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1 Introduction

In recent work [1, 2] the structure and thermodynamics of charged and rotating black

holes in Einstein-Maxwell theory immersed in an external magnetic field were studied. The

solutions were obtained by means of a solution-generating technique pioneered by Ernst [3],

starting from a seed solution with no external magnetic field present. By the well-known

electric-magnetic duality of Einstein-Maxwell theory, one may just as easily consider the

effects due to the immersion in an electric field of an electrically and magnetically charged

rotating black hole. The solution-generating property of Einstein-Maxwell theory extends

to ungauged supergravity theories, and nowadays is best seen as part of the web of dualities

at the heart of the modern synthesis of supergravity and superstring theory known as M-

Theory. The supergravity theories of interest contain some number k > 1 of generalised
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Maxwell fields, and black holes may thus carry k generalised electric and k generalised

magnetic charges. Explicit solutions are available for all eight charges (four electric and four

magnetic) [4] in a theory often referred to as the STU model, which is N = 2 supergravity

coupled to 3 additional vector multiplets. (See [5, 6] for the results for just four charges.) If

this is reduced to three dimensions on a Killing symmetry, the bosonic sector of the resulting

theory can be cast into the form of a scalar sigma model with a global O(4, 4) symmetry

coupled to gravity. By acting with an appropriate subgroup of O(4, 4) on the spatial

reduction of a four-charge black hole, one can introduce further parameters that acquire the

interpretation of describing external electric and/or magnetic fields after lifting the solution

back to four dimensions. It is therefore of interest to ask how these black holes respond to

being immersed in a combination of the 4 possible electric and 4 possible magnetic fields.

Even in the Einstein-Maxwell case, the general situation is extremely complicated

because a magnetic field may exert a torque on a charged black hole and cause it to rotate,

even if it was originally non-rotating and static. Another potential complication is that

applying, for instance, a magnetic field to a magnetically charged black hole should cause

it to accelerate. In fact, in the case of Einstein-Maxwell theory, it was found that a static

magnetically charged but electrically neutral Reissner-Nordström black hole seed remains

static and non-accelerating upon magnetization, but the metric then exhibits a conical

singularity along the axis of symmetry which represents a cosmic string whose tension is

tuned so as to prevent acceleration.

It is of interest to explore these phenomena further when more than one electromagnetic

field is present, since, as we shall show in this paper, new features then arise. In view of

the many complications introduced by rotation, we have decided to focus in this paper just

on static seed solutions.

The theory that we shall be considering, the four-dimensional STU supergravity model,

can arise as a 6-torus reduction of ten-dimensional type IIA (or heterotic) supergravity to

give N = 8 (N = 4) supergravity in four dimensions, followed by a consistent truncation.

The truncation can be performed in a variety of different ways that are all equivalent

under four-dimensional U-duality, but which have different ten-dimensional interpretations,

depending on how the four surviving gauge fields are selected.1

In the bulk of the paper we shall consider the STU model in the formulation that was

used in [5, 6], in which two of the gauge fields come from the reduction of the NS-NS 2-form

potential of IIA supergravity, and the other two are Kaluza-Klein vectors coming from the

reduction of the ten-dimensional metric. The four-dimensional Reissner-Nordström black

hole lifts to a pp-wave/NUT/NS1/NS5 intersection in this description.

In an alternative description of the STU model one of the gauge potentials is the direct

reduction of the Ramond-Ramond vector potential in the IIA theory, whilst the rest of the

1A black hole solution of the STU model, specified by five independent charges, is a generating solution

for general black holes of the full N = 8 (N = 4) supergravity theory with 28 electric and 28 magnetic

charges, which are obtained by acting on the generating solution with a subset of U -duality (or S and T -

duality) transformations (See, for example, [7]). The seed solution (in fact presented, for symmetry reasons,

with eight charges rather than the minimal set of five charges) has recently been constructed in [4]. The

five-charge static and BPS black holes were obtained in [8] and [9].
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gauge potentials come from the Kaluza-Klein reduction of the Ramond-Ramond 3-form

potential. In this description the Reissner-Nordström black hole lifts to a D0/D4/D4/D4

intersection in ten dimensions. (Alternatively, in M-theory this configuration is obtained

from a pp-wave/M5/M5/M5 intersection.) We shall discuss the relation between the above

two formulations of the STU model in appendix B.

There does not seem to be an ideal and succinct way of referring to the two basic

types of solution that we shall be discussing in this paper. In essence, we wish to consider

the 4-field STU model generalisations of two distinct magnetised Reissner-Nordström (RN)

black holes:

(1) Magnetised RN black hole carrying electric charge

(2) Magnetised RN black hole carrying magnetic charge (1.1)

Because of the duality complexions of the four field strengths in the STU model, the 4-field

generalisation of solution 1 above actually has two field strengths with electric charges

and external magnetic fields, while the other two field strengths have magnetic charges

and external electric fields. The situation is the opposite for the 4-field generalisation of

solution 2, in the sense that the first two field strengths now have magnetic charges and

external magnetic fields, while the remaining two field strengths have electric charges and

external electric fields.

In order to avoid a cumbersome description of these two types of solution we shall

sometimes for brevity refer to them as if we were working in a duality complexion where all

four field strengths carried electric charges and external magnetic fields in the generalisa-

tions of solution 1, and all four fields carried magnetic charges and external magnetic fields

in the generalisations of solution 2.2 Thus, in summary, we shall refer to the STU model

generalisations of solution 1 as magnetised electric black holes, and the generalisations of

solution 2 as magnetised magnetic black holes.

Before constructing the STU model generalisations of solutions 1 and 2 above, we begin

in section 3 by obtaining the STU model generalisation of the pure Melvin magnetic uni-

verse. This can be constructed by starting from Minkowski spacetime as the seed solution,

acting with the appropriate O(4, 4) global symmetries after reduction to three dimen-

sions, and then lifting back to four dimensions. We also show how it can alternatively be

constructing in a manner that generalises a procedure described in [10], as an analytic con-

tinuation of a limiting form of the four-charge static black hole solutions in the STU model.

In section 4 we construct the STUmodel generalisations of solution 1 above (the magne-

tised Reissner-Nordström solution with electric charge). The solutions we obtain have four

independent charges and four independent external fields. As one might anticipate from

the results of [1], they are in general stationary, even though we again start from a static

seed solution (the four-charge black holes of the STU model). This is because the external

fields exert torques on the charges carried by the black hole. We show that it is in fact pos-

sible, by choosing the charges and the external fields appropriately, to balance the torques

2Unfortunately, as we discuss in appendix B, in actuality the Lagrangian of the STU model in such a

duality complexion would be extremely complicated and inconvenient.
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and thereby obtain a static black hole solution. We also examine the asymptotic structure

of the metrics in the general case, showing that generically there is an ergoregion extending

out to infinity, close to the axis. We discuss the conditions on the charges and magnetic

fields under which the metrics become asymptotically static at infinity, with no ergoregions.

For many purposes it is helpful to focus on the simplifications that result by taking a

near horizon limit of the black hole metrics. In [11], the resulting subtracted geometry [12–

14] was obtained by taking a suitable scaling limit. In section 5, we apply this idea the to

the metrics considered in this paper.

In section 6 we turn to the STU model generalisation of solution 2 above (the mag-

netised Reissner-Nordström solution with magnetic charge). The solutions, which are all

static, again have four independent charges and four independent external fields. As one

might have anticipated on the basis of the results in [1], the metrics in general have a

conical singularity on the axis, corresponding to a delta-function tension holding the black

hole in place. Interestingly, this may be eliminated by imposing an appropriate condition

on the charges and magnetic fields. This can be interpreted as being due to a cancellation

of the forces associated with the individual charges and fields. Such a cancellation of forces

has also previously been discussed in [15].

In addition to the concrete results obtained above, we include in the appendices some

more technical material in which the explicit calculations and comparisons between different

formalisms used are described in more detail than is done in the body of the text.

2 The STU model and its black holes

In this paper we shall be studying some properties of black holes in the four-dimensional

STU supergravity theory, which comprises N = 2 supergravity coupled to three vector mul-

tiplets. The Lagrangian for the bosonic sector of the STU model, in the notation of [6], is

L4 = R ∗1− 1

2
∗dϕi ∧ dϕi −

1

2
e2ϕi ∗dχi ∧ dχi −

1

2
e−ϕ1

(
eϕ2−ϕ3 ∗F(2)1 ∧ F(2)1

+eϕ2+ϕ3 ∗F(2)2 ∧ F(2)2 + e−ϕ2+ϕ3 ∗F1
(2) ∧ F1

(2) + e−ϕ2−ϕ3 ∗F2
(2) ∧ F2

(2)

)

+χ1 (F(2)1 ∧ F1
(2) + F(2)2 ∧ F2

(2)) , (2.1)

where the index i labelling the dilatons ϕi and axions χi ranges over 1 ≤ i ≤ 3. The four

field strengths can be written in terms of potentials as

F(2)1 = dA(1)1 − χ2 dA2
(1) ,

F(2)2 = dA(1)2 + χ2 dA1
(1) − χ3 dA(1)1 + χ2 χ3 dA2

(1) ,

F1
(2) = dA1

(1) + χ3 dA2
(1) ,

F2
(2) = dA2

(1) . (2.2)

Note that (2.1) could be obtained by reducing the six-dimensional bosonic string action on

S1 × S1, and then dualising the 2-form potential A(2) to the axion that is called χ1 here.

Four-charge rotating black hole solutions in the STU theory were constructed in [5].

We shall use the conventions and notation of [6], in which the metric for the four-charge
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black holes is given by

ds24 = −ρ
2 − 2mr

W
(dt+ B(1))

2 +W

(
dr2

∆
+ dθ2 +

∆ sin2 θ dφ2

ρ2 − 2mr

)
. (2.3)

where

∆ = r2 − 2mr + a2, ρ2 = r2 + a2 cos2 θ ,

B(1) =
2ma sin2 θ(rΠc − (r − 2m)Πs)

(ρ2 − 2mr)
dφ ,

W 2 = r1 r2 r3 r4 + a4 cos4 θ

+a2 cos2 θ

[
2r2 + 2mr

4∑

i=1

s2i + 8m2ΠsΠc − 4m2

(
2Π2

s +
4∑

i=1

Πis

)]
, (2.4)

ri = r + 2ms2i , si = sinh δi, ci = cosh δi, and Πc = c1c2c3c4 and Πs = s1s2s3s4. We also

define

Πis = s−1
i Πs , Πic = c−1

i Πc . (2.5)

The expressions for the gauge potentials, axions and dilatons can be found [6].

The mass physical M , angular momentum J , charges Qi and dipole moments µi were

calculated in [5]. In the notation and conventions of [6] that we are using here, they are

given by

M =
1

4
m

4∑

i=1

(c2i + s2i ) , J = ma (Πc −Πs) ,

Qi = 2msi ci , µi = 2ma (siΠ
i
c − ciΠ

i
s) . (2.6)

In standard Maxwell electrodynamics, the magnetic moment of a particle of mass M

and angular momentum J carrying a charge Q is given by µ = gJQ/(2M), where g is the

gyromagnetic ratio. Generically, for the four-charge black holes in the STU model, we can

expect a relation of the form

µi =
J

2M

4∑

j=1

gij Qj . (2.7)

From the quantities (2.6) given above it is not possible, in the absence of additional criteria,

to derive a unique form for the “gyromagnetic matrix” gij . However, if we impose the

additional requirements that it be a symmetric matrix, and furthermore that it exhibit the

same symmetries as the metric under permutation of the four charge parameters δi, then

we are led to the following result:

i = j : gii =
1

2c2i

4∑

k=1

(c2k + s2k) ,

i 6= j : gij = − Πs
6cicjsisj

∑4
k=1(c

2
k + s2k)

Πc −Πs
. (2.8)
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In special cases the expression (2.8) for the gyromagnetic ratio reduces to previously-

known results. For example, if we consider the single-charge case where δ2 = δ3 = δ4 = 0

then we obtain the “Kaluza-Klein” result [16, 17]

g = g11 = 2− tanh2 δ1 . (2.9)

If two or more of the charges are non-zero, the gyromagnetic matrix has off-diagonal com-

ponents. If we take all four charges to be equal, then

gij =
2(c2 + s2)

c2
, i = j , gij = −2s2

3c2
, i 6= j , (2.10)

and so with Qi = Q we have gijQj = 2Q, implying the standard result [18] that g = 2 for

the Kerr-Newman black hole.

In the case of two non-zero equal charges, say, Q1 = Q2 = Q and Q3 = Q4 = 0, we

obtain the following nonzero gyromagnetic matrix coefficients:

g11 = g22 = 2 , g33 = g44 = 2 c2 , g34 = g43 = −2

3
s2 . (2.11)

Thus, g1jQj = g2jQj = 2Q which implies g = 2 for Q.

In the case of three non-zero equal charges, say, Q1 = Q2 = Q3 = Q and Q4 = 0, we

get the following nonzero gyromagnetic matrix coefficients:

g11 = g22 = g33 = 2 + tanh2 δ , g44 = 3c2 − 1 , (2.12)

gi4 = g4i = −1

3
tanh2 δ(2 + tanh2 δ) , i = 1, 2, 3 .

In this case gijQj = (2 + tanh2 δ)Q for i = 1, 2, 3, and thus g = 2 + tanh2 δ. Furthermore,

even though Q4 = 0, a nonzero µ4 is induced, since g4jQj = − tanh2 δ(2 + tanh2 δ) and

thus g4 = − tanh2 δ(2 + tanh2 δ).

Another explicit example can be obtained with pair-wise equal charges, say, Q1 = Q3

and Q2 = Q3. In this case the pair-wise equal magnetic moments µ1 = µ3 and µ2 = µ4 are

related to the pair-wise equal charges as:

µI =
J

2M

2∑

J=1

GIJQJ , I = 1, 2 , (2.13)

where the coefficients of the gyromagnetic matrix G are

G11 =
2(3c21 − 2 + 2c22)

3c21
, G22 =

2(3c21 − 2 + 2c22)

3c22
, G12 = G21 = −4

3

s1s2
c1c2

(2.14)

The matrix G has eigenvalues 2 and 2 + 4
3(tanh

2 δ1 + tanh2 δ2).

3 Pure Melvin-type solution in the STU model

Later in the paper, we shall be constructing solutions in the STU model describing four-

charge black holes immersed in external magnetic fields. These solutions will, under ap-

propriate circumstances, be asymptotic to the STU model generalisations of the Melvin

– 6 –
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universe of Einstein-Maxwell theory. It is useful, therefore, first to consider the simpler

case of these pure Melvin-type solutions, where there is no black hole but just the external

magnetic fields. (To be precise, as explained in the introduction, when we use the expres-

sion “external magnetic fields” we mean that the fields numbered 1 and 3 carry external

electric fields, while those numbered 2 and 4 carry external magnetic fields.) The STU

model in the conventions we are using is given in appendix A. Melvin-type solutions can

be found using the results presented in appendix A, starting from a purely Minkowski

seed solution. They can also be read off from the expressions for magnetised black holes

presented in section 3, by setting the black hole mass and charges to zero. Thus the metric

is given by (4.1) and (4.5) with ω = 0 and

∆ =
4∏

i=1

∆i , ∆i = 1 + β2i r
2 sin2 θ , (3.1)

and so

ds24 =
√
∆(−dt2 + dr2 + r2 dθ2) +

1√
∆
r2 sin2 θ dφ2 . (3.2)

Note that here, and throughout the rest of the paper, we use the notation that

βi =
1

2
Bi , (3.3)

where Bi is the physical asymptotic strength of the i’th field on the symmetry axis at large

distance. This is done in order to avoid many cumbersome factors of 1
2 and powers of 1

2

in subsequent formulae. In the pure Melvin case under discussion here, where there is no

black hole, the field strengths are in fact constant along the axis.

The scalar fields are given by

e2ϕ1 =
∆1∆3

∆2∆4
, e2ϕ2 =

∆2∆3

∆1∆4
, e2ϕ3 =

∆1∆2

∆3∆4
, (3.4)

with the axions all vanishing. The four electromagnetic potentials {A(1)1, A(1)2,A1
(1),A2

(1)}
are given by

A(1)1 = −2β1 r cos θ dt , A1
(1) = −2β3 r cos θ dt ,

A(1)2 =
β2 r

2 sin2 θ

∆2
dφ , A2

(1) =
β4 r

2 sin2 θ

∆4
dφ . (3.5)

In terms of cylindrical coordinates (ρ, z) defined by ρ = r sin θ and z = r cos θ, we have

ds24 =
√
∆(−dt2 + dρ2 + dz2) +

ρ2√
∆
dφ2 (3.6)

with ∆i in (3.1) now given by ∆i = 1+β2i ρ
2. Making the further coordinate transformations

to x = ρ cosφ and y = ρ sinφ, the metric near the axis approaches Minkowski spacetime

ds24 → −dt2 + dx2 + dy2 + dz2, and near the axis the field strengths approach

F(2)1 → B1 dt∧ dz , F(2)2 → B2 dx∧ dy , F1
(2) → B3 dt∧ dz , F2

(2) → B4 dx∧ dy . (3.7)
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Thus, as mentioned above, the electric and magnetic field strengths have magnitude Bi on

the axis for all values of z, in this pure Melvin case.

It is interesting to note that the 4-field Melvin solution3 can be obtained instead by

means of a limiting procedure and analytic continuation from the four-charge static black

hole solution in the STU model, generalising the procedure described in [10] for the Melvin

solution in the Einstein-Maxwell theory. The four-charge black hole metric, which can be

read off from the magnetised black holes in section 3 by sending the magnetic fields Bi to

zero, is given by

ds2 = −r(r − 2m)√
r1r2r3r4

dt2 +
√
r1r2r3r4

[
dr2

r(r − 2m)
+ dθ2 + sin2 θ dφ2

]
, (3.8)

where ri = r + 2ms2i . We then write the 2-sphere metric in the form dθ2 + sin2 θ dφ2 =

4(1 + |ζ|2)−2 dζdζ̄, where ζ = tan 1
2θ e

iφ, and perform the scalings

r = r̃ λ−1 , t = t̃ λ , m = m̃ λ−3 , si = s̃i λ , ζ = ζ̃ λ . (3.9)

Sending λ→ 0 gives the metric

ds2 =
2m̃r̃√
r̃1r̃2r̃3r̃4

dt̃2 +
√
r̃1r̃2r̃3r̃4

(
− dr̃2

m̃r̃
+ 4dζ̃d

¯̃
ζ

)
. (3.10)

Defining

r̃ = −1

2
m̃ ρ2 , ζ̃ = x+ iy , (3.11)

and taking

x =
1

2
i t̂ , y =

1

2
z , t̃ =

i

m̃
φ̃ , s̃i =

i

2βi
, m̃ = 2

√
β1β2β3β4 , (3.12)

we obtain the 4-field Melvin metric

ds2 =
√
∆(−dt̂2 + dρ2 + dz2) +

ρ2√
∆
dφ̃2 , (3.13)

where ∆ =
∏
i∆i with ∆i = 1 + β2i ρ

2. We see that this metric coincides with (3.6), after

a minor change of notation. Applying the same scalings and analytic continuations to the

scalar fields and gauge fields in the four-charge black hole solutions, one reproduces the

results given in (3.4) and (3.5).

4 Magnetised electrically charged black holes

Here, we consider the magnetisation of the four-charge solution of the STU model that

reduces, when the charges are set equal, to the magnetisation of the electrically-charged

Reissner-Nordström solution (i.e. it reduces to solution 1 in (1.1)). Using the notation

and conventions of [6], this is achieved when the field strengths numbered 1 and 3 carry

magnetic charges, while the field strengths numbered 2 and 4 carry electric charges. In

3The derivation of Melvin transformation for the case of several gauge fields was first done in [19].
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order to be able to present the magnetised solution in the most compact way, we shall

denote the four charge parameters by (q1, q2, q3, q4).

Applying the procedure described in appendix A, we find that the metric is given by

ds24 = H

[
− r(r− 2m)dt2+

r1r2r3r4
r(r − 2m)

dr2+ r1r2r3r4dθ
2

]
+H−1 sin2 θ (dφ−ωdt)2 , (4.1)

where

ri = r + 2ms2i , (4.2)

and we shall use the notation si = sinh δi and ci = cosh δi. The function ω is given by

ω =
4∑

i=1

[
− qi βi

ri
+
qi Ξi [ri + (r − 2m) cos2 θ]r

ri

]
, (4.3)

where

qi = 2msici , Ξi =
β1β2β3β4

βi
, βi =

1

2
Bi , (4.4)

and Bi denotes the external magnetic field strengths for each of the four gauge fields.

Finally, the function H is given in this case by

H =

√
∆√

r1r2r3r4
, (4.5)

where

∆ = 1 +
∑

i

β2i r1r2r3r4
r2i

sin2 θ + 2[β3β4q1q2 + · · · ] cos2 θ + [β23 β
2
4 R

2
1R

2
2 + · · · ]

−2

(∏

j

βjrj

) ∑

i

q2i
r2i

sin2 θ cos2 θ + [2β2β3β
2
4q2q3R

2
1 + · · · ] cos2 θ +

∏

i

β2i R
2
i

+r1r2r3r4
∑

i

Ξ2
i R

2
i

r2i
sin2 θ + [2β1β2β

2
3β

2
4q3q4R

2
1R

2
2 + · · · ] cos2 θ , (4.6)

and we have defined

R2
i = r2i sin2 θ + q2i cos2 θ . (4.7)

Note that in each of the square-bracketed terms, the ellipses denote all the analogous terms

that arise by taking all inequivalent permutations of the indices 1, 2, 3 and 4.

The periodicity ∆φ of the azimuthal coordinate φ is determined by the requirement

that there should be no conical singularity at the north and south poles of the sphere.

Since ∆ is an even function of cos θ, the requirements at the north and the south poles are

identical, and they imply that φ should have period given by

∆φ = 2πα , α =

(
1 + [β1β2q3q4 + · · · ] +

∏

i

βiqi

)
, (4.8)

where the ellipses in the square brackets represent the five additional terms that follow

from the indicated term by taking all inequivalent permutations of the labels 1, 2, 3 and 4.
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The physical charges carried by the four gauge fields can be calculated easily using

the expressions in appendix A.3. The non-zero ones are (P1, Q2, P3, Q4). For the sake of

uniformity we shall change the notation and call these (Q̃1, Q̃2, Q̃3, Q̃4) respectively. They

turn out to be given by

Q̃i =
(qi − β2i q1q2q3q4/qi)

α

∆φ

2π
, (4.9)

where α is defined in (4.8). We therefore have

Q̃i = qi −
β2i q1 q2 q3 q4

qi
. (4.10)

The solutions for the gauge potentials are given by

A(1)1 = β1 r(r − 2m) cos θ

[
1

r1
− 1

r2
− 1

r3
− 1

r4

]
dt+ σ1 (dφ− ωdt) ,

A(1)2 =

[
− q2
r2

+
∑

i=1,3,4

r qi β1β3β4 [ri + (r − 2m) cos2 θ]

βi ri

]
dt+ σ2 (dφ− ωdt) ,

A1
(1) = β3 r(r − 2m) cos θ

[
1

r3
− 1

r1
− 1

r2
− 1

r4

]
dt+ σ3 (dφ− ωdt) ,

A2
(1) =

[
− q4
r4

+
3∑

i=1

r qi β1β2β3 [ri + (r − 2m) cos2 θ]

βi ri

]
dt+ σ4 (dφ− ωdt) , (4.11)

where σi ≡ σ̃i/∆, and

σ̃1 = −q1 cos θ + β1 cos θ

[
β2
r2

(r1r3r4q2 sin
2 θ − q1q3q4r2 cos

2 θ) + · · ·
]
− (β3β4q2 + · · · )R2

1
cos θ

−β2

1
cos θ

[
β3β4
r2

(r1r3r3q2 sin
2 θ − q1q3q4r2 cos

2 θ)R2

2
+ · · ·

]
+ β3

1
(β2q2R

2

3
R2

4
+ · · · ) cos θ

+
β1β2β3β4 cos θ

r1
(r2r3r4q1 sin

2 θ − q2q3q4r1 cos
2 θ)R2

1
+ β3

1
β2β3β4q1 cos θR

2

2
R2

3
R2

4
, (4.12)

σ̃2 =
β2r1r3r4

r2
sin2 θ + (β1q3q4 + · · · ) cos2 θ + β2(β

2

1
R2

3
R2

4
+ · · · ) + 2β2(β3β4q3q4R

2

1
+ · · · ) cos2 θ

+q2[β
2

1
(β3q3R

2

4
+ β4q4R

2

3
) + · · · ] cos2 θ + 4β1β3β4q2q1q3q4 cos

4 θ

−β1β3β4q
2

2
r1r3r4

r2
sin2 θ cos2 θ − β1β3β4 r2

(
q2
1
r3r4
r1

+ · · ·
)
sin2 θ cos2 θ

+β1β3β4(β3β4q3q4R
2

1
+ · · · )R2

2
cos2 θ + β2r2

[
β2

3
β2

4
r3r4
r1

R4

1
+ · · ·

]
sin2 θ

+2β1β2β3β4q2(β1q1R
2

3
R2

4
+ · · · ) cos2 θ + β2β

2

1
β2

3
β2

4
R2

1
R2

2
R2

3
R2

4
, (4.13)

σ̃3 = (σ̃1 with 1 ↔ 3) , (4.14)

σ̃4 = (σ̃2 with 2 ↔ 4) . (4.15)

When ellipses occur within a bracketed expression, they denote the two additional terms ob-

tained by cycling the three index values taken from the set {1, 2, 3, 4} that are not equal to i.
The axions and dilatons are given by

χi =
Zi cos θ

Yi
, e2ϕi =

Y 2
i

∆ r1r2r3r4
, i = 1, 2, 3 , (4.16)
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where

Z1 = r2r4[(β1q3 + β3q1) + β2β4(β1q1R
2
3 + β3q3R

2
1)]

−r1r3[(β2q4 + β4q2) + β1β3(β2q2R
2
4 + β4q4R

2
2)] , (4.17)

Y1 = r1r3(1 + 2β1β3q2q4 cos
2 θ + β21β

2
3R

2
2R

2
4)

+r2r4(β
2
1R

2
3 + β23R

2
1 + 2β1β3q1q3 cos

2 θ) , (4.18)

(Z2, Y2) = (−Z1, Y1) with 1 ↔ 2 , (4.19)

(Z3, Y3) = (Z1, Y1) with 2 ↔ 3 . (4.20)

4.1 Angular momentum

The angular momentum can be calculated using the standard procedure developed byWald.

The details of this calculation, and, in particular, the evaluation of the angular momentum

in terms of the quantities in the dimensionally-reduced three-dimensional theory, are given

in [2]. A subtlety in the calculation concerns the different boundary conditions that arise

depending upon whether a gauge field carries an electric charge or a magnetic charge. If

the charges were all electric, then the conserved angular momentum corresponding to the

Killing vector ξ = ∂/∂φ̃, where φ̃ = φ/α is the rescaled azimuthal coordinate that has

period 2π and α is defined in (4.8), would be [2]

J =
α

16π

∫

S2

d(χ4 + σi ψi) ∧ dφ =
(∆φ)2

32π2

[
χ4 + σi ψi

]θ=π
θ=0

. (4.21)

As discussed in [2], this expression is invariant under the U(1)4 abelian gauge transforma-

tions of the four gauge potentials that preserve the condition that the Lie derivatives of

the gauge potentials with respect to the azimuthal Killing vector ∂/∂φ vanish.

In our case, however, the fields A(1)1 and A1
(1) carry magnetic, rather than electric,

charges. A simple way to evaluate the angular momentum is to perform dualisations

of these two fields. Although rather involved in the four-dimensional theory itself, the

dualisations can be easily implemented in the reduced three-dimensional theory, since then

they amount to exchanging the roles of the σi and ψi axions for the fields in question. As

can be seen from (A.3), since the the Kaluza-Klein vector B̄(1) must be invariant under

duality it follows that the required duality transformations require also sending

χ4 + σi ψi −→ χ4 + σi ψi − σ1 ψ1 − σ3 ψ3 . (4.22)

The conserved angular momentum for the four-charge black holes is therefore given by

J =
(∆φ)2

32π2

[
χ4 + σ2 ψ2 + σ4 ψ4

]θ=π
θ=0

. (4.23)

Evaluating this, we find

J =
1

2
[β1 q2q3q4 + · · · ] + 1

2
q1q2q3q4 [q1β2β3β4 + · · · ] , (4.24)

where the ellipses in each case denote the additional three symmetry-related terms.
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4.2 Pairwise equal charges

A considerable simplification arises in the function ∆ if we set the fields pairwise equal, so

that

B3 = B1 , B4 = B2 , δ3 = δ1 , δ4 = δ2 . (4.25)

We then find that

∆ =

[
1 +

2∑

i=1

β2i (r
2
i sin

2 θ + q2i cos
2 θ) + 4β1β2q1q2 cos

2 θ +
2∏

i=1

β2i (r
2
i sin

2 θ + q2i cos
2 θ)

]2
.

(4.26)

With the fields set pairwise equal, i.e. q3 = q1, q4 = q2 and β3 = β1 and β4 = β2. We

then find

A2
(1) =

[
− q2
r2

+ β21q2 r

(
1 +

(r − 2m)

r2
cos2 θ

)
+ 2β1β2q1 r

(
1 +

(r − 2m)

r1
cos2 θ

)]
dt

+σ4 (dφ− ωdt) ,

A1
(1) = −2β1r(r − 2m)

r2
cos θ dt+ σ3 (dφ− ωdt) , (4.27)

with analogous expressions for A(1)1 and A1
(1). The fields σ3 and σ4 are given by

σ3 = −q1 cos θ (1− β21R
2
2)Y

−1 ,

σ4 =
[
β2R

2
1 + 2β1q1q2 cos

2 θ + β21β2R
2
1R

2
2

]
Y −1 , (4.28)

where

R2
i = r2i sin2 θ + q2i cos2 θ ,

Y = 1 + β21R
2
2 + β22R

2
1 + 4β1β2q1q2 cos

2 θ + β21β
2
2R

2
1R

2
2 . (4.29)

A different specialisation arises if we instead reverse the sign of the fields B3 and B4

before the pairwise identification, in other words, if we set

B3 = −B1 , B4 = −B2 , δ3 = δ1 , δ4 = δ2 . (4.30)

Now, the function ∆ becomes instead

∆= [1+2β1q2 cos θ+β
2
1(r

2
1 sin

2 θ+q21 cos
2 θ)][1−2β1q2 cos θ+β

2
1(r

2
1 sin

2 θ+q21 cos
2 θ)]×

×[1+2β2q1 cos θ+β
2
2(r

2
2 sin

2 θ+q22 cos
2 θ)][1−2β2q1 cos θ+β22(r22 sin2 θ+q22 cos2 θ)] .(4.31)

Note that in this case the function ω now vanishes, and so the metric is purely static. In

fact it is not hard to show that all the possible ways of making ω vanish involve making

one or another of the following choices

(1) qi = qj , qk = qℓ , Bi = −Bj , Bk = −Bℓ
(2) qi = qj , qk = −qℓ , Bi = −Bj , Bk = Bℓ

(3) qi = −qj , qk = qℓ , Bi = Bj , Bk = −Bℓ
(4) qi = −qj , qk = −qℓ , Bi = Bj , Bk = Bℓ , (4.32)

where i, j, k and ℓ are all different and are chosen from 1, 2, 3 and 4. It can easily be seen

that, as one would expect, the angular momentum (4.24) vanishes in all of these cases.
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4.3 Asymptotic structure and ergoregions

It was observed in [1] that the metric component gtt in the magnetised electrically charged

Reissner-Nordström solution becomes arbitrarily large and positive at large distances near

to the z axis, thus indicating the presence of an ergoregion extending to infinity. Not

surprisingly, the same is in general true in the STU model generalisations of this solution

that we are considering here. Specifically, if we introduce cylindrical coordinates ρ = r sin θ

and z = r cos θ, then it is easily seen from (4.1), (4.3) and (4.5) that to leading order in

large z and small ρ we shall in general have

gtt ∼ +z2 ρ2
(∑

i

βi Ξi

)2

, (4.33)

and thus an ergoregion extending to infinity. The reason for this metric behaviour is that

the function ω given in (4.3) has the large-z expansion

ω = 2z
4∑

i=1

qi Ξi − 2m
4∑

i=1

qi Ξi (1 + s2i ) +O
(
1

z

)
. (4.34)

The ergoregion is avoided if one imposes the condition
∑

i qi Ξi = 0 on the charges and

magnetic fields, i.e. if

β1β2β3β4

4∑

i=1

qi
βi

= 0 . (4.35)

One way to achieve this is if one (or more) of the four field strengths is set to zero; for

example, by taking q4 = 0 and β4 = 0. Under these circumstances the metric is still

stationary, as opposed to static, but is asymptotically non-rotating at infinity. It can be

seen from (4.24) that the angular momentum also vanishes in such a case.

Clearly there are also more general ways to satisfy (4.35), where all four fields are

non-vanishing. If we assume that (4.35) is satisfied then it follows from (4.34) that the

asymptotic metric near the axis is rotating with an angular velocity

Ω∞ = 2m
4∑

i=1

qi Ξi s
2
i = 4m2β1β2β3β4

4∑

i=1

sinh3 δi cosh δi
βi

. (4.36)

It can also be seen from (4.3) that if (4.35) holds then on the black hole horizon at r = 2m,

the angular velocity will be

ΩH =
4∑

i=1

qi βi
2mc2i

=
4∑

i=1

βi tanh δi . (4.37)

Note that in general, the angular momentum (4.24) is non-vanishing if (4.35) is satis-

fied.

Of course if any of the conditions enumerated in (4.32) holds, then not merely is (4.35)

satisfied but the metric is non-rotating everywhere, and also J = 0.
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5 Scaling limit, and lift to five dimensions

The scaling limits of our magnetised non-extremal black holes, which will be parameterised

by m̃, Π̃s, Π̃c and β̃i (i = 1, · · · , 4), can be obtained by taking a specific scaling limit [11] of

the magnetised electric black holes of section 3 parameterised bym, δi, βi with δ1 = δ2 = δ3.

After taking the limit, the solution can then be lifted to five dimensions, where it can be

seen to be AdS3 × S2.

The limit can be implemented by setting δ1 = δ2 = δ3 and making the scaling [11]:

m = m̃ ǫ , r = r̃ ǫ , t = t̃ ǫ−1 , βi = β̃i ǫ , i = 1, 2, 3, 4 ,

sinh2 δ4 =
Π̃2
s

Π̃2
c − Π̃2

s

, sinh2 δi = (Π̃2
c − Π̃2

s)
1/3 ǫ−4/3 , i = 1, 2, 3 , (5.1)

where ǫ is then sent to zero.

The implementation of the scaling limit (5.1) gives

(dφ− ωdt) −→ dφ− (β̃1 + β̃2 + β̃3)dt̃−
2m̃β̃4 Π̃cΠ̃s

(Π̃2
c − Π̃2

s)r̃ + 2m̃Π̃2
s

dt̃ , (5.2)

and

∆ −→ 1 +
8m̃3β̃24(Π̃

2
c − Π̃2

s)
2 sin2 θ

(Π̃2
c − Π̃2

s)r̃ + 2m̃Π̃2
s

. (5.3)

The quantities β̃1, β̃2 and β̃3 drop out completely in the scaling limit if we send φ −→
φ+(β̃1+ β̃2+ β̃3)t̃. We shall assume from now on that this redefinition has been performed.

Therefore, the obtained scaling limit of magnetised non-extremal black holes depend only

on four independent parameters: m̃, Π̃c, Π̃s and β̃4.

In the case of vanishing magnetic fields, βi = 0 it was possible [11] to identify the

scaling limits with the subtracted geometry [13] of a non-extreme black hole parameterised

by m̃, δ̃i. In that case we have Π̃s ≡ Π4
i=1 sinh δ̃i and Π̃c ≡ Π4

i=1 cosh δ̃i, determined by (5.1).

In our case we have no independent derivation of a subtracted geometry and so no unique

identification of δ̃i is possible.

The lifting of the subtracted geometry solution to five dimensions is given by

ds25 = eϕ1 ds24 + e−2ϕ1 (dz +A2
(1))

2 . (5.4)

Applying the scaling limit (5.1) here, together with z = z̃ ǫ−1, we find that the five-

dimensional metric ds25 scales becomes

ds25 = ǫ−
2
3 (ds2S2 + ds2BTZ) , (5.5)

where

ds2S2 = 1
4ℓ

2
(
dθ2 + sin2 θ(dφ+ β̃4dz)

2
)
, (5.6)

and

ds2BTZ = −(r23 − r23+)(r
2
3 − r23−)

ℓ2 r23
dt23 +

ℓ2r23
(r23 − r23+)(r

2
3 − r23−)

dr23 + r23

(
dφ3 −

r3+r3−
ℓr23

dt3

)2

,

(5.7)

– 14 –



J
H
E
P
0
9
(
2
0
1
4
)
0
0
1

where

φ3 =
z̃

R
,

t3 =
ℓ

R
t̃ ,

r23 =
16(2mR)2

ℓ4
[
2m(Π2

c −Π2
s)r̃ + (2m)2Π2

s

]
. (5.8)

Here, R is the radius of the circle S1 and ℓ = 4m(Π2
c−Π2

s)
1
3 is the radius of the AdS3. And

r3+ =
16m2R

ℓ2
Πc r3− =

16m2R

ℓ2
Πs (5.9)

It can be seen that β̃4 disappears from the five-dimensional metric if we make the

further coordinate redefinition

φ = φ̃− β̃4 z̃ , (5.10)

This is a reflection of the fact that the magnetisation of the four-dimensional gauge field

associated with the Kaluza-Klein vector A2
(1) of the five-dimensional reduction can be im-

plemented (or, in the above calculation, undone) by performing a rotation in the (φ, z̃)

plane.4 This transformation is related to a spectral flow in a dual conformal field theory

interpretation of AdS3 geometries.

For the relationship between BTZ co-ordinate system and AdS3 local patch see [21].

6 Magnetostatic black holes

6.1 Magnetised magnetically charged black holes

Here we exchange the roles of the electric and the magnetic charges in the original four-

charge seed solution. That is, the charges numbered 1 and 3 are now electric, while those

numbered 2 and 4 are magnetic, in the conventions of [6]. (Some of the properties of the

resulting metrics were discussed previously in [15, 22–24].) We shall denote the four charge

parameters by (p1, p2, p3, p4) in this case. In the case that the charges are set equal, the

solution reduces to the magnetised magnetically-charge Reissner-Nordström black hole.

Concretely, in the original seed solution, reduced to three dimensions, we replace (A.9)

and (A.10) by

e2ϕ1 =
r2 r4
r1 r3

, e2ϕ2 =
r1 r4
r2 r3

, e2ϕ3 =
r3 r4
r1 r2

, e2ϕ4 = r1 r2 r3 r4 sin4 θ , (6.1)

and

χ1 = 0 χ2 = 0 , χ3 = 0 , χ4 = 0 ,

σ1 = 0 , σ2 = p2 cos θ , σ3 = 0 , σ4 = p4 cos θ ,

ψ1 = p1 cos θ , ψ2 = 0 , ψ3 = p3 cos θ , ψ4 = 0 , (6.2)

4The role of the specific Melvin transformation as a coordinate transformation in the (φ, z̃) plane of the

lifted geometry was first observed for dilatonic black holes in [20].
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The metric of the magnetised solution will still be given by (4.1), but now we have

ω = 0 and the function ∆ in (4.5) is given by

∆ =
4∏

i=1

∆i , ∆i = (1 + βipi cos θ)
2 + β2i r

2
i sin2 θ . (6.3)

Because ∆ is not an even function of cos θ in this case, the periodicity conditions on φ

for the metric to be free of conical singularities are different at the north and south poles

of the sphere. Specifically, we find that the required periodicities are

θ = 0 : ∆φ = 2π
∏

i

(1 + βipi) ,

θ = π : ∆φ = 2π
∏

i

(1− βipi) . (6.4)

The metric can be rendered free of conical singularities if the charges and magnetic fields

satisfy the “no-force condition”

∏

i

(1 + βipi) =
∏

i

(1− βipi) . (6.5)

Using the expressions given in section A.3, we can calculate the physical electric and

magnetic charges carried by the four gauge fields. In this case, the non-vanishing ones

are (Q1, P2, Q3, P4). For the sake of uniformity, we shall relabel these as (P̃1, P̃2, P̃3, P̃4)

respectively. They turn out to be given by

P̃i =
pi

(1− β2i p
2
i )

∆φ

2π
. (6.6)

The electromagnetic potentials are given by

Â(1)1 =

[
− p1
r1

+
2β1r(r − 2m) cos θ

r1
− β21 p1 [r

2
1 + r(r − 2m) cos2 θ]

r1

]
dt ,

Â(1)2 =
p2 cos θ + β2R

2
2

∆2
dφ ,

Â1
(1) =

[
− p3
r3

+
2β3r(r − 2m) cos θ

r3
− β23 p3 [r

2
3 + r(r − 2m) cos2 θ]

r3

]
dt ,

Â2
(1) =

p4 cos θ + β4R
2
4

∆4
dφ , (6.7)

where R2
i = r2i sin

2 θ + p2i cos
2 θ. The scalar fields are given by

e2ϕ1 =
r2 r4∆1∆3

r1 r3∆2∆4
, e2ϕ2 =

r1 r4∆2∆3

r2 r3∆1∆4
, e2ϕ3 =

r3 r4∆1∆2

r1 r2∆3∆4
,

χ1 = 0 , χ2 = 0 , χ3 = 0 . (6.8)
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6.2 SL(2, R)4 truncations of the sigma model

The three-dimensional scalar sigma model associated with the timelike or spacelike reduc-

tion of the four-dimensional STU model has an O(4, 4) global symmetry. The Lagrangian

in the case of the timelike reduction can be found in section 2.1 of [6]. The sixteen scalars

comprise the original three dilatons (ϕ1, ϕ2, ϕ3) and three axions (χ1, χ2, χ3) of the STU

model; the Kaluza-Klein scalar ϕ4 and the axion χ4 dual to the Kaluza-Klein vector; the

four axions σi coming from the direct dimensional reductions of the four gauge potentials;

and finally the four axions ψi coming from the dualisations of the four gauge potentials in

the dimensionally-reduced theory.

If we restrict attention to purely static configurations then χ4 will vanish. If we fur-

thermore restrict to configurations where the axions (χ1, χ2, χ3) of the STU model vanish,

then it can be seen from the sigma-model Lagrangian in eqn (7) of [6] that there are two

possible disjoint truncations of the remaining scalar fields for which the vanishing of the

four χi axions is consistent with their equations of motion.5 Specifically, we can have either

σ1 = ψ2 = σ3 = ψ4 = 0 (6.9)

or

ψ1 = σ2 = ψ3 = σ4 = 0 . (6.10)

In the truncation (6.9), if we define

u1 =
1

2
(ϕ1 − ϕ2 + ϕ3 − ϕ4) , u2 =

1

2
(−ϕ1 + ϕ2 + ϕ3 − ϕ4) ,

u3 =
1

2
(ϕ1 + ϕ2 − ϕ3 − ϕ4) , u4 =

1

2
(−ϕ1 − ϕ2 − ϕ3 − ϕ4) ,

α1 = ψ1 α2 = σ2 , α3 = ψ3 , α4 = σ4 , (6.11)

then the three-dimensional sigma-model Lagrangian in equation (7) of [6], after the appro-

priate sign-changes because we are making a spacelike reduction, becomes

Lscal =
4∑

i=1

(
− 1

2
(∂ui)

2 − 1

2
e2ui (∂αi)

2

)
. (6.12)

This can be recognised as describing the coset [SL(2, R)/O(2)]4. Similarly, if we consider

instead the truncations (6.10), then defining instead

u1 =
1

2
(−ϕ1 + ϕ2 − ϕ3 − ϕ4) , u2 =

1

2
(ϕ1 − ϕ2 − ϕ3 − ϕ4) ,

u3 =
1

2
(−ϕ1 − ϕ2 + ϕ3 − ϕ4) , u4 =

1

2
(ϕ1 + ϕ2 + ϕ3 − ϕ4) ,

5In [6] a timelike reduction to three dimensions was performed. Here, we are instead reducing on the

spacelike azimuthal Killing vector ∂/∂φ rather than the timelike Killing vector ∂/∂t. The formulae in [6] can

be repurposed to the spacelike reduction with very straightforward modifications. In particular, the three-

dimensional sigma-model Lagrangian in eqn (7) of [6] will take the same form in the case of the spacelike

reduction, except that the kinetic terms for all the scalar fields will now have the standard negative sign

appropriate to a Minkowski-signature theory.
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α1 = σ1 α2 = ψ2 , α3 = σ3 , α4 = ψ4 (6.13)

gives again an [SL(2, R)/O(2)]4 sigma model with Lagrangian (6.11).

(Note that if we considered a timelike reduction on the coordinate t rather than a

spacelike reduction on the coordinate φ, we would end up with a Lagrangian like (6.12)

except with a minus sign in front of the exponential terms. The coset in this case would

be [SL(2, R)/O(1, 1)]4.)

The truncation described by (6.11) corresponds to the case where the gauge fields

numbered 1 and 3 are purely electric, while those numbered 2 and 4 are purely magnetic.

Since in this paper we always consider Melvin backgrounds where fields 1 and 3 carry

external electric fields, while 2 and 4 carry external magnetic fields, this means that we

can remain within the truncation if we additionally allow fields 1 and 3 to carry electric

charges, and fields 2 and 4 to carry magnetic charges. This is precisely the situation we

considered in section 4, namely the STU model generalisations of the magnetically-charged

Reissner-Nordström black hole in an external magnetic field. It can indeed be seen from

equations (6.7) and (6.8), together with the staticity of the metric, that the solutions fall

within the class described by the truncation (6.9) and (6.11).

By contrast, although the charges carried by the gauge fields in the solutions in section

3 are compatible with the truncation described by (6.10) and (6.13), the external fields are

still appropriate for the other truncation, (6.9) and (6.11), and so the solutions in section

3 are not described by either of the truncated theories. And indeed, the axions χi are

non-zero and the metric is not static.

6.3 Multi-centre BPS black holes in external magnetic fields

Returning to the truncation (6.9) and (6.11), we can in fact use it to describe more general

situations than the “magnetised magnetically charged” black holes obtained in section

4. In particular, we can consider the case of multi-centre BPS black holes that are then

immersed in external fields, provided that we align them all along a line so that we can

apply the “Melvinising” transformation. For these purposes, it is useful first to present

the general expressions for the transformations of the scalar fields under the “Melvinising”

transformations. If we start with a seed solution for which the fields are denoted by bars,

then after the transformation we will have

eui = eūi [(1 + βi ᾱi)
2 + β2i e

−2ūi ] , αi =
ᾱi (1 + βi ᾱi) + βi e

−2ūi

(1 + βi ᾱi)2 + β2i e
−2ūi

. (6.14)

In particular this means that the transformed function ϕ4 that appears in the metric

ansatz (A.1) is given by

e−2ϕ4 = e−2ϕ̄4

4∏

i=1

[(1 + βi ᾱi)
2 + β2i e

−2ūi ] . (6.15)

The multi-centre black holes in the STU model have metrics given by

ds2 = −
( 4∏

i=1

Hi

)
−1/2

dt2 +

( 4∏

i=1

Hi

)1/2

d~y2 , (6.16)
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where the functions Hi are harmonic in the 3-dimensional Euclidean space with metric

d~y2. For black holes aligned along an axis we can conveniently use cylindrical coordinates

in which

d~y2 = dρ2 + ρ2 dφ2 + dz2 . (6.17)

We shall take the harmonic functions to be given by

Hi = 1 +
∑

a

p
(a)
i√

ρ2 + (z − za)2
, (6.18)

where the charges p
(a)
i are constants and the black holes are located at the point za on the z

axis. The metric is free of conical singularities on the z axis provided that φ has period 2π.

A field strength carrying an electric charge is described by a potential of the form

Aielec = −H−1
i dt , (6.19)

while a field strength carrying a magnetic charge is described by a potential of the form

Aimag =
∑

a

p
(a)
i (z − za)√
ρ2 + (z − za)2

dφ . (6.20)

In our case, therefore, the potentials for fields 1 and 3 are of the form (6.19), while those

for fields 2 and 4 are of the form (6.20). In the dimensionally-reduced three-dimensional

language this implies that the axionic scalars αi defined in (6.11) are all given in this seed

solution by

ᾱi =
∑

a

p
(a)
i (z − za)√
ρ2 + (z − za)2

. (6.21)

The dilatonic scalar fields ~ϕ = (ϕ1, ϕ2, ϕ3) in this multi-centre seed solution are given by

~ϕ =
1

2

∑

i

ǫi ~ci logHi , (6.22)

where

L =
√−g

(
R− 1

2
(∂~ϕ)2 − 1

4

∑

i

e~ci·~ϕ (F i)2
)

(6.23)

and ǫi is +1 if field i carries an electric charge and −1 if it carries a magnetic charge

(see, for example, section 2.2 of [25]). Comparing the multi-centre metric given by (6.16)

and (6.17) with the reduction ansatz (A.1), we see that in the multi-centre seed solution

we shall have

eϕ̄4 = ρ2
(∏

i

Hi

)1/2

, (6.24)

and hence, from (6.11),

e−ūi = ρHi . (6.25)
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Applying the Melvinising transformations (6.14), we obtain the “magnetised magnetic”

multi-centre black holes with metrics

ds2 = e−ϕ4 ρ2
[
− dt2 +

(∏

i

Hi

)
(dρ2 + dz2)

]
+ eϕ4 dφ2 , (6.26)

where ϕ4 is given by (6.15). Thus the metric is given by

ds2 = Z1/2

[
−
( 4∏

i=1

Hi

)
−1/2

dt2 +

( 4∏

i=1

Hi

)1/2

(dρ2 + dz2 + Z−1 ρ2 dφ2)

]
, (6.27)

where

Z =
4∏

i=1

[(1 + βi ᾱi)
2 + β2i e

−2ūi ] . (6.28)

There will in general now be conical singularities along the z axis. This can be seen

by looking at the form of the metric in the (ρ, φ)) plane as ρ tends to zero. From (6.21)

and (6.25) we see that as ρ tends to zero we shall have

Z →
4∏

i=1

(1 + βi ᾱi)
2 , ᾱi →

∑

a

p
(a)
i sign(z − za) . (6.29)

In the case of a single-centre black hole, the periodicity conditions for φ in order to avoid

a conical singularity can be seen to reduce to those in equation (6.5).

7 Conclusions

In string theory charged black holes may be regarded as having a composite structure

arising from their microscopic description in terms of intersecting D-branes/M-branes. This

composite structure is reflected in the interactions of the black holes. In this paper we have

demonstrated this by using as external probes the various types of magnetic fields capable

of exciting each of these constituents. We have found that the behaviour of black holes is

indeed rather sensitive to which type of magnetic field is applied. By far the simplest case

is that of Kaluza-Klein black holes, which are made up of a single constituent. Somewhat

counterintuitively it turns out that the Maxwell-Einstein case is the most complex, which

may be ascribed to the fact that all the constituents and probes are turned on.

Utilising the composite structure of charges and magnetic fields allows for a balance of

different forces and torques and the taming of the extent of ergoregions. This work samples

only a restricted subset of static four-charge generating black hole solutions. We anticipate

that further studies of rotating five-charge generating solutions will reveal an even richer

structure.
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A The STU model

A.1 Reduction of the STU model to D = 3

We can “magnetise” the black hole solutions by performing a spacelike reduction to three

dimensions on the azimuthal Killing vector ∂/∂φ, and then acting with the appropriate

O(4, 4) transformations. This is analogous to the discussion in [6], except that there the

reduction was performed on the timelike Killing vector ∂/∂t.6 Thus we make a standard

Kaluza-Klein reduction with

ds24 = e−ϕ4 ds̄23 + eϕ4 (dφ+ B̄(1))
2 , (A.1)

and

A(1)1 = Ā(1)1 + σ1 (dφ+ B̄(1)) , A(1)2 = Ā(1)2 + σ2 (dφ+ B̄(1)) ,

A1
(1) = Ā1

(1) + σ3 (dφ+ B̄(1)) , A2
(1) = Ā2

(1) + σ4 (dφ+ B̄(1)) . (A.2)

where, when necessary, we place bars on three-dimensional quantities in order to dis-

tinguish them from four-dimensional ones. Note that throughout, we use the ordering

(A(1)1, A(1)2,A1
(1),A2

(1)) for the potentials, with σi being the axionic scalar coming from the

direct Kaluza-Klein reduction of the i’th potential, and so on.

In three dimensions we then dualise 1-form potentials to scalars, in a fashion that is pre-

cisely analogous to the one described for the timelike reduction in [6]. The upshot is that the

Kaluza-Klein 1-form B̄(1), whose field strength is Ḡ(2) = dB̄1, is replaced by the axion χ4 with

e2ϕ4 ∗̄Ḡ(2) = dχ4 + σ1 dψ1 + σ2 dψ2 + σ3 dψ3 + σ4 dψ4 , (A.3)

and the 1-form potentials in three dimensions coming from the reduction of the four 1-form

potentials in four dimensions are dualised to axions ψi where

−e−ϕ1+ϕ2−ϕ3+ϕ4 ∗̄F̄(2)1 = dψ1 + χ3 dψ2 − χ1 dσ3 − χ1 χ3 dσ4 ,

−e−ϕ1+ϕ2+ϕ3+ϕ4 ∗̄F̄(2)2 = dψ2 − χ1 dσ4 ,

−e−ϕ1−ϕ2+ϕ3+ϕ4 ∗̄F̄1
(2) = dψ3 − χ2 dψ2 − χ1 dσ1 + χ1 χ2 dσ4 ,

−e−ϕ1−ϕ2−ϕ3+ϕ4 ∗̄F̄2
(2) = dψ4 + χ2 dψ1 − χ3 dψ3 − χ1 dσ2 + χ2 χ3 dψ2

−χ1 χ2 dσ3 + χ1 χ3 dσ1 − χ1 χ2 χ3 dσ4 . (A.4)

The three-dimensional Lagrangian in terms of the dualised fields is a non-linear sigma

model coupled to gravity, and can be written as

L̄3 =
√−ḡ

[
R̄− 1

2
tr(∂M−1 ∂M)

]
, (A.5)

6One can also employ a seed solution with analytically continued coordinates: t → iφ and φ → it,

perform the reduction on the the timelike Killing vector of the analytically continued solution, act on it

with the appropriate generators of O(4, 4) transformations defined in [6], and finally, analytically continue

the obtained solution back to original coordinates (t, φ).
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where M = VTV and

V = e
1
2
ϕiHi Uχ Uσ Uψ . (A.6)

Here

Uχ = eχ1 Eχ1 eχ2 Eχ2 eχ3 Eχ3 eχ4 Eχ4 ,

Uσ = eσ1 Eσ1 eσ2 Eσ2 eσ3 Eσ3 eσ4 Eσ4 ,

Uψ = eψ1 Eψ1 eψ2 Eψ2 eψ3 Eψ3 eψ4 Eψ4 . (A.7)

Hi are the Cartan generators of O(4, 4), whilst Eχi
, Eσi and Eψi

are the positive-root

generators. (See [6] for a detailed description of the notation we are using here.)

A.2 Magnetisation of the four-charge static black hole

The usual four-charge black hole carries electric charges (Q) and magnetic charges (P) in

the order (P1, Q2, P3, Q4), where we use our standard ordering (A(1)1, A(1)2,A1
(1),A2

(1)) for

the gauge fields. The static four-charge solution corresponds, in three dimensions, to

ds̄23 =

[
− r(r − 2m)dt2 +

r1r2r3r4
r(r − 2m)

dr2 + r1r2r3r4dθ
2

]
sin2 θ ,

ri = r + 2ms2i , (A.8)

with

e2ϕ1 =
r1 r3
r2 r4

, e2ϕ2 =
r2 r3
r1 r4

, e2ϕ3 =
r1 r2
r3 r4

, e2ϕ4 = r1 r2 r3 r4 sin4 θ , (A.9)

and

χ1 = 0 , χ2 = 0 , χ3 = 0 , χ4 = 0 ,

σ1 = −q1 cos θ , σ2 = 0 , σ3 = −q3 cos θ , σ4 = 0 ,

ψ1 = 0 , ψ2 = q2 cos θ , ψ3 = 0 , ψ4 = q4 cos θ , (A.10)

The magnetisation of the four-charge solution can be implemented by transforming the

coset representative M defined above according to

M −→ SMST , (A.11)

where S is the O(4, 4) matrix

S = exp

(
1

2
B1Eψ1 +

1

2
B2Eσ2 +

1

2
B3Eψ3 +

1

2
B4Eσ4

)
, (A.12)

with (constant) parameters Bi being the asymptotic values of the magnetic fields of the

four field strengths. One then retraces the steps of dualisation and lifts the transformed

solution back to four dimensions to obtain the magnetised black hole.7 The results are

presented in section 3.

7We remind the reader that, as discussed in the introduction, when we speak, for the sake of brevity,

of the “magnetised electrically-charged black hole” in the STU model we mean the one for which the field

strengths numbered 1 and 3 carry magnetic charges and external electric fields, while those numbered 2

and 4 carry electric charges and external magnetic fields.
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A.3 Magnetic and electric charges

The physical charges can be calculated very easily using the dimensionally-reduced quan-

tities in three dimensions. Using the standard ordering of the U(1) gauge fields, namely

{A(1)1, A(1)2,A1
(1),A2

(1)}, the magnetic charges are given by

P1 =
1

4π

∫

S2

dA(1)1 =
1

4π

∫

S2

dσ1 ∧ dφ =
∆φ

4π

[
σ1

]θ=π
θ=0

,

P2 =
1

4π

∫

S2

dA(1)2 =
1

4π

∫

S2

dσ2 ∧ dφ =
∆φ

4π

[
σ2

]θ=π
θ=0

,

P3 =
1

4π

∫

S2

dA1
(1) =

1

4π

∫

S2

dσ3 ∧ dφ =
∆φ

4π

[
σ3

]θ=π
θ=0

,

P4 =
1

4π

∫

S2

dA2
(1) =

1

4π

∫

S2

dσ4 ∧ dφ =
∆φ

4π

[
σ4

]θ=π
θ=0

, (A.13)

where ∆φ is the period of the azimuthal coordinate φ.

The electric charges are given by integrating the equations of motion of the four fields

{A(1)1, A(1)2,A1
(1),A2

(1)}. These give

Q1 =
1

4π

∫

S2

e−ϕ1+ϕ2−ϕ3 ∗F(2)1 + · · · = 1

4π

∫

S2

dψ1 ∧ dφ =
∆φ

4π

[
ψ1

]θ=π
θ=0

,

Q2 =
1

4π

∫

S2

e−ϕ1+ϕ2+ϕ3 ∗F(2)2 + · · · = 1

4π

∫

S2

dψ2 ∧ dφ =
∆φ

4π

[
ψ2

]θ=π
θ=0

,

Q3 =
1

4π

∫

S2

e−ϕ1−ϕ2+ϕ3 ∗F1
(2) + · · · = 1

4π

∫

S2

dψ3 ∧ dφ =
∆φ

4π

[
ψ3

]θ=π
θ=0

,

Q4 =
1

4π

∫

S2

e−ϕ1−ϕ2−ϕ3 ∗F2
(2) + · · · = 1

4π

∫

S2

dψ4 ∧ dφ =
∆φ

4π

[
ψ4

]θ=π
θ=0

. (A.14)

(The ellipses here denote the additional terms in the equations of motion. In each case,

the full set of terms conspire to give just the simple expressions presented here in terms of

the fields ψi.)

B STU model in other duality complexions

As we discussed before, the in the formulation [6] that we are using in this paper for the STU

model, the usual four-charge black hole carries electric charges (Q) and magnetic charges

(P) in the order (P1, Q2, P3, Q4), where we use our standard ordering (A(1)1, A(1)2,A1
(1),A2

1)

for the gauge fields. To convert into the parameterisation used, for example, in [14], we

need to dualise the potential A(1)2 to B(1), whose field strength is the dual of F(2)2. To do

this, we start from the Lagrangian (2.1) and then add a Lagrange multiplier

LLM = 4dB(1) ∧ (F(2)2 − χ2 dA1
(1) + χ3 dA(1)1 − χ2χ3 dA2

(1)) , (B.1)

treating F(2)2 now as an independent field that we solve for algebraically and substitute

back into the total Lagrangian. This leads to the dualised Lagrangian

L̃4 = R ∗1− 1

2
∗dϕi ∧ dϕi −

1

2
e2ϕi ∗dχi ∧ dχi − 2eϕ1−ϕ2−ϕ3 ∗G(2) ∧G(2)
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−2e−ϕ1

(
eϕ2−ϕ3 ∗F(2)1 ∧ F(2)1 + e−ϕ2+ϕ3 ∗F1

(2) ∧ F1
(2) + e−ϕ2−ϕ3 ∗F2

(2) ∧ F2
(2)

)

−4χ1 F(2)1 ∧ F1
(2) + 4dB(1) ∧ (χ3 dA(1)1 − χ2 dA1

(1) − χ2χ3 dA2
(1)) , (B.2)

where G(2) = e−ϕ1+ϕ2+ϕ3 ∗F(2)2, which is written in terms of the potential B(1) as

G(2) = dB(1) − χ1 dA2
(1) . (B.3)

If we now define

χ̃1 = −χ1 , χ̃2 = −χ2 , χ̃3 = χ3 ,

hI = f−1 e−ϕi , f3 = e−ϕ1−ϕ2−ϕ3 , GIJ = diag{(h1)−2, (h2)−2, (h3)−2} ,
A

[0]
(1) = A2

(1) , A
[1]
(1) = B(1) , A

[2]
(1) = A(1)1 , A

[3]
(1) = A1

(1) , (B.4)

then (B.2) can be written precisely in the form of equation (A.20) of [14] (where the axions

χ̃i are those in [14]):

L̃ = R∗1− 1

2
GIJ ∗dhI ∧ dhJ − 3

2
f−2 ∗df ∧ df − 1

2
f3 ∗F [0]

(2) ∧ F [0]
(2)

−1

2
f−2GIJ ∗dχ̃I ∧ dχ̃J − 1

2
f GIJ (∗F [I]

(2) + χ̃I ∗F [0]
(2) ) ∧ (F

[J ]
(2) + χ̃J F

[0]
(2) )

+
1

2
CIJK

[
χ̃I F

[J ]
(2) ∧ F [K]

(2) + χ̃I χ̃J F
[0]
(2) ∧ F [K]

(2) +
1

3
χ̃I χ̃J χ̃K F

[0]
(2) ∧ F [0]

(2)

]
, (B.5)

where F
[Λ]
(2) = dA

[Λ]
(1) and CIJK = |ǫIJK |. The charges carried by the four-charge black hole

in [6] will now be of the form (Q,P, P, P ), where the fields are ordered (A
[0]
(1), A

[1]
(1), A

[2]
(1), A

[3]
(1)).

Note that we can in principle perform a further transformation on the Lagrangian (B.2),

and dualise the gauge potential A2
(1) also. This would result in a formulation where the

standard four-charge black hole in [6] would be supported by four gauge fields that all

carried magnetic charge. This dualisation can be achieved by adding a Lagrange multiplier

4dB̃(1)∧F2
(2) to (B.2), and then solving algebraically for F2

(2) and substituting back into the

total Lagrangian. The equation for F2
(2) is quite complicated, taking the form

α ∗F2
(2) = H(2) + β F2

(2) , (B.6)

where

α = e−ϕ1−ϕ2−ϕ3 + χ2
1 e

ϕ1−ϕ2−ϕ3 + χ2
2 e

−ϕ1+ϕ2+ϕ3 + χ2
3 e

−ϕ1−ϕ2+ϕ3 , β = 2χ1 χ2 χ3 ,

H(2) = dB̃(1) − χ2 χ3 dB(1) − χ1 χ3 dA(1)1 + χ1 χ2 dA1
(1) + χ1 e

ϕ1−ϕ2−ϕ3 ∗dB(1)

+χ2 e
−ϕ1+ϕ2+ϕ3 ∗dA(1)1 − χ3 e

−ϕ1−ϕ2+ϕ3 ∗dA1
(1) . (B.7)

Equation (B.6) can be solved for F2
(2), giving

F2
(2) = − α ∗H(2) + β H(2)

α2 + β2
, (B.8)

but the result seems to be rather too complicated to be useful.
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[6] Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in

four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246

[hep-th/0411045] [INSPIRE].
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