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Abstract: The continuous shift symmetry of axions is at the heart of several realizations

of inflationary models. In particular, axion monodromy inflation aims at achieving super-

Planckian field ranges for the inflaton in the context of string theory. Despite the elegant

underlying principle, explicit models constructed hitherto are exceedingly complicated.

We propose a new and better axion monodromy inflationary scenario, where the inflaton

potential arises from an F-term. We present several scenarios, where the axion arises from

the Kaluza-Klein compactification of higher dimensional gauge fields (or p-form potentials)

in the presence of fluxes and/or torsion homology. The monodromy corresponds to a change

in the background fluxes, and its F-term nature manifests in the existence of domain walls

interpolating among flux configurations. Our scenario leads to diverse inflaton potentials,

including linear large field behaviour, chaotic inflation, as well as potentials with even higher

powers. They provide an elegant set of constructions with properties in the ballpark of the

recent BICEP2 observational data on primordial gravitational waves.
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1 Introduction

The possible first detection of primordial gravitational waves by the BICEP2 collabora-

tion [1] has opened an exciting new chapter in observational cosmology. If the observed

B-mode polarization of the cosmic microwave background (CMB) is confirmed to be pri-

mordial in origin, this discovery will be seen as a watershed for theories of the early universe.

Inflation [2–5] provides a compelling interpretation of this finding, while competing theo-

ries which give unobservable tensors (such as [6]) are now disfavored. Moreover, the large

amplitude of gravitational waves as inferred from BICEP2 (corresponding to a tensor to

scalar ratio r � 0.01), combined with a simple theoretical argument due to Lyth [7], sug-

gests a super-Planckian inflaton field range during inflation. Thus, if the BICEP2 result

holds up and is confirmed by other experiments such as Planck, a large class of popular

inflationary models — namely, single, small-field inflation — are ruled out simply by the

observation of a single quantity r.1

If the observed primordial gravitational waves are indeed generated by vacuum fluctu-

ations during inflation, the implications for quantum gravity are astounding. Not only is

the scale of inflation V 1/4 = 2.2× 1016 GeV× (r/0.2)1/4 not far from the Planck scale but

the super-Planckian field excursion required for generating the observed large r strongly

motivates a UV completion of inflation. Large-field inflation models are sensitive to an

infinite number of corrections to the inflaton potential which are suppressed by the Planck

mass scale. Turning this around, understanding how such corrections are controlled in a

concrete framework of quantum gravity, such as string theory, offers a unique opportunity

for connecting high scale physics to experiment.

A natural way to suppress the couplings of the inflaton to the heavy degrees of freedom

is through an approximate shift symmetry. This idea was invoked in the early influential

work on natural inflation [10] though to establish that this shift symmetry is respected

by Planck scale physics requires embedding it in a quantum theory of gravity. In string

theory, two broad class of ideas to realize large-field inflation with axions have been put

forward [11]. The first class of ideas involves multiple axions in an intricate way [12–15],

while the second can be implemented with a single axion if there is a non-trivial monodromy

in field space [16, 17]. In both cases, large field inflation can be achieved without requiring

a large axion decay constant f � Mp (needed in [10]) which seems implausible in string

theory [18].

The axion monodromy idea [16, 17] is particularly interesting in that the ingredi-

ents involved (shift symmetries, branes, and fluxes) are rather common in string theory.

However, it is fair to say that a concrete string theoretical model realizing this idea is

far from our sight. To avoid the supergravity eta-problem, an NS5-brane 2 (instead of a

D5-brane) was introduced in [17] to break the shift symmetry, while tadpole cancellation

1This is assuming that the observed gravitational waves are produced by vacuum fluctuations. Infla-

tion could also have alternative sources of gravitational waves, e.g., from particle production [8, 9]. The

alternative mechanisms proposed thus far all invoke additional fields. Interestingly, the only known model

which has been shown to satisfy the current bounds on non-Gaussianity in the scalar perturbations (Model

II in [9]) also involve axions.
2In [19] a variant of this setup involving (p,q) 7-branes was considered.

– 2 –



J
H
E
P
0
9
(
2
0
1
4
)
1
8
4

requires it to be accompanied by an anti NS5-brane (herefrom NS5-brane). To prevent

the NS5-NS5 pair from annihilating perturbatively, they are assumed to be down at dif-

ferent warped throats, wrapping homologous 2-cycles. It seems exceedingly challenging to

construct string compacitifcations (a.k.a. global embeddings) realizing these features. Fur-

thermore, the backreaction of the NS5-NS5 pair seems hard to control [20] (see also [21]).

In addition to these challenges, it is not clear how inflation ends and why the endpoint is

a vacuum with approximately zero vacuum energy.

These models also present the drawback of containing objects that cannot be analyzed

with perturbative techniques, but addressing the eta problem by using the perturbative

approximation to the Kähler potential, which is certainly questionable.

This is our main motivation to move on to a new and better class of axion monodromy

inflation models, based on F-term potentials (in a clear underlying supersymmetry struc-

ture). Our F-term axion monodromy inflation models are perturbative and therefore can

be studied with the available effective actions, without the inclusion of objects that cannot

be analyzed with perturbative techniques. We exploit higher-dimensional gauge fields to

generate the shift symmetry of a 4d axion, which subsequently acquires an F-term poten-

tial by the introduction of extra ingredients, in the form of torsion or diverse fluxes, which

in fact are already necessarily present in any realistic model addressing moduli stabiliza-

tion. There is moreover a simple interpretation for the monodromy upon a discrete shift

of the axion, required for achieving large field inflation in quantum gravity: it results in an

increase of the internal field strength background value for the higher dimensional gauge

field (and hence an increase in energy). The framework also admit an elegant explanation

for the solution of the eta-problem, in terms of mutual consistency conditions of fluxes

and branes.

We describe several classes of models, which lead to a variety of inflaton potentials that

can be used as templates for comparison with future data. One class of models describes the

axion as a (massive) Wilson line for a higher-dimensional U(1) gauge field. Although most

of its ingredients are purely field-theoretical, the need for a UV completion motivates their

realization in string theory. Axions from massive Wilson lines for standard gauge fields are

present in many string compactifications. Possibly, the most familiar being associated to

the discrete Wilson lines present in realistic heterotic string Calabi-Yau compactifications.

They are also easily engineered in type II compactifications (and orientifolds thereof), where

they arise in the open string D-brane sector, which makes our scenario more amenable to

addressing the concerns raised above.

A further class of models is constructed by going beyond standard gauge fields, and

realizing axions as massive ‘Wilson lines’ for generalized p-form gauge fields. These are

very abundant in type II compactifications with fluxes (either from field strengths, from

geometric or non-geometric nature) and/or with torsion homology. We provide several

simple realizations, including examples in type IIB orientifolds with NSNS and RR 3-form

fluxes; we moreover provide tools to diagnose the presence and properties of such fields,

in terms of certain topological couplings in the 4d effective action, or conversely in terms

of the properties of domain walls of the 4d theory. Models with massive axions from RR

fields provide a simple and very promising setup for inflation, due to their absence from
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many couplings in the theory, a feature that provides a further rationale for the solution

to the eta problem.

This paper is organized as follows. In section 2 we review the ingredients of axion

monodromy (section 2.1), a sketch of earlier models and our viewpoint on their question-

ability (section 2.2). In section 3 we introduce the first class of F-term axion monodromy,

in terms of massive Wilson line axions: in section 3.1 we introduce the basic idea and

in section 3.2 we relate their massive nature to torsion homology in the compactification

space; in section 3.3 we find a 4d dual description of the system which displays a 4d gauge

symmetry not manifest in the original one, and which connects with the 4d effective theory

models in [22, 23], in section 3.4 we uncover the F-term nature of the axion potential which

we interpret in section 3.5 in terms of 4d domain walls; in section 3.6 we discuss Wilson

lines in the context of string compactifications, describing how enter in the Kähler poten-

tial and giving explicit examples of massive Wilson lines. In section 4 we construct further

classes of F-term axion monodromy models, based on axions from generalized p-form fields,

both in compactifications with torsion homology (section 4.1), and in flux compactifica-

tions (section 4.2). Section 5 explores the implications for inflation and its observables,

while in section 6 we present our conclusions. Appendix A contains other suggestions for

variants of F-term axion monodromy models, illustrating the generality and flexibility of

the approach. Appendix B contains computations regarding the dimensional reduction of

massive axions.

2 Axion monodromy

2.1 Generalities

Axions, with their underlying continuous shift symmetry, provide a well-motivated start-

ing point to produce an inflaton potential flat enough throughout a super-Planckian field

range. Fields with such shift symmetry are ubiquitous for instance in theories with gauge

potentials in extra dimensions, where the continuous shift symmetry is inherited from the

higher dimensional gauge invariance of the theory. Although the continuous symmetry

is in general violated by non-perturbative effects, the surviving discrete shift symmetry

keeps the potential under control. The idea is very general, and particular realizations

indeed arise in string theory, where such axions are very generic. For instance they can

arise as D-brane positions in toroidal compactifications, or more generically from the KK

compactification of higher-dimensional p-form fields over p-cycles in the internal space. In

the latter case the non-perturbative effects arise from euclidean string or brane instantons,

and the surviving discrete symmetry is related to charge quantization for these objects.

In order to produce a slow-roll potential over a super-Planckian range, axion mon-

odromy inflation [16, 17] enriches the scenario by introducing an extra contribution to the

potential which increases every time the axion completes a period, hence the term mon-

odromy. Denoting the axion field by φ, the prototypical form of the contribution to the

potential in many models is schematically

V =
√
L4 + 〈φ〉2 (2.1)
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This leads to a quadratic potential for small vevs, but behaves linearly for large vevs. In

order to ensure that the potential remains flat enough, the model requires an UV completion

in which the presence of corrections can be addressed, most notably the infamous eta

problem. This motivates its discussion in the framework of string theory. In the following

we will discuss why embedding the axion monodromy idea via F-term generated potentials

seems the more promising avenue to build successful string theory models of inflation. The

reader not interested in this discussion may safely skip to section 3.

2.2 F-term axion monodromy

Axion potentials with monodromy arise naturally in string theory models, where extra

ingredients like branes and fluxes are present and can lead to additional couplings of the

axion. The monodromy often admits an interpretation in terms of the appearance of

further induced brane tension, which contribute to the potential energy of the configuration.

The structure (2.1) arises from the (Dirac-Born-Infeld) form of the worldvolume action

for the parent branes, on which φ produces the induced branes. Concrete applications

for inflation require the models to ensure that (i) there is no net brane charge induced

by the monodromies, as they would violate the tadpole cancellation conditions, (ii) the

relevant axion does not mix with geometric moduli, otherwise their appearance in the

Kähler potential produces an η-problem, and (iii) the backreaction of the monodromy

induced branes should be negligible.

The requirement to address these issues makes present axion monodromy models cum-

bersome. Naively, one simple setup for axion monodromy is to consider type IIB compacti-

fications with O3/O7-planes, with the axion as the scalar arising from the KK reduction of

the NSNS 2-form B2 over a 2-cycle Π2 in the compactification space, and introducing a D5-

brane wrapped on Π2 to generate the monodromy. Specifically, when the axion completes

one period, the B-field ends up inducing one unit of D3-brane tension. Unfortunately it

also induces one unit of D3-brane charge, which would violate the RR tadpole conditions,

so this forces to consider D5- anti D5- brane pairs, which for stability must be wrapped on

homologous 2-cycles trapped far from each other (e.g. down warped throats). Next, B-field

axions enter the complex Kähler moduli in the following way [24]

Tα =
3

4
cαβγv

βvγ +
3

2
iθα +

3

8
eφcαabG

a(G− Ḡ)b (2.2)

where the 4d scalar fields (vα, θα, Ga) are defined by

J =
∑
α

vαωα θα =

∫
X6
C4 ∧ ωα C2 − τB2 = (ca − τba)ωa = Gaωa (2.3)

with ωα, ωa a basis of harmonic 2-forms such that [ωα] ∈ H2
+(X6,Z), [ωa] ∈ H2

−(X6,Z),

the sign denotes the 2-form parity under the orientifold geometric action and cαβγ , cαab the

corresponding triple intersection numbers between these classes. Finally, τ = C0 + ie−φ.

As a result the combination that enters the Kähler potential is

K = −
∑
α

log

(
Tα + T̄α +

3

2
e−φcαabb

abb
)

(2.4)
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in which (θα, c
a) are absent. The presence of the b-axions in K implies that stabilization of

the Kähler moduli via non-perturbative superpotentials W ∼ e−T ultimately leads to an

eta problem for the such potential inflation field.

It has been proposed in [16, 17], that this problem can be solved by considering the S-

dual systems of NS5-branes (or rather brane-antibrane pairs) coupled to axions from the RR

2-form field. In addition, to prevent strong backreaction of the intermediate flux stretched

between the distant NS brane-antibrane pair [20], the whole system has been proposed

to be outcast down an overall throat [21]. Attempts to improve these combination of

axion monodromy ingredients into better motivated string compactifications, for instance

in terms of 7-branes, have been proposed in [19].

However, a general drawback of all models hitherto is that they use an axion which

is known not to appear in the Kähler potential at the perturbative level, but ultimately

involve objects (like NS5-branes, or (p, q) 7-branes) not admitting a description at weak

coupling; the untractability of the final system stirs the feeling that the issue of the eta

problem in these setups remains to be settled.

In order to be more precise, consider a D7-brane and an anti-D7-brane wrapping a 4-

cycle Π4 dual to the previous 2-cycle Π2. Upon dimensional reduction of their CS actions,

the c-axion appears in a Stückelberg Lagrangian

LD7
St ⊃ (∂c−Aγ +Aδ)

2 (2.5)

where Aγ is the gauge boson of the D7-brane and Aδ that of the anti-D7-brane. This implies

that the combination U(1)γ+U(1)δ will remain massless while U(1)γ−U(1)δ should become

massive. By applying S-duality we obtain that in a system with a (0,1) 7-brane wrapping

Π4 and its anti-7-brane we have

L7(0,1)
St ⊃ (∂b−Aγ +Aδ)

2 (2.6)

Again, a Stückelberg Lagrangian of this form cannot come from a Kähler potential (2.4),

because by standard field theory arguments b must be protected by a shift symmetry in

order to be eaten by a gauge boson, and as a result it cannot appear explicitly in the Kähler

potential as it happens in (2.4). That is, the Kähler potential is not invariant under the

gauge symmetry of (2.6)

Aγ −Aδ → Aγ −Aδ + ∂λ, b→ b+ λ (2.7)

and instead, one expects c to appear in K, in contrast with the naive perturbative expres-

sion (2.4).

This incompatibility between Stückelberg terms and Kähler potentials would show up

in any model attempting a realization of D-term axion monodromy inflation, as also pointed

out in [19]. This direct difficulty has been avoided in earlier models, for instance in [19]

by removing the problematic U(1) invoking the orientifold projection, and in [16, 17] by

the use of 5-branes (for which the Stückelberg term cancels). However, the earlier analysis

illustrates the point that the use of the Kähler potential (2.4) derived perturbatively to-

gether with a brane whose effective action is not well-understood in the same perturbative

– 6 –



J
H
E
P
0
9
(
2
0
1
4
)
1
8
4

regime may potentially lead to problems,3 and in particular regarding the identification of

those axions with genuine shift symmetries. Furthermore the fact that all working models

hitherto involve brane-antibrane pairs, and thus hard supersymmetry breaking and possi-

bly difficult-to-control backreactions, makes the very notion of Kähler potential unclear in

these setups.

In the present paper we undertake an alternative direction in order to find manifestly

consistent (and in fact simpler) realizations of axion monodromy inflation. In particular we

would like to consider models of inflation which are compatible with spontaneously (rather

than explicit) broken supersymmetry. Then by standard supersymmetry arguments we

know that an axionic field cannot enter a D-term potential and enjoy a shift symmetry at

the same time.4 We then conclude that the most natural way to realize axion monodromy

inflation compatible with a 4d supersymmetric structure is to consider models where axions

appear in an F-term potential. As we will discuss in the following, there are plenty of string

theory setups where this idea can be realized. Some of the simplest involve axions associated

to (massive) Wilson lines, as well as generalization of this idea to higher-degree p-form fields.

We gather a further complementary set of ideas along these lines in appendix A.

3 Massive Wilson line axion monodromy

As already mentioned, axion monodromy models based on closed string axions suffer from

several drawbacks. Since the axion monodromy idea is very general, it is natural to look for

alternative realizations in more general setups. In the following, we develop a very general

realization, in which the axion is played by a (massive) Wilson line scalar arising from a

higher-dimensional gauge field. This is an interesting setup in itself, but also serves as a

warmup for section 4, which discusses the generalization for (massive) axions from higher-

dimensional p-form fields, which are ubiquitous in type II flux compactifications (and/or

in compactifications with torsion homology).

A point of terminology: In the type II language in which we will carry out the discus-

sion, the massive Wilson line axion corresponds to an open string field, so the models could

be termed as open string axion monodromy models. However, the setup is very general and

could be applied to heterotic string compactifications, and even beyond string theory, in

any model with gauge fields and extra dimensions. From this more general perspective, it

is more appropriate to call them massive Wilson line axion monodromy models. As we will

see in section 3.4, the axion potential and monodromy arise from a superpotential, hence

they are a particular instance of F-term axion monodromy, which are explored in further

generality in section 4.

In any gauge theory in extra dimensions there is an obvious set of axionic scalars. These

correspond to the Wilson lines of the gauge field along homologically non-trivial 1-cycles

of the compactification manifold. The continuous shift symmetry of these scalars arises

3In fact, this is one of the motivations behind deriving SL(2, Z) invariant effective actions in F-theory [25].
4Indeed, given a complex scalar φ = φ1 + iφ2, φ1 enters a Fayet-Iliopoulous term if and only if φ2 enters

a Stückelberg Lagrangian. Then φ2 must have a shift symmetry such that it cannot enter explicitly in the

Kähler potential, and so φ1 must necessarily appear in K or otherwise φ would not have a kinetic term.

– 7 –
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from the higher-dimensional gauge invariance of the theory, and is therefore extremely

robust against corrections; this fact has been extensively exploited in BSM models with

extra dimensions, as a protection mechanism for the Higgs mass (building on [26]), and in

inflation [10]. Even though non-perturbative effects violate the continuous shift symmetry,

a discrete periodic identification remains, which corresponds to non-trivial identifications

from large gauge transformations.

Wilson lines are also familiar in string theory, and in particular in D-branes. In fact,

the first appearance of D-branes in string theory was implicit in the realization that Wilson

line scalars (e.g. in toroidal compactifications) can be interpreted as positions in the T-dual

circle [27]. This T-dual picture provides a useful geometrization of the axion properties:

its shift symmetry is the translational symmetry along the T-dual S1, and its periodicity

is the periodicity of the T-dual S1.

In order to build axion monodromy inflation models, we need a violation of the shift

symmetry (leading to the inflaton potential) and a monodromy which allows the axion to

take values in a covering of the basic period (to allow for super-Planckian excursions). We

now show that both ingredients are easily reproduced by a simple modification, which we

dub ‘massive Wilson lines’. Moreover, in the D-brane setup, massive Wilson lines admit a

simple a very nice interpretation in the T-dual picture.

3.1 Massive Wilson lines

Consider for simplicity a U(1) gauge theory on a compactification space Π (note that for

D-branes this is in general a subspace in the 6d compactification space), descibed as an S1

fibered over some base space B. We will consider the regime in which the S1 size is much

smaller than the length scales in B, so that we deal with KK compactification on S1 first.

If the S1 fiber is homologically non-trivial, there is a genuine Wilson line scalar

φ =

∫
S1

A1 (3.1)

Equivalently, there is an associated harmonic 1-form η1, which locally is of the form dy, with

y a flat coordinate along S1. We may expand the 1-form as A1 = φ η1 to obtain a massless

scalar φ. As mentioned earlier, the masslessness of φ is a consequence of the gauge invari-

ance of the higher-dimensional theory. The dependence of the 4d action on φ is reduced

to derivative terms, or combinations of exponentials e2πiφ violating the continuous shift

symmetry, but compatible with the discrete identification. In D-brane models, such terms

can arise e.g. from worldsheet instantons, and are in fact present in phenomenologically

relevant quantities like Yukawa couplings (see e.g., [28]).

Since the axion decay constants of these fields is sub-Planckian, super-Planckian field

ranges require a modification which induces axion monodromies. In the present setup, we

now argue that this modification is fairly simple and amounts to considering the global

fibration of S1 over B such that the S1 is trivial in H1(Π,R). Then, even though locally in

B there is a Wilson line scalar φ as in (3.1), global effects in B remove it from the massless

spectrum. Hence we call the 4d field φ a massive Wilson line. In the dual language of

cohomology, there is still a 1-form η1, but it fails to be closed, dη1 ∼ ω2, and hence is

– 8 –
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not harmonic. It is nevertheless still a eigenvector of the Laplacian ∆ = dd∗ + d∗d with

non-vanishing eigenvalue, and so the expansion A1 = φ η1 yields a 4d field φ which is no

longer massless. It is important to notice that the mass scale for φ is generated by global

effects in B, hence it is suppressed by its volume. This singles out this field among the

plethora of massive fields in any compactification, in the regime of large volume of B.

The trivial nature of S1, equivalently the non-closedness of η1, implies that changing

the 4d vev of φ corresponds to turning on a non-trivial field strength backgound

F2 = dA1 = φdη1 ∼ φω2 (3.2)

This component of the fields strength should not be regarded as a flux, since ω2 is exact,

therefore trivial, so F2 integrates to zero over any non-trivial 2-cycle. However, this field

strength contributes as a φ-dependent 4d vacuum energy, which will become the inflationary

potential. Moreover, its leads to the desired monodromy effect, since circling around a

period of φ implies an overall change in the background F2 (adding one unit of ω2 to it).5

The details of the axion potential depend on the details of the dynamics of the un-

derlying gauge field. A quadratic Yang-Mills kinetic term would lead to a quadratic axion

potential, but the former may be just the small field approximation to the complete action.

For instance, in the D-brane setup, the DBI action results in a structure (2.1). We therefore

postpone the discussion to the relevant models.

Finally, a last ingredient in the axion monodromy scenario are the non-perturbative

effects leading to a superimposed periodic modulation of the axion potential. In the present

setup, they arise from instanton effects, which are described by euclidean worldlines of

charged particles wrapped on the S1, since these are the objects coupling to φ. The

periodic nature of this contribution follows from charge quantization of these particles.

3.2 Massive Wilson lines and torsion homology

There is a slight generalization of the above idea, based on torsion (co)homology. It is

possible that the S1 is not a boundary, but still remains trivial in H1(Π,R). This is the

case if it corresponds to a torsion class in H1(Π,Z). Namely, the S1 is not a boundary of

a 2-chain, but some multiple k of its class is a boundary. Following [31], there is a 1-form

η1 satisfying dη1 = k ω2, and the above picture for massive Wilson lines goes through with

addition of suitable factors of k.

A simple example is provided by the twisted torus T̃3, described as an S1 fibered

over T2 with first Chern class k. This T̃3 does not have three 1-cycles like a T3 would,

but instead two standard 1-cycles and one torsional 1-cycle. This implies that there is a

globally well-defined but non-closed 1-form η1 such that dη1 = k dx2 ∧ dx3, and so turning

a Wilson line along such component implies

A = φ η1 → F = dA = φk dx2 ∧ dx3 (3.3)

5This mechanism has appeared in the holographic computation of the θ-dependent energy of non-

supersymmetric gluodynamics in [29], whose multivaluedness was explored in [30] as a toy model of axion

monodromy.
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Upon a monodromy in φ, the system picks up a change in F2 = k dx2 dx3. Note that the

space parametrized by x2, x3, is not a 2-cycle (it is precisely the 2-chain whose boundary

is homotopic to k times the fiber S1), hence this continuous change of F2 does not violate

Dirac quantization. Finally, we note that the mass of φ can be shown to scale as k R1/R2R3

(for small values of 〈φ〉, see section 3.6), where R1 is the size of the torsion 1-cycle and

R2, R3 the sizes of the other two. Hence for R1 � R2, R3 the massive Wilson line is much

lighter than the KK replicas of the true Wilson lines (or other moduli present in D-brane

realizations of the model), hence it makes sense to single out this field as the relevant for

the dynamics of the system, e.g. during inflation.

More in general, we consider a gauge field propagating on 4d spacetime times a d-

dimensional cycle Πd in the compactification space (for a wrapped Dp-brane, d = p −
3). The KK reduction in the presence of torsion cycles has been discussed in [31] (see

also [32]), which we adapt to our present purposes. Recall the isomorphism relation among

(co)homology groups [33, 34]

TorHr(Πd,Z) = TorHr+1(Πd,Z) , Hr(Πd,Z) = Hd−r(Πd,Z) (3.4)

In the case of a torsion S1 1-cycle we have the nontrivial torsion classes on Πd include

TorH1(Πd,Z) = TorH2(Πd,Z) = TorHd−2(Πd,Z) = TorHd−1(Πd,Z) (3.5)

The first relates the torsion S1 to a closed but torsion 2-form ω2, satisfying dη1 = kω2, as

already mentioned. The other relations will be useful later on.

3.2.1 Stringy picture and D-brane T-duals

The above setup can be considered in gauge field theory, but it is best motivated in string

theory, which provides a UV complete picture of the construction. A prototypical setup

for massive Wilson lines are the discrete Wilson lines in heterotic compactification on non-

simply connected Calabi-Yau threefolds [35–37]. In the following sections, we will rather

consider D-brane realizations, which moreover allow for a T-dual geometrization of the

monodromy, and the corresponding increase in vacuum energy.

Consider for example the massive Wilson line on a D7 wrapped on a twisted torus T̃3,

and perform a T-duality along the S1 fiber. The D7-brane turns into a D6-brane whose

position in the T-dual circle is parametrized by φ. The T-dual geometry of the relevant

coordinates is actually a trivial T3, and the non-triviality of the twisted torus turns into

the presence of k units of NSNS 3-form flux H3 on the T-dual T3, H3 = k dx1dx2dx3. In

the absence of the H3 flux, φ would be (the dual of) a true Wilson line, with a continuous

shift symmetry and unit period. The presence of H3 breaks the translational invariance,

since some quantities can depend on the NSNS 2-form potential, which we write in a

convenient gauge as B2 = k x1dx2dx3, with x1 a flat coordinate on the S1. From the

D6-brane perspective, there is a non-trivial pullback B2 = k φ dx2dx3, which leads to a

φ-dependent background for F2 = F2 + B2, which contributes to the vacuum energy (in

particular it clearly breaks supersymmetry because the F-term condition for a D6-brane is

F = 0). This position-dependent potential in the presence of fluxes was exploited in [38]
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to stabilize D7-brane positions, and it is behind the appearance of flux-induced soft terms

in the D7-brane effective theory [39, 40]. For a worldsheet description of this and other

D-brane monodromies, see [41].

In these D-brane setups, the instanton effects producing the superimposed periodic

modulation of the axion potential are worldsheet instantons wrapped on the 2-chain, and

whose boundary wraps (k times) the S1. Note that this boundary has the interpretation of

an euclidean charged particle worldline, in agreement with our earlier general discussion.

The above T-dual picture can be generalized to fibrations of S1 over a base B, and

produces a T-dual D7-brane wrapped on B and moving in the T-dual S1. This holds for

fibrations in which the S1 is non-contractible, i.e. does not shrink over any point in B. The

behaviour for singular fibrations is actually interesting, and can lead to a quadratic axion

potential even for large fields, which is easily visualized in a simple T-dual picture. Since

the details of this massive Wilson line model differ from those of torsion homology, we offer

its discussion in appendix A.1.

3.3 A hidden gauge invariance

The properties of the massive Wilson line scalar are largely constrained by a hidden gauge

invariance of the system. In what follows we describe it for an S1 being the generator of

H1(Π,Z) = Zk; the case of a completely trivial S1 is recovered by setting k = 1.

Recall that we consider a gauge field propagating on 4d spacetime times a d-dimensional

cycle Πd in the compactification space (for a wrapped Dp-brane, d = p− 3), and focus on

the properties associated to the massive Wilson line along a torsion 1-cycle. Recall the

torsion groups (3.5), which relate the torsion S1 1-cycle to a closed but torsion 2-form ω2,

satisfying dη1 = kω2, as already mentioned. We now exploit the second relation in (3.5),

which implies that there is a torsion (d−1) form σd−1, i.e. such that there is a (d−2) form

λd−2 satisfying

dλd−2 = k σd−1 (3.6)

We would like to discuss the gauge dynamics, not in terms of the 1-form gauge potential

A1, but in terms of the dual (d+ 1)-form gauge potential Ad+1, and its field strength Fd+2.

Their KK expansion along the above non-harmonic forms reads

Ad+1 = b2 ∧ σd−1 + C3 ∧ λd−2 (3.7)

At the level of the field strength Fd+2 = dAd+1 we have

Fd+2 = (db2 − kC3) ∧ σd−1 + dC3 ∧ λd−2 (3.8)

Plugging it into the dual gauge kinetic term, in the quadratic approximation |Fd+1|2,

produces the structure

µ2

k2

∫
d4x |db2 − kC3|2 +

∫
d4x|F4|2 (3.9)
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The notation is |αp|2 = αp ∧ ∗αp, and F4 = dC3, while µ2 is the eigenvalue of λ and σ

under the Laplacian (see appendix B for details). This 4d action has a gauge invariance

C3 → C3 + dΛ2 , b2 → b2 + kΛ2 (3.10)

This gauge invariance is hidden in terms of the standard 1-form gauge potential, but it

underlies the remarkable properties of the massive Wilson line. The above action describes

a 4d 3-form gauge potential which eats up a 2-form field; both fields acquire a mass µ

in a p-form generalization of the Higgs mechanism (see [42], also [43] for a recent general

discussion), and its gauge symmetry is very similar to that appearing in the discussion of

discrete gauge symmetries [44]. In fact it underlies the discussion of Zk charged domain

walls in [45]. The discussion of axion physics in terms of dual 3-form gauge invariance has

been explored, in the context of QCD axions, in [46–48]. These references also describe

the generalization of the above lagrangian for general axion potentials, which in our setup

arise when higher order terms in the field strength action are included.

The expression (3.9) for our axion monodromy model fits precisely with the 4d effective

theory model in [22, 23], where it was proposed as an inflation model leading to large r. The

above action was found as dual of an axion with a topological mass term due to coupling

to a 4-form field strength, ∫
d4xφF4 (3.11)

which follows from the mixed term in (3.9), with dφ = ∗4ddb2. These references argued

that the underlying gauge invariance is very effective in protecting the inflaton potential

against UV corrections. We have shown that massive Wilson lines provide a realization of

this model, and in the case of string theory provides a UV completion, in fact very necessary

to address the question of sustained slow-roll over a large field range. In particular, our

string realization shows that the higher order corrections in the field-strength present in the

DBI action on the D-brane correct the naive quadratic behaviour of the inflaton potential,

and turn it into a linear one. Despite this correction, the potential is compatible with large

field inflation, and slow-roll.

3.4 Structure in N = 1 supersymmetry

Even though many of the properties of massive Wilson lines do not rely on supersymmetry,

their string embedding motivates their discussion in the context of SUSY. A relevant piece

of understanding is the superspace structure of the mass term for the Wilson line axion

(or in general, of its potential). We now show that in our setup it always corresponds to

an F-term, rather than a D-term. It can be then referred as F-term axion monodromy, as

advanced in the introduction.

This can be easily shown using the description in the previous section, where the mass

term follows from the topological coupling (3.11). The N = 1 3-form supermultiplet was

studied in [49], with the result that the field strength belongs to a chiral multiplet with

the structure

S ∼ iθθ εµνρσ(F4)µνρσ + . . . (3.12)
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where dots denote terms of no present interest. Completing the inflaton into a chiral

multiplet Φ, the coupling (3.11) clearly corresponds to the F-term∫
d4x d2θΦS (3.13)

There are several other equivalent ways to support this F-term nature. The increase in

energy when the axion circles its underlying basic period is associated to the field strength

fluxes this produces; the latter can be equivalently described in terms of the fluxes in-

troduced by domain walls in 4d, coupling to precisely the 3-form C3. As familiar from

other setups (e.g. [50] for domain walls and superpotentials associated to closed string

fluxes) the flux contribution to the energy arises from a superpotential, which in N = 1

supersymmetric theories is determined by the BPS domain wall tension.

For example, let us review the case of a D6-brane wrapped on a 3-cycle. In general,

a domain wall interpolating between two configurations of a D6-brane, one on a 3-cycle

Π3 and with worldvolume gauge field A1, and the second on Π′3 and gauge field A′1 is

constructed as follows. Considering a 4-chain Σ4 joining the two 3-cycles (i.e. ∂Σ4 = Π′3 −
Π3), the domain wall is a D6-brane piece, with worldvolume field strength F2 interpolating

between the boundary gauge fields (i.e. F2 = dA′1 − dA1). Using generalized calibrations,

the superpotential can be written as [51]

W ∼
∫

Σ4

(F2 + Jc)
2 (3.14)

Following [52] one can see that this superpotential will be non-trivial in the presence of

massive Wilson lines, yielding a quadratic term µ2Φ2 with Φ a complexification of the

massive Wilson line involving a D6-brane position field.

The F-term origin of the potential for massive Wilson lines will generalize to other

setups in section 4. Its associated gauge symmetry (3.10) is ultimately responsible for the

decoupling of the axion from the Kähler potential. Hence it plays a crucial role in solving

the eta problem of inflationary scenarios.

3.5 Domain wall nucleation and a maximum field range

An important property of F-term axion monodromy is that the flux increase upon shifting

the axion is associated to the above described domain walls. In our massive Wilson line

models, the 4d 3-form C3 arises from the KK reduction of the higher dimensional dual

gauge potential. Hence the objects coupling to C3 are the KK reduction of monopole

objects on the (d+ 4) dimensional gauge theory; since monopoles are real codimension 3,

hence span (d+ 1) dimensions, they can produce 4d domain walls by wrapping the torsion

(d− 2) cycle Πd−2 dual to (i.e. with non-zero linking number with) the torsion S1. Being

sources of F2, they indeed produce the correct jump in the fluxes.

This provides a non-perturbative tunneling mechanism [23], which migh possibly desta-

bilize regions of too large axion values. The flux F2 can disappear by nucleation of the

domain wall bubbles, with a given number of flux units less in their interior. This can be

relevant to provide a dynamical mechanism cutting off the maximum field range, and thus
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the number of efolds in inflationary scenarios. Similar domain wall nucleation phenomena

and competing unstabilities in the large field regime have been considered in a related (but

non-supersymmetric) setup in [30].

These domain walls are associated to Zk torsion cycles, so that k minimal domain walls

can decay. This may suggest the conclusion that the flux cannot be made to change in k

units or more; this is incorrect, as we now explain. In fact, Zk charged domain walls and

their decay mechanism were described in [43], in a fairly general class of systems, which

includes the present one and those in section 4. A set of k domain walls, can end on a 4d

string given by the same (d + 1) dimensional ‘monopole’ objects wrapped on the (d − 1)-

chain Σd−1 with ∂Σd−1 = kΠd−2. This means that a set of k infinitely extended coincident

domain walls can nucleate a string loop in their interior, creating a hole which can expand

and eat up the domain walls. However the string loop is created with a branch cut filling

the hole, across which the axion shifts by φ→ φ+ 1, which leads to the same monodromy.

Hence a spherical bubble of k domain domain walls, nucleating a configuration with k flux

units less, can open up a hole in its surface by nucleating a string, but this does not change

the nature of the flux configuration in the interior of the bubble.

Let us illustrate these objects in a concrete example, for instance the D6-brane model

in the last section. Just as electric charges under the D6-brane worldvolume correspond to

open string endpoints, magnetic sources correspond to boundaries of D4-branes ending on

the D6-brane (which are indeed real codimension 3). This in fact agrees with the above

picture of the D6-brane domain wall in terms of the induced D4-brane charge it carries.

As we said, a domain wall D6-brane wrapped on ∂Σ4 = Π′3−Π3 and with the appropriate

gauge field F2 = dA′1−dA1 will interpolate between two D6-brane configurations (Π3, dA1)

and (Π′3, dA
′
1), with Π3 and Π′3 homotopic. If A′1 − A1 = (n/k)η1 then the interpolating

D6-brane carries the charge of n D4-branes wrapping the torsion 1-cycle Π1 of the twisted

3-torus and stretching between Π3 and Π′3. These D4-branes are then the domain walls

that change the worldvolume flux quanta F2. Finally, the 4d string opening up holes in

sets of k domain walls is given by a D4-brane wrapped on the 2-chain Σ2 associated to Π1

and stretching between Π3 and Π′3.

3.6 Kinetic terms and the η problem

One important point of the scenario in [16, 17] is that, to avoid the eta problem, the axion

must not appear in the Kähler potential. In order to address this question we need to

embed massive Wilson lines in a string theory construction. We thus now analyze, in the

context of type II models with D-branes, how the open string Wilson lines enter into the

Kähler potential of a string compactification. We will show that Wilson lines enjoy the

same property as many type II closed string axions and do not appear explicitly in the

Kähler potential, making them viable candidates for inflation fields.

3.6.1 Kinetic terms for massless Wilson lines

The dependence of the Kähler potential on open string fields can be extracted by studying

the kinetic terms for Wilson line scalars, which arise from the higher-dimensional gauge
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kinetic term. Ignoring the (possibly F -dependent) coefficient corresponding to the brane

tension, and expanding to quadratic order, it has the structure∫
R1,3×Πp

F ∧ ∗F (3.15)

where Πp is the p-cycle wrapped by the D-brane. From this, the coefficient of the 4d kinetic

term for the Wilson line scalar is proportional to∫
Πp

A ∧ ∗A (3.16)

where A is the internal profile of the open string field. If A is a harmonic form we relate

it by Poincaré duality with a non-trivial one-cycle with minimal length RA, and it is easy

to see that the integral (3.16) roughly scales as Vol(Πp)/R
2
A.

3.6.2 Mixing with closed string moduli

A closer look at the kinetic term for Wilson line moduli reveals the familiar property

that they mix with the closed string moduli. We now study the resulting combinations

for the two illustrative cases of D6- and D7-branes. The details in this section are not

strictly necessary for the rest of this section, so the impatient reader may wish to jump to

section 3.6.3.

D7-branes

For D7-branes, the wrapped 4-cycle Π4 is complex, and so A = A(1,0) +A(0,1) and ∗A(0,1) =

J ∧A(1,0). Let us expand these forms as

J =
∑
α

vαωα A(1,0) = w(x) η (3.17)

where vα is the geometrical Kähler modulus and w a complex 4d Wilson line scalar. We

then have that ∫
Π4

η ∧ ∗4η =
∑
α

vα
∫

Π4

ωα ∧ η ∧ η̄ (3.18)

As a result the Wilson line kinetic term in the Einstein frame reads [53, 54]

SE = 2µ3
iCαvα

VolX6

∫
X1,3

dw ∧ ∗4dw with Cα =

∫
Π4

ωα ∧ η ∧ η (3.19)

where µp = (2π)−pα′−(p+1)/2 and VolX6 = 1
6

∫
X6
J ∧ J ∧ J . Now, in the presence of such

Wilson lines we must redefine our holomorphic Kähler variables as [32, 55]

T̂α = Tα +
1

2
Cαw(w − w̄) (3.20)

where Tα is the holomorphic Kähler variable (2.2). Notice that the open string field w and

the closed string field G enter this holomorphic variable in a similar way. We finally obtain

a Kähler potential of the form

K = −
∑
α

log

(
T̂α +

¯̂
Tα +

1

2
Cα(w − w̄)2 + . . .

)
(3.21)
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Which generalizes (2.4), with the dots stand for extra fields like G. Form this expression

that the open string axion Rew enjoys a symmetry similar to the RR c-field considered

in [16, 17], and thus in the sense serve equally well for axion monodromy inflation candi-

dates. This is also an explicit manifestation of the conclusions in section 2.2.

D6-branes

We now consider a D6-brane wrapping a Special Lagrangian 3-cycle Π3. Let us describe

the Wilson line it as

A = w(x) η (3.22)

where η is now a real form. We have that the Wilson line kinetic term in the Einstein

frame reads [56, 57]

SE = µ4
g
−1/4
s H

8VolX6

∫
X1,3

dw ∧ ∗4dw̄ with H =

∫
Π3

η ∧ ∗3η (3.23)

In this case we have that any 1-form η on Π3 can be written as

η = [ιXJ ]Π3 (3.24)

for some vector X normal to Π3. We also have that

∗π3 [ιXIJ ]Π3 = [ιXI Im Ω]Π3 (3.25)

We now decompose Im Ω =
∑

α Reuαβ
α, where the integer three-forms βα are such that

uα =

∫
X6

(Re Ω + iC3) ∧ βα (3.26)

is either the complexified dilation or a complex structure modulus of the compactification.

We can then express

H =
∑
α

QαReuα with Qα =

∫
Π3

ιXJ ∧ ιXβα (3.27)

This time the holomorphic variables read

Nα = uα +
1

2
Qαξ(ξ − ξ̄) (3.28)

where

ξ = w + ιXJc (3.29)

is the complexification of the Wilson line. The Kähler potential takes the form

K = −
∑
α

log

(
Nα + N̄α +

1

2
Qα(ξ − ξ̄)2

)
(3.30)

so again we have a shift symmetry on the Wilson line. This shift symmetry could have

been guessed from the fact that Wilson lines become part of the 3-form potential A3 in the

lift to M-theory.
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3.6.3 Massive Wilson lines, and a D6-brane example

For massive Wilson lines the kinetic terms are still given by (3.16), and so a similar rea-

soning leads to the absence of these fields in the Kähler potential. In order to discuss

an explicit D-brane example, let us consider the case of type IIA compactification with

geometric fluxes, which are prototypical examples for turning some 1-cycles into torsion

classes, and so that mass terms for Wilson line moduli are induced.

Consider the following example, given in [52] and based on a type IIA toroidal orien-

tifold compactification to 4d. The compactification manifold is given by a six-dimensional

twisted torus with metric

ds2 = R2
1(dx1 − k x6dx5)2 +R2

2(dx2 + k x4dx6)2 +

6∑
i=3

(R2
i dx

i)2 (3.31)

as well as O6-planes wrapping ΠO
3 = {x4 = x5 = x6 = 0}. This metric can be understood

in terms of the geometric fluxes (for conventions, see e.g., [58, 59])

ω1
56 = −k ω2

64 = k (3.32)

which turn the 6-torus into a twisted one, with the torsion cohomology structure structure

encoded in

dη1 = k η5 ∧ η6 , dη2 = k η4 ∧ η6 (3.33)

where ηi denote the 1-forms corresponding to the different directions in the twisted 6-torus.

Although we will not need it, the model can become N = 2 supersymmetric by the simple

addition of a RR 2-form flux

F2 = k (η1 ∧ η4 − η2 ∧ η5) (3.34)

This is easily checked because the configuration is T-dual (along the directions 1, 2, 3) of

a type IIB toroidal orientifold compactification (with O3-planes) in a vacuum with N = 2

preserving NSNS and RR 3-form fluxes [60]

F3 = k
(
dx4 ∧ dx2 ∧ dx3 − dx1 ∧ dx5 ∧ dx3

)
(3.35)

H3 = k
(
dx1 ∧ dx5 ∧ dx6 − dx4 ∧ dx2 ∧ dx6

)
(3.36)

Consider now a D6-brane on the 3-cycle Π3 = {x2 = x3 = x4 = 0}. Due to the flux ω1
56

in (3.32), this is a twisted T̃3, with the S1 along 1 fibered non-trivially over 5,6. More

precisely we have the metric

ds2 = R2
1(dx1 − k x6dx5)2 + (R5dx

5)2 + (R6dx
6)2 (3.37)

The Wilson line corresponding to η1 belongs to a chiral multiplet Φ1, which acquires mass

due to the superpotential (3.14), which results in [52]

W =
1

2
m2

Φ1
(Φ1)2 (3.38)
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The value of mΦ1 can be easily computed in the limit where the vev of Φ1 is small. In

that case the worldvolume flux induced by the massive Wilson line is diluted and we can

approximate the flux dependence of the DBI action by the quadratic term (3.15). Then by

the computations of the appendix B.1 we obtain an effective 4d action of the form∫
X1,3

(
∂µφ∂

µφ+ µ2φ2
)
dvolX1,3 with µ2 =

(
kR1

R5R6

)2

(3.39)

and so we obtain that for canonically normalised kinetic terms the Wilson line mass is

given by

mΦ1 = k
R1

R5R6
(3.40)

This result can be easily generalized to any D-brane wrapping a twisted torus, as well as

to heterotic compactifications along the lines of [61].

For large values of the massive Wilson line vev keeping only the quadratic term (3.15)

is no longer a good approximation, and one needs to use the full DBI expression to compute

the effective 4d action. Following appendix B.2 one obtains∫
X1,3

(
1

2
Z(φ)∂µφ∂

µφ+ V (φ)

)
dvolX1,3 (3.41)

where

Z(φ) =
1

R1

√
R2

5R
2
6 + (2πα′)2k2w2 (3.42)

V (φ) = R1

(√
R2

5R
2
6 + (2πα′)2k2w2 −R5R6

)
(3.43)

The implications of this kind of potential for inflation will be analyzed in section 5. Post-

poning the direction of more explicit model building for future work, we turn to exploit

the intuitions from massive Wilson lines to build further classes of models, this time based

on closed string axions.

4 F-term axion monodromy and flux compactifications

Let us start with a recap of the key ingredients of the massive Wilson line axion monodromy,

in a somewhat more abstract language which will motivate further generalizations. The

first is the axion, a scalar with an underlying shift symmetry broken to a discrete periodicity

only by non-perturbative effects. The second is an F-term coupling which generates the

monodromy and therefore the inflaton potential. The third is the implication that there is

a built-in mechanism preventing the appearance of the axion in the Kähler potential.

A natural setup to generalize the first ingredient is to consider not standard 1-form

gauge fields, but general p-form gauge potentials. Namely, we take the 4d axion to be

the integral of a p-form over a p-cycle of the compactification space. These are naturally

present in string theory compactifications, and in particular we will focus on 4d compacti-

fications of 10d type II strings, or orientifolds thereof (there are straightforward extensions
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to compactifications of heterotic strings, M-theory or F-theory). This will result in new

closed string axion monodromy models.

The second ingredient is also easy to achieve. Compactifications with background

fluxes (either for the field strength of antisymmetric tensor fields, or of geometric or non-

geometric nature) lead to superpotentials which can stabilize moduli, in particular the

components which correspond to the axions from p-forms. As we will show in what follows,

the F-term masses for the axions automatically contains the structures discussed in 3.3, 3.4.

This essentially follows from the fact that the energy increase upon axion monodromy is

due to the appearance of extra fluxes, whose contribution to the superpotential can be

understood in terms of domain walls.

Finally, these constructions have a built-in mechanism to prevent the appearance of

the axions in the Kähler potential, at least in terms of the underlying N = 1 SUSY

structure, reproducing the third ingredient. This follows from the considerations of F- vs

D-terms in section 2.2, but also admit a beautiful microscopic interpretation, as follows.

Axions can in principle appear in the Kähler potential necessarily through the Stückelberg

mechanism. A typical example in type II models (and orientifolds thereof) is the coupling

of closed string moduli as D-terms on the D-brane worldvolume. Now in the presence of

fluxes, the axions with F-term masses cannot couple as D-terms to the D-branes because

the so-called Freed-Witten consistency conditions forbid the existence of the corresponding

wrapped D-branes [58]. Equivalently, the D-term coupling would render the superpotential

not invariant under the D-brane worldvolume gauge transformations. A similar analysis

can be carried out when the Stückelberg couplings involve vector fields from the closed

string sector.

There are several other related ways to make this manifest: The 4d gauge symmetry

involved in the Stückelberg mechanism is incompatible with the gauge symmetry in the

F-term axion mass in section 3.3. Equivalently, and translating the couplings into the

existence of certain Zk-valued soliton configurations, the coexistence of both couplings

would lead to the existence of 4d domain walls ending on strings ending on junctions (the

former from the F-term couplings and the latter from the D-term couplings), which are

simply geometrically not sensible [45]. In the general language of gauged supergravities,

the gaugings involved in the D-term and F-term coupling violate the quadratic consistency

conditions for the gauging embedding tensor [62].

This confirms that F-term axion monodromy, in particular in the context of flux com-

pactifications, is a natural setup to build axion monodromy inflation. In the following we

present two basic microscopic mechanisms to implement these ideas in detail. The first,

in section 4.1, is based on the simplest generalization of the massive Wilson line idea to

p-form fields, and relies on the existence of torsion homology classes in the compactifica-

tion space. Although these can be present in a standard Calabi-Yau geometry, they can

be thought of as geometric flux compactifications in the spirit of the previous paragraphs.

The second, in section 4.2, is based on the familiar compactifications with field strength

fluxes (although geometric fluxes are occasionally allowed). Concrete model building of

examples and details of their inflationary applications (beyond those in section 5) are left

for future work.
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4.1 Torsional axion monodromy

Consider a p-form gauge potential Cp in a 10d string theory compactified to 4d. The

reduction of Cp on the p-cycle leads to a 4d scalar φ, which is an axion with a continuous

shift symmetry due to the higher-dimensional gauge symmetry of the p-form, and which is

broken to a discrete periodicity by euclidean wrapped brane instantons. In order to keep p

general, we focus on RR fields (in type II models or orientifolds thereof), which moreover

have the nice feature of being perturbatively absent from many couplings of the 4d effective

action (the analysis is however general and applies to NSNS fields, heterotic models and

F- and M-theory compactifications).

Consider the same kind of scalar on a geometry X6 with a torsion p-cycle. For con-

creteness, we take

TorHp(X6,Z) = TorH5−p(X6,Z) = TorHp+1(X6,Z) = TorH6−p(X6,Z) = Zk

where we have used the relations (3.4).

The scalar φ is a (massive) ‘Wilson line’ for the generalized gauge field Cp. Let us

introduce the generator (p+ 1)-form ωp+1 of TorHp+1(X6,Z), whose kth multiple is exact

in terms of some non-closed p-form ηp as

dηp = k ωp+1 (4.1)

we moreover require that ωp+1 is an eigenform of the Laplacian ∆ = dd∗ + d∗d with

eigenvalue µ, which we assume well below the typical KK scale. Then, the KK reductions

of Cp and its field strength Fp+1 = dCp along these non-harmonic forms are

Cp = φ ηp , Fp+1 = φk ωp+1 (4.2)

The fact that the forms are non-harmonic implies that φ is not a modulus; indeed, changing

it changes the background field strength, which contributes to the vacuum energy through

its kinetic term. The latter are in general only known at the level of the two-derivative su-

pergravity level, that is quadratic in the field strengths, and results in a quadratic potential

for φ.

As in the case of massive Wilson lines, the system has a hidden gauge invariance in

terms of the dual gauge potential. In order to display it, and recalling (3.4) we introduce

the dual (5− p)- and (6− p)-forms λ5−p, σ6−p, associated to H6−p(X6,Z), satisfying

dλ5−p = k σ6−p (4.3)

We now consider the 10d dual C8−p of Cp, and its field strength, and their expansions along

these non-harmonic forms, as in [31]

C8−p = b2 ∧ σ6−p + C3 ∧ λ5−p

F9−p = (db2 − kC3) ∧ σ6−p + dC3 ∧ λ5−p (4.4)

The kinetic term, in the quadratic approximation, produces the structure (3.9)

µ2

k2

∫
d4x |db2 + kC3|2 +

∫
d4x|F4|2 (4.5)
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This enjoys the 4d gauge invariance (3.10), which strongly constrains possible corrections

to the axion potential. For instance, non-perturbative corrections, violating the continuous

shift symmetry of φ, but preserving a discrete periodicity, arise only from D(p− 1)-brane

instantons wrapped on the p-cycle, so these small effects are well under control. Further-

more, as argued in the introduction of this section, the D-branes for which φ couples as a

D-term are not consistent in the background, as the spaces they should wrap are no longer

cycles, but rather have boundaries due to the torsion.

To display the F-term nature of the above coupling, cf. section 3.4, we look for the

domain walls, given by objects coupling to the 4d 3-form C3. They correspond to a D(7−p)-
brane wrapped on the Zk torsion (5−p)-cycles. As explained in section 3.5, k domain walls

can end on a 4d string, given by the D(7− p)-brane on the (6− p)-chain whose boundary

is k times the torsion (5− p)-cycle.

4.2 Fluxed axion monodromy

As announced in the introduction of this section, models of axion monodromy are realized

in standard compactifications with field strength fluxes. In what follows we present a few

illustrative classes of such realizations.

Before getting started, we make a subtle but interesting point. It is worthwhile to men-

tion that these models of axion monodromy are also based on a notion of Zk torsion, but

realized not in terms of (co)homology, but rather of K-theory, which is the appropriate tool

to characterize D-branes charges and RR fluxes [63, 64] (or some suitable generalization

of K-theory). In particular, in the presence of fluxes certain brane wrappings, allowed by

integer-valued homology, are actually not possible; conversely, certain branes wrapped on

homologically non-trivial cycles actually carry no conserved charge and can decay through

suitable flux-induced processes. The physical picture for these phenomena, based on the so-

called Freed-Witten condition,6 was proposed in [66] (see also [67–73]). These effects were

dubbed flux catalysis in [45], where they were associated to certain topological couplings in

the 4d action. As shown below, for domain walls they have precisely the structure (3.11),

and are part of the F-term flux superpotential. As already mentioned, the disappear-

ance of certain brane wrappings underlies the absence of the axion from D-terms in the

effective action.

4.2.1 Type IIB orientifolds with NSNS and RR 3-form fluxes

We start with the prototypical class of type IIB Calabi-Yau orientifold compactifications,

with O3-planes, and with NSNS and RR 3-form fluxes [74, 75] (F-theory generalizations

can be discussed similarly). We introduce a symplectic basis of 3-cycles {Ai, Bi}, with

Ai ·Bj = δji and introduce the flux quanta∫
Ai

F3 = ni ,

∫
Bi

F3 = n′i ,

∫
Ai

H3 = mi ,

∫
Bi

H3 = m′i (4.6)

6Actually [65] considered the case of torsion H3, and the physical picture for general H3 appeared in [66].
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The 4d flux superpotential is [50]

W =

∫
X6

(F3 − τH3) ∧ Ω =

∫
X6

[(
F3 −

i

gs
H3

)
− C0H3

]
∧ Ω (4.7)

where τ = C0 + i/gs, with C0 the 10d IIB axion and gs the string coupling.

We focus on the axion φ = C0, which has an underlying shift symmetry (reduced to

a discrete periodicity by D(−1)-brane instantons). Due to the superpotential, there is a

non-trivial monodromy C0 → C0 + 1 on the fluxes as

F3 → F3 +H3 , i.e. (ni, n
′
i;mi,m

′
i)→ (ni −mi, n

′
i −m′i;mi,m

′
i) (4.8)

The increase in the tension (or jump in the fluxes) is associated to a domain wall given by

a D5-brane wrapped on the 3-cycle Poincare dual to [H3], namely

Πd.w. =
m′i
m
Ai −

mi

m
Bi (4.9)

with m = g.c.d(mi,m
′
i). Note that the integral of H3 over this D5-vanishes, so it satisfies

the Freed-Witten consistency conditions. These domain walls couple to the 4d 3-form rel-

evant in the alternative description (3.11) of the F-term stabilization of the axion. Indeed,

the topological coupling to the 4d 4-form field strength arises from the KK reduction of

the 10d Chern-Simons coupling ∫
10d

C0H3 ∧ F7 (4.10)

where F7 is the 10d dual of the RR 3-form field strength. Defining

F4 =

∫
Πd.w.

F7 (4.11)

we have a 4d coupling7∫
4d
C0

∫
X6

H3 ∧ F7 =

∫
4d
C0

∫
Πd.w.

F7 =

∫
4d
C0F4 (4.12)

The domain walls describe above are Zk valued, as mentioned above. Specifically, in this

case we have k =
∑

i[(mi)
2 + (m′i)

2]/m with m = g.c.d(mi,m
′
i) [45]. A 4d string formed

by a D7-brane fully wrapped on X6 must be bounded by k D5-branes on Πd.w., due to the

non-trivial H3 flux on its worldvolume.

In the setup of type IIB with NSNS and RR 3-form fluxes, the only other axions pre-

served by the O3-projection correspond to the integrals of the RR 4-form along orientifold

even 4-cycles. These belong to Kähler moduli, which are not stabilized by fluxes. Al-

though non-perturbative effects (euclidean D3-brane instantons or non-perturbative gauge

dynamics on D7-branes) do produce superpotentials for these moduli (as exploited for their

stabilization [77]), they do not lead to monodromy and do not allow for super-Planckian

field ranges. Flux superpotentials for these moduli can be generated with the introduction

of non-geometric fluxes, but these are poorly understood in non-toroidal geometries. We

therefore prefer to turn to type IIA constructions.

7For a similar computation in the context of M-theory in G2 manifolds see [76].
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4.2.2 Type IIA orientifolds with NSNS and RR and geometric fluxes

It is easy to construct other examples of axion monodromy models based on flux com-

pactifications in type IIA. For compactifications with NSNS and RR field strength fluxes,

and geometric fluxes (characterized in terms of a non-closed forms Jc and Ω), the relevant

superpotential terms are [78–80]∫
X6

eJc ∧ (F0 + F2 + F4) ,

∫
X6

(Re Ω + iC3) ∧ dJc (4.13)

where Jc = J + iB, and so dJc = dJ + iH3.

The axions surviving the orientifold projection by O6-planes are: NSNS axions from

B2 on orientifold odd 2-cycles, i.e. in H−1,1(X6), and RR axions from C3 on orientifold even

2-cycles, i.e. H+
2,1(X6). This opens up a whole model building industry, which we leave

for future work. We restrict ourselves to presenting an illustrative example of how the 4d

flux stabilization technology can be exploited to generate more general axion monodromy

potentials.

For illustration, we consider a simple example, based on an NSNS axion. Consider for

simplicity a Calabi-Yau threefold with h1,1 = 1, so there is one Kähler modulus T =
∫

Σ2
(J+

iB2) and we focus on the axion φ = ImT . This field can acquire an F-term superpotential

from the different RR field strength fluxes F0, F2 and F4 (while other geometric or NSNS

fluxes may be present e.g. to achieve a Minkowski and/or supersymmetric vacua, see [58, 59]

for examples). The first superpotential in (4.13) takes the form

W = e T − q T 2 + mT 3 (4.14)

with

m ∼ F0 , q ∼
∫

Σ2

F2 , e ∼
∫

Σ4

F4 (4.15)

where Σ2, Σ4 are the 2-cycle and its dual 4-cycle.

An interesting novelty of this model is that it shows that the axion can acquire po-

tentials which are other than linear or quadratic. In the microscopic 10d description, this

follows because the introduction of the Romans mass parameter F0 in the IIA theory makes

the field strengths pick up terms depending on powers of B2.

The structure of domain walls, their Zk nature, and their relation to 10d Chern-Simons

couplings has been analyzed in section 6.4. of [45]), so we refrain from repeating the general

case here. For illustration, we consider the simple case of just turning on F0 = k. There is

a 10d Chern-Simons coupling ∫
10d

F0B2 ∧ F8 (4.16)

where B2 is the NSNS 2-form and F8 is the field strength dual to that of the RR 1-form

C1. Upon KK reduction, we have a 4d coupling

k

∫
4d
φF4 with φ =

∫
Σ2

B2 , F4 =

∫
Σ4

F8 (4.17)
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reproducing the coupling (3.11). The objects that couple to the 3-form are domain walls

charged under the 4d 3-form
∫

Σ4
C7, hence given by D6-branes on Σ4. They can annihilate

in sets of k by ending on a 4d string, which corresponds to an NS5-brane on Σ4, which has

a Freed-Witten-like anomaly due to F0.

5 Applications to inflation

As we have argued in section 2.2, earlier works on monodromy inflation may secretly suffer

from the infamous eta problem, even though this problem may not be apparent from the

perturbative effective action of string theory. In this work, we proposed a new F-term

axion monodromy inflationary scenario which evades this problem, and presented several

realizations (via, e.g., massive Wilson lines, torsion homology, flux compactifications, etc)

of our ideas. The forms of the inflaton Lagrangian given in the previous sections are by no

means exhaustive. Here we briefly discuss the phenomenological features of these models,

leaving a more detailed study and further model building to future work.

To deduce the inflationary dynamics and cosmological signatures of our models, we

need to know not only the potential (discussed in previous sections) but also the kinetic

term for the inflaton. We refer the readers to appendix B for detailed formulae. Already

from the form of the effective actions, we can make some preliminary statements about the

implications of our results to large field inflation.

Let us start with our warmup scenario which involves massive Wilson lines. For the

twisted tori example in section 3, the action up to two derivatives order takes this form:

S = −µ6g
−1
s

∫
dx4√−g4

(
1

2
Z(w)(∂w)2 + V (w)

)
(5.1)

where

Z(w) =
1

R1

√
R2

5R
2
6 + (2πα′)2k2w2 (5.2)

and

V (w) = R1

√
R2

5R
2
6 + (2πα′)2k2w2 −R1R5R6 (5.3)

Note the similarity of the above action with that of the model in [16], apart from the

−R1R5R6 term in the potential V (w) that arises from taking into account the negative

tension of the orientifold planes. This difference is indicative that in contrast to previous

works, we have a well-defined endpoint of inflation (when w = 0). Since this difference lies

in the potential and not the kinetic term, we can use the same field redefinition as in [16]

to bring the action to the canonical form:

S =

∫
d4x
√
−g4

(
−1

2
(∂φ)2 − V (φ)

)
(5.4)

with

V (φ) = −µ6g
−1
s

(
R1

√
R2

5R
2
6 + (2πα′)2k2w2(φ)−R1R5R6

)
(5.5)
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where w(φ) is to be read as the inverse function of the following field redefinition:

φ ∼ w

[
F 2

1, 1
2
, 3
4
, 3
2

(
−(2πα′)2k2

R2
5R

2
6

w2

)
+ 2

(
1 +

(2πα′)2k2

R2
5R

2
6

w2

)1/4
]

(5.6)

Here F 2
p,q,r,s(x) is a hypergeometric function. In general, the inversion can only be done

numerically, though analytic expressions for the inflaton action can be obtained in the

limiting regimes, w � wcrit or w � wcrit, where

wcrit =
R5R6

2πα′k
(5.7)

The potential V (φ) interpolates between a φ2 potential (small w limit) and a φ2/3 potential

(large w limit) which gives r ∼ 0.14 and r ∼ 0.04 respectively (at 60 e-folds before the end of

inflation). In [16], the φ2 potential was “ruled out” theoretically based on moduli stabiliza-

tion consideration (having the simple mechanism [81] and its further simplifications [82–84]

in mind, see [85] for a recent discussion). In the massive Wilson lines inflationary scenario

where moduli stabilization and the inflaton potential can be generated through different

means, the requirement on the inflaton potential to not destabilize the background geom-

etry is expected to work differently. Furthermore, one can potentially construct a variety

of potentials (and hence a potentially wider range of theoretically allowed values of r) by

considering other geometries (other than the above twisted tori) with non-closed 1-forms.

Because the idea of massive Wilson lines is rather general, one can examine such model

building possibilities not only in type II string theory, but also in heterotic string, M or

F-theory, or even simply gauge theories in higher dimensions. We defer a detailed study of

these interesting new possibilities to future work.

Let us now turn to other realizations of F-term axion monodromy inflation. Torsional

axion monodromy and fluxed axion monodromy are even more interesting not only because

of their wide applicability in different formulations of string theory, but also the flexibilities

and scopes they offer in model building. These scenarios share some similarities so we

describe them together here. To lowest order in the canonically normalized inflaton field

φ, the action in either case takes this simple chaotic inflation form (see appendix B):

S =

∫
d4x
√
−g4

(
−1

2
(∂φ)2 − 1

2
ρ2M2

Pφ
2 + . . .

)
(5.8)

where detailed forms of ρ for torsional axion monodromy and fluxed axion mondoromy

respectively are given in the appendix. Thus, these models provide a UV completion of

chaotic inflation in the context of string theory. Moreover, one expects terms higher order

in φ to be generated. For example, the superpotential for fluxed axion monodromy can

take the form W = eT = qT 2 + mT 3 (where the axion φ = ImT ). In principle this leads

to a polynomial inflaton potential of the form V (φ) =
∑

n cnφ
n, with leading power n ≥ 2.

Moreover, α′ corrections to the effective action which are generically present, such as the

F 4 term in the effective action of type II string theory recently computed in [86] can lead

to higher order terms in φ. Such higher order terms can help lift the value of r above

the predicted value for chaotic inflation r ∼ 0.14 (at 60 e-folds before inflation ends), a
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welcome feature if the high central value of r measured by BICEP2 continues to hold up.

Again, we leave detailed model building and thorough analysis of the signatures of these

interesting new possibilities for future work.

6 Conclusions

Motivated by the recent observational data of the BICEP2 collaboration, we have proposed

a new class of string theory models realizing the idea of axion monodromy inflation.8 The

main new ingredient of our constructions is that the axion potential is generated by an F-

term perturbative coupling, as opposed to D-term-like potentials, or hard supersymmetry

breaking of previous proposals. As we have discussed, axion monodromy models based on

perturbative F-term potentials naturally avoid such η problem by involving axions that do

not appear in the Kähler potential due to an underlying gauge invariance. This framework

moreover allows to construct elegant and simple inflationary models which are compatible

with (spontaneously broken) supersymmetry, with a well-defined endpoint of inflation. In

fact, to our knowledge, the axion monodromy models presented here are the first ones

compatible with a low energy supergravity limit of string theory.

We have illustrated the above features with a series of explicit examples, the simplest

being those based on massive Wilson lines.9 While our explicit examples of massive Wilson

lines are based on D6-brane models, one can implement this construction for any kind of

type II or heterotic compactification, the main requirement being that the manifold where

gauge degrees of freedom live contains torsional one-cycles. In general, manifolds with

torsional homology and/or the presence of background fluxes generate F-term potentials

for axionic fields, providing further realizations of the F-term axion monodromy scenario.

While one may obtain several kinds of different models they all share certain common

features, like being related to the effective theory models of [22, 23, 90] via an underlying

gauge invariance not manifest at first sight. This allows to address several of the points

considered in [22, 23] from the vantage point of explicit string theory constructions (which

is necessary for inflation models with super-Plankian field range). In particular, we have

discussed the non-perturbative tunnelling mechanism of [23], relevant for putting an upper

bound on the inflation range, in terms of 4d domain wall bubble nucleation.

While we have not attempted to perform an exhaustive search of F-term axion mon-

odromy models, we have considered a few simple examples that provide interesting inflaton

potentials, already showing the possibilities of this new class of models. We have in partic-

ular reproduced the models of chaotic inflation and the DBI-like potentials of [16], as well

as discussed simple possibilities to obtain potentials of the form V (φ) =
∑

n cnφ
n, with

n ≥ 2. We expect many more interesting models of inflation to arise from this framework,

partly due to the knowledge on perturbative superpotentials that has been developed for

the moduli stabilization program carried out during the past decade. In this respect, it is

8Monodromies are ubiquitous in string theory. In addition to our F-term axion monodromy inflation-

ary scenario, they have been employed differently to realize chain inflation [87] and a variant of D-brane

inflation [88] in string theory.
9For models of D-brane inflation based on standard Wilson lines see e.g. [89].
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important to note that most of the mechanisms for moduli stabilisation developed so far are

based on F-term potentials generated by the presence of background fluxes. This may pose

an interesting challenge in the construction of viable string models of inflation, in the sense

that all the other compactifications moduli must be stabilized at scale higher than the infla-

ton mass 1013 GeV (see e.g. [91] for a recent estimate in a specific scenario). Absent other

new ideas of moduli stabilization, one may have to arrange the F-term potential affecting

the inflaton to be hierarchically suppressed compared to the potential affecting other mod-

uli, via considering different flux densities, and/or large warping factors, etc. Turning this

around, observational data has given us indirect hints on the nature of moduli stabilization

which lies at the very heart of string theory, or at the very least motivates us to consider

new scenarios. In any event, we foresee a very exciting era for string cosmology, where

deep theoretical ideas in fundamental physics meet experimental data.
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We thank Pablo G. Cámara, Luis Ibáñez, Albion Lawrence, Eran Palti, Sam Wong for

discussions, and David Andriot, Mikel Berasaluce-González, Daniel Junghans, Guillermo
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A Some variants of F-term axion monodromy

A.1 Massive Wilson lines in Taub-NUT

In this section we develop a simple non-compact picture of an open string axion monodromy

model. It admits a T-dual picture in terms of brane motion with a simple geometric picture

of the monodromy and energy increase in terms or stretched branes, but which differs

significantly from the image in figure 1 in [17].

Consider the case that the massive Wilson line is associated to an S1 which is trivial

in homology because it is contractible, namely there is a locus in B at which the S1 shrinks

to zero size. This situation is familiar in elliptic fibrations, where 1-cycles of the elliptic

fiber degenerate at special loci. But possibly the simplest model of an S1 degeneration is

provided by the Taub-NUT geometry, with describes an S1 non-trivially fibered over R3,

asymptotically of the form R3 × S1, and with the fiber degenerating at the origin in R3.

In this geometry, there is a 1-form η1 asymptotically of the form η1 = dy, with y a flat

coordinate along S1, but which globally fails to be closed. In other words, there is a 2-form

ω2 which asymptotically is of the form ω2 = dη1. The 2-form ω2 is localized near the
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S1 degeneration at the Taub-NUT center, therefore the monodromy as φ circles its basic

period is an increase in the field strength F2 near the Taub-NUT core.

This model differs from those in section 3 in that the holonomy of the 2-form ω2

supported on the Taub-NUT center is actually not dy, but tends to it asymptotically far

away from the center. A related difference is that the monodromy induced flux F2 = φω2

leads to the net appearance of induced D3-brane charge, whose tension grows quadratically

with φ, even for large fields. This last feature receives an interesting interpretation in the

T-dual picture.

Consider the massive Wilson line on a D7-brane wrapped on a Taub-NUT geometry,

and perform a T-duality along the S1 fiber. The D7-brane turns into a D6-brane whose

position in the T-dual circle is parametrized by φ. The T-dual geometry of the relevant

coordinates is actually a trivial cartesian product R3 × S1, and the non-triviality of the

Taub-NUT metric turns the presence of an NS5-brane located at a point10 in the T-dual

S1. In the absence of the NS5-brane, φ would be a true Wilson line, with a continuous

shift symmetry and unit period (in suitable units). The presence of the NS5-brane breaks

the translational symmetry of S1, and so also the shift symmetry of φ. The non-trivial

monodromy in φ arises because when the D6-brane moves around the S1, it crosses the

NS5-brane and there is a Hanany-Witten brane creation effect [92] which creates a D4-

brane stretched between the D6- and the NS5-branes, see figure 1. As the axion continues

completing turns around its period, more and more of these D4-branes are created. They

contribute to the tension with a term which depends on the axion.

An interesting property manifest from the original and the T-dual pictures is that the

energy increase due to the monodromy grows quadratically with the axion, even for large

fields. This is due to the brane creation in each crossing in the T-dual picture, or to the

appearance of induced D3-brane charge (which depends quadratically on F2, even for large

fields, as follows from the BPS bound) in the massive Wilson line picture. This scenario,

if successfully embedded in a compact setup, may possibly lead to the construction of

open axion monodromy models producing chaotic inflation, of the kind favored by recent

observational data. We leave the issue of such embedding for future work.

A.2 D-branes in type IIA and F-terms

In this section we briefly discuss an example of a closed string axion model, whose F-term

arises from D-brane couplings, rather than from fluxes. In a sense, it is an F-term version

of the models in [16, 17]. It is based on type IIA orientifold compactifications with D6-

branes, and with the axion φ arising from the NSNS B-field on a 2-cycle. The F-term is

then generated from the coupling of φ to the D6-brane worldvolume.

Explicitly, we expand B-field as B = b ωb, with ωb an harmonic integer orientifold

even (1,1)-form (namely the imaginary part of a complexified Kähler modulus Tb). We

also consider a D6-brane wrapping a 3-cycle Π3, such that Π3 has a non-trivial one-cycle.

10The position of the NS5-brane is controlled by the NSNS B-field along ω2 in the Taub-NUT picture.

The physical gauge invariant quantity on the D7-brane worldvolume F2 = F2 − B2 is thus mapped to

the distance between the NS5- and the D6-brane. For simplicity, we choose B2 = 0, equivalently use the

NS5-brane to define the origin in the S1.
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Figure 1. a) The T-dual of a D7-brane on a Taub-NUT is a D6- and an NS5-branes at points in

the T-dual circle. b) As the D6-brane crosses the NS5-brane, an stretched D4-brane is created. c)

Moving to larger values of φ the D6-brane returns close to the NS5-brane. d) Creation of additional

D4-branes in each crossing implies the monodromy in φ. The additional brane creation in each

crossing makes this construction differ from figure 1 in [17].

By Poincaré duality there is also a non-trivial two-cycle Σ2 ⊂ Π3, which may or may not

be trivial in the compactification space X6. If it is non-trivial then it may be that the

pull-back of ωb is also non-trivial in the homology of Π3. Let us asume that this is the case

and consider that ∫
Σ2

ωb = 1 (A.1)

We then have that a non-trivial superpotential is generated for the open string modulus Φ

of the D6-brane

WD6 ∼ Φ · Tb (A.2)

from which one could derive an effective F-term potential for the axion b. However, the

potential derived from (A.2) is an approximation valid for small values of b. The complete

expression, valid even for large field values is of the form

V =
√

(VolΠ3)2 + |Tb|2 −VolΠ3 (A.3)

directly from the DBI action, so for large values of b we get a linear behaviour.

One can show that for small values of b one recovers (part of) the scalar potential

related to (A.2). An example of this sort of computation can be seen in section 5.2 of [93],

but with ΦTb replaced by Φ(TiTj−n) in (A.2). Such kind of superpotentials are of the kind

appearing for coisotropic D8-branes in type IIA compactifications, as well as D6-branes at

angles T-dual to them. The latter also show that, by considering coistropic D8-branes, one

may easily have potentials that behave like

V ∼ b2 (A.4)
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for asymptotically large values of b. In both of these cases, D6-brane and coisotropic D8-

branes, the presence of b induces (non-conserved) D4-brane charge and tension, and so the

reasoning of [20] involving the backreaction of these objects would not apply.

B Dimensional reduction and torsion

B.1 Torsional p-forms

Let us consider a manifold Xd such that TorHp+1(Xd,Z) = Zk, and a representative of

the generator class of this torsion group. We have that

dηp = kωp+1 (B.1)

for a globally well-defined p-form ηp. Let us further assume that ωp+1 is an eigenform of

the Laplacian ∆ = dd∗+ d∗d. Because [∆, d] = 0, ηp is also an eigenform of the Laplacian.

Namely we have that

∆ωp+1 = −µ2 ωp+1 ∆ηp = −µ2 ηp (B.2)

We now reduce a potential Cp along ηp

Cp = φ ηp ⇒ Fp+1 = ∂µφdx
µ ∧ ηp + φk ωp+1 (B.3)

Then from a Lagrangian term containing |Fp+1|2 we obtain∫
X1,3×Xd

Fp+1 ∧ ∗Fp+1 =

∫
X1,3

dφ ∧ ∗4dφ
∫
X6

ηp ∧ ∗ηp +

∫
X1,3

∗4(kφ)2

∫
X6

ωp+1 ∧ ∗ωp+1

(B.4)

Using the relations above we find∫
X6

ωp+1 ∧ ∗ωp+1 =
µ2

k2

∫
X6

ηp ∧ ∗ηp (B.5)

so we finally have ∫
X1,3

(
∂µφ∂

µφ+ µ2φ2
)
dvolX1,3 ·

∫
X6

ηp ∧ ∗ηp (B.6)

so if φ is canonically normalized µ is the mass of the axion. One can easily generalize this

system for several massive axions whenever TorHp+1(X6,Z) = Zk1⊕Zk2⊕· · ·⊕Zkn along

the lines of [31].

Notice that for the case of massive Wilson line in T̃3 discussed below we have

µ2 =

∫
T̃3 dη

1 ∧ ∗dη1∫
T̃3 η1 ∧ ∗η1

=

(
kR1

R5R6

)2

(B.7)

In general we expect µ ∼ Vol(∂Σp)/Vol(Σp) where Σp is a p-chain related to the appropriate

torsion class.
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One can generalize the above to torsion and fluxes giving masses to RR axions by

replacing d → dH = d − H∧ everywhere. Now one has a linear combination of p-forms

ω = ωp+1 + ωp+3 + . . . in Hp+1(X6,Z)⊕Hp+3(X6,Z)⊕ . . . such that

dHη = kω (B.8)

such that η is another polyform.11 We also require that ω is an eigenvalue of the Laplacian

∆H constructed from H, and then we have the same effective action with

µ2 =

∫
X6
dHη ∧ ∗dHη∫
X6
η ∧ ∗η

(B.9)

B.2 Massive Wilson lines

Let us consider a twisted torus geometry T̃6 of the form

ds2 = R2
1(dx1 − k x6dx5)2 +R2

2(dx2 + k x4dx6)2 +

6∑
i=3

(R2
i dx

i)2 (B.10)

with a fundamental form given by

J = R1R4 η
1 ∧ η4 +R2R5 η

2 ∧ η5 +R3R6 η
3 ∧ η6 (B.11)

where the 1-forms ηi are globally well-defined and eigenforms of the laplacian ∆ = dd∗+d∗d,

namely

η1 = dx1 − k x6dx5 η4 = dx4

η2 = dx2 + k x4dx6 η5 = dx5 (B.12)

η3 = dx3 η6 = dx6

We now consider a D6-brane wrapping the submanifold π3 = {x2 = x3 = x4 = 0}, so that

its volume form is given by dvolπ3 = R1R5R6η
1 ∧ η5 ∧ η6. Since J |π3 = 0 this is indeed a

Lagrangian submanifold of T̃6. We now turn on a Wilson line along the direction η1

A = (〈w〉+ w) η1 (B.13)

because dη1 = kdx5 ∧ dx6 a non-vanishing vev for w will induce a flux F = dA on the

D6-brane worldvolume, so this will be a massive Wilson line.

In order to see how the energy of the system changes, let us consider the DBI action

of the D6-brane on π3. The worldvolume metric and field strength are given by

ds2 = ds2
X1,3 +R2

1(dx1 − k x6dx5)2 + (R5dx
5)2 + (R6dx

6)2 (B.14)

F = ∂µw dx
µ ∧ η1 + k (〈w〉+ w) dx5 ∧ dx6 (B.15)

we then have that the DBI action reads

SDBI = −µ6

∫
d7ξe−φ

√
det (G+ 2πα′F ) (B.16)

11Exact polyforms k′η = dH ω̃ are eaten by some U(1) and should be removed from the spectrum before

starting this discussion.
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and it is easy to see that the square root reads√
det (G+ 2πα′F ) = dvolX1,3

√(
R2

1 + ∂µw∂µw
) (
R2

5R
2
6 + (2πα′)2k2〈w〉2

)
(B.17)

and so the kinetic terms and D-brane energy read

SDBI = −µ6g
−1
s

∫
X1,3

(
∗41 · V6 +

1

2

Ṽ6

R2
1

dw ∧ ∗4dw

)
(B.18)

where

Ṽ6(〈w〉) =

∫
π3

√
1 +

(2πα′)2

R2
5R

2
6

k2〈w〉2dvolπ3 = R1

√
R2

5R
2
6 + (2πα′)2k2〈w〉2 (B.19)

and

V6(〈w〉) = Ṽ6(〈w〉)−R1R5R6 (B.20)

of course one should express this action in the Einstein frame, which basically amounts to

divide by VolT̃6
. Notice that in the limit

〈w〉 � R5R6

2πkα′
(B.21)

we can neglect the Wilson line dependence in V6 and we have that the kinetic term is

proportional to

Ṽ6

R2
1

∼ R5R6

R1
=

∫
π3

η1 ∧ ∗3η1 ≡ H (B.22)

as expected from the case of massless Wilson lines (3.23). For large values of 〈w〉 this

dependence cannot be neglected.

Open Access. This article is distributed under the terms of the Creative Commons
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