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1 Introduction

Field theories in six and five dimensions have been shown to posses non-trivial conformal
fixed points [1, 2]. However, higher dimensional superconformal field theories (SCFTs) are
not well understood as their lower dimensional analogues. The study of five-dimensional
SCFTs using the AdS/CFT correspondence [3] has attracted a lot of attention both from
ten and six-dimensional point of views, see for example [4-9]. And recently, the investiga-
tion of supersymmetric AdSs solutions has been carried out systematically in [10-12].

An approach to understand higher dimensional field theories is to make some com-
pactification of these theories to lower dimensions. The resulting lower dimensional field
theories preserving some supersymmetry are usually obtained by twisted compactifications,
and the holographic study via the AdS/CFT correspondence is still applicable at least in
the large N limit [13]. From string/M theory point of view, these twisted field theories
can be interpreted as wrapped branes on certain curved manifolds. In many cases, there
is a description in terms of lower dimensional gauged supergravities. In particular, for the
present case of five-dimensional SCFTs, the effective supergravity theory is the N = (1, 1)
F(4) gauged supergravity and its matter-coupled version [14].

In this work, we will explore some aspects of twisted compactifications of five-
dimensional SCFTs within the framework of half-maximal gauged supergravity in six di-
mensions coupled to matter multiplets [15, 16]. A similar study in the pure F(4) gauged
supergravity [17] have been carried out in [18] in which some AdSy x X9 and AdSs x 33



solutions have been identified along with their possible dual field theories. We will fur-
ther investigate solutions of this type in the matter-coupled F'(4) gauged supergravity.
This could presumably give rise to more general solutions than those given in [18]. The
result would also provide new solutions describing IR fixed points of the RG flows from
SCFETs in five dimensions to three and two-dimensional SCFTs with different numbers of
supersymmetry.

As a starting point, we add three vector multiplets to the F'(4) gauged supergravity
resulting in an SU(2)r x SU(2) ~ SO(3)r x SO(3) gauge group with the first factor being
the R-symmetry group. AdSg vacua of this theory including possible holographic RG flows
between the dual SCFTs and RG flows to non-conformal field theories have already been
studied in [8] and [9]. From the result in [8], there are two supersymmetric AdSg critial
points. Both of them preserve the full sixteen supercharges, but one of them, with non-
vanishing scalar fields, break the full SU(2)r x SU(2) symmetry to its diagonal subgruop.
These two critical points are dual to certain N = 2 SCFTs in five dimensions by the usual
AdS/CFT correspondence.

We then proceed by looking for possible AdSy x X9 and AdS3 x ¥3 solutions for a3
being §%3 or H?*? with different residual symmetries. The resulting solutions would be
dual to SCFTs in three and two dimensions obtained from twisted compactifications of the
above mentioned five-dimensional SCFTs. These will give new AdS4 and AdS3 solutions
from six-dimensional gauged supergravity and provide appropriate gravity backgrounds in
the holographic study of gauge theories in five and lower dimensions.

The paper is organized as follow. We give a brief review of the F'(4) gauged supergravity
coupled to three vector multiplets in section 2. Possible supersymmetric AdS; and AdSs
solutions are given in section 3 and 4, respectively. In section 5, we give some conclusions
and comments about the results. We also include an appendix describing supersymmetric
AdSg critical points previously found in [8] as well as an analytic RG flow between them.

2 Matter coupled N = (1,1) SU(2) x SU(2) gauged supergravity in six
dimensions

In this paper, we are interested in N = (1, 1) gauged supergravity with SU(2) x SU(2) gauge
group. This gauged supergravity can be obtained by coupling three vector multiplets to
the pure F'(4) gauged supergravity constructed in [17]. The full construction by using
the superspace approach can be found in [15, 16]. Apart from different metric signature
(— 4+ + ++), we will mostly follow the notations and conventions given in [15] and [16].

The matter coupled N = (1,1) gauged supersymmetry consists of the supergravity
multiplet given by

(¢ A%, B o)

and three vector multiplets with the field content
(A/u >\Aa ¢a)]'

In the above expressions, @ZJ;‘, x? and A4 denote the gravitini, the spin—% fields and the
gauginos, respectively. All spinor fields x*, wﬁl and A4 as well as the supersymmetry pa-



4 are eight-component pseudo-Majorana spinors with indices A, B = 1, 2 referring

rameter e
to the fundamental representation of the SU(2)g ~ USp(2) g R-symmetry. Space-time and
tangent space indices are denoted respectively by p,v =0,...,5and a,b =0,...,5. ¢, and
o are the graviton and the dilaton. A7, o = 0,1,2,3, are four vector fields in the gravity
multiplet. Three of these vector fields will be used to gauge the SU(2)z R-symmetry. The
index I = 1,2,3 labels the three vector multiplets, and finally B, is the two-form field
which admits a mass term.

There are 13 scalar fields parametrized by R* x SO(4, 3)/SO(4) x SO(3) coset manifold
in which the RT™ ~ SO(1,1) part corresponds to the dilaton. Possible gauge groups are
subgroups of the global symmetry group R* x SO(4,3). In the present paper, we will
consider only the compact gauge group SU(2) x SU(2) ~ SO(3) x SO(3). The first factor is
the SU(2) g R-symmetry identified with the diagonal subgroup of SU(2) x SU(2) ~ SO(4) C
SO(4) x SO(3). Following [15] and [16], we will decompose the « index into o = (0,7) in
which r» = 1,2, 3. Indices r, s will become adjoint indices of the SU(2)r R-symmetry.

The 12 vector multiplet scalars given by the SO(4,3)/SO(4) x SO(3) coset can be
parametrized by the coset representative LA s, A,X =0,...,6. We can split the index X,
transforming by right multiplications of the local SO(4) x SO(3) composite symmetry, in
LA & to (LA, LM ) and further to (LA, LA ., L* ;). The vielbein of the SO(4, 3)/SO(4) x
SO(3) coset P!, and the SO(4) x SO(3) composite connections Q% = (Q", Q™) can be
obtained from the left-invariant 1-form of SO(4, 3)

Oty = (L HA pvIly, VLA g =dLlh - fit pATLY (2.1)
with the following identification
P]a = (PI 7PI'r) = (QIO?Q]'I')' (22)

The structure constants of the full SU(2)g x SU(2) gauge group f* 5 will be split into
erst and Cryg = erji for the two factors SU(2)gp and SU(2), respectively. There are
accordingly two coupling constants denoted by g; and go.

In order to parametrize scalar fields described by the SO(4,3)/SO(4) x SO(3) coset,
we introduce basis elements of 7 x 7 matrices by

(eAE)FH - 6AF62H7 A7 E? Fv II = 07 cee 76 . (23)

The SO(4), SU(2)g, SU(2) and non-compact generators Y, of SO(4,3) are then given by

SO(4) : JoP = P _ e a,=0,1,2,3,
SU((2)R : JiP = eP" — e r,s=1,2,3,
SU(2) . JQIJ — €J+3,I+3 _eI+3,J+3 I.J=1.2.3
Ya] = Ba’]+3 + €I+3’a . (24)

In this paper, we are not interested in solutions with non-zero two-form field. We therefore
set By, = 0 from now on. The bosonic Lagrangian involving only the metric, vectors and
scalar fields is given by [16]

1 1 1
L= ZeR —edyodto — ZerauPlo‘“ — gee_%NAgFﬁsz“" —eV (2.5)



where e = /—¢g. We have written the scalar kinetic term in term of PF{O‘ = f;faaugz)i,
t=1,...,12. The explicit form of the scalar potential is given by

V= ¢ L%A?+ BZ?—A(CﬁC“+4DQDH)—+m%T%Nm
—me_QU |:3AL00 - 2B7'L01 (26)
where Ny is the 00 component of the scalar matrix Ny, defined by

Nas =Ly 2L Nog + Ly (L7 s — Ly "(L7Y)1s. (2.7)

Various quantities appearing in the scalar potential and the supersymmetry transforma-
tions given below are defined as follow

A=K, g, B = ¢F K0, (2.8)
Crt ="Ky, Dy = Kory (2.9)

where

Krg = glelanlr(Lil)sant + QQCIJKL T(L 1)SJLK
K,so = glelanlr(L_l)sanO + gQCIJKLIT(L 1)5
Kpre = grétmn L' (L7Y) "L + g2Cric L (L7 JLK
(L7) ol

Ko = 9161anlo Lt Iant —|—ggC[JKL L~ 1)IJLI§. (2.10)

Finally, we need supersymmetry transformations of x*, )\2 and 1,[);:‘ to find supersymmetric

bosonic solutions. These transformation rules with vanishing B,,, field are given by

1
dua = Dyea — 21 (Ae" + 6me_3"(L_1)00) EAnyueB
1 _ _
3 (Bte" — 2me 3U(L l)to) 770237”63

1 — _ r — v v
T lean(L™ oavr + olup (L™ )ea] F\(,, = 66;7%)€”, (2.11)

1
+ ﬁ [Ae" — 18me*3”(L*1)00] GABGB

1
3 [Bte“ + Gme_?’”(L_l)to] ’y?afABeB

1
oxA = 57“(9”06,4363

56 [ean(L Mo — ohp(L7)ra] Ebte?, (2.12)

oL = —Pfify“ﬁugbiarABeB — P()Ii77fy”8u¢ieABeB — (22’77D]t + C’It) e”ailBeB
+2me 3 (LY jy eape? — %e_“(L_l)IAFﬁyy“”eA (2.13)
where atCB are usual Pauli matrices, and e4p = —€p4. In our convention, the space-time

gamma matrices v satisfy

{7aa7b} = Qnabv nab = diag(_17171>1>171)7 (2'14)



and 7 = 79919293444® with 42 = 1. The covariant derivative of €4 is given by
1 ab i 1 rst ; B
Dyes = 0ea + Zwu Yab T iarAB 56 gt — iv720| €. (2.15)

It should be noted that due to some difference in conventions, the above supersymmetry
transformations do not coincide with those of the pure F(4) gauged supergravity given
in [17] when all of the fields in the vector multiplets are set to zero. However, it can be
verified that the transformation rules in [17] are recovered by using the identifications

Y=t and xa = y7XA - (2.16)

The SU(2)r x SU(2) gauged supergravity admits maximally supersymmetric AdSg critical
points when m # 0. One of them is the trivial critical point at which all scalars vanish after
setting g1 = 3m. This critical point preserves the full SU(2) g x SU(2) symmetry and should
be dual to the five-dimensional SCFT with global symmetry E; ~ SU(2). Furthermore,
at the vacuum, the U(1) gauge field A° will be eaten by the two-form field resulting in a
massive B, field. Another supersymmetric AdSg critical point preserves only the diagonal
subgroup SU(2)qiag C SU(2)r x SU(2). This critical point has been mistakenly identified
as a stable non-supersymmetric AdSg in [8], see also the associated erratum.

Actually, the non-trivial supersymmetric critical point can also be seen from the BPS
equations studied in [9], but that paper mainly considers RG flows from five-dimensional
SCFTs corresponding to the trivial AdSg critical point to non-conformal field theories
in the IR. We give the analysis of these two supersymmetric AdSg critical points in the
appendix together with an analytic RG flow between them. This flow solution have already
been studied numerically in [8]. The critical points and the flow solution are similar to the
corresponding solutions in the half-maximal gauged supergravity with SO(4) gauge group
in seven dimensions studied in [19].

3 AdS, critical points

In this section, we consider solutions of the form AdSs x S? or AdS, x H? with S? and
H? being a two-sphere and a two-dimensional hyperbolic space, respectively. The metric
takes the form of

ds® = e*!'da 5 + *9(d6* + sin? 0d¢?) + dr? (3.1)
for the S? case and e
ds® = eQFdx?B + Z—Q(dx2 + dy?) + dr? (3.2)

for the H? case. In both cases, the warp factors F' and G are functions only of 7.
The non-vanishing spin connections of the above metrics are given respectively by

w? = e %cot e?, w(ﬁf =G'e?,

Wl = G'é, (,uﬂ?2 = Flel (3.3)



and

w“} = Ge?, wyf, =G'eY,
i & —G(r), &
wh, = Flet, w = —e e (3.4)

where ’ denotes the r-derivative.

3.1 N =2 three-dimensional SCFTs with SO(2) x SO(2) symmetry

To find supersymmetric solutions of the form AdSy x ¥o with SO(2) x SO(2) symmetry,
we turn on SO(2) x SO(2) gauge fields such that the spin connection along ¥ is canceled.
In the present case, there are six gauge fields (A", A’) corresponding to SU(2)g x SU(2)
gauge group. We will turn on the following SO(2) x SO(2) gauge fields

A3 = qcosfdd and A% = beosfdo (3.5)
for the S? case and
b
=%  and  AS=ldo (3.6)
Y Y

for the H? case. To avoid confusion, we have given the gauge fields using the index
A=0,1,....6.

A3 will appear in the covariant derivative of e/ since it is part of the SU(2)g gauge
fields. We choose this particular form of the gauge field to cancel the spin connection on
Y. Accordingly, the Killing spinors corresponding to unbroken supersymmetry will be
constant spinors on Yo provided that we impose the twist condition

agr =1 (3.7)

and a set of projection conditions given below.

There are two scalars which are singlet under SO(2) x SO(2) generated by Ji? and
J32. The SO(4,3)/SO(4) x SO(3) coset representative can be written in terms of these
scalars as

L = e#1Y0302Ys3 (3.8)
Imposing the projection conditions
Vi€A = €A, ’)’7€A = O'?BGB, v‘i’éeA — jo3apel, (3.9)
for the S? case or
V€A = €4, et = 03 pe, Yeq = —iozape”, (3.10)



for the H? case, we find the following BPS equations

@, = e73T91(1 — 2y, (3.11)
oh = %"*WW?G [Ab(l + e271)(1 + e292)

+2e#1 (1-— e2¢2)(Aa + 2g162‘7+2G)] , (3.12)
o = %66_30_¢1_¢2_2G [2)\ae2‘7+¢1(1 + €2%2)

—)\b620<2€¢2 _ 62¢1 + 62¢2 + e2¢1+2¢2 _ 262¢1+¢2 o 1)
—}—6m62G(1 _ g2 + 2eP2 _ o202 + 2014262 + 262¢1+¢2)

—4g,e2CFoto1(1 4 €2¢2)] , (3.13)

1
G = Ee—?»a—m—m—w [6/\a,e2"+¢1(1 1 202) | 4gdoHOTH2G (1 4 (202)

+3)\b€20(1 4201 _ 9Pz _ o202 _ o20142¢2 262¢1+¢2)
—2me?C(1 — €21 — 292 — 22 | 201202 _ 2e2¢1+¢2)] , (3.14)

F = ie—30—¢1—¢2—2G [—2)\a62‘7+¢1 (1+ 62¢2) + 4gle4a+¢1+20(1 + 62¢2)
16

—Xbe2 (1 4 201 — 292 — 202 _ (2014202 | 9o 201402)

—2me?C(1 — €21 — 292 — 22 | 201202 _ 262¢1+¢2)] (3.15)

where A =1 and A = —1 for §? and H? cases, respectively.

We look for fixed point solutions satisfying G’ = o/ = ¢} = ¢4, = 0 and F' ~ r. From the
above equations, we immediately see that these conditions require ¢; = 0. The v; projector
is not necessary for constant scalars since 7; only appears with the r-derivative. The BPS
equations are automatically satisfied by the fixed point solutions without imposing the
~# projector. Furthermore, with ¢; = 0, the 7 projection is not needed. Therefore, the
AdS, fixed points will preserve half of the original supersymmetry corresponding to eight
supercharges or N = 2 superconformal symmetry in three dimensions.

For ¢y = 0, the explicit form of AdSy critical point is given by

1. [3b+ Va2 + 852
o2 =gl
. [ m2(b— a)(a + 4b F Va2 + 8b2)2
o= — ,
8 | 40292 (3b F Va2 + 8b2)
1. [02(b— a)3(3b F Va® + 86%)(a + 4b F Va2 + 8b%)?
G = 71]’1 i
8 4g?m?2(a + 2b F Va2 + 8b2)4
3
1 | (b—a)m?(a+4b+ Va2 +8b2)% | °
Lags, = — (3.16)
2m 46262 (3b + aZ + 8b2)

In the above equations, we have given a solution in the S? case for definiteness. A similar
solution in the H? case can be obtained by replacing (a, b) by (—a, —b) in the above solution.



For a < 0, the solution is valid provided that b < a or b > —a. When a > 0, we have a
real solution for b < a or b > a. It can be checked that there exist both AdS, x S% and
AdSy x H? fixed points.

As an example, we give some AdSy solutions with a particular value of b = 2a as follow:

(9+V33)m
46 ++/33g + 1

AdSy; x 8% ¢y = 1n(6+f) o=-In

1
4
1 [6a (213+37\/ ]

G=-In 3.17

8 gim?(5 + /3 (3.17)
and
AdSy x H? - ¢2:11n(2—|—\/T), 0—11 (V3 + 3V11)m

2 3 46+ V339 +1
1 44

o Ly |59a* (477 +83v33) | (3.18)
8 g¥m2(3 + /33)4

It can also be readily verified that, by making a truncation ¢ = 0 and b = 0, we find only
AdSy x H? solution in agreement with the results of [18]. It should also be pointed out
that the solutions are similar to the ones obtained in seven-dimensional gauged supergrav-
ity studied in [20] and [21, 22]. It is also possible to find a numerical RG flow solution
interpolating between SU(2) x SU(2) AdSg critical point (A.8) to one of these AdS, critical
points, but we will not give it here.

3.2 N =2 three-dimensional SCFTs with SO(2) symmetry

We now consider AdSy; solutions that can be connected to the AdSg critical point with
SU(2)diag symmetry (A.9) by an interpolating domain wall solution. In this case, there
can be RG flows from AdSg critical point in (A.9) to three-dimensional SCFTs in the IR
or even a flow from AdSs critical point (A.8) to critical point (A.9) and then to the AdS,
points.

We look for solutions preserving SO(2)giag subgroup of SO(2) x SO(2) generated by
J{2 + J32. The gauge fields for the S? and H? cases are then given respectively by

A3 = acosfde and AS = ?A?’ (3.19)
2
and
A =% and A5 =743 (3.20)
Y 92

There are four SO(2)4iag singlet scalars with the scalar coset representative given by

I = e?1(Y11+Y22) ,62Y33 ,$3Y03 ,da(Yia—Y21) (3.21)

By using similar projection conditions and the relation gja = 1 as in the previous case, we
can find the corresponding BPS equations which turn out to be very complicated. To make



things more manageable, we will set ¢3 = 0 which can be easily checked to be a consistent
truncation. Moreover, the ~7 projector is irrelevant when ¢3 = 0. Therefore, the fixed
point solutions will also preserve eight supercharges. The relevant BPS equations for the
remaining scalars are given by

1
Oy = ST INTRTEO(L 4 AN (1 — ) (g1 + 91677 + g2 — 2677), (3.22)
=21 —p2+2¢p4 (1 _ 41
;) € (1—e™1) 26 2
P = 2T T cho) (91 + g1°7% + ga — g2e™??), (3.23)
¢/2 _ _%67072¢1*¢2*2¢472G [_4/\a62¢>1+2¢>4 (91 + g162¢2 + g9 — 9262¢2)
g2

_92620+2G [91(1 _ 62¢2)(1 4 et o ptha g2 120 e4¢1+4¢4)

+92(1 + 6%’2)(1 + Pl + A1 2014204 + 64¢1+4¢4)” ’ (3‘24)
g = 3726

—(g1 — g2)e
_(gl + 92)64U+2G(1 + et + ! + eP1+404 + 462¢1+2¢2+2¢4)

4 a
+g—2620+2¢1+2¢4 (g1 — 916272 + go + 9262@)] ; (3.25)
o — L 802016220420 [16m62¢1+¢2+2¢4+20
32
+(91 B 92)e4g+2¢2+20(1 + 64¢>1 + 462¢>1+2¢472¢2 + e4¢4 + e4¢1+4¢>4)

+(g1 + 92)€4U+2G(1 4 oetos eloa + eld1+4¢a + 4€2¢1+2¢2+2¢4)

/ 1 30—2¢1—2—2¢p4—2G [48m62¢1+¢2+2¢4+20

40+2¢>2+2G(1 + el +462¢1+2¢4*2¢>2 + PR +64¢1+4¢>4)

12)a
+—g2 27NN (g1 — 12 + gy + 926%2)} ; (3.26)
7 L 30-201-62-20-2G [16m62¢1+¢2+2¢>4+20
32

(g1 — go)elT 2O (] 191 201204202 4 (Ada y Ao1 A
+(g1 + 92)64U+2G(1 4 ettn eloa + elé1+4¢a + 462¢1+2¢2+2¢4)

4a
f7620+2¢1+2¢4 (g1 — G1E2%? + go + 9262472)] (3.27)
2

where, as in the previous case, A = +1 for S? and H?, respectively. When a = 0, ¢ =
¢1 = ¢ and ¢4 = 0, we recover the BPS equations (A.5), (A.6) and (A.7) given in the
appendix.

We begin with a simple solution for ¢4 = 0. There are two possibilities for the critical
points to occur depending on the values of the coupling constants g; and go. The critical
point that can be connected to the AdSg critical point (A.9) for which go < —g; and



g1 = 3m > 0 is given by

1 1
¢y = =In [924-91]’ ¢ = +=1In [92-1-91},
2 |lg2—n 2 |lg—n
-
sl [amVE=R] 1] e \/_m<g§—g%>z |
4 9192 2 gam 29192

3
1 2my/g2 — g3 | *
Lags, = — [_9291] ) (3.28)

2m 9192

It can be verified that, in this case, only AdS; x H? solutions are possible. The other
possibility with positive go however does not give any real solutions.
For a particular value of go = g1, there is an AdS; x H? solution given by

1
¢2 = _511137 (rbl:Ov

1 1 m 1 291 [m
c=-In3+-In|—]|, G=—=In|—,/—]. 3.29
8 4 [QJ 2 [33(1\/ 9N (3.29)

For non-zero ¢4, there is a class of solutions parametrized by ¢4. The explicit form of these
solutions for go < —g; and g1 = 3m > 0 is given by

1T 1. [ 2my/@2— g2
6y = L1 92+91]7 S Y i
2 |lge—a 4 9192

3
e \/_m(gg—g%)Z ’
2 gam 29192

oy = Loy |27 (08 + 98) & VAT (gf + g3)? — (1+ e¥)2(g5 — g)?
T2 (93 — g3) (1 + elon)

] . (3.30)

This solution is also AdS,; x H? as in the previous case and valid for

(92491 _ ags - (92— 91)°

(2=91)> " (g2+q)? (3-31)

In this case, the scalar ¢4 is not determined by the BPS equations. Consider this critical
point to be an IR fixed point of the five-dimensional SCFTs corresponding to the AdSg
critical point (A.9), we can see that ¢, corresponds to a marginal deformation since ¢4
is massless as can be seen from the scalar masses given in [8]. It should also be noted
that when the symmetry is reduced to SO(2), only solutions with a hyperbolic space are
possible. This is similar to the seven-dimensional results studied in [20-22].

4 AdSj critical points

We now look for a gravity dual of five-dimensional SCFTs compactified on a three-manifold
Y3 which can be S3 or H3. The IR effective theories would be two-dimensional field theories.

,10,



We particularly look for the gravity solutions corresponding to conformal field theories in
the IR, so the gravity solutions will take the form of AdS3 x X3.
The metrics and the associated spin connections for each case are given by

ds? = e*'dat y + dr® + €2¢ [dyp? + sin® 1(d6? + sin® 0dg?)] (4.1)

for ¥3 = S with the spin connections

wﬂf = F'el, wd; = Glelﬁa Wéf = Glﬁé?
~ ~ ~ t0 ~
w(z)f = Gled), w?, = e—Gc.Oiequ
6 sin
w¢1/3 = e %cot 1/1@‘13, w% = e “cot 1/16@ (4.2)
and °G
ds? = 2P da? , + dr® + 6372(61%2 + dy® + d2?) (4.3)

for ¥3 = H?3 with the spin connections given by

Z _ v 2 g _ g T _ v E

wh = Ge?, w’, = G'eY, wh =Ge",

& _ _ G i : _ _ -G i

w? = —e e”, w? = —e e, wh, = Fet. (4.4)

4.1 N =(1,1) two-dimensional SCFTs with SO(3) symmetry

We first look at solutions preserving SO(3)qiag C SO(3)r x SO(3) symmetry. The

SO(4,3)/SO(4) x SO(3) coset representative is given in (A.2). We then proceed by turning

on SO(3)4iag gauge fields to cancel the spin connections on ¥3 as in the previous section.
For the S? case, we choose the SU(2)r gauge fields to be

A = acos ) sin Ode, A% = beosOdo, A3 = ccospdd (4.5)

while, for the H? case, they are given by

A =% A2—0, 3= lgy (4.6)
Y Yy
In both cases, the SO(3) gauge fields are related to the SU(2)r gauge fields by
Al =Ly, (4.7)
92

The two sets of gauge fields implement the SO(3)giag gauge fields. Furthermore, the twist
condition implies a = b = ¢ and g1a = 1.
Using the following projectors

H?: Vi€A = €A, Yigea = —iotge”,

Vegea = —iohpe®,  Ypzea = —iohpe”, (4.8)
S%: ypea =ea,  ypgea =ioipe’

Vjp€A = iohgeP, Voe€A = io4ge?, (4.9)
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we obtain the BPS equations

1
¢ = geﬂf*w%‘ [(14€*)g1 + (1 — €¥)ga][2Aae®® + g2 T2¢ (1 — €?)],  (4.10)
2
3 3
o' = " Xae 770721 — e2) gy + (1 + ) go] — “me™
892 2
1
_E[(l +6*)3g1 + (1 — ) go), (4.11)
1 1
G = Eea_w[(l +e2)3g; + (1 — e2)3g] + §me_3”
)
+8792Aae*0*¢*2c’[(1 — 2 g1 + (1 + *)ga), (4.12)
1 1
F/ _ Eea—&;ﬁ[(l + 62¢)3gl + (1 _ e2¢>)3g2] + ime_?’g
3
—8—g2)\a6_(’_¢_2G[(1 — €2 g1 + (1 + €2)go] (4.13)

where A = £1 for S® and H? as in the previous cases. Note also that, in both cases, the
last projector is not independent from the second and the third ones. Therefore, fixed
point solutions will preserve four supercharges or equivalently N = (1, 1) superconformal
symmetry in two dimensions. The analysis of unbroken supersymmetry can be done in a
similar manner to that given in [18].

We begin with a simple fixed point solution with g» = ¢;. In this case, only AdSs x H?
solution exists and is given by

_ 1 1 1. 191
6=-7l3,  o=-In3 4ln[m},

3 1 g1 [m
= —In3—=-In|%>=,/—]|. 4.14
G 16 n3 2n[a1/g1 (4.14)

For go # g1, we find two classes of solutions. In the first class, only AdSs x H? is possible
and given by

¢ = lln [91+92] 1 [—3mvg§—g%]

o= —1In
2 |9g2—n 2 29192

3
1 algs—gd)s [ 3
G=—-In|— — 4.15
2 [ 92 2g192m (4.15)

where we have chosen ¢g; > 0 and g2 < —g;. For positive g9 with g2 > ¢7 and g; > 0, we
find another AdS3; x H3 solution

¢:lln [91—1—92} o1 [3m\/g%—g%]
2 ’ 2 ’

92 — g1 29192

1 2 2\3
G Lozt [ 3 | (4.16)
2 92 2g19om
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The second class of solutions is given by

3. 1 [(1L+e)g1 + (1 —e)gs
=-¢—-1 4.1
=30l { 6m ’ (4.17)
30
1 goe2 (e*? — 1) 3m
G=¢p— =1 4.18
¢ P [ \a 2[(1 4 €52)g1 + (1 — €69)go] (4.18)
where ¢ is a solution to the following equation

(1 —3e29 — 3¢ 4 5) gy + (1 + 362 — 3e* — 59) gy = 0. (4.19)

The explicit form of ¢ can be written, but we refrain from giving such a complicated
expression. We will however give some examples of the solutions. Using the relation
g1 = 3m and choosing g, = % g1, we find an AdSs x S? solution characterized by

1
6=09645, o=—0528  G=-04309—;ln [%} . (4.20)

It is also possible to obtain an AdS3 x H? solution for gy = %gl. This solution is given by

: [0327&”] S @

¢ = —0.5732, o= —0.2723, G =—-0.5732 — S In -

4.2 N =(1,0) two-dimensional SCFTs with SO(3) x SO(2) symmetry

We now look for a larger residual symmetry. Although the dilaton o is a singlet of
SO(3)r x SO(3), the second SO(3) gauge fields cannot be turned on without turning on
some vector multiplet scalars as can be seen from the supersymmetry transformation of
AL. On the other hand, no vector multiplet scalar is a singlet of the SO(3) symmetry.
We can at most have SO(3)r x SO(2) symmetry with SO(2) being a subgroup of SO(3).
Among the 12 scalars in SO(4,3)/SO(4) x SO(3), there is only one SO(3)g x SO(2) sin-
glet. This corresponds to the non-compact generator Yp3. We then parametrize the coset
representative as

L =e®Y0s (4.22)

The SO(3)r gauge fields are the same as in the previous case while the SO(2) gauge field
will be chosen to be

b
A% = bcos or A8 = —dx (4.23)
Yy

for X3 = S% and ¥3 = H?, respectively.
Apart from the projectors in (4.8) and (4.9), in this case, we need to impose an

additional projector involving v7 namely

et = ot geP . (4.24)

The critical points would then preserve only half of the supersymmetry in the previous
case. This corresponds to N = (1,0) superconformal symmetry in two dimensions.
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With all these and A = 41 for S® and H?, respectively, we find the following BPS
equations

1
¥ = 2o ¥ b (L4 ) + 2me* (1 - )] (4.25)

o = %6_30_<I>_2G [6)\620+¢’ + Ab620(62<1> _ 1)

+2¢2¢(3m — 2g1e* T + 3me*®)] (4.26)

G = ée_%_q)_QG [3)\be2g(e2q} —1) + 10 ae?+?

+26%%(2g1€1T® + m + me?®)] (4.27)
F = éef?"’*q’*m [—)\b62‘7(62(I> —1) — 6Xae*t®

+2e%9(2g1€ T + m + me®)] . (4.28)

When ® = 0 and b = 0, the above equations reduce to the pure F'(4) gauged supergravity
which admits only AdS; x H? solutions in agreement with [18].
We find an AdS3 x Y3 fixed point given by

1 —d D 20 1 1 2P 4P
o= tmle [3ae® (e ) +2bm(1 + e™® 4 e*?)] , (4.29)
4 glb(l + 62‘1))
1 —d 1 2P D 20 1 25(1 2P 4P
a-tn be®(1+ e*®)[3ae®(e ) +20(1 + e*® 4 €*?)] ’ (4.30)
4 4g1m(e2® —1)2
V202 4 262 4 2av/a? — 202 — a + v/aZ — 202
® =1In 5 . (4.31)

The above solution is written for the S case. To find the solution in the H? case, (a,b)
should be replaced by (—a,—b) in all of the above expressions. The solution is valid for

non-vanishing a and b with — “2—2 <bh< \/GQE )

From the analysis, it turns out that only AdSs x H? solutions are possible. As an

example of explicit solutions, we take a > 0 and choose b = :l:%. The solutions are
given by
V3 -1 1, |2v2m(2—+/3)
(b — ln s g = — ln —_—,
V2 4 (2v3 = 3)q1
7 1
3\32 Ja (m)\16
G =1 — — [ — 4.32
{6 EG) 4
for b = % and
V341 1. |2v2m
O =1In s oc=—-1In )
V2 4 \/591
1 1
3\8 Ja (m)\*
G =1 - — [ — 4.33
(G VEG) 459
for b = —%. The solution in this case does not have an analogue in seven dimensions since

there is no SO(3)g scalar in that case.
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5 Conclusions

We have classified supersymmetric AdSs and AdSs solutions of N = (1,1) six-dimensional
gauged supergravity coupled to three vector multiplets with SU(2) x SU(2) gauge group.
Depending on the values of the two gauge couplings, there are both AdS; x S? and
AdSy x H? solutions with SO(2) x SO(2) symmetry and AdS; x H? solutions with SO(2)
symmetry. All solutions preserve eight of the original sixteen supercharges and are dual
to N = 2 SCFTs in three dimensions. For AdS3 x Y3 solutions, we have found new
AdS3 x S3 and AdSs x H? solutions preserving four supercharges and SO(3) symmetry.
These solutions correspond to N = (1,1) SCFTs in two dimensions. For SO(3) x SO(2)
symmetry, only AdSs x H? solutions exist with % supersymmetry unbroken. These
solutions provide gravity duals of N = (1,0) SCFTs in two dimensions. Apart from the
SO(3) x SO(2) AdSs fixed point, the solutions are very similar to those of N = 2 SO(4)
gauged supergravity in seven dimensions [20].

All of these solutions correspond to IR fixed points of five-dimensional SCFTs with
global symmetry SU(2) in lower dimensional space-time. There should be RG flows de-
scribing twisted compactifications of these SCFTs on 2 or 3-manifolds giving rise to these
AdSy and AdS3 geometries in the IR. We have not been able to find analytic solutions for
these flows, but numerical solutions can be obtained as in other cases, see for example [20].
The results obtained in this paper are hopefully useful in the holographic study of five-
dimensional SCFTs and their compactifications as well as the classification of vacua of the
half-maximal gauged supergravity in six dimensions.

It would be interesting to find a possible embedding of these solutions in higher dimen-
sions in particular in massive type IIA supergravity similar to the embedding of pure F'(4)
gauged supergravity [23] or in type IIB supergravity as in [11] and [24]. This could give
an interpretation to these solutions in terms of wrapped D4-branes. However, since there
is only one class of known AdSg solutions, as shown in [10], embedding the AdSg solutions
with different SU(2) gauge coupling constants (if possible) might not be straightforward in
massive type ITA theory.

It is also interesting to find dual field theories to the AdS,; and AdS5 critical points
identified here. Another investigation would be to study other types of gauge groups such
as non-compact gauge groups to the matter-coupled F'(4) gauged supergravity and classify
all possible gauge groups that admit supersymmetric AdSg vacuum similar to the recent
analysis in seven dimensions [25, 26]. Finally, gravity solutions with a non-vanishing two-
form field could be of interest. A simple AdS3 x R? solution with only the two-form and
the dilaton turned on has been studied in [18]. It might be interesting to study this type of
solutions and a more general twist involving B, field within the framework of the matter
coupled gauged supergravity. We leave these issues for future works.
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A Supersymmetric AdSg critical points and holographic RG flows

In this appendix, we review a description of supersymmetric AdSg critical points with
SU(2) x SU(2) and SU(2)giag symmetries. We consider only the SU(2)giag singlet scalar
corresponding to the non-compact generator Yy defined by

Y=Y + Yoo + VY33 (A1)
The SO(4, 3)/SO(4) x SO(3) coset representative is accordingly parametrized by
L =ef", (A.2)
The scalar potential can be computed to be

V= %625’ [(97 + 93)[cosh(6¢) — 9 cosh(2¢)] + 8(g5 — g7) + 8g1g2 sinh®(2¢)]

+e7%7m? — 4e72m(gy cosh® ¢ — gy sinh® ¢). (A.3)

We are mainly interested in supersymmetric critical points. Therefore, we set up the
BPS equations from supersymmetry transformations of fermions given in (2.11), (2.12)
and (2.13) with all but the metric and scalars o and ¢ vanishing. The six-dimensional
matric is taken to be the standard domain wall

ds? = 2A0) dx%A + dr? (A.4)

where al:z:%4 is the metric on five-dimensional Minkowski space.
With the projection condition ~vze4 = €4, the resulting BPS equations are given by

1
¢ =~ 1) [(1 +e*)g1 + (1 - 62¢)gz] : (A.5)
1
o = —Eegfw [(1 +e2)3g + (1 — €2¢)392} + gmeﬁ?’a, (A.6)
1 1
A= e (L4 )y + (1= €2)gs | + Sme™ (A7)

where the r-derivative is denoted by /. From these equations, it is clearly seen that there
are two supersymmetric critical points namely

_ _ 1. 3m _ 2 [ 91\3
and

1 1 2 _ 2
¢:1n[91+92], o= L |3V ot |

2 |lg2—n 4 9192

3
[ 9192 ] : (A 9)
Vo = —20m? | ——2=Z2 . .
3m\/g3 — g3

This critical point is valid for go < —g1 when g; > 0. For g1 < 0, we need to take g < g1.
The full scalar mass spectrum at these two critical points can be found in [8].
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To find an RG flow solution interpolating between these two critical points, we solve

the above BPS equations for ¢(r), o(r) and A(r). By defining a new radial coordinate 7
via % = ¢773% we can solve equation (A.5) for ¢(7). The solution is given implicitly by

4 1

F= — —1In(1 —¢e*) — —1In(1 +¢*
gt+g2 20 ( ) 292 ( :
Bl )Y PRV ~ )] (A.10)
9192(91 + 92)

In the above solution, we have omitted an additive integration constant which can be
removed by shifting the coordinate 7.
Combining equations (A.5) and (A.6), we find

do e3¢f4a [24m _ 64073‘#[(1 4 62¢>)3g1 4 (1 _ 62¢)392H

— = A1l
&b A D[+ )gr + (1— )ga] )
which can be solved to give a solution for o
1 —¢ 91
o="-In|— (f;m—i— Cile 5 ) . (A.12)
47 [(1+e*)g1 + (1 —e*)go

In order to make this solution interpolate between the two critical points (A.8) and (A.9),
we choose the constant C; to be

RY:

29192

which gives the solution for o

L [Bme™?[(1 = €**)g1 + (14 €**)go]
o= —1n
4 29192

(A.14)

By the same procedure, we find the solution for A(r) up to an additive integration constant
that can be absorbed by rescaling the coordinates in da:%A

a=loo %mu _ ) iln(l e 1 %m[(l + g+ (1— )], (A15)

It should be noted that the critical points and the flow solution have a similar structure to
those in seven dimensions [19].
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