12)

The values of these coefficients were evaluated by [8–10] and appear in table 3 under n = 1.

C Relation between σ∞ and F∞

In comparing the behaviour of eq. (3.10) for large n, the authors of [42] observed a rela-

tion (3.18) between σ∞ for the free fields and corresponding results for the logarithm of

the partition function on the hyperbolic cylinder S1 × H2, given in [52]. We will provide

an explanation of this relation in this appendix and at the same time, we show that the

same result holds for any three-dimensional CFT.

Following [52], we begin by defining the logarithm of the thermal partition function

evaluated at T = T0/n

F̂n ≡ − logZ(T0/n) , (C.1)

which is now readily connected to the corner coefficient σn through eq. (3.11). In particular,

it is straightforward to show that eq. (3.2) for the desired energy densities can be re-

expressed as

E(T0/n) =
1

2πRVH2

∂nF̂n , (C.2)

and hence eq. (3.11) can be written as

σn = − R2

2π VH2

n

n− 1

(
∂nF̂n − ∂nF̂n

∣∣
n=1

)
(C.3)

Now, of course, the quantity F̂n is infrared divergent because it involves an integration

over the infinite volume of the hyperbolic plane H2. However, both of the previous two

formulae compensate for this divergence by dividing by VH2 to produce a finite quantity.

One can produce expressions involving only finite quantities by focusing on the universal

contribution to F̂n, which amounts here to only retaining the finite regulator-independent

contribution. The IR regulator also renders the volume finite and one only keeps the

regulator-independent term in VH2 . In particular, examining eq. (3.3), we have V univ
H2 =

−2πR2. Hence eq. (C.3) can be written as

σn =
1

4π2
n

n− 1

(
∂nF̂univ

n − ∂nF̂univ
n

∣∣
n=1

)
. (C.4)

However, before proceeding, we must first consider a difference in the conventions in

the present paper and [52], which was alluded to in the discussion after eq. (2.7). With

the heat kernel regularization used to produce the partition functions (3.4) for the free

fields [41], one finds a nonvanishing energy density at T = T0. On the other hand, with the

approach used in [52], E(T0) = 0 and hence ∂nF̂univ
n

∣∣
n=1

= 0 as a consequence of eq. (C.2).
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Since our present goal is to explain the result in eq. (3.18), we adopt the latter convention

for the moment. Of course, this produces a simplification in eq. (C.4) and we are left with

the following expression for the corner coefficient,

σn =
1

4π2
n

n− 1
∂nF̂univ

n . (C.5)

Finally, we consider the limit n→∞ for which one finds a linear growth in F̂univ
n . Hence

defining F∞ as the coefficient of the leading term, i.e., F̂univ
n ∼ nF∞, the above expression

reproduces the desired relation (3.18)

σ∞ =
1

4π2
F∞ , (C.6)

which was observed in [42] for the free CFTs. Of course, our analysis here made no reference

to the free field theories discussed there and so we have established that eq. (3.18) holds

generally for any three-dimensional CFT — assuming that the renormalization scheme is

chosen such that E(T0) = 0.

To close, let us return to the difference in the conventions adopted here and in [52].

As noted above and discussed below eq. (2.7), differences in the renormalization of the

Euclidean partition function produce a shift in F̂n:[
F̂n
]
here

=
[
F̂n − n

(
∂nF̂n

)
n=∞

]
[52]

. (C.7)

Hence let us consider the form of eq. (3.18) if we instead adopt the conventions of the

present paper. First, we note that with eq. (C.7), ∂nF̂univ
n vanishes in the limit n → ∞.

Therefore eq. (C.4) reduces to the following expression

σ∞ = − 1

4π2
∂nF̂univ

n

∣∣
n=1

= R3 E(T0) . (C.8)

Again, we emphasize that although eqs. (C.6) and (C.8) are dissimilar in appearance, they

both yield the same numerical value for σ∞.

D Proof of the Bose-Fermi duality

In this appendix, we prove the intriguing duality relation (4.3) relating the Rényi corner

coefficients of the free scalar and the free Dirac fermion through

n2 σcsn = σf1/n , for n > 0, n ∈ R. (D.1)

The proof is most simply presented by adopting the conventions and notation of [52], as

described in the previous appendix. In this case, we can use eq. (C.5) to rewrite the duality

relation (D.1) as

n3∂nF̂univ, cs
n + ∂qF̂univ, f

q

∣∣∣
q=1/n

= 0 . (D.2)
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Now, ref. [52] provides the following simple expressions for F̂univ, cs
n and F̂univ, f

n

F̂univ, cs
n = n

3ζ(3)

4π2
− 2

π2

∫ ∞
0
dλλ tanh(λ) log

(
1− e−2nλ

)
, (D.3)

F̂univ, f
n = n

ζ(3)

π2
+

2

π2

∫ ∞
0
dλλ coth(λ) log

(
1 + e−2nλ

)
. (D.4)

Taking derivatives with respect to n of the expressions above then yields

∂nF̂univ, cs
n =

3ζ(3)

4π2
− 2

π2

∫ ∞
0
dλλ2 tanh(λ) (coth(nλ)− 1) , (D.5)

∂nF̂univ, f
n =

ζ(3)

π2
+

2

π2

∫ ∞
0
dλλ2 coth(λ) (tanh(nλ)− 1) . (D.6)

We note in passing that these can be used to produce yet another integral representation

of σcs ,fn through eq. (C.5) — see eq. (7.5). Now, after some manipulations, including a

change of variables λ→ λ/n in the scalar integral, we find

n3∂nF̂univ, cs
n =

3ζ(3)

4π2
n3 − 2

π2

∫ ∞
0
dλλ2 tanh(λ/n) (coth(λ)− 1) , (D.7)

∂qF̂univ, f
q

∣∣∣
q=1/n

=
ζ(3)

π2
+

2

π2

∫ ∞
0

dλλ2 coth(λ)(tanh(λ/n)− 1) . (D.8)

Hence the right-hand side of eq. (D.2) becomes

n3∂nF̂univ, cs
n + ∂qF̂univ, f

q

∣∣∣
q=1/n

=
ζ(3)

4π2
(3n3+4)+

2

π2

∫ ∞
0
dλλ2 [tanh(λ/n)−cothλ] . (D.9)

Finally, this expression vanishes identically by virtue of the exact result for the integral∫ ∞
0
dλλ2 [tanh(λ/n)− cothλ] = −ζ(3)

8
(3n3 + 4) , ∀ n > 0 . (D.10)

This completes the proof of eq. (D.2), and hence of the duality eq. (D.1).

If we apply the simple identity ∂qf(q)|q=1/n=−n2∂nf(1/n), we can express eq. (D.2) as

∂nF̂
univ, f
1/n = n∂nF̂univ, cs

n , (D.11)

which can be integrated to yield

F̂univ, f
1/n = n F̂univ, cs

n −
∫ n

1
dq F̂univ, cs

q −
(
F̂univ, cs
1 − F̂univ, f

1

)
. (D.12)

Of course, F̂univ
1 is equivalent to the universal coefficient in the sphere partition function

which plays a role in the F -theorem [77, 78, 89–91]. Eq. (D.12) shows that the thermal

partition functions of the two free theories are not simply exchanged under n ↔ 1/n, but

they are still related in a relatively simple manner.
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E Relation to circular region Rényi entropies

Let us first recall eq. (1.7):

∂nhn|n=1 = 2π
d
2
+1 Γ(d/2)

Γ(d+ 2)
CT . (E.1)

This relation was first observed to hold for certain holographic theories in [40] and later

proven for general CFTs in [41]. This result was also connected to a similar relation found

in [92] for derivatives of the Rényi entropy Sn of a spherical entangling region

∂nSn|n=1 = −π
d
2
+1 (d− 1)Γ(d/2)

Γ(d+ 2)

VHd−1

Rd−1
CT . (E.2)

Here again, R is the radius of the sphere and VHd−1 is the regulated (dimensionful) volume

of the hyperbolic geometry Hd−1, which appears in the construction of [47]. In particular,

the following identity holds [41]

∂nSn|n=1 = −d− 1

2

VHd−1

Rd−1
∂nhn|n=1 , (E.3)

and more generally,14 for k ≥ 1

∂knSn
∣∣
n=1

= −d− 1

k + 1

VHd−1

Rd−1

k−1∑
m=0

(−)mk!

(k −m)!
∂k−mn hn

∣∣
n=1

. (E.4)

Note that the above sum does not extend to m = k because h1 = 0. The relations between

these derivatives can be written in a more compact form as

∂knhn
∣∣
n=1

= − Rd−1

(d− 1)VHd−1

[
(k + 1) ∂knSn

∣∣
n=1

+ k2 ∂k−1n Sn
∣∣
n=1

]
, (E.5)

where we drop the second term for k = 1.

Note that the scaling dimension on the left-hand side is a finite quantity of this last

identity (E.5), while the Rényi entropies on the right-hand side are UV divergent. Of course,

this divergence is compensated by dividing by VH2 to produce a finite quantity. One can

produce an identity relating finite quantities by focusing on the universal contribution to

the Rényi entropy, which is either the coefficient of the logarithmically divergent term in

an even number of dimensions or the finite contribution in an odd number of dimensions.

For example, let us focus on d = 3 where we can use eq. (3.3) to extract the finite term

from VH2 . Then eq. (E.5) yields

∂knhn
∣∣
n=1

=
1

4π

[
(k + 1) ∂knS

univ
n

∣∣
n=1

+ k2 ∂k−1n Suniv
n

∣∣
n=1

]
. (E.6)

It is straightforward to explicitly verify this relation in, e.g., the holographic model in

section 5.

14Please note that the original expression for k > 2 in eq. (2.53) of [41] was incomplete.
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Now, expanding our new conjecture (1.6) around n = 1 yields

∂knhn|n=1 = π k ∂k−1n σn|n=1 , (E.7)

for k ≥ 1. Hence we can combine this result with eq. (E.6) as

∂knσn
∣∣
n=1

=
1

4π2

[
k + 2

k + 1
∂k+1
n Suniv

n

∣∣
n=1

+ (k + 1) ∂knS
univ
n

∣∣
n=1

]
, (E.8)

which is valid for k ≥ 1. However, eqs. (E.6) and (E.7) yield an additional relation for

k = 0, which can be seen as another realization of our original conjecture (1.5):

∂nS
univ
n

∣∣∣
n=1

= 2π2 σ1 . (E.9)
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