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1 Introduction

The AdS3-WZNW model has proven to be useful in many areas of theoretical physics,

ranging from gravity and string theory [1–8] to condensed-matter physics [9–11]. It be-

came particularly popular after the AdS/CFT correspondence [12–14], as it describes the

worldsheet of a string propagating in an Anti-de Sitter space-time with a background NS-

NS 2-form B field. So far, it is one of the few schemes in which Maldacena’s conjecture

can be studied beyond the supergravity approximation. The interest in the AdS3-WZNW

and other models having a SL(2,R)×SL(2,R) global symmetry has been recently renewed

within the context of integrability [15–18] and AdS3 gravity [19–23].

In a WZNW model with a compact underlying symmetry group, the spectrum is built

upon representations of the zero-modes algebra [24]. Vectors in these modules are assumed

to be annihilated by all strictly positive frequency modes and, afterwards, representations

of the full current algebra are generated by acting with the modes of negative degree.

Unitarity further constrains the space of physical states. For the AdS3-WZNW model,

being a non-rational CFT, this procedure does not guarantee the absence of negative-norm

states in the spectrum of the string and a bound in the upper value of the spin was suggested

to be necessary [25, 26], implying a coupling independent restriction on the masses of the

physical configurations that originally raised doubts about whether a no-ghost theorem

could finally be proven in this case. In addition, the spectrum generated that way gives no

account of finite energy states corresponding to strings stretched closed to the boundary

of AdS3 [27, 28].

A solution for both issues was presented in [29]. The space of states was enlarged in

order to include representations with energy unbounded below by means of the so-called

spectral flow automorphisms and a no-ghost theorem based on this spectrum was proven.

– 1 –
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In [30] the proposal was verified by computing the modular invariant one-loop partition

function for Euclidean BTZ black hole backgrounds, more modular properties of the AdS3-

WZNW model being further studied in [31, 32].

The spectral flow automorphisms are morphisms of the current algebra labelled by

an integer number ω that can be roughly related to the amount of winding of the string

in the angular direction of AdS3. For WZNW models based on compact Lie groups, the

spectral flow maps primary states of one representation into descendants of another and,

therefore, no new configurations are created. However, in a non-rational CFT the spectral

flow operation, when applied on an arbitrary module, leads, in general, to a nonequivalent

one generated by infinitely many affine quasi-primary fields having energies unbounded

from below, thus giving account of long string states.

Correlation functions involving only primary fields are typically assumed to follow by

analytic continuation of some related functions in the Euclidean counterpart of the theory,

i.e., the H+
3 -WZNW model [33, 34]. These unflowed correlators can be written either in the

space-time picture [35, 36], the vertex fields being parametrized in this representation by

the coordinates of the dual CFT target space, or in the so-called m-basis [37–40], a basis in

which the Cartan generator of SL(2,R) is diagonal. Many of them can be computed directly

in the Lorentzian model using free fields methods, as in [41–43]. It should be mentioned,

however, that the contact between the H+
3 and the AdS3-WZNW models is still a matter

of discussion [19, 44, 45], the analytic continuation of the corresponding correlators being

both a conceptually and a technically difficult task.

When spectral flowed states are also considered, the computation of correlation func-

tions turns out to be even more complicated. The standard strategy for doing so was de-

veloped in [46] based on the parafermionic representation. Starting with a correlator with

all of their states unflowed, it requires the insertion of an additional vertex, the so-called

spectral flow operator, for each unit of spectral flow involved, followed by a transformation

to the m-basis, an ad-hoc process for removing the dependence of the resulting expression

on the unphysical points in which the spectral flow fields were inserted and, if needed, a

final transformation back to the space-time basis. Dealing with a large number of insertions

makes this method useless when trying to determine correlation functions with more than

three physical states. The computation, both in the space-time picture and in the m-basis,

of two and three-point functions with nontrivial total spectral flow number can be found

in [35, 36]. Similar correlators were computed in [47–49] within the free fields approach.

Some results concerning flowed amplitudes with more insertions can be found in [50, 51].

The aim of this paper is to further continue the study of correlation functions in the

AdS3-WZNW model. In particular, we analyze the structure of four-point functions with

one state lying in the discrete part of the spectrum, both in the unflowed sector and in the

case of a single unit of total spectral flow charge. The method we employ is similar to the

one used in [39, 41, 49] when computing three-point functions, as it relies in the knowledge

of the correlator when one field is a lowest or a highest-weight state and it relaxes the

extremal-weight state condition afterwards. Let us recall that in [43] an integral expression

generalizing the classical Selberg integral was found for the one extremal-weight state case

using the free fields formalism and this is, so far, the only formula for the AdS3 conformal

blocks in the m-basis available in the literature.

– 2 –
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The paper is organized as follows. In the next section we review the H+
3 and the AdS3-

WZNW models. We discuss the similarities and differences between their spectra, the role

played by a spectral flow automorphism within this context and the way it enters the com-

putation of correlation functions. In section 3 we study the unflowed four-point function

with one state in the discrete spectrum of the theory. We show that the corresponding con-

formal blocks can be derived from those involving a lowest or a highest-weight state. As we

have mentioned before, our method resembles the one already employed in [39, 41, 49] for

determining some of the structure constants of the model. These techniques are afterwards

adapted in order to deal with correlators in nontrivial spectral flow sectors, and then they

are used in section 4 for obtaining a factorized integral expression for the four-point func-

tion with one discrete state and a single unit of spectral flow charge. The conformal blocks

in the extremal-weight case are determined using the isomorphism between the unflowed

discrete series and the images of certain representations under the action of a spectral flow

automorphism. They can be fully characterized in terms of unflowed conformal blocks, a re-

sult that should not be surprising since the generalized Knizhnik-Zamolodchikov equations

for correlators with a single unit of spectral flow are equivalent to the standard Knizhnik-

Zamolodchikov equations via a simple twist, as it was revealed in [52]. In section 5 we

transform these formulas back to the space-time picture and, in a final section, we present

our conclusions.

2 Review of the H
+

3 and AdS3-WZNW models

The action of the nonlinear sigma model whose target space is the hyperbolic space H+
3

can be expressed in terms of the Poincaré coordinates (φ, u, ū) as

S = k

∫
d2z

(
∂φ∂̄φ+ e2φ∂ū∂̄u

)
, (2.1)

where k is the level of the model, z is the complex coordinate of the worldsheet, ∂ stands

for ∂/∂z and the bar indicates, as usual, complex conjugation. It has a set of conserved

holomorphic and antiholomorphic currents that generate two commuting isomorphic sl2-

current algebras. Their modes, Ja
n and J̄a

n , with a = 3,± and n ∈ Z satisfy the following

commutation relations,

[
J3
n, J

3
m

]
= −

1

2
knδn+m,0, (2.2)

[
J3
n, J

±
m

]
= ±J±

n+m, (2.3)
[
J−
n , J+

m

]
= 2J3

n+m + knδn+m,0, (2.4)

and analogous expressions hold for the antiholomorphic modes. Associated with these

algebras there are two commuting Virasoro algebras constructed according to the Sugawara

procedure. Their generators are given by

Lm =
1

k − 2

∞∑

n=1

(
J+
m−nJ

−
n + J−

m−nJ
+
n − 2J3

m−nJ
3
n

)
, (2.5)

– 3 –
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for m 6= 0, and

L0 =
1

k − 2

[
1

2
J+
0 J−

0 +
1

2
J−
0 J+

0 −
(
J3
0

)2
+

∞∑

n=1

(
J+
−nJ

−
n + J−

−nJ
+
n +−2J3

−nJ
3
n

)
]
, (2.6)

and the same for the antiholomorphic generators L̄n. Both copies of the Virasoro algebra

share the same central charge, given in terms of the level by

c =
3k

k − 2
. (2.7)

The spectrum of the model is spanned as a direct integral of certain irreducible modules

of the current algebra [33, 34]. These modules are freely generated by acting with the

negative triangular part of the current algebra, namely, with the generators Ja
n and J̄a

n

with n < 0, on the representations of the zero-modes corresponding to the principal series

of SL(2,C). The positive triangular part is assumed to act trivially on these zero-modes

representations. Consequently, the space of states is parametrized by a single number, the

same that classifies the principal series of SL(2,C) inducing their irreducible components.

We shall refer to this number as the spin and we will denote it by j. Let us recall that j

lies in the half-axis C+ = {−1/2 + iλ : λ ∈ R>0}.

A concrete realization of the spectrum can be obtained by means of affine primary

operators Φj(x|z) having the following OPE with the currents,

Ja(z)Φj(x|w) =
1

z − w
Da

jΦj(x|w), (2.8)

for a = 3,±, where

D−
j = −∂x, (2.9)

D3
j = −x∂x + j, (2.10)

D+
j = −x2∂x + 2jx, (2.11)

and analogously for J̄a(z) with the complex conjugate differential operators. The label x

appears as a complex coordinate of the boundary of H+
3 , which becomes the target space

of the dual two-dimensional CFT [7, 8]. We shall therefore refer to this realization as the

space-time picture. The operators Φj(x|z) are also primary fields for the Sugawara-Virasoro

algebra with conformal dimensions given by

∆j = −
j(1 + j)

k − 2
. (2.12)

Correlation functions on the sphere involving N of these primary operators will be

denoted by ΦN (J |X|Z), namely,

ΦN (J |X|Z) =

〈
N∏

i=1

Φji(xi|zi)

〉
, (2.13)

where we have introduced J = (j1, . . . , jN ), X = (x1, . . . , xN ) and Z = (z1, . . . , zN ). The

conformal weights will also be collectively referred as ∆ = (∆j1 , . . . ,∆jN ).

– 4 –
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The invariance of these correlators under the symmetries generated by Ja
0 , J̄

a
0 , a = 3,±,

and Ln, L̄n, n = 0,±1, fully determines the functional dependence of the two and the three-

point functions on both the worldsheet and the space-time coordinates, leaving only some

constants depending on the kinematical configurations to be further established [33, 34].

When the normalization of the states is fixed as in [34], the propagator turns out to be

Φ2(J |X|Z) = |z12|
−4∆j1

[
δ2(x12)δ(1 + j1 + j2) + |x12|

4j2B(j1)δ(j2 − j1)
]
, (2.14)

where x12 = x2 − x1, z12 = z2 − z1,

B(j) =
ν1+2j

πb2
γ
(
1 + b2(1 + 2j)

)
, (2.15)

ν =
π

b2
γ
(
1− b2

)
, (2.16)

with b2 = (k − 2)−1 and γ(x) = Γ(x)/Γ(1− x̄). The three-point function takes the form

Φ3(J |X|Z) = |C(∆|Z)|−2|C(J |X)|2D(J), (2.17)

where the structure constants D(J) and the Clebsch-Gordan-like coefficients C(J |X) are

explicitly given by

D(J) =
G(1 + j1 + j2 + j3)

ν−1−j1−j2−j3G0

∏

σ

G(jσ)

G(1 + 2jσ1
)
, (2.18)

and

C(J |X) =
∏

σ

xjσσ1σ2
. (2.19)

In (2.18) and (2.19) the products run over all cyclic permutations of the labels and jσ =

jσ1
+ jσ2

− jσ3
. The special function G(j) is defined [53] in terms of the Barnes double

gamma function Γ2 as follows,

G(j) = b−bj(b+b−1+bj)Γ2(−bj|b, b−1)Γ2(b+ b−1 + bj|b, b−1), (2.20)

and

G0 = −2π2γ(1 + b2)G(−1). (2.21)

The function C(∆|Z) is

C(∆|Z) =
∏

σ

z∆σ
σ1σ2

, (2.22)

where ∆σ = ∆jσ1
+ ∆jσ2

− ∆jσ3
. The dependence of the three-point function on the

boundary coordinates is fixed by SL(2,C) invariance as long as no jσ equals a negative

integer for any cyclic permutation σ.

The action of the AdS3-WZNW model is formally related to the action (2.1) of the H+
3 -

WZNW model by a Wick rotation of its field variables and, therefore, a close connection

between both theories is usually assumed. This contact, however, turns out to be a rather

nontrivial one since it is expected to give account of the very distinctive properties these

models show. One example is given by their spectra; while the space of states of the

H+
3 -WZNW model only involves a continuous series of representations of the symmetry

– 5 –
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algebra, its Lorentzian counterpart is fairly more complicated as it incorporates also a

discrete series and their images under the so-called spectral flow automorphisms. These

morphisms constitute a key ingredient for generating a consistent spectrum for the AdS3-

WZNW model but, in principle, they play no role in the Euclidean theory. Given ω ∈ Z,

the corresponding spectral flow automorphism is defined by

J3
n → J3

n −
k

2
ωδn,0, (2.23)

J±
n → J±

n±ω, (2.24)

and similarly for the antiholomorphic modes and, as it can be straightforwardly deduced

from (2.5)–(2.6), it maps the Sugawara-Virasoro algebra into another conformal realization

generated, this time, by

Ln → Ln + ωJ3
n −

k

4
ω2δn,0, (2.25)

for n ∈ Z, and correspondingly for the L̄n. Unlike in rational models, which have under-

lying compact group symmetries, the spectral flow automorphisms generally give rise to

nonequivalent representations when acting on a current module.

Let us be more specific concerning the space of physical states of the AdS3-WZNW

model. As it was conjectured in [29], it consists of two families of representations of the

current algebra, the first one composed by the modules induced by the principal continuous

representations of the universal cover of SL(2,R) and their spectral flow images, and the

other composed by those induced by the principal discrete series and their spectral flow

images, all of them with the same quantum numbers for the left and the right sectors.

For the continuous series these numbers are the spin j, lying in C+ as for the H+
3 -WZNW

model, and a real parameter α ∈ [0, 1). The discrete series are labelled by a single number,

also denoted by j, that must be in the real half-axis (−∞,−1/2) once unitarity is required.

Every spectral flow image of a representation induced by a lowest-weight discrete series

with spin j is isomorphic to one built upon a highest-weight discrete series with a spin

j′ = −k/2−j and an additional unit of flow. This module isomorphism, that will be referred

in the sequel as the series identification, restricts the discrete representations allowed in

the spectrum to be either those induced by the lowest or by the highest-weight series, while

constraining the range of values of the spin to the real interval

−
k − 1

2
< j < −

1

2
. (2.26)

A suitable realization of the spectrum can be obtained by means of vertex operators

in the so-called m-basis, where the label m is introduced in order to keep track of the

quantum number associated with the eigenvalue of J3
0 in the unflowed frame. This basis

is the best suited to a Wick rotation from the H+
3 -WZNW model as well as to further

include a spectral flow charge when computing correlation functions. We shall denote the

affine primary fields realizing the unflowed spectrum by Φj(m|z) and their images under a

spectral flow automorphism or, for short, the flowed vertex operators, by Φω
j (m|z). When

dealing with states in the ω = ∓1 sector we shall adopt another notation and we will write

– 6 –
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Φ̂j(m|z) instead. A dependence on an antiholomorphic label m̄ is implicitly assumed, with

m− m̄ ∈ Z and m+ m̄ ∈ R. The OPE of these fields with the currents and their conformal

weights are given by

J3(z)Φω
j (m|w) =

m+ kω/2

z − w
Φω
j (m|w), (2.27)

J±(z)Φω
j (m|w) =

∓j +m

(z − w)1±ω
Φω
j (m± 1|w), (2.28)

∆ω
jm = ∆j − ωm−

k

4
ω2, (2.29)

and analogously for the antiholomorphic counterparts. When ω = ∓1 we shall write ∆̂jm

instead of ∆ω=∓1
jm .

The N -point correlation functions in the AdS3-WZNW model involving these spectral

flowed fields will generally be denoted by

ΦN (J |Ω|M |Z) =

〈
N∏

i=1

Φωi
ji
(mi|zi)

〉
, (2.30)

with J and Z as before, M = (m1, . . . ,mN ) and Ω = (ω1, . . . , ωN ). A salient feature of

these correlators, with the only exception of the two-point function, is that they can exhibit

a violation of the spectral flow number conservation, namely, it could happen for N ≥ 3

that the total amount of flow, ω =
∑N

i=1 ωi, does not vanish. This non-conservation of the

total spectral flow number is regulated by a selection rule that can be stated as follows,

−N + δ ≤ ω ≤ Nc − δ, (2.31)

where Nc is the number of vertex operators associated with states lying in the continuous

spectrum, δ = 1 when Nc = 0 and δ = 2 otherwise. It can be easily seen, by virtue of

the series identification, that (2.31) states that an N -point amplitude can reach a maximal

violation of N − 2 units of spectral flow. Another relevant aspect of the AdS3-WZNW

model correlators is that two amplitudes with the same value of ω only differ in a factor

that adjusts the overall worldsheet dependence. Indeed, it can be deduced from [46] that

FN (Ω|M |Z)ΦN (J |Ω|M |Z), with

FN (Ω|M |Z) =

∣∣∣∣∣∣

N∏

i<j

(zi − zj)
miωj+mjωi+ωiωjk/2

∣∣∣∣∣∣

2

, (2.32)

remains the same for every spectral flow assignment adding up to ω (see the appendix for

more details). Consequently, for studying an N -point correlation function there is no loss

of generality if we assume that only the vertex in the first insertion can be flowed, with

an amount of spectral flow running from 0 to a limiting absolute value of N − 2. We shall

do so in the rest of the paper. Unflowed N -point amplitudes will accordingly be assumed

to have ωi = 0 for i = 1, . . . , N , and they will be denoted by ΦN (J |M |Z). Correlators

with one unit of spectral flow, either negative or positive, i.e., with Ω = (∓1, 0, . . . , 0),

– 7 –
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will be denoted by Φ̂N (J |M |Z) and the collective variable for the conformal weights will

be ∆̂ = (∆̂j1m1
,∆j2 , . . . ,∆jN ). We shall not consider correlation functions violating the

spectral flow number conservation in more than a single unit.

Vertex operators satisfying (2.27)–(2.29) in the unflowed sector can be obtained from

those of the H+
3 -WZNW model by means of the following Mellin-like transform

Φj(m|z) =

∫

C

d2xxj+mx̄j+m̄Φ−1−j(x|z), (2.33)

and, consequently, a correlation function ΦN (J |M |Z) involving these fields is expected to

be obtained after using the transformation (2.33) on each insertion in the corresponding

Euclidean correlator ΦN (J |X|Z). Note, however, that in the H+
3 -WZNW model, m + m̄

is set as a purely imaginary number, unlike the AdS3-WZNW model, in which m + m̄ is

real. It follows that a Wick rotation of mi+m̄i, i = 1, . . . , N , should be performed in order

to get the right expression for the Lorentzian N -point correlation function. Moreover,

the spin, which in the H+
3 -WZNW model is restricted to lie in C+, must be promoted

to a real parameter if (2.33) is intended to describe states in the discrete spectrum of

the AdS3-WZNW model. Therefore, a well defined analytical continuation on ji, i =

1, . . . , N , beyond C+ should also be argued for obtaining ΦN (J |M |Z). Although a rigorous

justification of all these assumptions is still lacking, it was under these hypotheses that

most of the results concerning the AdS3-WZNW model were hitherto reached. We shall

therefore adopt this approach throughout the rest of the paper.

The two-point function, when computed from (2.14) using (2.33), leads to

Φ2(J |M |Z) = |z12|
−4∆j1 δ[M ]

[
δ(1 + j1 + j2) + c−1−j1,m1

B(−1− j1)δ(j2 − j1)
]
, (2.34)

where

cjm =
π

γ(−2j)

γ(−j +m)

γ(1 + j +m)
, (2.35)

and δ[M ] is an abbreviation for δ2(m1 +m2), with

δ2(m) =

∫

C

d2xxm−1x̄m̄−1 = 4π2δ(m+ m̄)δm−m̄,0. (2.36)

The unflowed three-point function is

Φ3(J |M |Z) = |C(∆|Z)|−2δ[M ]W (J |M)D(−1− J), (2.37)

with W (J |M) defined as

W (J |M) =

∫

C

d2x1d
2x2

∏

σ

x
jσ1+mσ1
σ1

x̄
jσ1+m̄σ1
σ1

|xσ1σ2
|−2−2jσ , (2.38)

where x3, x̄3 = 1. This integral was explicitly computed in terms of certain generalized

hypergeometric functions in [39, 42]. All these correlators were independently determined

within the free fields formalism in [41, 42, 47].

When the spectral flow enters the play, the computation of amplitudes is fairly more

involved. Indeed, the standard procedure for introducing the violation of the spectral flow

– 8 –
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number conservation demands the insertion of, at least, one additional vertex, the so-called

spectral flow operator, for each unit of flow violation. This method, developed in [46] and

reviewed in the appendix, was exploited in [35] for obtaining the following expression for

the spectral flowed three-point function,

Φ̂3(J |M |Z) = |C(∆̂|Z)|−2δ[M ± k/2]Ŵ (J |M)D̂(−1− J), (2.39)

with

D̂(J) = B(j1)γ(1− j′1 + j2 + j3)D(J ′), (2.40)

where, as before, j′1 = −k/2− j1 and J ′ = (j′1, j2, j3), and

Ŵ (J |M) = (−1)m3−m̄3

3∏

i=1

γ(1 + ji ±mi). (2.41)

An independent computation of this correlation function was performed in [49] using free

fields methods.

3 Unflowed conformal blocks in AdS3

An integral factorized expression for the four-point function of the H+
3 -WZNW model was

introduced and intensively studied in [34]. It takes the form

Φ4(J |X|Z) = |Ξ(∆|Z)|−2
∫

C+

djDj(J)Gj(J |X|z). (3.1)

The function Ξ(∆|Z) is given by

Ξ(∆|Z) = z
−∆j1

−∆j2
+∆j3

+∆j4
43 z

2∆j2
42 z

∆j1
−∆j2

−∆j3
+∆j4

41 z
∆j1

+∆j2
+∆j3

−∆j4
31 . (3.2)

The factor Dj(J) is, as expected, the properly normalized product of two three-point

functions involving the intermediate state, namely,

Dj(J) = D12(j)B(j)−1D34(j), (3.3)

where D12(j) is an abbreviation for D(j1, j2, j). The function Gj(J |X|z), denoted in [34]

as the non-chiral conformal block of the H+
3 -WZNW model, is decomposed as

Gj(J |X|z) = |z|2(∆j−∆j1
−∆j2)Kj(J |X|z)Gj(J |X), (3.4)

where z is the worldsheet cross-ratio, i.e., z = z12z34/z13z24, Gj(J |X) is given by

Gj(J |X) =
(1 + 2j)2

π2

∫

C

d2xd2x′C12(j|x)|x− x′|−4−4jC34(j|x
′), (3.5)

with C12(j|x) = C(j1, j2, j|x1, x2, x), and the operator Kj(J |X|z) has the following factor-

ized form

Kj(J |X|z) = Oj(J |X|z)Oj(J |X|z), (3.6)
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where Oj(J |X|z) is formally given by the following power series in z,

Oj(J |X|z) =
∞∑

n=0

znδ
(n)
j (J |X). (3.7)

In this last expression, δ
(n)
j (J |X) are differential operators containing derivatives of finite

order in x1, . . . , x4. Albeit the explicit formula of theses operators is still unknown, they can

be recursively determined by using the Knizhnik-Zamolodchikov equation once δ
(0)
j (J |X)

is fixed. In our case we have δ
(0)
j (J |X) = 1.

By exploiting SL(2,C) invariance, the integral (3.5) can be simplified. Indeed, one has

Gj(J |X) = |Ξ(J |X)|2Gj(J |x), (3.8)

where

Ξ(J |X) = x−j1−j2+j3+j4
43 x2j242 xj1−j2−j3+j4

41 xj1+j2+j3−j4
31 , (3.9)

and Gj(J |x) equals (3.5) with x1 = 0, x2 = x = x12x34/x13x24, x3 = 1 and x4 = ∞. This

integral can be easily carried out, giving

Gj(J |x) = |Fj(J |x)|
2 + λj(J) |F−1−j(J |x)|

2 , (3.10)

where

λj(J) =
γ(1 + j + j3 − j4)γ(1 + j − j3 + j4)

γ(1 + 2j)γ(−j + j1 − j2)γ(−j − j1 + j2)
, (3.11)

and Fj(J |x) is

Fj(J |x) = x−j+j1+j2F (−j + j1 − j2,−j − j3 + j4;−2j|x). (3.12)

Both terms in the right hand side of (3.10) are related by a reflection in j, i.e., j ↔

−1−j. This fact allows to extend the integration in (3.1) over the full axis C = {−1/2+iλ :

λ ∈ R}, the resulting expression showing a holomorphically factorized form,

Φ4(J |X|Z) = |Ξ(∆|Z)|−2
∫

C

djDj(J) |Fj(J |X|z)|2 , (3.13)

where Fj(J |X|z) is given by

Fj(J |X|z) = z∆j−∆j1
−∆j2Oj(J |X|z)Ξ(J |X)Fj(J |x). (3.14)

The SL(2,C) invariance also implies that the operator defined as

Oj(J |x|z) = Ξ(J |X)−1Oj(J |X|z)Ξ(J |X), (3.15)

actually depends on the cross-ratio x, and, therefore, after introducing

Fj(J |x|z) = z∆j−∆j1
−∆j2Oj(J |x|z)Fj(J |x), (3.16)

we can write

Φ4(J |X|Z) = |Ξ(∆|Z)|−2 |Ξ(J |X)|2
∫

C

djDj(J) |Fj(J |x|z)|
2 . (3.17)
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Using expansion (3.7), we find

Fj(J |x|z) = z∆j−∆j1
−∆j2x−j+j1+j2

∞∑

n=0

znF
(n)
j (J |x). (3.18)

where we have introduced

F
(n)
j (J |x) = δ

(n)
j (J |x)Fj(J |x), (3.19)

with

δ
(n)
j (J |x) = xj−j1−j2Ξ(J |X)−1δ

(n)
j (J |X)Ξ(J |X). (3.20)

Both the equation (3.17) and the expansion (3.18) were used in [35] for studying the

four-point function within the context of the AdS/CFT correspondence. Indeed, since

δ
(0)
j (J |X) = 1, it follows that δ

(0)
j (J |x) = xj−j1−j2 and, therefore, F

(0)
j (J |x) equals the

hypergeometric function in (3.12), in agreement with [35].

A salient feature of having closed the integration contour in (3.13) is that this formula

allows to define a proper meromorphic continuation of the four-point function for generic

complex values of j1, . . . , j4 by exploiting the pole structure of the integrand. For those

values of j1, . . . , j4 lying in the maximal region in which the external spins can be contin-

uously varied in such a way that none of the poles from neither the integrand in the OPE

of the first two fields nor the integrand in the OPE of the last two operators giving (3.13)

crosses the integration contour C, the integral expression for the four-point correlator is

retained. This domain turns out to be

∣∣Re
(
j±21

)∣∣ < 1/2, j+21 = 1 + j1 + j2, j−21 = j1 − j2, (3.21)
∣∣Re

(
j±43

)∣∣ < 1/2, j+43 = 1 + j3 + j4, j−43 = j3 − j4. (3.22)

Beyond this region, some additional terms coming from the residues of such poles must be

taken into account. These terms are associated to contributions of intermediate discrete

states. See [34, 35] for more details. For simplicity, in this paper we shall restrict the

kinematical parameters to lie in the integral domain (3.21)–(3.22), so that formulas (3.1)

and (3.13) can be interpreted as the unflowed space-time picture four-point function in the

AdS3-WZNW model.

As we have already pointed out, in order to further incorporate the spectral flow into

the computation we need to transform the expression (3.1) to the m-basis using (2.33).

We get

Φ4(J |M |Z) = |Ξ(∆|Z)|−2
∫

C+

dj |z|2(∆j−∆j1
−∆j2)Dj(−1− J)Kj(J |M |z)Gj(J |M), (3.23)

where Dj(−1−J) is meant to indicate that the formula (3.3) is evaluated with all the spins

reflected and M = (m1,m2,m3,m4). In this last equation, Kj(J |M |z) is the transform of

the operator Kj(J |X|z), while Gj(J |M) is the transform of the function Gj(J |X), namely

Gj(J |M) =

∫

C4

4∏

i=1

[
d2xi x

ji+mi
i x̄ji+m̄i

i

]
Gj(−1− J |X). (3.24)
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Eq. (3.23) is valid as long as the integration over C in (3.1) and those over C4 coming

from (2.33) can be interchanged. This fact, far from being a subtlety, concerns the Wick

rotation of each mi+ m̄i, i = 1, . . . , 4, needed for obtaining the Lorentzian correlators from

the corresponding correlation functions in theH+
3 -WZNWmodel. Indeed, in order to freely

interchange the integration of the spin and the space-time integrations when computing

the OPE between two generic primary fields, some additional constraints are necessary

to be imposed on m = m1 + m2 and m̄ = m̄1 + m̄2, namely, max{Re(m),Re(m̄)} > 1/2

and/or min{Re(m),Re(m̄)} < −1/2, depending on which series the states belong to. These

conditions guarantee that the singularities of the integrand of the OPE that depend on m

and m̄ are well located in the complex j-plane. Relaxing any of them would require

a proper analytic continuation to give account of the residues of the poles crossing the

integration contour, exactly as in the space-time picture. An extensive analysis of these

discrete contributions to the AdS3-WZNW model OPE can be found in [44] and also in [45]

in the minisuperspace limit. There are, however, certain configurations allowing to neglect

any term of the Lorentzian four-point function except the integral (3.23) without the need

of additional constraints on m and m̄. In this paper we prefer to retain the expression of

the four-point correlator the simplest as possible and, therefore, we will consider a concrete

case in which this happens, namely, when at least two external fields, say those at the first

and the last insertion points, are assumed to belong to the discrete part of the spectrum. If

this condition is relaxed by assuming that the correlator has at least one discrete state, the

integral (3.23) should be redefined to give account of some additional discrete contributions,

but aside of this, none of the results in what follows would actually be compromised.

The computation of Gj(J |M) was explicitly performed in [43] using free fields methods.

An entirely independent check of the result was performed in [44] by means of the OPE of

two primary fields. It is given by

Gj(J |M) = δ [M ]W12(−1− j)c−1
jmW34(−1− j), (3.25)

where W12(j) = W (j1, j2, j|m1,m2,m).

This equation allows to write the following expression for the four-point correlator,

Φ4(J |M |Z) = |Ξ(∆|Z)|−2
∫

C+

djDj(J |M)Gj(J |M |z), (3.26)

with

Dj(J |M) = Dj(−1− J)Gj(J |M) = Φ12(j| −m)Φ2(j|m)−1Φ34(j|m), (3.27)

where Φ12(j|m) = Φ3(j1, j2, j|m1,m2,m|0, 1,∞), Φ2(j|m) = Φ2(j, j|m,−m|0,∞) and

Gj(J |M |z) = |z|2(∆j−∆j1
−∆j2)Gj(J |M)−1Kj(J |M |z)Gj(J |M). (3.28)

These last functions correspond to the four-point conformal blocks in the m-basis. Notice

that Kj(J |M |z) → 1 and, therefore, Gj(J |M |z) ∼ |z|2(∆j−∆j1
−∆j2), when z → 0, as

expected.

– 12 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
6

As for the H+
3 -WZNW model, the explicit form of the conformal blocks is not known.

However, in [43] an integral expression generalizing the classical Selberg integral was found

for Gj(J |M |z) when the spins satisfy j1 + j2 + j3 + j4 + 1 ∈ N0, as it is usual in the free

fields formalism, and the first insertion corresponds to a lowest or a highest-weight state

(see formulas (2.23)–(2.31) in [43]). The first constraint can eventually be bypassed by a

proper, and highly nontrivial, analytic continuation, that is beyond the scope of this paper.

The extremal-weight condition, on the other hand, can be relaxed by following a procedure

similar to the one used in [39, 41, 49] for the three-point functions. We shall do so in the

rest of this section.

From the Baker-Campbell-Hausdorff formula

eαJ
±
0 Φj(m|z)e−αJ±

0 = eα[J
±
0
, ]Φj(m|z) =

∞∑

λ=0

αλ

λ!

[
J±
0 ,Φj(m|z)

]
λ
, (3.29)

where we have defined, inductively,

[
J±
0 ,Φj(m|z)

]
0
= Φj(m|z), (3.30)

[
J±
0 ,Φj(m|z)

]
λ
=

[
J±
0 ,

[
J±
0 ,Φj(m|z)

]
λ−1

]
, (3.31)

and eqs. (2.27)–(2.28), it is straightforward to prove that

e±αJ±
0 Φj(m|z)e∓αJ±

0 =
∞∑

λ=0

αλ

λ!

Γ(−j ±m+ λ)

Γ(−j ±m)
Φj(m± λ|z), (3.32)

for any complex value of α. This formula can be used in order to relate different correlators.

Indeed, we have
〈
e±αJ±

0 Φj1(m1|z1)e
∓αJ±

0

N∏

i=2

Φji(mi|zi)

〉
=

〈
Φj1(m1|z1)

N∏

i=2

e∓αJ±
0 Φji(mi|zi)e

±αJ±
0

〉
,

(3.33)

which after replacing (3.32) implies

∞∑

λ1=0

αλ1

λ1!

Γ(−j1 ±m1 + λ1)

Γ(−j1 ±m1)

〈
Φj1(m1 ± λ1|z1)

N∏

i=2

Φji(mi|zi)

〉

=
∞∑

λ1=0

(−α)λ1

∑

λ

(
N∏

i=2

Γ(−ji ±mi + λi)

λi!Γ(−ji ±mi)

)〈
Φj1(m1|z1)

N∏

i=2

Φji(mi ± λi|zi)

〉
. (3.34)

The second sum in the right hand side of (3.34) runs over all (N − 1)-tuples with non-

negative integer entries λ = (λ2, . . . , λN ) adding up to λ1 . Identifying each power of α,

renaming m1 → m1 ∓ λ1 and making explicit the antiholomorphic dependence, we get

ΦN (J |M |Z) = Qλ1

N (J |M |λ)ΦN (J |M ± Λ|Z), (3.35)

where Λ = (−λ1, λ) and we have introduced

Qλ1

N (J |M |λ) =

∣∣∣∣∣
(−1)λ1λ1!Γ(−j1 ±m1 − λ1)∏N

i=1 Γ(−ji ±mi)

N∏

i=2

1

λi!
Γ(−ji ±mi + λi)

∣∣∣∣∣

2

. (3.36)
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In (3.35), λ appears as a multi-index so that Einstein summation convention holds;

Qλ1

N (J |M |λ) is thus realized as an operator acting by contraction. Notice that λ1 is a

parameter assumed to be fixed while defining (3.36).

A useful identity follows from (3.35) and (3.36). In (3.35), the contraction of λ can be

performed as a sum over λ2 running from 0 to λ1 followed by a sum over all (N − 2)-tuples

with non-negative integer entries λ̃ = (λ3, . . . , λN ) adding up to λ1 − λ2. Using (3.36)

we obtain

Qλ1

N (J |M |λ) =
(−1)λ2λ1!Γ(−j1 ±m1 − λ1)Γ(−j ±m)

Γ(j1 ±m1)Γ(j2 ±m2)
× (3.37)

λ1∑

λ2=0

Γ(−j2 ±m2 + λ2)

λ2!(λ1−λ2)!Γ(−j ±m−λ1+λ2)
Qλ1−λ2

N−1 (j, j3, . . . , jN |m,m3, . . . ,mN |λ̃),

where we have introduced two new auxiliary variables j and m, and there is an implicit

sum after the right hand side of (3.37), now, over λ̃. Using Euler’s inversion formula for

the gamma function, the previous equation can be restated by the following composition,

Qλ1

N (J |M |λ) = Qλ1

3 (j1, j2,−1− j|m1,m2,−m|λ2, λ
′)Qλ′

N−1(j, j3, . . . , jN |m,m3, . . . ,mN |λ̃).

(3.38)

A suitable value of λ1 that greatly simplifies the calculations when using these ex-

pressions is λ1 = j1 ±m1, since for these values all correlation functions appearing in the

right hand side on (3.35) have a lowest or a highest-weight state in the first insertion,

respectively. When choosing so we shall omit any explicit reference to λ1 and we will use

M± = (m2, . . . ,mN ) instead of M in the correlators, namely, we shall write

ΦN (J |M |Z) = QN (J |M±|λ)ΦN (J |M± ± λ|Z). (3.39)

In general, we shall use the superscript “±” in order to indicate that the quantum numbers

are consistent with a lowest or highest-weight state, respectively, in the first insertion point.

Let us apply (3.39) for the computation of the four-point function by replacing it

in (3.26) with an extremal-weight state in the first point. We obtain

Φ4(J |M |Z) = |Ξ(∆|Z)|−2
∫

C+

djQ4(J |M
±|λ)Dj(J |M

± ± λ)Gj(J |M
± ± λ|z). (3.40)

If this expression actually gives the correct factorized form for the four-point function, the

dependence of the integrand for the leading term as z → 0 must go as |z|2(∆j−∆j1
−∆j2),

so that Q4(J |M
±|λ) should act trivially if contracted with this factor, and the remain-

ing coefficient should equal Dj(J |M). While the first assertion straightforwardly follows

from (3.28), the second one is not so evident. In order to prove it we need to compute

Q4(J |M
±|λ)Dj(J |M

± ± λ) by replacing (3.27) and (3.36) in it. If we set m → m′ =

m ∓ λ1 ± λ2 in (3.27) and, instead of (3.36), we use (3.38) with N = 4 while writing

Q4(J |M
±|λ), it is easy to realize that the operator Qλ′

3 (j, j3, j4|m,m3,m4|λ3, λ4) appear-

ing in this decomposition acts non-trivially only on the last three-point function in (3.27),
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namely, Φ3(j, j3, j4|m
′,m3±λ3,m4±λ4|0, 1,∞), giving, by virtue of (3.35), Φ34(j|m). Since

this function does not depend on λ2, we have

Q4(J |M
±|λ)Dj(J |M

± ± λ) = (3.41)
(
Q3(j1, j2,−1− j|m2,−m|λ2, λ

′)Φ3(j1, j2,−1− j|m2 ± λ2,−m′|0, 1,∞)
)
Φ34(j|m),

where we have used that Φ12(j|m)Φ2(j| − m)−1 = Φ12(−1 − j|m) for any value of j

and m, an identity proven in [34]. The parenthesis in (3.41) reduces to Φ3(j1, j2,−1 −

j|m1,m2,−m|0, 1,∞), and, therefore,

Q4(J |M
±|λ)Dj(J |M

± ± λ) = Dj(J |M), (3.42)

as we wanted to prove.

Concerning the conformal blocks, we have

Gj(J |M |z) = Gj(J |M)−1Q4(J |M
±|λ)Gj(J |M

± ± λ)Gj(J |M
± ± λ|z). (3.43)

Indeed, from (3.27), (3.28) and (3.42), it is likely that Q4(J |M
±|λ) intertwines between

the generating operators Kj(J |M |z) and Kj(J |M
± ± λ|z), namely,

Kj(J |M |z)Q4(J |M
±|λ) = Q4(J |M

±|λ)Kj(J |M
± ± λ|z). (3.44)

Interestingly enough, since Q4(J |M
±|λ) does not depend on z, the descendant con-

tributions to the conformal blocks of a given level can be related through (3.44) to those

contributions with a lowest or a highest-weight state coming strictly from the descendants

of the very same level, i.e., identity (3.44) is realized order by order when formally expand-

ing the generating operators in powers of z.

4 The spectral flowed four-point function

The standard method for computing correlation functions violating the spectral flow num-

ber conservation was exhaustively discussed in [35, 46], and it was used in these references

and in [49] in order to compute three-point functions with a single unit of spectral flow.

It requires the introduction of al least one spectral flow operator for each unit of spectral

flow involved, followed by an ad-hoc procedure for removing the dependence of the result-

ing expression on the unphysical points in which these operators were originally inserted.

Although this method is clear from a strictly theoretical point of view, dealing with such

a large number of insertions makes it useless when trying to compute N -point correlators

with N greater than 3.

In this section we shall consider the AdS3-WZNW model four-point function violating

the spectral flow number conservation in a single unit, namely, we will study Φ̂4(J |M |Z).

We will bypass the problem of having extra insertions by exploiting the series identification,

following arguments similar to those used in [48] in order to validate some expressions

previously found in [35] for the spectral flowed three-point function with one extremal-

weight state.
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As we have already pointed out, the series identification is an isomorphism between

a spectral flow image of a representation induced by a lowest-weight module with spin j

and the image of a representation induced by a highest-weight module with a spin j′ =

−k/2− j with one additional unit of spectral flow. The series identification generally maps

flowed primary fields to flowed descendants with the unique exception of the spectral flowed

extremal-weight states, that are mapped the one to the other. If the normalization of the

spectral flowed states coincides with the unflowed ones, namely, if the two-point function

involving two flowed operators equals the propagator (2.34) of the associated unflowed

state, we have

Φω−1
j (−j|z) =

π2

B(j)
Φω
j′(j

′|z). (4.1)

The consistency of this equality can be easly checked within the context of two and three-

point correlators. It follows form (4.1) that

Φω+1
j (j|z) =

B(j′)

π2
Φω
j′(−j′|z), (4.2)

thus, if we set ω = ∓1, we can write

Φ̂j(∓j|z) ∝ Φj′(±j′|z), (4.3)

the proportionality constant being those in (4.1) or (4.2), respectively.

Under this identification we have

Φ̂4(J |M
±|Z) ∝ Φ4(J

′|M∓|Z), (4.4)

and, therefore,

Φ̂4(J |M
±|Z) ∝

∣∣Ξ(∆′|Z)
∣∣−2

∫

C+

djDj(J
′|M∓)Gj(J

′|M∓|Z), (4.5)

where, as before, the prime was introduced in order to indicate that the spin of the first

insertion is j′1 = −k/2− j1. Recall that the formula (4.5) is valid whenever

∣∣Re
(
j±21

)
− 1 + k/2

∣∣ < 1

2
, j+21 = 1 + j1 + j2, j−21 = j1 − j2, (4.6)

∣∣Re
(
j±43

)∣∣ < 1

2
, j+43 = 1 + j3 + j4, j−43 = j3 − j4. (4.7)

We have ∆j′ = ∆̂j,∓j , so that ∆′ = ∆̂± and Ξ(∆′|Z) = Ξ(∆̂±|Z). On the other hand,

since Φ̂3(J |M
±|Z) ∝ Φ3(J

′|M∓|Z) with the same proportionality constant as in (4.4), we

have Dj(J
′|M∓) = D̂j(J |M

±) where we are defining

D̂j(J |M) = Φ̂12(j| −m)Φ2(j|m)−1Φ34(j|m). (4.8)

with Φ̂12(j|m) = Φ̂3(j1, j2, j|m1,m2,m|0, 1,∞).

It follows that we can recast (4.5) as

Φ̂4(J |M
±|Z) =

∣∣∣Ξ(∆̂±|Z)
∣∣∣
−2

∫

C+

dj D̂j(J |M
±)Ĝj(J |M

±|z) (4.9)

– 16 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
6

where the spectrally flowed four-point conformal blocks take the form

Ĝj(J |M
±|z) = |z|

2
(
∆j−∆j′

1
−∆j2

)

Dj(J
′|M∓)−1Kj(J

′|M∓|z)Dj(J
′|M∓)

=
∣∣∣z∆j−∆̂j1,∓j1

−∆j2

∣∣∣
2
D̂j(J |M

±)−1K̂j(J |M
±|z)D̂j(J |M

±), (4.10)

and we have introduced

K̂j(J |M
±|z) = Kj(J

′|M∓|z). (4.11)

We have thus found an integral domain (4.6)–(4.7) in which a factorized form for the

four-point function involving one singly spectral flowed extremal-weight state holds, the

corresponding conformal blocks being generated by the unflowed generating operator with

a modified spin. This last fact should not be surprising since the Knizhnik-Zamolodchikov

equations, when generalized for dealing with correaltors with a single unit of spectral flow

charge, are equivalent to the standard (unflowed) ones [52]. Our next task is to relax the

extremal-weight state condition in (4.9) as we already did in the unflowed case.

As it can be guessed from (4.10), the method we have used in the previous section

must be modified when nontrivial spectral flow charges are involved. Indeed, the overall

dependence on z in (4.10) should be adjusted when changing the value of m1 and, therefore,

the operator relaxing the extremal-weight condition on the conformal blocks should be

expected to depend on the worldsheet variables, unlike in the unflowed case. In the rest of

this section we shall compute this operator.

The key point for obtaining the explicit form of such operator relies in the fact that the

insertion of additional lowest or highest-weight vertices in (3.33), respectively, has no effect

on (3.35) since e∓αJ±
0 Φj(±j|ξ)e±αJ±

0 = Φj(±j|ξ). It follows that, for any non-negative

integer value of W ,

〈
N∏

i=1

Φji(mi|zi)
W∏

a=1

Θ∓(ξa)

〉
=

Qλ1

N (J |M±|λ)

〈
Φj1(m1 ∓ λ1|z1)

N∏

i=2

Φji(mi ± λi|zi)
W∏

a=1

Θ∓(ξa)

〉
. (4.12)

where we have introduced Θ∓(ξ) = Φ−k/2(∓k/2|ξ).

According to [46] (see also the appendix), the coset factor of Θ∓(ξa) acts as a spectral

flow operator carrying a negative or a positive unit of spectral flow, respectively, therefore,

both correlators appearing in this last equation can be identified, up to an overall worldsheet

dependence, with correlation functions involving states in nontrivial spectral flow sectors.

Indeed, the correlator in the left hand side, if divided by

FN (Ω|M |Z)

∣∣∣∣∣
N∏

i=1

W∏

a=1

(zi − ξa)
±mi

∣∣∣∣∣

2 W∏

a<b

|ξa − ξb|
−k, (4.13)

can be identified with ΦN (J |Ω|M |Z), with ω = ∓W , while the correlator appearing in the

right hand side of (4.12) can, accordingly, be identified with ΦN (J |Ω|M ± Λ|Z) once it is
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divided by

FN (Ω|M±Λ|Z)

∣∣∣∣∣

(
ω∏

a=1

(z1 − ξa)
±m1−λ1

)(
N∏

i=2

ω∏

a=1

(zi − ξa)
±mi+λi

)∣∣∣∣∣

2 ω∏

a<b

|ξa−ξb|
−k. (4.14)

Therefore, we have

ΦN (J |Ω|M |Z) = Qλ1

N (J |Ω|M |Z|λ)ΦN (J |Ω|M ± Λ|Z), (4.15)

where λ is, again, a multi-index for which Einstein convention is assumed to hold and the

operator Qλ1

N (J |Ω|M |Z|λ) is given by the composition

Qλ1

N (J |Ω|M |Z|λ) = FN (Ω|M |Z)−1

∣∣∣∣∣
ω∏

a=1

(z1 − ξa)
−λ1

∣∣∣∣∣

2

× (4.16)

Qλ1

N (J |M |λ)

∣∣∣∣∣
N∏

i=2

ω∏

a=1

(zi − ξa)
λi

∣∣∣∣∣

2

FN (Ω|M ± Λ|Z).

This expression can be simplified if we exploit the fact that the dependence on the unphys-

ical insertion points must vanish at the end, as it was stated in [46], by setting ξa, ξ̄a → ∞.

Since
∑N

i=2 λi = λ1, this limiting process leads to

Qλ1

N (Ω|M |Z|λ) = FN (Ω|M |Z)−1Qλ1

N (J |M |λ)FN (Ω|M ± Λ|Z). (4.17)

Notice, as we have advanced in the previous section, that this operator actually depends on

the worldsheet coordinates through FN (Ω|M |Z) and FN (Ω|M ±Λ|Z), factors that prevent

us for obtaining a factorized form for Qλ1

N (J |Ω|M |Z|λ), analogous to (3.38).

In order to apply (4.17) to (4.9), let Ω = (∓1, 0, . . . , 0). In this case, FN (Ω|M |Z)

simplifies further to

F̂N (M |Z) =

∣∣∣∣∣
N∏

i=2

(z1 − zi)
∓mi

∣∣∣∣∣

2

, (4.18)

so that,

F̂N (M |Z)−1F̂N (M ± Λ|Z) =

∣∣∣∣∣
N∏

i=2

(z1 − zi)
−λi

∣∣∣∣∣

2

. (4.19)

Therefore, for λ1 = j1 ±m1, we have

Φ̂N (J |M |Z) = Q̂N (J |M±|Z|λ)Φ̂N (J |M± ± λ|Z), (4.20)

with Q̂N (J |M±|Z|λ) given by

Q̂N (J |M±|Z|λ) =

∣∣∣∣∣
(−1)λ1λ1!Γ(−2j1)∏N

i=1 Γ(−ji ±mi)

N∏

i=2

Γ(−ji ±mi + λi)

λi!(z1 − zi)λi

∣∣∣∣∣

2

. (4.21)

One last simplification takes place if we invoke the conformal invariance of Φ̂4(J |M |Z).

After replacing (4.9), we have that (4.20) reduces to

Φ̂4(J |M |Z) =
∣∣∣Ξ(∆̂|Z)

∣∣∣
−2

∫

C+

dj Q̂4(J |M
±|z|λ)D̂j(J |M

± ± λ)Ĝj(J |M
± ± λ|z), (4.22)
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where Q̂4(J |M
±|z|λ) equals Q̂4(J |M

±|Z|λ) with z1 = 0, z2 = z = z12z34/z13z24, z3 = 1

and z4 → ∞. A crucial point in doing this limit is that it restricts the sum implicit in (4.20)

to run on those 3-tuples with a vanishing last entry, i.e., with λ4 = 0, canceling, thus, all

the dependence of Q̂4(J |M
±|z|λ) on the fourth insertion. Indeed, we have that the action

of Q̂4(J |M
±|z|λ) equals the one of Q̂3(j1, j2, j3|m2,m3|0, z, 1|λ2, λ3), namely,

Q̂4(J |M
±|z|λ) =

∣∣∣∣∣
(−1)λ1λ1!Γ(−2j1)∏3

i=1 Γ(−ji ±mi)
z−λ2

3∏

i=2

1

λi!
Γ(−ji ±mi + λi)

∣∣∣∣∣

2

. (4.23)

As before, if (4.22) gives the correct factorized form for the spectral flowed four-point

function, we should be able to check that the dependence of the integrand for the leading

term as z → 0 is the expected one and that the remaining coefficient equals D̂j(J |M).

Unlike in the unflowed case, where the corresponding operator had no effect on the cross-

ratio dependence of the conformal blocks, here it does, and not all the terms in (4.23)

contribute to the leading order behavior of (4.22). In fact, only the term with λ2 = λ1 must

be taken into account. Recalling from (4.10) that Ĝj(J |M
± ± λ|z) ∼ |z|2(∆j−∆̂j1,∓j1

−∆j2)

as z → 0 it follows that the leading term of the integrand in (4.22) is

∣∣∣∣z∆j−∆̂j1,∓j1
−∆j2

−λ1
(−1)λ1Γ(−2j1)Γ(−j2 ±m2 + λ1)

Γ(−j1 ±m1)Γ(−j2 ±m2)

∣∣∣∣
2

D̂j(J |m2 ± λ1,m3,m4). (4.24)

Notice that the dependence on z is the expected one, since

∆̂j1,∓j1 + λ1 = ∆j1 − j1 −
k

4
+ λ1 = ∆j1 ±m1 −

k

4
= ∆̂j1m1

. (4.25)

On the other hand, we have from (4.21) that

∣∣∣∣
(−1)λ1Γ(−2j1)Γ(−j2 ±m2 + λ1)

Γ(−j1 ±m1)Γ(−j2 ±m2)

∣∣∣∣
2

= Q̂2(j1, j2|m2|0, 1|λ1), (4.26)

which equals Q̂3(j1, j2, j|m2,−m|0, 1,∞|λ1, 0) for any value of j and m, and therefore

∣∣∣∣
(−1)λ1Γ(−2j1)Γ(−j2 ±m2+λ1)

Γ(−j1±m1)Γ(−j2 ±m2)

∣∣∣∣
2

Φ̂3(j1, j2, j|m2±λ1,−m|0, 1,∞) = Φ̂12(j|−m), (4.27)

showing that the coefficient in (4.24) is D̂j(J |M), as we wanted to prove.

It follows from (4.22) that, as the external spins lie in (4.6)–(4.7), the flowed four-point

function Φ̂4(J |M |Z) can be factorized as

Φ̂4(J |M |Z) =
∣∣∣Ξ(∆̂|Z)

∣∣∣
−2

∫

C+

dj D̂j(J |M)Ĝj(J |M |z), (4.28)

where, by virtue of (4.10),

Ĝj(J |M |z) = (4.29)
∣∣∣z∆j−∆̂j1,∓j1

−∆j2

∣∣∣
2
D̂j(J |M)−1Q̂4(J |M

±|z|λ)K̂j(J |M
± ± λ|z)D̂j(J |M

± ± λ).
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Assuming that there exists an operator K̂j(J |M |z) generating the conformal blocks in

analogy with (3.28), the dependence of Q̂4(J |M
±|z|λ) on z would prevent it from being

strictly an intertwining operator between K̂j(J |M |z) and K̂j(J |M
±±λ|z) but a “twisted”

one, since in that case we would have

K̂j(J |M |z)Q̂4(J |M
±|z|λ) =

∣∣∣z−λ1

∣∣∣ Q̂4(J |M
±|z|λ)K̂j(J |M

± ± λ|z). (4.30)

5 The spectral flowed four-point correlator in the space-time picture

Up to this point, we have obtained a domain (4.6)–(4.7) in which the factorized expres-

sion (4.28) for the four-point function of the AdS3-WZNW model with one unit of spectral

flow holds. This formula was obtained in the m-basis by assuming that one of the fields

corresponds to the spectral flow image of a state lying in the discrete part of the unflowed

spectrum.

As we have already pointed out, the m-basis is the more convenient one for introducing

spectral flow charges, however, the space-time representation is the best suited for using

the results within the context of the AdS/CFT conjecture, as the x-basis vertex operators

serve as ingredients for the string theory operators describing states created by sources in

the boundary of the target space.1 For example, if Φj(x|z) is a field associated with an

unflowed state and Θ(z) is a spinless worldsheet vertex corresponding to the internal CFT,

such that the sum of their scaling dimensions equals 1, the operator

Vj(x) ∼

∫

C

d2zΦj(x|z)Θ(z), (5.1)

can be interpreted as describing a string state created by a pointlike source located at x on

the boundary of AdS3 and, by means of the AdS/CFT correspondence, it can be identified

with a CFT operator at the same point. Scattering amplitudes involving operators in

the space-time picture, unlike amplitudes with states in the m-basis as the ones we have

computed in the previous sections, acquire a similar interpretation when integrated over

the string worldsheet as correlation functions on the dual two-dimensional CFT.

For unflowed primary states, the definition of the coordinate basis vertex operators

comes from the Euclidean model through analytic continuation and the corresponding

correlators follow in the very same fashion from those of the H+
3 -WZNW model. When

dealing with spectral flowed primary fields, the situation is more complicated since they

generally lie in representations with energy unbounded below. A solution for this issue

was proposed in [35]. An arbitrary lowest-energy state can be seen from a spectral flowed

frame with ω > 0 as the lowest-weight state of a certain discrete representation of the global

algebra generated by the zero-modes with a spin K being equal to −m− kω/2. Similarly,

if the flow number ω is negative, the spectral flow automorphism maps the same state into

the highest-weight state of a discrete representation with K = m+kω/2. Since the algebra

generated by Ja
0 is identified with the space-time isometries of the background and the

1Let us stress, however, that both the space-time and the m-basis representations are equivalent and

that the choice of one over the other is simply a matter of convenience.
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global SL(2) symmetries of the CFT at the boundary, the vertex operators having flowed

primaries and their global descendants as moments were accordingly proposed in [35] as

those relevant for physical applications.

Note that the eigenvalues of J3
0 and its antiholomorphic counterpart do not necessarily

agree and, therefore, it will also be the case for the global right and left-moving SL(2)

spins, namely, spectral flowed vertex in the x-basis are no longer expected to be spinless

operators, their space-time planar spin being given by the difference between K and K̄.

This number has to be an integer in order for the corresponding correlation functions to

be single-valued. On the other hand, since the lowest-weight state and the highest-weight

both contribute to the same operator, flowed vertex are not labelled by the spectral flow

number but its absolute value.

We shall denote the flowed vertex operators in the x-basis by Φjω
K (x|z), where ω is

now the (positive) amount of spectral flow and the superscript j was introduced in order

to remind the spin of the unflowed states this vertex is built from. The corresponding

correlators will be

ΦJ
N (K|Ω|X|Z) =

〈
N∏

i=1

Φjiωi

Ki
(xi|zi)

〉
, (5.2)

with J , X, Ω and Z as before and K = (K1, . . . ,KN ). As in the previous sections, when

ω = 1 we shall write Φ̂j
K(x|z) and, accordingly, the N -point function with Ω = (1, 0, . . . , 0)

will be written as Φ̂J
N (K|X|Z). Recall that in this case K differs from J just in its first

entry, i.e., K = (K1, j2, . . . , jN ).

The transformation between the space-time picture and the m-basis is carried out in

analogy with (2.33), namely,

Φjω
K (N |z) =

∫

C

d2xxK+N x̄K̄+N̄Φ−1−j,ω
−1−K (x|z), (5.3)

where N is the eigenvalue of J3
0 , and, by means of this map, we have

Φjω
K (±K|z) = Φ∓ω

j (±K ± kω/2|z). (5.4)

Based on the knowledge of the dependence of the amplitudes on the boundary coor-

dinates, it was realized in [35] that this last identity could be enough for determining the

constants that remain unfixed after the invariance of the correlators under the global SL(2)

symmetry is invoked, i.e., for transforming from the m-basis back to the space-time repre-

sentation. This idea was successfully implemented in order to obtain the propagator for a

state in an arbitrary spectral flow sector and the three-point function with two unflowed

operators and a single vertex with ω = 1. Explicitly, it was proven that

ΦJ
2 (K|Ω|X|Z) =

∣∣∣∣z
2∆

j1ω1
K1

12

∣∣∣∣
−2 ∣∣∣x2K1

12

∣∣∣
2
Vconf

|1 + 2K1|
2

π2
δω1ω2

[
δ(1 + j1 + j2)+

B(j1)Λ
j1ω1

K1
δ(j1 − j2)

]
, (5.5)

where K1 = K2,

Λjω
K = cj,−1−K+kω/2 =

π

γ(−2j)

γω (−1− j −K)

γω (j −K)
, (5.6)
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with

γω(x) = γ (x+ kω/2) , (5.7)

and

∆j1ω1

K1
= ∆j1 − ω1K1 − ω1 + kω2

1/4. (5.8)

Notice that

lim
K→j

Λj,ω=0
K =

π2

Vconf(1 + 2j)2
, (5.9)

therefore, the regular term of the two-point function for unflowed states is reached in the

same limit, namely, by taking

Φji(xi|zi) = lim
Ki→ji

Φji,ωi=0
Ki

(xi|zi), (5.10)

for i = 1, 2. The contact term is not expected to be obtained from (5.5) since the global

spins for both insertions agree.

Concerning the three-point function, it is given by

Φ̂J
3 (K|X|Z) = |C(∆̂|Z)|−2|C(K|X)|2D̂(J |K) (5.11)

where ∆̂ =
(
∆̂j1

K1
,∆j2 ,∆j3

)
with ∆̂j1

K1
= ∆j1,ω1=1

K1
and

D̂(J |K) =
1

π2

D̂(J)γ(1− j1 +K1 − k/2)γ(2 + 2K1)

γ(2 +K1 + j2 + j3)γ(1 +K31)γ(1 +K12)
. (5.12)

We shall generalize these expressions for the spectral flowed four-point function with

one vertex in the ω = 1 sector, namely, Φ̂J
4 (K|X|Z), following similar lines. We shall not

be able to obtain any integral expression for this correlator outside the domain (4.6)–(4.7),

since beyond this region we are not allowed to equate its m-basis transform with (4.28) by

means of (5.4). We will, therefore, assume that (4.6)–(4.7) hold.

By virtue of (4.28), we expect an overall dependence of Φ̂J
4 (K|X|Z) on Z of the form∣∣∣Ξ(∆̂|Z)

∣∣∣
−2

with ∆̂ =
(
∆̂j1

K1
,∆j2 ,∆j3 ,∆j4

)
, the remaining worldsheet dependence being

strictly given through the cross-ratio z. Concerning the normalization of the conformal

blocks, it is reasonable to presume that it equals (3.3) but with the first unflowed structure

constant replaced by its spectral flowed analogon, namely,

D̂j(J |K) = D̂12(j)B(j)−1D34(j), (5.13)

where D̂12(j) = D̂(j1, j2, j|K1, j2, j). Finally, in the factorization limit, the conformal block

should correspond to a function reducing Φ̂J
4 (K|X|Z) to (4.28) after transforming to the

m-basis and using (5.4). A choice that turns out to be appropriate is given by

ĜJ
j (K|X|z) ∼ |z|

2
(
∆j−∆̂

j1
K1

−∆j2

)

Gj(K|X), (5.14)

with Gj(K|X) defined as in (3.8)–(3.12). Indeed, from (5.12) it can be proven that

D̂(−1− J | − 1−K) =
D̂(−1− J)Ŵ (J |M)

W (K| ±K1,m2,m3)
, (5.15)

– 22 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
6

with m1 = ±K1 ± k/2 (see [36], eqs. (70)–(71) for more details), so that the m-basis

transform of Gj(K|X), given by (3.25), when evaluated at a lowest or a highest-weight

state and combined with (5.13), gives D̂j(J |M), in agreement with (4.28).

Summarizing, we have

Φ̂J
4 (K|X|Z) =

∣∣∣Ξ(∆̂|Z)
∣∣∣
−2

∫

C+

dj D̂j(J |K)ĜJ
j (K|X|z), (5.16)

expression that would be valid as long as J satisfies (4.6)–(4.7). As for the unflowed

four-point correlator, we can extend the integration contour to C and write the following

holomorphically factorized expression generalizing (3.17),

Φ̂J
4 (K|X|Z) =

∣∣∣Ξ(∆̂|Z)
∣∣∣
−2

|Ξ(K|X)|2
∫

C

dj D̂j(J |K)
∣∣∣F̂J

j (K|x|z)
∣∣∣
2
, (5.17)

with F̂J
j (K|x|z) admitting a formal power expansion of the form

F̂J
j (K|x|z) = z

∆j−∆̂
j1
K1

−∆j2x−j+K1+j2

∞∑

n=0

znF̂
J(n)
j (K|x), (5.18)

where F̂
J(0)
j (K|x) = F (−j +K1 − j2,−j − j3 + j4;−2j|x).

Two consistency checks can be performed on (5.16). The first one is by means of (5.10).

As D̂(J |K) equals D(J) in this limit, (5.11) reduces to (2.17), and, accordingly, (5.16)

reduces to (3.1), as expected. Note that the domain (4.6)–(4.7) is shifted to (3.21)–(3.22)

when setting ω1 = 0.

The second check follows from setting j2 = −k/2. In this case, D̂12(j) ∝ δ(j− j′1), the

proportionality constant being only dependent on k, and, therefore, the integration in (5.16)

can be straightforwardly performed. The expression obtained is in accordance with the

particular four-point function computed in [50] using completely different techniques.

6 Concluding remarks

In this paper, starting with the m-basis expression of the unflowed four-point function with

at least one state in the discrete spectrum of the AdS3-WZNW model derived by analytic

continuation from its Euclidean analogon, it was proven that the conformal blocks can be

written in terms of those involving the extremal-weight state corresponding to the same

series. The proof was based on a method already used in [39, 41, 49] for relaxing the

extremal-weight state condition when computing some related structure constants.

A similar procedure was implemented for studying four-point functions with one unit of

spectral flow. A factorized integral expression was firstly obtained for a correlator involving

the spectral flow image of an extremal-weight state by means of the series identification and

a more general correlation function was then derived by using the techniques of [39, 41, 49]

adapted for dealing with nontrivial spectral flow charges.

The formulas were all transformed to the space-time representation, which is the best

suited picture for a string theoretical interpretation of the results. The transformation back
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to the x-basis was performed following the ideas of [35]. We have been able to determine the

overall dependence of the singly flowed four-point function both on the worldsheet and the

space-time coordinates, the normalization of the conformal blocks and their leading order

behavior as the worldsheet cross-ratio tends to zero. Higher order contributions remain to

be determined.

The space-time picture integral expression we have found for the spectrally flowed

four-point function has been obtained by assuming that the external spins belong to a

specific domain in J-space. In order to deal with correlation functions with short as well

as long string states, this formula should be analytically continued as it was done for the

unflowed four-point correlator in [35], namely, by taking into account the additional discrete

contributions coming from the poles crossing the integration contour while continuously

varying the values of the spins beyond (4.6)–(4.7). The expression should be then integrated

over the worldsheet in order to properly study the factorization in the space-time conformal

field theory. This highly non trivial task is worth further investigation.

Another possible application of our results concerns the analysis of crossing symmetry

in order to show that all previously computed spectral flowed three-point functions [35, 36]

lead to a consistent theoretical picture. This was performed for the H+
3 -WZNW model

in genus zero in [54], the proof of crossing symmetry of the four-point function relying on

similar properties of a five point function in Liouville theory. It would be interesting to

adapt these techniques to our case. We hope to be able to address this and other related

issues in the near future.
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A Spectral flowed correlators

In this appendix we review the main arguments developed in [29, 35, 46] in order to

introduce spectral flow charges when computing correlators in the AdS3-WZNW model.

Consider the coset of the model by the U(1) generated by J3, which yields a sigma-

model whose target space is the two-dimensional black hole with the Euclidean signature

metric. The primary fields Ψj(m|z) of the coset theory relate to (2.33) as

Φj(m|z) = Ψj(m|z)V (m|z), (A.1)

where

V (m|z) = e
im

√
2

k
ϕ(z)+im̄

√
2

k
ϕ(z̄)

, (A.2)

– 24 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
6

the left and right moving chiral bose fields ϕ(z), ϕ(z̄) being those appearing when bosoniz-

ing the U(1) currents as usual, namely, as

J3(z) = −i

√
k

2
∂ϕ(z), (A.3)

and the same for J̄3. The scalar field ϕ(z) is hermitian and it is normalized as 〈ϕ(z)ϕ(z′)〉 =

log(z − z′). The parafermion fields Ψj(m|z) have no charges under J3 and J̄3. Their

conformal weights are given by

h = −
j(j + 1)

k − 2
+

m2

k
, (A.4)

and a similar expression for the antiholomorphic conformal dimensions.

The operator obtained by the spectral flow with ω units is expressed as

Φω
j (m|z) = Ψj(m|z)V (m+ kω/2|z). (A.5)

It is straightforward to show that the charges under J3 and J̄3 as well as the global

conformal dimensions agree with (2.27) and (2.29), respectively.

The correlators (2.30) we wish to determine now read

ΦN (J |Ω|M |Z) =

〈
N∏

i=1

Ψji(mi|zi)

〉〈
N∏

i=1

V (mi + kωi/2|zi)

〉
=

〈
N∏

i=1

Ψji(mi|zi)

〉
F−1
N (Ω|M |Z)

∣∣∣∣∣∣

N∏

i<j

(zi − zj)
−2mimj/k

∣∣∣∣∣∣

2

, (A.6)

where FN (Ω|M |Z) is given by (2.32). Note that (A.6) has a meaning only when

N∑

i=1

mi +
k

2

N∑

i=1

ωi = 0, (A.7)

and similarly for the antiholomorphic counterparts.

If we are intended to determine the parafermionic factor from a purely unflowed N -

point function, namely, from an amplitude with ωi = 0 for i = 1, . . . , N , we shall be

restricted to a configuration with
∑N

i=1mi =
∑N

i=1 m̄i = 0. In this case we have

ΦN (J |M |Z) =

〈
N∏

i=1

Ψji(mi|zi)

〉∣∣∣∣∣∣

N∏

i<j

(zi − zj)
−2mimj/k

∣∣∣∣∣∣

2

, (A.8)

and, therefore,

ΦN (J |Ω|M |Z) = ΦN (J |M |Z)F−1
N (Ω|M |Z). (A.9)

For dealing with correlation functions in non trivial spectral flow sectors an alternative

strategy is needed. Consider the so-called spectral flow fields,

Θ∓(ξ) = Φ−k/2(∓k/2|ξ) = Ψ−k/2(∓k/2|ξ)V (∓k/2|ξ). (A.10)
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From (A.4) it follows that Ψ−k/2(∓k/2|ξ) have null conformal dimensions, and it can also

be proven that they are annihilated by all the generators of the W∞ symmetry of the coset

theory. Therefore, and possibly up to a factor dependent on k, the fields Ψ−k/2(∓k/2|ξ)

equal the identity operator in the parafermionic sector.2

This last property suggests a way to compute amplitudes with spectral flow charge

violation. Notice that
〈

N∏

i=1

Φji(mi|zi)
W∏

a=1

Θ∓(ξa)

〉
∝

〈
N∏

i=1

Ψji(mi|zi)

〉〈
N∏

i=1

V (mi|zi)
W∏

a=1

V (∓k/2|ξa)

〉
=

〈
N∏

i=1

Ψji(mi|zi)

〉∣∣∣∣∣∣

N∏

i<j

(zi − zj)
−2mimj/k

∣∣∣∣∣∣

2 ∣∣∣∣∣
N∏

i=1

W∏

a=1

(zi − ξa)
±mi

∣∣∣∣∣

2 W∏

a<b

|ξa − ξb|
−k, (A.11)

which has a meaning as long as
N∑

i=1

mi = ±
k

2
W. (A.12)

From (A.6), (A.7), (A.11) and (A.12) it follows that, for any configuration with
∑N

i=1 ωi =

∓W , the correlator
〈∏N

i=1Φji(mi|zi)
∏W

a=1Θ
∓(ξa)

〉
can be identified with ΦN (J |Ω|M |Z)

once it is divided by

FN (Ω|M |Z)

∣∣∣∣∣
N∏

i=1

W∏

a=1

(zi − ξa)
±mi

∣∣∣∣∣

2 W∏

a<b

|ξa − ξb|
−k. (A.13)

Recall that this identification can be done up to a factor dependent strictly on k and W ,

a fact that is, however, irrelevant concerning our discussion in section 4.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Seiberg, Notes on quantum Liouville theory and quantum gravity,

Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].

[2] E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].
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[32] W.H. Baron and C.A. Núñez, On modular properties of the AdS3 CFT,

Phys. Rev. D 83 (2011) 106010 [arXiv:1012.2359] [INSPIRE].

[33] J. Teschner, On structure constants and fusion rules in the SL(2,C)/SU(2) WZNW model,

Nucl. Phys. B 546 (1999) 390 [hep-th/9712256] [INSPIRE].

[34] J. Teschner, Operator product expansion and factorization in the H+(3) WZNW model,

Nucl. Phys. B 571 (2000) 555 [hep-th/9906215] [INSPIRE].

[35] J.M. Maldacena and H. Ooguri, Strings in AdS3 and the SL(2,R) WZW model. Part 3.

Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].

[36] Y. Cagnacci and S.M. Iguri, More AdS3 correlators, Phys. Rev. D 89 (2014) 066006

[arXiv:1312.3353] [INSPIRE].

[37] K. Hosomichi and Y. Satoh, Operator product expansion in SL(2) conformal field theory,

Mod. Phys. Lett. A 17 (2002) 683 [hep-th/0105283] [INSPIRE].

[38] A. Giveon and D. Kutasov, Notes on AdS3, Nucl. Phys. B 621 (2002) 303

[hep-th/0106004] [INSPIRE].

[39] Y. Satoh, Three point functions and operator product expansion in the SL(2) conformal field

theory, Nucl. Phys. B 629 (2002) 188 [hep-th/0109059] [INSPIRE].
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