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1 Introduction

Field theories in six and five dimensions have been shown to posses non-trivial conformal

fixed points [1, 2]. However, higher dimensional superconformal field theories (SCFTs) are

not well understood as their lower dimensional analogues. The study of five-dimensional

SCFTs using the AdS/CFT correspondence [3] has attracted a lot of attention both from

ten and six-dimensional point of views, see for example [4–9]. And recently, the investiga-

tion of supersymmetric AdS6 solutions has been carried out systematically in [10–12].

An approach to understand higher dimensional field theories is to make some com-

pactification of these theories to lower dimensions. The resulting lower dimensional field

theories preserving some supersymmetry are usually obtained by twisted compactifications,

and the holographic study via the AdS/CFT correspondence is still applicable at least in

the large N limit [13]. From string/M theory point of view, these twisted field theories

can be interpreted as wrapped branes on certain curved manifolds. In many cases, there

is a description in terms of lower dimensional gauged supergravities. In particular, for the

present case of five-dimensional SCFTs, the effective supergravity theory is the N = (1, 1)

F (4) gauged supergravity and its matter-coupled version [14].

In this work, we will explore some aspects of twisted compactifications of five-

dimensional SCFTs within the framework of half-maximal gauged supergravity in six di-

mensions coupled to matter multiplets [15, 16]. A similar study in the pure F (4) gauged

supergravity [17] have been carried out in [18] in which some AdS4 × Σ2 and AdS3 × Σ3
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solutions have been identified along with their possible dual field theories. We will fur-

ther investigate solutions of this type in the matter-coupled F (4) gauged supergravity.

This could presumably give rise to more general solutions than those given in [18]. The

result would also provide new solutions describing IR fixed points of the RG flows from

SCFTs in five dimensions to three and two-dimensional SCFTs with different numbers of

supersymmetry.

As a starting point, we add three vector multiplets to the F (4) gauged supergravity

resulting in an SU(2)R × SU(2) ∼ SO(3)R × SO(3) gauge group with the first factor being

the R-symmetry group. AdS6 vacua of this theory including possible holographic RG flows

between the dual SCFTs and RG flows to non-conformal field theories have already been

studied in [8] and [9]. From the result in [8], there are two supersymmetric AdS6 critial

points. Both of them preserve the full sixteen supercharges, but one of them, with non-

vanishing scalar fields, break the full SU(2)R × SU(2) symmetry to its diagonal subgruop.

These two critical points are dual to certain N = 2 SCFTs in five dimensions by the usual

AdS/CFT correspondence.

We then proceed by looking for possible AdS4 × Σ2 and AdS3 × Σ3 solutions for Σ2,3

being S2,3 or H2,3 with different residual symmetries. The resulting solutions would be

dual to SCFTs in three and two dimensions obtained from twisted compactifications of the

above mentioned five-dimensional SCFTs. These will give new AdS4 and AdS3 solutions

from six-dimensional gauged supergravity and provide appropriate gravity backgrounds in

the holographic study of gauge theories in five and lower dimensions.

The paper is organized as follow. We give a brief review of the F (4) gauged supergravity

coupled to three vector multiplets in section 2. Possible supersymmetric AdS4 and AdS3

solutions are given in section 3 and 4, respectively. In section 5, we give some conclusions

and comments about the results. We also include an appendix describing supersymmetric

AdS6 critical points previously found in [8] as well as an analytic RG flow between them.

2 Matter coupled N = (1, 1) SU(2) × SU(2) gauged supergravity in six

dimensions

In this paper, we are interested in N = (1, 1) gauged supergravity with SU(2)×SU(2) gauge

group. This gauged supergravity can be obtained by coupling three vector multiplets to

the pure F (4) gauged supergravity constructed in [17]. The full construction by using

the superspace approach can be found in [15, 16]. Apart from different metric signature

(−+++++), we will mostly follow the notations and conventions given in [15] and [16].

The matter coupled N = (1, 1) gauged supersymmetry consists of the supergravity

multiplet given by
(

eaµ, ψ
A
µ , A

α
µ, Bµν , χ

A, σ
)

and three vector multiplets with the field content

(Aµ, λA, φ
α)I .

In the above expressions, ψA
µ , χ

A and λA denote the gravitini, the spin-12 fields and the

gauginos, respectively. All spinor fields χA, ψA
µ and λA as well as the supersymmetry pa-

– 2 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
4

rameter ǫA are eight-component pseudo-Majorana spinors with indices A,B = 1, 2 referring

to the fundamental representation of the SU(2)R ∼ USp(2)R R-symmetry. Space-time and

tangent space indices are denoted respectively by µ, ν = 0, . . . , 5 and a, b = 0, . . . , 5. eaµ and

σ are the graviton and the dilaton. Aα
µ, α = 0, 1, 2, 3, are four vector fields in the gravity

multiplet. Three of these vector fields will be used to gauge the SU(2)R R-symmetry. The

index I = 1, 2, 3 labels the three vector multiplets, and finally Bµν is the two-form field

which admits a mass term.

There are 13 scalar fields parametrized by R
+×SO(4, 3)/SO(4)×SO(3) coset manifold

in which the R
+ ∼ SO(1, 1) part corresponds to the dilaton. Possible gauge groups are

subgroups of the global symmetry group R
+ × SO(4, 3). In the present paper, we will

consider only the compact gauge group SU(2)×SU(2) ∼ SO(3)×SO(3). The first factor is

the SU(2)R R-symmetry identified with the diagonal subgroup of SU(2)×SU(2) ∼ SO(4) ⊂
SO(4) × SO(3). Following [15] and [16], we will decompose the α index into α = (0, r) in

which r = 1, 2, 3. Indices r, s will become adjoint indices of the SU(2)R R-symmetry.

The 12 vector multiplet scalars given by the SO(4, 3)/SO(4) × SO(3) coset can be

parametrized by the coset representative LΛ
Σ, Λ,Σ = 0, . . . , 6. We can split the index Σ,

transforming by right multiplications of the local SO(4) × SO(3) composite symmetry, in

LΛ
Σ to (LΛ

α, L
Λ

I) and further to (LΛ
0, L

Λ
r, L

Λ
I). The vielbein of the SO(4, 3)/SO(4)×

SO(3) coset P I
α and the SO(4) × SO(3) composite connections Ωαβ = (Ωrs,Ωr0) can be

obtained from the left-invariant 1-form of SO(4, 3)

ΩΛ
Σ = (L−1)Λ Π∇LΠ

Σ, ∇LΛ
Σ = dLΛ

Σ − f Λ
Γ ΠA

ΓLΠ
Σ, (2.1)

with the following identification

P I
α = (P I

0, P
I
r) = (ΩI

0,Ω
I
r). (2.2)

The structure constants of the full SU(2)R × SU(2) gauge group fΛ
ΠΣ will be split into

ǫrst and CIJK = ǫIJK for the two factors SU(2)R and SU(2), respectively. There are

accordingly two coupling constants denoted by g1 and g2.

In order to parametrize scalar fields described by the SO(4, 3)/SO(4) × SO(3) coset,

we introduce basis elements of 7× 7 matrices by

(eΛΣ)ΓΠ = δΛΓδΣΠ, Λ,Σ,Γ,Π = 0, . . . , 6 . (2.3)

The SO(4), SU(2)R, SU(2) and non-compact generators YαI of SO(4, 3) are then given by

SO(4) : Jαβ = eβ,α − eα,β , α, β = 0, 1, 2, 3,

SU(2)R : Jrs
1 = es,r − er,s, r, s = 1, 2, 3,

SU(2) : JIJ
2 = eJ+3,I+3 − eI+3,J+3, I, J = 1, 2, 3,

YαI = eα,I+3 + eI+3,α . (2.4)

In this paper, we are not interested in solutions with non-zero two-form field. We therefore

set Bµν = 0 from now on. The bosonic Lagrangian involving only the metric, vectors and

scalar fields is given by [16]

L =
1

4
eR− e∂µσ∂

µσ − 1

4
ePIαµP

Iαµ − 1

8
ee−2σNΛΣF

Λ
µνF

Σµν − eV (2.5)
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where e =
√−g. We have written the scalar kinetic term in term of P Iα

µ = P Iα
i ∂µφ

i,

i = 1, . . . , 12. The explicit form of the scalar potential is given by

V = −e2σ
[

1

36
A2 +

1

4
BiBi −

1

4

(

CI
tCIt + 4DI

tDIt

)

]

+m2e−6σN00

−me−2σ

[

2

3
AL00 − 2BiL0i

]

(2.6)

where N00 is the 00 component of the scalar matrix NΛΣ defined by

NΛΣ = L 0
Λ (L−1)0Σ + L i

Λ (L−1)iΣ − L I
Λ (L−1)IΣ . (2.7)

Various quantities appearing in the scalar potential and the supersymmetry transforma-

tions given below are defined as follow

A = ǫrstKrst, Bi = ǫijkKjk0, (2.8)

C t
I = ǫtrsKrIs, DIt = K0It (2.9)

where

Krst = g1ǫlmnL
l
r(L

−1) m
s Ln

t + g2CIJKLI
r(L

−1) J
s LK

t ,

Krs0 = g1ǫlmnL
l
r(L

−1) m
s Ln

0 + g2CIJKLI
r(L

−1) J
s LK

0,

KrIt = g1ǫlmnL
l
r(L

−1) m
I Ln

t + g2CIJKLI
r(L

−1) J
I LK

t ,

K0It = g1ǫlmnL
l
0(L

−1) m
I Ln

t + g2CIJKLI
0(L

−1) J
I LK

t . (2.10)

Finally, we need supersymmetry transformations of χA, λI
A and ψA

µ to find supersymmetric

bosonic solutions. These transformation rules with vanishing Bµν field are given by

δψµA = DµǫA − 1

24

(

Aeσ + 6me−3σ(L−1)00
)

ǫABγµǫ
B

−1

8

(

Bte
σ − 2me−3σ(L−1)t0

)

γ7σt
ABγµǫ

B

+
i

16
e−σ

[

ǫAB(L
−1)0Λγ7 + σr

AB(L
−1)rΛ

]

FΛ
νλ(γ

νλ
µ − 6δνµγ

λ)ǫB, (2.11)

δχA =
1

2
γµ∂µσǫABǫ

B +
1

24

[

Aeσ − 18me−3σ(L−1)00
]

ǫABǫ
B

−1

8

[

Bte
σ + 6me−3σ(L−1)t0

]

γ7σt
ABǫ

B

+
i

16
e−σ

[

ǫAB(L
−1)0Λγ7 − σr

AB(L
−1)rΛ

]

FΛ
µνγ

µνǫB, (2.12)

δλI
A = −P I

riγ
µ∂µφ

iσr
ABǫ

B − P I
0iγ

7γµ∂µφ
iǫABǫ

B −
(

2iγ7DI
t + CI

t

)

eσσt
ABǫ

B

+2me−3σ(L−1)I 0γ
7ǫABǫ

B − i

2
e−σ(L−1)IΛF

Λ
µνγ

µνǫA (2.13)

where σtC
B are usual Pauli matrices, and ǫAB = −ǫBA. In our convention, the space-time

gamma matrices γa satisfy

{γa, γb} = 2ηab, ηab = diag(−1, 1, 1, 1, 1, 1), (2.14)
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and γ7 = γ0γ1γ2γ3γ4γ5 with γ27 = 1. The covariant derivative of ǫA is given by

DµǫA = ∂µǫA +
1

4
ωab
µ γab +

i

2
σrAB

[

1

2
ǫrstΩst − iγ7Ωr0

]

ǫB . (2.15)

It should be noted that due to some difference in conventions, the above supersymmetry

transformations do not coincide with those of the pure F (4) gauged supergravity given

in [17] when all of the fields in the vector multiplets are set to zero. However, it can be

verified that the transformation rules in [17] are recovered by using the identifications

γµ → γ7γ
µ and χA → γ7χA . (2.16)

The SU(2)R × SU(2) gauged supergravity admits maximally supersymmetric AdS6 critical

points when m 6= 0. One of them is the trivial critical point at which all scalars vanish after

setting g1 = 3m. This critical point preserves the full SU(2)R×SU(2) symmetry and should

be dual to the five-dimensional SCFT with global symmetry E1 ∼ SU(2). Furthermore,

at the vacuum, the U(1) gauge field A0 will be eaten by the two-form field resulting in a

massive Bµν field. Another supersymmetric AdS6 critical point preserves only the diagonal

subgroup SU(2)diag ⊂ SU(2)R × SU(2). This critical point has been mistakenly identified

as a stable non-supersymmetric AdS6 in [8], see also the associated erratum.

Actually, the non-trivial supersymmetric critical point can also be seen from the BPS

equations studied in [9], but that paper mainly considers RG flows from five-dimensional

SCFTs corresponding to the trivial AdS6 critical point to non-conformal field theories

in the IR. We give the analysis of these two supersymmetric AdS6 critical points in the

appendix together with an analytic RG flow between them. This flow solution have already

been studied numerically in [8]. The critical points and the flow solution are similar to the

corresponding solutions in the half-maximal gauged supergravity with SO(4) gauge group

in seven dimensions studied in [19].

3 AdS4 critical points

In this section, we consider solutions of the form AdS4 × S2 or AdS4 × H2 with S2 and

H2 being a two-sphere and a two-dimensional hyperbolic space, respectively. The metric

takes the form of

ds2 = e2Fdx21,3 + e2G(dθ2 + sin2 θdφ2) + dr2 (3.1)

for the S2 case and

ds2 = e2Fdx21,3 +
e2G

y2
(dx2 + dy2) + dr2 (3.2)

for the H2 case. In both cases, the warp factors F and G are functions only of r.

The non-vanishing spin connections of the above metrics are given respectively by

ωφ̂

θ̂
= e−G cot θeφ̂, ωφ̂

r̂ = G′eφ̂,

ωθ̂
r̂ = G′eθ̂, ωµ̂

r̂ = F ′eµ̂ (3.3)
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and

ωx̂
r̂ = G′ex̂, ωŷ

r̂ = G′eŷ,

ωµ̂
r̂ = F ′eµ̂, ωx̂

ŷ = −e−G(r)ex̂ (3.4)

where ′ denotes the r-derivative.

3.1 N = 2 three-dimensional SCFTs with SO(2)× SO(2) symmetry

To find supersymmetric solutions of the form AdS4 × Σ2 with SO(2) × SO(2) symmetry,

we turn on SO(2)× SO(2) gauge fields such that the spin connection along Σ is canceled.

In the present case, there are six gauge fields (Ar, AI) corresponding to SU(2)R × SU(2)

gauge group. We will turn on the following SO(2)× SO(2) gauge fields

A3 = a cos θdφ and A6 = b cos θdφ (3.5)

for the S2 case and

A3 =
a

y
dx and A6 =

b

y
dx (3.6)

for the H2 case. To avoid confusion, we have given the gauge fields using the index

Λ = 0, 1, . . . , 6.

A3 will appear in the covariant derivative of ǫA since it is part of the SU(2)R gauge

fields. We choose this particular form of the gauge field to cancel the spin connection on

Σ2. Accordingly, the Killing spinors corresponding to unbroken supersymmetry will be

constant spinors on Σ2 provided that we impose the twist condition

ag1 = 1 (3.7)

and a set of projection conditions given below.

There are two scalars which are singlet under SO(2) × SO(2) generated by J12
1 and

J12
2 . The SO(4, 3)/SO(4) × SO(3) coset representative can be written in terms of these

scalars as

L = eφ1Y03eφ2Y33 . (3.8)

Imposing the projection conditions

γr̂ǫA = ǫA, γ7ǫ
A = σA

3 Bǫ
B, γφ̂θ̂ǫA = iσ3ABǫ

B, (3.9)

for the S2 case or

γr̂ǫA = ǫA, γ7ǫ
A = σA

3 Bǫ
B, γx̂ŷǫA = −iσ3ABǫ

B, (3.10)
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for the H2 case, we find the following BPS equations

φ′
1 = e−3σ−φ1(1− e2φ1)m, (3.11)

φ′
2 =

1

4
eσ−φ1−φ2−2G

[

λb(1 + e2φ1)(1 + e2φ2)

+2eφ1(1− e2φ2)(λa+ 2g1e
2σ+2G)

]

, (3.12)

σ′ =
1

16
e−3σ−φ1−φ2−2G

[

2λae2σ+φ1(1 + e2φ2)

−λbe2σ(2eφ2 − e2φ1 + e2φ2 + e2φ1+2φ2 − 2e2φ1+φ2 − 1)

+6me2G(1− e2φ1 + 2eφ2 − e2φ2 + e2φ1+2φ2 + 2e2φ1+φ2)

−4g1e
2G+4σ+φ1(1 + e2φ2)

]

, (3.13)

G′ =
1

16
e−3σ−φ1−φ2−2G

[

6λae2σ+φ1(1 + e2φ2) + 4g1e
4σ+φ1+2G(1 + e2φ2)

+3λbe2σ(1 + e2φ1 − 2eφ2 − e2φ2 − e2φ1+2φ2 + 2e2φ1+φ2)

−2me2G(1− e2φ1 − 2eφ2 − e2φ2 + e2φ1+2φ2 − 2e2φ1+φ2)
]

, (3.14)

F ′ =
1

16
e−3σ−φ1−φ2−2G

[

−2λae2σ+φ1(1 + e2φ2) + 4g1e
4σ+φ1+2G(1 + e2φ2)

−λbe2σ(1 + e2φ1 − 2eφ2 − e2φ2 − e2φ1+2φ2 + 2e2φ1+φ2)

−2me2G(1− e2φ1 − 2eφ2 − e2φ2 + e2φ1+2φ2 − 2e2φ1+φ2)
]

(3.15)

where λ = 1 and λ = −1 for S2 and H2 cases, respectively.

We look for fixed point solutions satisfyingG′ = σ′ = φ′
1 = φ′

2 = 0 and F ∼ r. From the

above equations, we immediately see that these conditions require φ1 = 0. The γr̂ projector

is not necessary for constant scalars since γr̂ only appears with the r-derivative. The BPS

equations are automatically satisfied by the fixed point solutions without imposing the

γr̂ projector. Furthermore, with φ1 = 0, the γ7 projection is not needed. Therefore, the

AdS4 fixed points will preserve half of the original supersymmetry corresponding to eight

supercharges or N = 2 superconformal symmetry in three dimensions.

For φ1 = 0, the explicit form of AdS4 critical point is given by

φ2 =
1

2
ln

[

3b±
√
a2 + 8b2

b− a

]

,

σ =
1

8
ln

[

m2(b− a)(a+ 4b∓
√
a2 + 8b2)2

4b2g21(3b∓
√
a2 + 8b2)

]

,

G =
1

8
ln

[

b2(b− a)3(3b∓
√
a2 + 8b2)(a+ 4b∓

√
a2 + 8b2)2

4g21m
2(a+ 2b∓

√
a2 + 8b2)4

]

,

LAdS4
=

1

2m

[

(b− a)m2(a+ 4b±
√
a2 + 8b2)2

4b2g21(3b±
√
a2 + 8b2)

]
3

8

. (3.16)

In the above equations, we have given a solution in the S2 case for definiteness. A similar

solution in theH2 case can be obtained by replacing (a, b) by (−a,−b) in the above solution.
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For a < 0, the solution is valid provided that b < a or b > −a. When a > 0, we have a

real solution for b < a or b > a. It can be checked that there exist both AdS4 × S2 and

AdS4 ×H2 fixed points.

As an example, we give some AdS4 solutions with a particular value of b = 2a as follow:

AdS4 × S2 : φ2 =
1

2
ln(6 +

√
33), σ =

1

4
ln

[

(9 +
√
33)m

4
√

6 +
√
33g + 1

]

,

G =
1

8
ln

[

6a4(213 + 37
√
33)

g21m
2(5 +

√
33)4

]

(3.17)

and

AdS4 ×H2 : φ2 =
1

2
ln(2 +

√

1

3
), σ =

1

4
ln

[

(7
√
3 + 3

√
11)m

4
√

6 +
√
33g + 1

]

,

G =
1

8
ln

[

59a4(477 + 83
√
33)

g21m
2(3 +

√
33)4

]

. (3.18)

It can also be readily verified that, by making a truncation φ2 = 0 and b = 0, we find only

AdS4 × H2 solution in agreement with the results of [18]. It should also be pointed out

that the solutions are similar to the ones obtained in seven-dimensional gauged supergrav-

ity studied in [20] and [21, 22]. It is also possible to find a numerical RG flow solution

interpolating between SU(2)×SU(2) AdS6 critical point (A.8) to one of these AdS4 critical

points, but we will not give it here.

3.2 N = 2 three-dimensional SCFTs with SO(2) symmetry

We now consider AdS4 solutions that can be connected to the AdS6 critical point with

SU(2)diag symmetry (A.9) by an interpolating domain wall solution. In this case, there

can be RG flows from AdS6 critical point in (A.9) to three-dimensional SCFTs in the IR

or even a flow from AdS6 critical point (A.8) to critical point (A.9) and then to the AdS4

points.

We look for solutions preserving SO(2)diag subgroup of SO(2) × SO(2) generated by

J12
1 + J12

2 . The gauge fields for the S2 and H2 cases are then given respectively by

A3 = a cos θdφ and A6 =
g1
g2

A3 (3.19)

and

A3 =
a

y
dx and A6 =

g1
g2

A3 . (3.20)

There are four SO(2)diag singlet scalars with the scalar coset representative given by

L = eφ1(Y11+Y22)eφ2Y33eφ3Y03eφ4(Y12−Y21) . (3.21)

By using similar projection conditions and the relation g1a = 1 as in the previous case, we

can find the corresponding BPS equations which turn out to be very complicated. To make
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things more manageable, we will set φ3 = 0 which can be easily checked to be a consistent

truncation. Moreover, the γ7 projector is irrelevant when φ3 = 0. Therefore, the fixed

point solutions will also preserve eight supercharges. The relevant BPS equations for the

remaining scalars are given by

φ′
4 =

1

8
eσ−2φ1−φ2−2φ4(1 + e4φ1)(1− e4φ4)(g1 + g1e

2φ2 + g2 − g2e
2φ2), (3.22)

φ′
1 =

eσ−2φ1−φ2+2φ4(1− e4φ1)

2(1 + e4φ4)
(g1 + g1e

2φ2 + g2 − g2e
2φ2), (3.23)

φ′
2 = − 1

8g2
e−σ−2φ1−φ2−2φ4−2G

[

−4λae2φ1+2φ4(g1 + g1e
2φ2 + g2 − g2e

2φ2)

−g2e
2σ+2G

[

g1(1− e2φ2)(1 + e4φ1 + e4φ4 + 4e2φ1+2φ4 + e4φ1+4φ4)

+g2(1 + e2φ2)(1 + e4φ1 + e4φ4 − 4e2φ1+2φ4 + e4φ1+4φ4)
]]

, (3.24)

σ′ =
1

32
e−3σ−2φ1−φ2−2φ4−2G

[

48me2φ1+φ2+2φ4+2G

−(g1 − g2)e
4σ+2φ2+2G(1 + e4φ1 + 4e2φ1+2φ4−2φ2 + e4φ4 + e4φ1+4φ4)

−(g1 + g2)e
4σ+2G(1 + e4φ4 + e4φ4 + e4φ1+4φ4 + 4e2φ1+2φ2+2φ4)

+
4λa

g2
e2σ+2φ1+2φ4(g1 − g1e

2φ2 + g2 + g2e
2φ2)

]

, (3.25)

G′ =
1

32
e−3σ−2φ1−φ2−2φ4−2G

[

16me2φ1+φ2+2φ4+2G

+(g1 − g2)e
4σ+2φ2+2G(1 + e4φ1 + 4e2φ1+2φ4−2φ2 + e4φ4 + e4φ1+4φ4)

+(g1 + g2)e
4σ+2G(1 + e4φ4 + e4φ4 + e4φ1+4φ4 + 4e2φ1+2φ2+2φ4)

+
12λa

g2
e2σ+2φ1+2φ4(g1 − g1e

2φ2 + g2 + g2e
2φ2)

]

, (3.26)

F ′ =
1

32
e−3σ−2φ1−φ2−2φ4−2G

[

16me2φ1+φ2+2φ4+2G

+(g1 − g2)e
4σ+2φ2+2G(1 + e4φ1 + 4e2φ1+2φ4−2φ2 + e4φ4 + e4φ1+4φ4)

+(g1 + g2)e
4σ+2G(1 + e4φ4 + e4φ4 + e4φ1+4φ4 + 4e2φ1+2φ2+2φ4)

−4λa

g2
e2σ+2φ1+2φ4(g1 − g1e

2φ2 + g2 + g2e
2φ2)

]

(3.27)

where, as in the previous case, λ = ±1 for S2 and H2, respectively. When a = 0, φ2 =

φ1 = φ and φ4 = 0, we recover the BPS equations (A.5), (A.6) and (A.7) given in the

appendix.

We begin with a simple solution for φ4 = 0. There are two possibilities for the critical

points to occur depending on the values of the coupling constants g1 and g2. The critical

point that can be connected to the AdS6 critical point (A.9) for which g2 < −g1 and
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g1 = 3m > 0 is given by

φ2 =
1

2
ln

[

g2 + g1
g2 − g1

]

, φ1 = ±1

2
ln

[

g2 + g1
g2 − g1

]

,

σ =
1

4
ln

[

−2m
√

g22 − g21
g1g2

]

, G =
1

2
ln



− a

g2m

√

−m(g22 − g21)
3

2

2g1g2



 ,

LAdS4
=

1

2m

[

−2m
√

g22 − g21
g1g2

]
3

4

. (3.28)

It can be verified that, in this case, only AdS4 × H2 solutions are possible. The other

possibility with positive g2 however does not give any real solutions.

For a particular value of g2 = g1, there is an AdS4 ×H2 solution given by

φ2 = −1

2
ln 3, φ1 = 0,

σ =
1

8
ln 3 +

1

4
ln

[

m

g1

]

, G = −1

2
ln

[

2g1

3
3

4a

√

m

g1

]

. (3.29)

For non-zero φ4, there is a class of solutions parametrized by φ4. The explicit form of these

solutions for g2 < −g1 and g1 = 3m > 0 is given by

φ2 =
1

2
ln

[

g2 + g1
g2 − g1

]

, σ =
1

4
ln

[

−2m
√

g22 − g21
g1g2

]

,

G =
1

2
ln



− a

g2m

√

−m(g22 − g21)
3

2

2g1g2



 ,

φ1 =
1

2
ln

[

2e2φ4(g21 + g22) +
√

4e4φ4(g21 + g22)
2 − (1 + e4φ4)2(g22 − g21)

2

(g22 − g21)(1 + e4φ4)

]

. (3.30)

This solution is also AdS4 ×H2 as in the previous case and valid for

(g2 + g1)
2

(g2 − g1)2
≤ e4φ4 ≤ (g2 − g1)

2

(g2 + g1)2
. (3.31)

In this case, the scalar φ4 is not determined by the BPS equations. Consider this critical

point to be an IR fixed point of the five-dimensional SCFTs corresponding to the AdS6

critical point (A.9), we can see that φ4 corresponds to a marginal deformation since φ4

is massless as can be seen from the scalar masses given in [8]. It should also be noted

that when the symmetry is reduced to SO(2), only solutions with a hyperbolic space are

possible. This is similar to the seven-dimensional results studied in [20–22].

4 AdS3 critical points

We now look for a gravity dual of five-dimensional SCFTs compactified on a three-manifold

Σ3 which can be S3 orH3. The IR effective theories would be two-dimensional field theories.

– 10 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
4

We particularly look for the gravity solutions corresponding to conformal field theories in

the IR, so the gravity solutions will take the form of AdS3 × Σ3.

The metrics and the associated spin connections for each case are given by

ds27 = e2Fdx21,2 + dr2 + e2G
[

dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)
]

(4.1)

for Σ3 = S3 with the spin connections

ωµ̂
r̂ = F ′eµ̂, ωψ̂

r̂ = G′eψ̂, ωθ̂
r̂ = G′eθ̂,

ωφ̂
r̂ = G′eφ̂, ωφ̂

θ̂
= e−G cot θ

sinψ
eφ̂,

ωφ̂

ψ̂
= e−G cotψeφ̂, ωθ̂

ψ̂
= e−G cotψeθ̂ (4.2)

and

ds27 = e2Fdx21,2 + dr2 +
e2G

y2
(dx2 + dy2 + dz2) (4.3)

for Σ3 = H3 with the spin connections given by

ωẑ
r̂ = G′eẑ, ωŷ

r̂ = G′eŷ, ωx̂
r̂ = G′ex̂,

ωx̂
ŷ = −e−Gex̂, ωẑ

ŷ = −e−Geẑ, ωµ̂
r̂ = F ′eµ̂ . (4.4)

4.1 N = (1, 1) two-dimensional SCFTs with SO(3) symmetry

We first look at solutions preserving SO(3)diag ⊂ SO(3)R × SO(3) symmetry. The

SO(4, 3)/SO(4)×SO(3) coset representative is given in (A.2). We then proceed by turning

on SO(3)diag gauge fields to cancel the spin connections on Σ3 as in the previous section.

For the S3 case, we choose the SU(2)R gauge fields to be

A1 = a cosψ sin θdφ, A2 = b cos θdφ, A3 = c cosψdθ (4.5)

while, for the H3 case, they are given by

A1 =
a

y
dz, A2 = 0, A3 =

b

y
dx . (4.6)

In both cases, the SO(3) gauge fields are related to the SU(2)R gauge fields by

AI =
g1
g2

Ar . (4.7)

The two sets of gauge fields implement the SO(3)diag gauge fields. Furthermore, the twist

condition implies a = b = c and g1a = 1.

Using the following projectors

H3 : γr̂ǫA = ǫA, γx̂ŷǫA = −iσ3
ABǫ

B,

γẑŷǫA = −iσ1
ABǫ

B, γx̂ẑǫA = −iσ2
ABǫ

B, (4.8)

S3 : γr̂ǫA = ǫA, γ
θ̂ψ̂
ǫA = iσ3

ABǫ
B,

γ
φ̂ψ̂

ǫA = iσ1
ABǫ

B, γ
φ̂θ̂
ǫA = iσ2

ABǫ
B, (4.9)
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we obtain the BPS equations

φ′ =
1

4g2
e−σ−3φ−2G[(1 + e2φ)g1 + (1− e2φ)g2][2λae

2φ + g2e
2φ+2G(1− e4φ)], (4.10)

σ′ =
3

8g2
λae−σ−φ−2G[(1− e2φ)g1 + (1 + e2φ)g2]−

3

2
me−3σ

− 1

16
[(1 + e2φ)3g1 + (1− e2φ)3g2], (4.11)

G′ =
1

16
eσ−3φ[(1 + e2φ)3g1 + (1− e2φ)3g2] +

1

2
me−3σ

+
5

8g2
λae−σ−φ−2G[(1− e2φ)g1 + (1 + e2φ)g2], (4.12)

F ′ =
1

16
eσ−3φ[(1 + e2φ)3g1 + (1− e2φ)3g2] +

1

2
me−3σ

− 3

8g2
λae−σ−φ−2G[(1− e2φ)g1 + (1 + e2φ)g2] (4.13)

where λ = ±1 for S3 and H3 as in the previous cases. Note also that, in both cases, the

last projector is not independent from the second and the third ones. Therefore, fixed

point solutions will preserve four supercharges or equivalently N = (1, 1) superconformal

symmetry in two dimensions. The analysis of unbroken supersymmetry can be done in a

similar manner to that given in [18].

We begin with a simple fixed point solution with g2 = g1. In this case, only AdS3×H3

solution exists and is given by

φ = −1

4
ln 3, σ =

1

16
ln 3− 1

4
ln

[g1
m

]

,

G =
3

16
ln 3− 1

2
ln

[

g1
a

√

m

g1

]

. (4.14)

For g2 6= g1, we find two classes of solutions. In the first class, only AdS3 ×H3 is possible

and given by

φ =
1

2
ln

[

g1 + g2
g2 − g1

]

, σ =
1

2
ln

[

−3m
√

g22 − g21
2g1g2

]

,

G =
1

2
ln

[

−a(g22 − g21)
3

4

g2

√

− 3

2g1g2m

]

(4.15)

where we have chosen g1 > 0 and g2 < −g1. For positive g2 with g2 > g1 and g1 > 0, we

find another AdS3 ×H3 solution

φ =
1

2
ln

[

g1 + g2
g2 − g1

]

, σ =
1

2
ln

[

3m
√

g22 − g21
2g1g2

]

,

G =
1

2
ln

[

a(g22 − g21)
3

4

g2

√

− 3

2g1g2m

]

. (4.16)
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The second class of solutions is given by

σ =
3

4
φ− 1

4
ln

[

(1 + e6φ)g1 + (1− e6φ)g2
6m

]

, (4.17)

G = φ− 1

2
ln

[

g2e
3σ

2 (e4φ − 1)

λa

√

3m

2[(1 + e6φ)g1 + (1− e6φ)g2]

]

(4.18)

where φ is a solution to the following equation

(1− 3e2φ − 3e4φ + e6φ)g1 + (1 + 3e2φ − 3e4φ − e6φ)g2 = 0 . (4.19)

The explicit form of φ can be written, but we refrain from giving such a complicated

expression. We will however give some examples of the solutions. Using the relation

g1 = 3m and choosing g2 =
1
2g1, we find an AdS3 × S3 solution characterized by

φ = 0.9645, σ = −0.528, G = −0.4309− 1

2
ln
[m

a

]

. (4.20)

It is also possible to obtain an AdS3 ×H3 solution for g2 =
1
2g1. This solution is given by

φ = −0.5732, σ = −0.2723, G = −0.5732− 1

2
ln

[

0.3278m

a

]

. (4.21)

4.2 N = (1, 0) two-dimensional SCFTs with SO(3)× SO(2) symmetry

We now look for a larger residual symmetry. Although the dilaton σ is a singlet of

SO(3)R × SO(3), the second SO(3) gauge fields cannot be turned on without turning on

some vector multiplet scalars as can be seen from the supersymmetry transformation of

λI
A. On the other hand, no vector multiplet scalar is a singlet of the SO(3) symmetry.

We can at most have SO(3)R × SO(2) symmetry with SO(2) being a subgroup of SO(3).

Among the 12 scalars in SO(4, 3)/SO(4) × SO(3), there is only one SO(3)R × SO(2) sin-

glet. This corresponds to the non-compact generator Y03. We then parametrize the coset

representative as

L = eΦY03 . (4.22)

The SO(3)R gauge fields are the same as in the previous case while the SO(2) gauge field

will be chosen to be

A6 = b cosψ or A6 =
b

y
dx (4.23)

for Σ3 = S3 and Σ3 = H3, respectively.

Apart from the projectors in (4.8) and (4.9), in this case, we need to impose an

additional projector involving γ7 namely

γ7ǫ
A = σA

3 Bǫ
B . (4.24)

The critical points would then preserve only half of the supersymmetry in the previous

case. This corresponds to N = (1, 0) superconformal symmetry in two dimensions.
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With all these and λ = ±1 for S3 and H3, respectively, we find the following BPS

equations

Φ′ =
1

2
e−3σ−Φ−2G

[

λbe2σ(1 + e2Φ) + 2me2G(1− e2Φ)
]

, (4.25)

σ′ =
1

8
e−3σ−Φ−2G

[

6λe2σ+Φ + λbe2σ(e2Φ − 1)

+2e2G(3m− 2g1e
4σ+Φ + 3me2Φ)

]

, (4.26)

G′ =
1

8
e−3σ−Φ−2G

[

3λbe2σ(e2Φ − 1) + 10λae2σ+Φ

+2e2G(2g1e
4σ+Φ +m+me2Φ)

]

, (4.27)

F ′ =
1

8
e−3σ−Φ−2G

[

−λbe2σ(e2Φ − 1)− 6λae2σ+Φ

+2e2G(2g1e
4σ+Φ +m+me2Φ)

]

. (4.28)

When Φ = 0 and b = 0, the above equations reduce to the pure F (4) gauged supergravity

which admits only AdS3 ×H3 solutions in agreement with [18].

We find an AdS3 × Σ3 fixed point given by

σ =
1

4
ln

[

e−Φ[3aeΦ(e2Φ − 1) + 2bm(1 + e2Φ + e4Φ)]

g1b(1 + e2Φ)

]

, (4.29)

G =
1

4
ln

[

be−Φ(1 + e2Φ)[3aeΦ(e2Φ − 1) + 2b(1 + e2Φ + e4Φ)]

4g1m(e2Φ − 1)2

]

, (4.30)

Φ = ln

[√

2a2 + 2b2 + 2a
√
a2 − 2b2 − a±

√
a2 − 2b2

2b

]

. (4.31)

The above solution is written for the S3 case. To find the solution in the H3 case, (a, b)

should be replaced by (−a,−b) in all of the above expressions. The solution is valid for

non-vanishing a and b with −
√

a2

2 ≤ b ≤
√

a2

2 .

From the analysis, it turns out that only AdS3 × H3 solutions are possible. As an

example of explicit solutions, we take a > 0 and choose b = ± a√
2
. The solutions are

given by

Φ = ln

[√
3− 1√
2

]

, σ =
1

4
ln

[

2
√
2m(2−

√
3)

(2
√
3− 3)g1

]

,

G = ln

[

(

3

8

)
7

32

√

a

m

(

m

g1

)
1

16

]

(4.32)

for b = a√
2
and

Φ = ln

[√
3 + 1√
2

]

, σ =
1

4
ln

[

2
√
2m√
3g1

]

,

G = ln

[

(

3

8

)
1

8

√

a

m

(

m

g1

)
1

4

]

(4.33)

for b = − a√
2
. The solution in this case does not have an analogue in seven dimensions since

there is no SO(3)R scalar in that case.
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5 Conclusions

We have classified supersymmetric AdS4 and AdS3 solutions of N = (1, 1) six-dimensional

gauged supergravity coupled to three vector multiplets with SU(2) × SU(2) gauge group.

Depending on the values of the two gauge couplings, there are both AdS4 × S2 and

AdS4 ×H2 solutions with SO(2)× SO(2) symmetry and AdS4 ×H2 solutions with SO(2)

symmetry. All solutions preserve eight of the original sixteen supercharges and are dual

to N = 2 SCFTs in three dimensions. For AdS3 × Σ3 solutions, we have found new

AdS3 × S3 and AdS3 × H3 solutions preserving four supercharges and SO(3) symmetry.

These solutions correspond to N = (1, 1) SCFTs in two dimensions. For SO(3) × SO(2)

symmetry, only AdS3 × H3 solutions exist with 1
8 supersymmetry unbroken. These

solutions provide gravity duals of N = (1, 0) SCFTs in two dimensions. Apart from the

SO(3) × SO(2) AdS3 fixed point, the solutions are very similar to those of N = 2 SO(4)

gauged supergravity in seven dimensions [20].

All of these solutions correspond to IR fixed points of five-dimensional SCFTs with

global symmetry SU(2) in lower dimensional space-time. There should be RG flows de-

scribing twisted compactifications of these SCFTs on 2 or 3-manifolds giving rise to these

AdS4 and AdS3 geometries in the IR. We have not been able to find analytic solutions for

these flows, but numerical solutions can be obtained as in other cases, see for example [20].

The results obtained in this paper are hopefully useful in the holographic study of five-

dimensional SCFTs and their compactifications as well as the classification of vacua of the

half-maximal gauged supergravity in six dimensions.

It would be interesting to find a possible embedding of these solutions in higher dimen-

sions in particular in massive type IIA supergravity similar to the embedding of pure F (4)

gauged supergravity [23] or in type IIB supergravity as in [11] and [24]. This could give

an interpretation to these solutions in terms of wrapped D4-branes. However, since there

is only one class of known AdS6 solutions, as shown in [10], embedding the AdS6 solutions

with different SU(2) gauge coupling constants (if possible) might not be straightforward in

massive type IIA theory.

It is also interesting to find dual field theories to the AdS4 and AdS3 critical points

identified here. Another investigation would be to study other types of gauge groups such

as non-compact gauge groups to the matter-coupled F (4) gauged supergravity and classify

all possible gauge groups that admit supersymmetric AdS6 vacuum similar to the recent

analysis in seven dimensions [25, 26]. Finally, gravity solutions with a non-vanishing two-

form field could be of interest. A simple AdS3 × R3 solution with only the two-form and

the dilaton turned on has been studied in [18]. It might be interesting to study this type of

solutions and a more general twist involving Bµν field within the framework of the matter

coupled gauged supergravity. We leave these issues for future works.
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A Supersymmetric AdS6 critical points and holographic RG flows

In this appendix, we review a description of supersymmetric AdS6 critical points with

SU(2) × SU(2) and SU(2)diag symmetries. We consider only the SU(2)diag singlet scalar

corresponding to the non-compact generator Ys defined by

Ys = Y11 + Y22 + Y33 . (A.1)

The SO(4, 3)/SO(4)× SO(3) coset representative is accordingly parametrized by

L = eφYs . (A.2)

The scalar potential can be computed to be

V =
1

16
e2σ

[

(g21 + g22)[cosh(6φ)− 9 cosh(2φ)] + 8(g22 − g21) + 8g1g2 sinh
3(2φ)

]

+e−6σm2 − 4e−2σm(g1 cosh
3 φ− g2 sinh

3 φ). (A.3)

We are mainly interested in supersymmetric critical points. Therefore, we set up the

BPS equations from supersymmetry transformations of fermions given in (2.11), (2.12)

and (2.13) with all but the metric and scalars σ and φ vanishing. The six-dimensional

matric is taken to be the standard domain wall

ds2 = e2A(r)dx21,4 + dr2 (A.4)

where dx21,4 is the metric on five-dimensional Minkowski space.

With the projection condition γr̂ǫA = ǫA, the resulting BPS equations are given by

φ′ = −1

4
eσ−3φ(e4φ − 1)

[

(1 + e2φ)g1 + (1− e2φ)g2

]

, (A.5)

σ′ = − 1

16
eσ−3φ

[

(1 + e2φ)3g1 + (1− e2φ)3g2

]

+
3

2
me−3σ, (A.6)

A′ =
1

16
eσ−3φ

[

(1 + e2φ)3g1 + (1− e2φ)3g2

]

+
1

2
me−3σ (A.7)

where the r-derivative is denoted by ′. From these equations, it is clearly seen that there

are two supersymmetric critical points namely

φ = 0, σ =
1

4
ln

[

3m

g1

]

, V0 = −20m2
( g1
3m

)
3

2

(A.8)

and

φ =
1

2
ln

[

g1 + g2
g2 − g1

]

, σ =
1

4
ln

[

−3m
√

g22 − g21
g1g2

]

,

V0 = −20m2

[

− g1g2

3m
√

g22 − g21

]
3

2

. (A.9)

This critical point is valid for g2 < −g1 when g1 > 0. For g1 < 0, we need to take g2 < g1.

The full scalar mass spectrum at these two critical points can be found in [8].

– 16 –
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To find an RG flow solution interpolating between these two critical points, we solve

the above BPS equations for φ(r), σ(r) and A(r). By defining a new radial coordinate r̃

via dr̃
dr

= eσ−3φ, we can solve equation (A.5) for φ(r̃). The solution is given implicitly by

r̃ =
4

g1 + g2
φ− 1

2g1
ln(1− e2φ)− 1

2g2
ln(1 + e2φ)

+
(g1 − g2)

2

g1g2(g1 + g2)
ln
[

(1 + e2φ)g1 + (1− e2φ)g2

]

. (A.10)

In the above solution, we have omitted an additive integration constant which can be

removed by shifting the coordinate r̃.

Combining equations (A.5) and (A.6), we find

dσ

dφ
= −e3φ−4σ

[

24m− e4σ−3φ[(1 + e2φ)3g1 + (1− e2φ)3g2]
]

4(e4φ − 1) [(1 + e2φ)g1 + (1− e2φ)g2]
(A.11)

which can be solved to give a solution for σ

σ =
1

4
ln

[

e−φ(6m+ C1(e
4φ − 1))

(1 + e2φ)g1 + (1− e2φ)g2

]

. (A.12)

In order to make this solution interpolate between the two critical points (A.8) and (A.9),

we choose the constant C1 to be

C1 = −3m(g1 − g2)
2

2g1g2
(A.13)

which gives the solution for σ

σ =
1

4
ln

[

3me−φ[(1− e2φ)g1 + (1 + e2φ)g2]

2g1g2

]

. (A.14)

By the same procedure, we find the solution for A(r) up to an additive integration constant

that can be absorbed by rescaling the coordinates in dx21,4

A =
1

4
φ− 1

3
ln(1− e2φ)− 1

4
ln(1 + e2φ) +

1

3
ln[(1 + e2φ)g1 + (1− e2φ)g2]. (A.15)

It should be noted that the critical points and the flow solution have a similar structure to

those in seven dimensions [19].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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