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Abstract: Non-Abelian vortices arise when a non-Abelian global symmetry is exact in

the ground state but spontaneously broken in the vicinity of their cores. In this case, there

appear (non-Abelian) Nambu-Goldstone (NG) modes confined and propagating along the

vortex. In relativistic theories, the Coleman-Mermin-Wagner theorem forbids the existence

of a spontaneous symmetry breaking, or a long-range order, in 1+1 dimensions: quantum

corrections restore the symmetry along the vortex and the NG modes acquire a mass gap.

We show that in non-relativistic theories NG modes with quadratic dispersion relation

confined on a vortex can remain gapless at quantum level. We provide a concrete and

experimentally realizable example of a three-component Bose-Einstein condensate with

U(1)×U(2) symmetry. We first show, at the classical level, the existence of S3 ' S1 n S2

(S1 fibered over S2) NG modes associated to the breaking U(2)→ U(1) on vortices, where

S1 and S2 correspond to type I and II NG modes, respectively. We then show, by using

a Bethe ansatz technique, that the U(1) symmetry is restored, while the SU(2) symmery

remains broken non-pertubatively at quantum level. Accordingly, the U(1) NG mode turns

into a c = 1 conformal field theory, the Tomonaga-Luttinger liquid, while the S2 NG mode

remains gapless, describing a ferromagnetic liquid. This allows the vortex to be genuinely

non-Abelian at quantum level.

Keywords: Solitons Monopoles and Instantons, Spontaneous Symmetry Breaking, Sigma

Models, Bethe Ansatz

ArXiv ePrint: 1311.5408

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2014)098

mailto:nitta@phys-h.keio.ac.jp
mailto:shun.uchino@gmail.com
mailto:wltvinci@gmail.com
http://arxiv.org/abs/1311.5408
http://dx.doi.org/10.1007/JHEP09(2014)098


J
H
E
P
0
9
(
2
0
1
4
)
0
9
8

Contents

1 Introduction 1

2 Effective Lagrangian approach 2

3 Quantum exact gapless modes 6

4 Summary and discussion 7

A Derivation of the effective action 9

B Derivation of Bethe ansatz equations 9

C Derivation of dressed energies 12

D Tomonaga-Luttinger liquid in two-component Bose gases 13

1 Introduction

Vortices play a prominent role in various areas of physics such as superfluidity, supercon-

ductivity, magnetic materials, nematic liquids, fractional quantum Hall effect, topological

quantum computation, quantum field theory and cosmology. In particular in high en-

ergy physics, much attention has been recently paid to non-Abelian vortices. Such objects

arise when a non-Abelian symmetry is spontaneously broken in the vicinity of the vortex.

The gapless Nambu-Goldstone (NG) modes associated to this symmetry breaking are then

confined on the vortex, where they can propagate.

Non-Abelian vortices were first discovered in supersymmetric gauge theories [1–5] (see

refs. [5–8] for a review), where their presence elegantly explains a long standing problem

about quantum physics in different dimensions, i.e. similarities in the non-perturbative

dynamics of sigma models in 1+1 dimensions and Yang-Mills theory in 3+1 dimensions (e.g.

existence of dynamical mass gap, asymptotic freedom, instantons). Non-Abelian vortices

also appear in high density quark matter (in this context also known as color flux tubes) [9–

13] (see ref. [14] for a review). In this case, a Coleman-Weinberg quantum potential arising

on the vortex world-sheet leads to the presence of monopole mesons confined by color flux

tubes [15, 16]. This phenomenon explains a quark-hadron duality between low and high

density QCD, i.e. quarks are confined when monopoles are condensed at low density while

monopoles are confined when quarks are condensed at high density [16]. The examples

mentioned above correspond to relativistic systems. In such cases NG modes acquire mass

gaps through quantum corrections [17, 18] consistently with the Coleman-Mermin-Wagner

theorem [19, 20] which forbids the existence of a spontaneous symmetry breaking or a
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long-range order in 1+1 dimensions. In this sense, non-Abelian vortices studied thus far

in relativistic theories are Abelianized at quantum level [17, 21].

On the other hand, the situation can be different in non-relativistic theories. There

are two kinds of NG modes, type-I and II, with linear and quadratic dispersions re-

spectively [22]. This distinction is deeply connected with the geometry of the space

parametrized by the NG modes [23, 24]; one type-II NG mode corresponds to two bro-

ken generators, while one type-I NG mode corresponds to one broken generator. In the

relativistic case only type-I NG are allowed.

In this paper, we show that type-II NG modes confined in the core of a vortex remain

gapless at quantum level, providing a quantum exact non-Abelian vortex. We consider a

concrete example of a three-component Bose-Einstein condensate (BEC) with U(2)×U(1)

symmetry, in which there is partial phase separation between one (immiscible) component

and the other two (miscible) components. Our setup can be realized in experiments of ul-

tracold atomic gases; (Almost) U(2) symmetric two-component BECs were already realized

by ultracold 87Rb [25] and 23Na [26] atoms. If one mixes additional atom with repulsive

interaction with these atoms, one can experimentally realize our set-up. In this system,

we find that there appear an S1 type-I NG mode and an S2 ' CP 1 type-II NG mode

in a vortex core. By noting that this vortex acts as a 1+1 dimensional trap for the two

miscible components, we describe the modes living in the vortex core as a 1+1 dimensional

two-component Bose gas with U(2) symmetry. By studying the exact solution of this sys-

tem through a Bethe ansatz technique, we show that at quantum level the U(1) symmetry

recovers and the U(1) sector can be described by a conformal field theory (CFT) with the

conformal charge c = 1 or a Tomonaga-Luttinger liquid [27, 28]. On the other hand, the

SU(2) symmetry breaking holds at quantum level and the S2 NG mode remains gapless,

describing a ferromagnetic liquid [29].

2 Effective Lagrangian approach

We consider a three-component BEC with U(1)×U(2) symmetry. The Lagrangian for the

Gross-Pitaevskii equation is

L = i~ψ†0ψ̇0 + i~Ψ†Ψ̇− ~2

2m0
∇iψ†0∇iψ0 −

~2

2m
∇iΨ†∇iΨ

+µ0|ψ0|2 + µ|Ψ|2 − 1

2
λ0|ψ0|4 −

1

2
λ|Ψ|4 − κ|ψ0|2|Ψ|2 , (2.1)

which is written in terms of the condensate wave functions (ψ0,Ψ
T ), where Ψ is a two-

component condensate. Here, µ and µ0 are chemical potentials, and λ (λ0) and κ are

intracomponent and intercomponent couplings, respectively. The system above has a stable

minimum when λ0λ − κ2 > 0. We consider the phase separation between ψ0 (immiscible

component) and Ψ (miscible components), with a non-vanishing expectation value for ψ0,

which is obtained when µ0λ − µκ > 0, µλ0 − µ0κ < 0 and µ2λ0 − µ2
0λ < 0. In this

situation, the ground state is (ψ0,Ψ
T ) = (v, 0, 0) with v2 = µ0/λ0, where the symmetry is

spontaneously broken down to U(2).
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In the cylindrical coordinates (r, θ, z), a vortex along the z-axis is given by(
ψ0

Ψ

)
=

(
f0(r, θ)eiθ

g0(r, θ)η

)
, η†η = 1, (2.2)

with the boundary conditions f0 → v and g0 → 0 at r → ∞ and f0 → 0 and g′0 → 0 at

r → 0, see figure 1. Here, η is a two-component complex constant that parameterizes S3,

and identify the NG modes associated with the ground state symmetry breaking U(2) →
U(1) that takes place in the vicinity of the vortex core: U(2)/U(1) ' SU(2) ' S3.

We construct a low-energy effective theory of the vortex through the moduli ap-

proximation [30, 31] introducing a world-sheet coordinate (t, z) dependence of the

vortex configuration (
ψ0

Ψ

)
=

(
f(r, θ, z, t)eiθ

g(r, θ, z, t)η(z, t)

)
, η†η = 1. (2.3)

Notice that we have included a world-sheet coordinate dependence on the profile functions

too. This is equivalent to the inclusion of “Higgs” excitations H and h in the calculation:

f(r, θ, z, t) ≡ f0(r) +H(r, θ, z, t),

g(r, θ, z, t) ≡ g0(r) + h(r, θ, z, t). (2.4)

This modification to the standard approach in deriving effective theories in the relativistic

case is crucial. The field H is a massive bulk mode, while the field h is a lighter non-

propagating mode that contributes to the effective action for the zero-modes η.

By substituting eq. (2.3) in the Lagrangian we get:

L = i~g2η†η̇

− ~2

2m0

[
f ′2 +

1

r2
f2 +

1

r2
(∇θf)2 + (∇zf)2

]
− ~2

2m

[
g′2 +

1

r2
(∇θg)2 + (∇zg)2 + g2|∇zη|2

]
+µ0f

2 + µg2 − 1

2
λ0f

4 − 1

2
λg4 − κf2g2, (2.5)

from whose variation one obtains the equations of motion for f and g:

0 = − ~2

2m0

[
1

r2
f −4f

]
+ µ0f − λ0f

3 − κfg2

0 = i~gη†η̇ − ~2

2m

[
g|∇zη|2 −4g

]
+ µg − λg3 − κgf2. (2.6)

In the derivation of the effective action for the moduli η we will keep only terms up to second

derivatives in the world-sheet coordinates. This allows us to consider an expansion of the

equations above in powers of these coordinates. An important observation is that, thanks

to the (static) equation of motions, the corrections to the effective Lagrangian in eq. (2.5)

enter quadratically at least. This allows us to calculate all terms in the effective action,
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Figure 1. Numerical solution for the profile functions f0 and g0. µ = 2, µ0 = λ = λ0 = 3, κ = 2.3,

m = m0.

up the the second order in the world-sheet coordinates, by just calculating corrections to

the profile functions up to the first order. As can be seen by inspecting eq. (2.6), first

order corrections will only involve time derivatives of the moduli η. We proceed using the

following expansion:

g = g0 + i~η†η̇ g1 +O(∂2
t , ∂

2
z ),

f = f0 + i~η†η̇ f1 +O(∂2
t , ∂

2
z ). (2.7)

We first consider the zeroth order, corresponding to the static case, and study the vortex

profile functions f0 and g0. The equations for these two functions correspond to those in

eq. (2.6) without the world-sheet derivatives. A numerical example can be seen in figure 1.

We can see how the vortex built in the immiscible component acts as a one dimensional

trap for the two miscible components. This is the first crucial observation of our paper.

The asymptotic behavior of the profile functions can be found analytically by studying the

expansion f0 = v − δf , g0 = δg of eq. (2.6) from which we get:

f0 ∼ v − 1

2
√
µ0λ0

1

r2
,

g0 ∼
c1√
r
e−γr, γ ≡

√
−λ0µ+ κµ0

λ0
. (2.8)

As common in systems with only global symmetries, the profile function f0 for the conden-

sate supporting the winding decays polynomially. On the other hand the expression above

shows the profile function for the trapped components g0 decays exponentially. This is our

second important observation. The exponential decay allows us to search for normalizable

zero-modes propagating on the vortex line, so that the 1+1 effective action is finite on an

infinite volume.
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We proceed now to the calculation of the effective action with the derivation of the

higher order corrections f1 and g1. The expansion of eq. (2.6) in powers of the world-

sheet coordinates gives new differential linear equations for the variables f1 and g1 (see

appendix A). Since these equations are linear in the first order corrections, f1(r) end g1(r)

depend only on the zeroth order profile functions f0 and g0. Their numerical evaluation

can be found in figure 2 in appendix A. Substituting the expressions g = g0 + i~η†η̇ g1 and

f = f0 + i~η†η̇ f1 in the original Lagrangian (2.5), and remembering to keep track of the

second order terms only, we obtain:

L = i~g2
0η
†η̇ +K ~2(η†η̇)2 − ~2

2m
g2

0|∇zη|2

K ≡ −
(
µ0f

2
1 + µg2

1 − 3λ0f0f
2
1 − 3λg0g

2
1 − 4κf0g0f1g1 − κg2

0f
2
1 − κf2

0 g
2
1

)
. (2.9)

The effective action is obtained after integrating over the transverse direction r, this can

be easily done numerically with the knowledge of the profile functions f0,1 and g0,1. The

whole calculation has assumed only a derivative expansion in powers of the world-sheet

derivatives, keeping terms up to the second order:

Leff = αi~η†η̇ − α ~2

2m
|∇zη|2 − β~2(η†η̇)2

α =

∫ ∞
0

2πrdrg2
0, β =

∫ ∞
0

2πrdrK . (2.10)

Since the function g0 is exponentially decaying, the coefficient α is finite. Moreover, notice

that the first order correction i~g0η
†η̇ is exponentially small at large distances, which

implies that also the functions f1 and g1 decay exponentially. As a consequence, the

coefficient β is finite and of the same order of α. This means that the effective action is

finite and the zero modes are truly confined on the vortex. The coefficients α and β have

been calculated numerically in appendix A for the special choice of parameters shown in

figure 1.

In order to see the dispersions of the NG modes, we recall that the geometry of the

NG modes is S3 ' S1 n S2, where S1 is fibered over S2 ' CP 1. To make this structure

explicit, we take a parameterization

η = eiϕn (2.11)

with n†n = 1, where ϕ and n parametrize S1 and S2. Then, the effective Lagrangian can

be rewritten as

Leff. = −β~2

(
ϕ̇− i

2
(n†ṅ− ṅ†n)

)2

−α ~2

2m

(
∂zϕ−

i

2
(n†∂zn− ∂zn†n)

)2

+2iα~(n†ṅ− ṅ†n)− α ~2

2m

(
(∂zn)2 − (n†∂zn)2

)
, (2.12)
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which shows that ϕ and n are type-I and II NG modes with linear and quadratic dispersions,

respectively. Here, remarkably n describes one type-II NG mode corresponding to the two

broken generators of S2. In addition, there appears one type-II translational zero mode

corresponding to two broken translational symmetries [32].

3 Quantum exact gapless modes

In the effective theory approach, we have obtained gapless modes at classical level. In order

to discuss whether these modes remain gapless quantum mechanically, we should take into

account massive modes and quartic interaction. As we have noticed, the vortex in the

first component can be seen as a trap for the second and third components, resulting in

two-component Bose gases with U(2) symmetry in 1+1 dimension. Here, we study such

two-component Bose gases at quantum level.

Two-component Bose gases with U(2) symmetry in 1+1 dimension are also known as

Yang-Gaudin model [33, 34]. Including a nonlinear interaction, the Hamiltonian in units

of ~2/(2m) is given by

H =

∫ L

0
dz

( ∑
σ=1,2

∂zΨ
†
σ∂zΨσ − µρ+ λρ2

)
, (3.1)

where ρ =
∑

σ Ψ†σΨσ is the density, and L is a system size along the z-direction. The

effective parameters λ and µ can be related to the original parameters through a renormal-

ization group, but here we do not need explicit relations. Since there is no spin-dependent

coupling, the Hamiltonian has U(2) symmetry in which we can use the Bethe ansatz tech-

nique [28, 35]. The resultant Bethe ansatz equations are [36, 37] (See appendix B)

kjL = 2πIj −
N∑
l=1

Θ

(
kj − kl
λ

)
+

M∑
β=1

Θ

(
2kj − 2lβ

λ

)
(3.2)

2πJα =

N∑
j=1

Θ

(
2lα − 2kj

λ

)
−

M∑
β=1

Θ

(
lα − lβ
λ

)
(3.3)

where Θ(x) = 2 tan−1(x), and N and M represent the total number of the particles and

particle number for the component “2”, respectively. kj and lα are called quasimomenta

and isospin rapidities originating from SU(2) symmetry in the system. Ij and Jα take

integer or half-integer values, depending on whether N−M is odd or even. Then, the total

energy and momentum are given by

E =
N∑
j=i

(k2
j − µ), P =

N∑
j=1

kj . (3.4)

By using Ij and Jα, the ground state can be characterized as [36]

{Ij} = {−(N − 1)/2, · · · , (N − 1)/2}, M = 0. (3.5)

– 6 –
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In the thermodynamic limit, the above Bethe ansatz equations are then reduced to

ρ(k) =
1

2π
+

1

π

∫ Λ

−Λ
dk′

λρ(k′)

λ2 + (k − k′)2
, (3.6)

where ρ(k) is the density of quasimomenta, and cut-off Λ is determined by the density of

the system N/L =
∫ Λ
−Λ ρ(k). This equation corresponds to that in Lieb-Liniger gas [38,

39]. Thus, as far as S1 sector is concerned, the low-energy excitation is linear gapless

characterized by the c = 1 CFT while there is no BEC. In addition, M = 0 means that the

ground state is ferromagnetic, which is consistent with a general theorem that a ground

state of spinful bosons without spin-dependent interaction is always polarized [40] .

We next consider the nature of the isospin excitation originating from S2 manifold.

Although analytic results can be obtained for weak and strong coupling limits, we need to

numerically determine it for general couplings. To this end, we consider a dressed energy

formalism in the Bethe ansatz [28]. In our model, we can obtain

εc(k) = k2 − µ+
1

π

∫ Λ

−Λ
dk′

λεc(k
′)

λ2 + (k − k′)2
, (3.7)

εs(l) = − 1

2π

∫ Λ

−Λ
dk′

λεc(k
′)

(λ/2)2 + (l − k′)2
, (3.8)

where µ is the chemical potential and we introduced the dressed energy εc(k) and εs(l),

each of which represents S1 and S2 excitations. The derivation of the above equations is

given in appendix B. In the low-energy isospin excitation, an isospin rapidity l is related

to the real momentum of the isospin excitation p as follows:

p =

∫ Λ

−Λ
dk′ρ(k′)

[
Θ

(
2k′ − 2l

λ

)
+ π

]
. (3.9)

By solving a couple of the above equations, we can confirm that the isospin excitation is

gapless quadratic one [36, 37]. This indicates that a type-II NG mode, called a magnon,

emerges for the isospin sector due to a spontaneous symmetry breaking of SU(2).

4 Summary and discussion

We have shown that a non-Abelian vortex remains non-Abelian at the quantum level

when trapped NG modes are of type-II, e.g. the low-energy behavior of the NG modes is

robust against quantum fluctuations. We have worked out an explicit example of a three

component BEC with U(2) × U(1) symmetry. At the classical level, there appear in the

1+1 dimensional low-energy effective theory of the vortex both type I and II NG modes. ϕ

and n, with linear and quadratic dispersions respectively, are associated to the fiber S1 and

the base S2 of the moduli space S3 ' S1 n S2 , where S3 is associated with the symmetry

breaking induced by a vortex solution U(2)→ U(1). At quantum level, however, the U(1)

symmetry is recovered while ϕ remains gapless with a linear dispersion. On the other hand,

the symmetry breaking SU(2)→ U(1) holds at quantum level and n remains gapless with

a quadratic dispersion. We then should interpret the type-I NG mode ϕ as the c = 1 CFT

– 7 –
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mode at quantum level since there is no BEC, that is, a Tomonaga-Luttinger liquid. At

the same time, the type-II NG mode n remains at quantum level and is interpreted as a

ferromagnetic liquid.

An intuitive understanding of the above is as follows. As far as the low-energy physics

is concerned where S1 and isospin sectors are expected to be separated, the kinetic Hamil-

tonians in S1 and isospin sectors are Lorentz and Galilei invariant, respectively, thanks to

their dispersion rules. Then, while the spontaneous symmetry breaking in the S1 sector is

forbidden by the Coleman-Mermin-Wagner theorem, there still exists a linear gapless mode

since the fixed point of the system is the so-called Tomogana-Luttinger liquid where all of

the interactions that can yield gaps in the system are irrelevant. On the other hand, the

spin sector is purely non-relativistic in the sense that Lorentz symmetry does not emerge

even in the low-energy physics. Since one of the conditions of the Coleman-Mermin-Wagner

theorem is Lorentz invariance, spontaneous symmetry breaking in the isospin sector is not

forbidden and the type-II NG mode remains at the quantum level as prescribed by the

NG theorem.

We can also consider the case where the U(2) symmetry is explicitly broken to U(1)2,

but the trapped components are still miscible. This can be obtained with an additional

term of the type −Lint = λ12|Ψ1|2|Ψ2|2 + 1
2λ11|Ψ1|4 + 1

2λ22|Ψ2|4, where λ12 is smaller

than intracomponent couplings in λ11 and λ22 (the U(2) symmetric case corresponds to

λ11 = λ22 = λ12 = λ).

At the classical level, this symmetry is spontaneously broken in the vortex core and two

type-I NG modes are trapped in the vortex. At the quantum level, the U(1)2 symmetry is

recovered and there are two Tomonaga-Luttinger liquids as far as the so-called Tomonaga-

Luttinger parameter in the isospin sector is greater than 1 (See appendix B).

It is straightforward to extend our model to an (N + 1)-component BEC with

U(N) × U(1) symmetry. There appear NG modes SN−1 ' S1 n CPN−1, where S1 and

CPN−1 are type-I and II NG modes at the classical level. At the quantum level, the

U(1) symmetry is recovered with the Tomonaga-Luttinger liquid, while the SU(N) sym-

metry remains broken and CPN−1 modes remain as type-II NG modes, as ensured by the

Eisenberg-Lieb theorem [40].

Finally, fate of type-II NG modes localized on domain walls [41, 42] and skyrmion

lines [43] in the presence of quantum effects is one interesting future problem to explore.
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Figure 2. Numerical solution for the first order corrections to the profile functions f0 and g0.

µ = 2, µ0 = λ = λ0 = 3, κ = 2.3, m = m0.

A Derivation of the effective action

Assuming the following derivative expansion for the profile functions as explained in the text

g = g0 + i~η†η̇ g1 +O(∂2
t , ∂

2
z ),

f = f0 + i~η†η̇ f1 +O(∂2
t , ∂

2
z ).

we obtain the following equations:

0 = − ~2

2m0

[
1

r2
f1 −4f1

]
+ µ0f1 − 3λ0f

2
0 f1 − κf1g

2
0 − 2κf0g0g1

0 = g0 −
~2

2m
[−4g1] + µg1 − 3λg2

0g1 − κg1f
2
0 − 2κg0f0f1. (A.1)

Since the non-homogeneous term in the effective action is exponentially small, the functions

f1 and g1 are also exponentially small. A numerical solution for these quantities is shown

in figure 2. Using eq. (2.10), we can evaluate numerically the coefficients α and K. Using

the values of the parameters as indicated in the figures captions, we have, for example:

α = 0.684, β = 1.09, (A.2)

where we have taken ~ = m = 1.

B Derivation of Bethe ansatz equations

Here we sketch a derivation of the Bethe ansatz equations in two-component bosons, which

can be solved by the so-called nested Bethe ansatz method. Our derivation is based on one

in ref. [35], which discusses the Fermionic Hubbard model.
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We first consider N particle wavefunction as

Ψ(x1, · · · , xN ;σ1, · · · , σN ) =
∑
{P}

AσQ1
···σQN (kp1 , · · · , kpN )e

i
∑N
j=1 kpjxQj , (B.1)

1 ≤ xQ1 ≤ xQ2 · · · ≤ xQN ≤ L, (B.2)

where {P} denotes possible permutations. From the continuity of the wavefunction and

its first derivative at equal positions as x1 = x2, we have

AσQ1
··· ,σQi ,σQi+1

,···σQN (kp1 , · · · , kpi+1 , kpi , · · · , kpN )

=
−iλ

kpi − kpi+1 + iλ
AσQ1

··· ,σQi ,σQi+1
,···σQN (kp1 , · · · , kpi , kpi+1 , · · · , kpN )

+
kpi − kpi+1

kpi − kpi+1 + iλ
AσQ1

··· ,σQi+1
,σQi ,···σQN (kp1 , · · · , kpi , kpi+1 , · · · , kpN ). (B.3)

We next introduce

|kp1 , · · · , kpN 〉 =
∑

{σi}=↑,↓

AσQ1
,···σQN (kp1 , · · · , kpN )|σ1, · · · , σN 〉, (B.4)

and

Y (a,b)(x) =
−iλ
x+ iλ

I +
x

x+ iλ
Π(a,b), (B.5)

|σ1, · · · , σb, σa, · · · , σN 〉, = Π(a,b)|σ1, · · · , σa, σb, · · · , σN 〉, (B.6)

with the identify operator I. Then, eq. (B.3) can be expressed as

Y (a,b)(kpi − kpi+1)|kp1 , · · · , kpi , kpi+1 · · · , kpN 〉 = |kp1 , · · · , kpi+1 , kpi · · · , kpN 〉. (B.7)

We next consider the periodic boundary condition: Ψ(x1, · · · , xi−1, 1, xi+1, · · · , xN ) =

Ψ(x1, · · · , xi−1, L+ 1, xi+1, · · · , xN ). Then,

AσQ1
···σQN (kp1 , · · · , kpN ) =

eip1LAσQ2
···σQN ,σQ1

(kp2 , · · · , kpN , kp1). (B.8)

By substituting the above into eq. (B.4), we have

|kp1 , · · · , kpN 〉 = eip1L
N−2∏
j=0

X(1,N−j)(kp1 − kpN−j )|kp1 , · · · , kpN 〉, (B.9)

X(j,k)(x) = Π(j,k)Y (j,k)(x). (B.10)

By introducing

S ≡
N−1∏
j=1

X(a,N−J)(kp1 − kpN−j )

= −X(a,N)(kp1 − kpN ) · · ·X(a,2)(kp1 − kp2)Π(a,1), (B.11)

– 10 –
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which satisfies

TraS = −
N−2∏
j=0

X(1,N−j)(kp1 − kpN−j ), (B.12)

we have

|kp1 · · · kpN 〉 = −eikp1LTraS|kp1 · · · kpN 〉. (B.13)

By using Pauli matrices, we have

X(a,j)(l − lj) =
1

l − lj + iλ
[−iλΠ(a,j) + (l − lj)Ia ⊗ I(j)]

=
1

l − lj + iλ

(
(l − lj − iλ/2)Ij − iλσzj /2 iλσ−j

iλσ+
j (l − lj − iλ/2)Ij + iλσzj /2

)
,

(B.14)

with lj = kpj − iλ/2 since

Π(a,j) =
1

2

(
Ij + σzj /2 2σ−j

2σ+
j Ij − σzj /2

)
. (B.15)

We next introduce the so-called transfer matrix

T (a)(l) = X(a,N)(l − lN ) · · ·X(a,1)(l − l1)

≡

(
A(l) B(l)

C(l) D(l)

)
. (B.16)

By considering a “vacuum” state as |vac〉 = |1, · · · , 1〉, we obtain

A(l)|vac〉 =
N∏
j=1

(
l − lj − iλ
l − lj + iλ

)
|vac〉, (B.17)

C(l)|vac〉 = 0, (B.18)

D(l)|vac〉 =
N∏
j=1

(
l − lj

l − lj + iλ

)
|vac〉. (B.19)

Since Y (a,b) and T (a) satisfy the celebrated Yang-Baxter relation

Y (a,b)(l − µ)T (a)(l)T (b)(µ) = T (a)(µ)T (b)(l)Y (a,b)(l − µ), (B.20)

it is straightforward to show the following commutation relations:

B(l)B(µ) = B(µ)B(l), (B.21)

A(µ)B(l) =
l − µ− iλ
l − µ

B(l)A(µ) +
iλ

l − µ
B(µ)A(l), (B.22)

D(µ)B(l) =
µ− l − iλ
µ− l

B(l)D(µ) +
iλ

µ− l
B(µ)D(l). (B.23)

– 11 –
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We finally put the following ansatz for the wavefunction:

|kp1 · · · kpN 〉 = B(l1) · · ·B(lM )|vac〉. (B.24)

By substituting the above into eq. (B.13) and using the commutation rela-

tions (B.21), (B.22), and (B.23), we obtain the following Bethe ansatz equations:

eikjL = −
N∏
l=1

kj − kl + iλ

kj − kl − iλ

M∏
β=1

kj − lβ − iλ/2
kj − lβ + iλ/2

, (B.25)

N∏
j=1

lα − kj − iλ/2
lα − kj + iλ/2

= −
M∏
β=1

lα − lβ − iλ
lα − lβ + iλ

. (B.26)

Finally, by taking the logarithm of the above equations, we obtain eqs. (3.2) and (3.3).

C Derivation of dressed energies

For general N and M , the ground state energy can be expressed as

E/L =
1

L

(
N∑
j=1

k2
j − µN − hM +

hN

2

)

=

∫ Λ

−Λ
dk(k2 − µ+ h/2)ρ(k)− h

∫ Ω

−Ω
dlσ(l), (C.1)

where h is a magnetic field, and σ(l) is the density of the isospin rapidities. From the Bethe

ansatz equations, we can show

~ρ(k, l) = ~ρ0(k, l) +K(k, l|k′, l′)⊗ ~ρ(k′, l′) (C.2)

where

~ρ(k, l) = (ρ(k), σ(l))T , (C.3)

~ρ(k, l) = (1/(2π), 0)T , (C.4)

K(k, l : k′l′) =
1

π

(
λ

λ2+(k−k′)2
−λ/2

(λ/2)2+(k−l′)2
λ/2

(λ/2)2+(l−k′)2
−λ

λ2+(l−l′)2

)
, (C.5)

and ⊗ means the integral over the same variables.

We next introduce

~ε0(k, l) = (k2 − µ− h/2, 0)T . (C.6)

Then, the ground state energy can be rewritten as

E/L = ~εT0 ⊗ ~ρ,
= ~ρT0 ⊗ ~ε, (C.7)

where ~ε = (εc(k), εs(l))
T is the dressed energy. This satisfies

~ε = ~ε0 +KT ⊗ ~ε, (C.8)

which is nothing but eqs. (3.7) and (3.8).

– 12 –
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D Tomonaga-Luttinger liquid in two-component Bose gases

Here, we consider the following Hamiltonian in two-component bosons,

H =

∫
dx
∑
σ

(
~2

2m
∂Ψ†σ∂Ψσ − µΨ†σΨσ +

λ

2
(Ψ†σΨσ)2

)
+ κΨ†1Ψ1Ψ†2Ψ2. (D.1)

Here, we are interested in the miscible case, that is,

λ > κ, (D.2)

λ > 0. (D.3)

In what follow, we consider the situation that two components have the same density,

ρ1 = ρ2. Then, we can apply the bosonization to this “bosonic” system. In the bosonization

for bosons [27], we can use the following bosonization

Ψ†σ =

(
ρ0 −

1

π
∇φσ

)1/2
[
e−iθσ +

∑
p=±1

e2ip(πρ0x−φσ)−iθσ

]
, (D.4)

ρσ = Ψ†σΨσ =

(
ρ0 −

1

π
∇φσ

)
+ ρ0

∑
p=±1

e2ip(πρ0x−φσ), (D.5)

where φσ and θσ are conjugate fields in the bosonization.

By applying the above dictionary to the our Hamiltonian, we have

H → 1

2π

∫
dx

∑
µ=ρ,σ

[
uµKµ(∇θµ)2 +

uµ
Kµ

(∇φµ)2

]
+ 2κρ2

0

∫
dx cos 2

√
2φσ, (D.6)

where we introduce

φρ =
1√
2

(φ1 + φ2), (D.7)

φσ =
1√
2

(φ1 − φ2), (D.8)

and the similar relations for θ fields. Here, uµ is the velocity and Kµ is the so-called

Luttinger parameter, and they are given by

Kρ =
K√

1 + κK/πu
, (D.9)

Kσ =
K√

1− κK/πu
, (D.10)

uρ = u
√

1 + κK/πu, (D.11)

uρ = u
√

1− κK/πu, (D.12)

K =

√
π2ρ0

λM
, (D.13)

u =

√
λρ0

M
. (D.14)

– 13 –
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As can be seen from the above bosonization Hamiltonian, if there is no coupling

between up and down particles (κ = 0), the Hamiltonian is quadratic, which is called

Tomonaga-Luttinger Hamiltonian.

In the presence of κ, we also have cosφσ, and therefore physics becomes non-trivial.

To see what happens in the presence of this coupling, we can consider the renormalization

group analysis, which is one of the most powerful approaches in one dimensional world. By

applying the perturbative renormalization group in the above Hamiltonian, we have the

following renormalization group equations [27],

dKσ(l)

dl
= −κ

2
12(l)K2

σ(l)

2
, (D.15)

dκ(l)

dl
= (2− 2Kσ(l))κ(l). (D.16)

We note that the above are essentially equivalent to renormalization group equations in

the so-called BKT transition. We can easily check that cosφσ is locked since κ flows to

strong coupling if Kσ < 1 while cosφσ is irrelevant if Kσ > 1.

In a weakly-interacting bosonic system, we naturally expect that Kσ > 1, and therefore

the fixed point is the Tomonaga-Luttinger liquid phase. Namely, even if we consider the

quantum fluctuations, we still expect that the low-energy excitations in the system are

linear gapless.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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