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1 Introduction

Quantum fields, path integrals and Lagrangians have been a cornerstone of 20th century

theoretical physics. They have been used to describe a variety of natural phenomena ac-

curately. Yet, it is becoming increasingly apparent that these mathematical tools are both

inefficient and insufficient. They obscure the presence of a deeper, underlying structure,

particularly of scattering amplitudes in quantum field theories. The field of scattering am-

plitudes has undergone a paradigm shift in the past three decades. This was sparked by the

discovery of the stunning simplicity of the tree-level gluon scattering amplitudes in [1, 2].

The simplicity of these amplitudes was revealed due to the use of helicity spinors, (λα, λ̃α̇)

which correspond to the physical degrees of freedom of massless particles — helicity. The

forbidding complexity of the Feynman diagram based calculation of tree level gluon scat-

tering amplitudes is now understood to be an artifact of the unphysical degrees of freedom

introduced by gauge redundancy. These unphysical degrees of freedom are necessary to

package the physical degrees of freedom into local quantum fields in a manner consistent

with Poincaré invariance [3]. The simplicity of these amplitudes fueled the development

of a variety of “on-shell” techniques for computing scattering amplitudes involving mass-

less particles. These methods do not rely on Feynman diagrams, do not suffer from gauge

redundancies and do not invoke virtual particles. For an overview of these methods, see [4–

8] and the references therein. However, most of this progress was limited to amplitudes

involving only massless particles.

Since helicity spinors correspond to the physical degrees of freedom of massless par-

ticles, it is natural to attempt to find variables akin to these for massive particles. The

physical degrees of freedom of massive particles correspond to the little group SU(2) [9].

Some early generalizations can be found in [10–17]. However, the little group covariance

was not manifest in these generalizations until the introduction of spin-spinors (or massive

spinor-helicity variables) in [18]. These variables (λIα, λ̃
I
α̇) which carry both little group

indices and Lorentz indices, make the little group structure of amplitudes manifest. Infor-

mation about all the (2S + 1) spin components of each particle is packaged into compact,

manifestly Lorentz invariant expressions. Amplitudes written in terms of these variables

are directly relevant to physics. This is in contrast to a Feynman diagram based com-

putation which involves an intermediate object with Lorentz indices which must then be

contracted with polarization tensors which carry the little group indices. For some inter-

esting applications of these variables, including black holes, supersymmetric theories and

double copy constructions, see [19–29].

One of the biggest successes of path integrals and the Lagrangian formulation is the

development of effective field theory and the Higgs mechanism. Recently, there has been a

lot of focus towards the development of on-shell methods for effective field theory and an

on-shell understanding of the structure of the Standard Model (SM) [30–35]. It is worth

pointing out that the aims of [30] are similar to ours but differs in the strategy employed.

Specifically, the authors aim to derive the constraints of electroweak symmetry breaking

by specifying the IR structure of the SM and imposing perturbative unitarity. In contrast,

we will derive these constraints by specifying both the ultraviolet (UV) and infrared (IR)
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behaviour and demanding that the low energy theory has a smooth high energy limit. A

completely on-shell description of the Higgs mechanism was outlined in [18] for the abelian

and non-abelian gauge theories. The conventional understanding of the Higgs mechanism

involves a scalar field acquiring a vacuum expectation value and vector bosons becoming

massive by “eating” the goldstone modes arising from spontaneously broken symmetry.

However, the on-shell description has no mention of scalar fields, potentials and vacuum

expectation values. Nevertheless, it reproduces all of the same physics. Additionally, well

known results like the Goldstone Boson equivalence theorem become trivial consequences

of the high energy limits of our expressions. From an amplitudes perspective, it is more

natural to think of the Higgs mechanism as a unification of the massless amplitudes in

the UV into massive amplitudes in the IR. In this paper, we will focus on computing

scattering amplitudes in the bosonic electroweak sector of the SM and describing the Higgs

mechanism and electroweak symmetry breaking using a completely on-shell language.

The paper is structured as follows. We begin with a brief review of the little group,

spin-spinors and their properties in section 2. We focus on constructing three particle

amplitudes in the IR in section 3.1 and the UV in section 3.2. In section 3.4, we compute

the high energy limits of the three particle amplitudes in the IR and demand that they are

consistent with the three point amplitudes in the UV. This gives us the all the standard

relations between the coupling constants, the masses of the Z and W± and the Weinberg

angle θw. We also see the emergence of the custodial SO(3) symmetry in the limit in which

the hypercharge coupling vanishes. Finally, in section 4, we construct 4 point amplitudes

in the IR by gluing together the three point amplitudes found before. We elucidate the

details involved in the gluing process. We will also discover that demanding that these

amplitudes have a well defined high energy limit imposes constraints on the structure of

the theory.

2 Scattering amplitudes and the little group

2.1 Helicity spinors and spin-spinors

In this section, we briefly review some aspects of the on-shell approach to constructing

scattering amplitudes. We will review the formalism of spin-spinors introduced in [18]

whilst highlighting some features important for this paper. One particle states are irre-

ducible representations of the Poincare’ group. They are labeled by their momentum and

a representation of the little group. If the particle is charged under any global symmetry

group, appropriate labels must be appended to these. In (3+1) spacetime dimensions, the

little groups for massless and massive particles are SO(2) and SO(3) respectively.

Representations of the massless little group, SO(2) = U(1) can be specified by an

integer corresponding to the helicity of the massless particle. A massless one particle state

is thus specified by its momentum and helicity. Under a Lorentz transformation Λ,

|p, h, σ〉 → w−2h|Λp, h, σ〉 , (2.1)

where σ are labels of any global symmetry group and w has the same meaning as in [3]

and [18]. It is useful to introduce elementary objects λα, λ̃α̇ which transform under the
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little group as

λα → w−1λα and λ̃α̇ → wλ̃α̇ . (2.2)

We can use these objects to build representations with any value of h. The natural can-

didates for these elementary objects are the spinors which decompose the null momentum

pαα̇ ≡ pµσµαα̇. We have

pαα̇ = λαλ̃α̇ ≡ |λ〉α[λ̃|α̇ . (2.3)

Throughout the paper we will find it convenient to make use of the following notation,

λα ≡ |λ〉 λ̃α̇ ≡ [λ̃| λα ≡ 〈λ| λ̃α̇ ≡ |λ̃] . (2.4)

For any two null momenta p1, p2, we can form two Lorentz invariant combinations of these

spinors,

〈12〉 ≡ εαβ(λ1)β(λ2)α [12] ≡ εα̇β̇(λ̃1)α̇(λ̃2)β̇ . (2.5)

The massive little group is SO(3) = SU(2). Its representations are well known and can

be specified by the value of the Casimir operator which is restricted to values S(S+1), where

S is defined as the spin of the particle. The spin S representation is 2S + 1 dimensional.

A massive one-particle state of spin S thus transforms as a tensor of rank 2S under SU(2).

|p, I1, . . . I2S , σ〉 →WI1J1 . . .WI2SJ2S
|Λp, J1, . . . J2S , σ〉 . (2.6)

The elementary objects in this case are the spinors of SU(2), which are referred to as

spin-spinors. These transform as

λIα →
(
W−1

)I
J
λJα λ̃

I
α →W I

J λ̃
J
α . (2.7)

Higher representations can be built by taking tensor products of these. Decomposing the

rank 2 momentum, similar to eq. (2.3), yields the requisite spinors,

pαα̇ = εJI |λ〉I [λ̃|J = εJIλ
I
αλ̃

J
β̇ . (2.8)

From this we have

det(p) = det(ε) det(λ) det(λ̃) . (2.9)

Using the fact that det(ε) = 1 and det(p) = p2 = m2, we have det(λ) det(λ̃) = m2. For the

rest of the paper, we will set det(λ) = det(λ̃) = m.1 We will find it convenient to suppress

the little group indices on the spin-spinors. We do this according to the convention in

eq. (A.2). Finally, we can construct Lorentz invariants out of spin-spinors corresponding

to two massive momenta p1, p2 similar to eq. (2.5).

〈12〉IJ ≡ εαβ(λ1)
I
β(λ2)

J
α [12]IJ ≡ εα̇β̇(λ̃1)

I
α̇(λ̃2)

J
β̇
. (2.10)

1There is more freedom to set det λ = M and det λ̃ = M̃ such that MM̃ = m2, but for our purposes

M = M̃ = m suffices.

– 3 –



J
H
E
P
0
8
(
2
0
2
0
)
0
3
9

2.2 Scattering amplitudes as little group tensors

Scattering amplitudes are defined as the overlap of in and out states. We have

M(p1, ρ1 . . . pn, ρn) = out〈p1, ρ1, . . . pn, ρn|0〉in , (2.11)

where we are assuming that all particles are outgoing. ρ = (h, σ) for massless particles

(eq. (2.1)) and ρ = ({I1, . . . I2S} , σ) for massive ones (eq. (2.6)). Translation invariance

allows us to pull out a delta function which imposes momentum conservation

M(p1, ρ1 . . . pn, ρn) = δ4(p1 + . . . pn)M(p1, ρ1, . . . , pn, ρn) . (2.12)

Assuming that the asymptotic multi-particle states transform under Lorentz transforma-

tions as the tensor products of one-particle states, we have the following transformation

law for the function M(p1, ρ1, . . . , pn, ρn) under a Lorentz transformation Λ,

M(pa, ρa)→
∏
a

(
Dρaρ′a(W )

)
M((Λp)a, ρ

′
a) , (2.13)

whereDρaρ′a(W ) = δσ,σ′aδha,h′aw
−2ha for massless particles and Dρaρ′a(W ) = δσ,σ′aW

I1
I′1
. . .W I2S

I′2S
for massive ones. As an example, we display the transformation law for a 4-particle am-

plitude where particle 1 is massive with spin 1, particle 2 is massless with helicity 5/2,

particle 3 is massless with helicity −2 and particle 4 is massive with spin 0.

M{I1,I2},{5/2},{−2},{0}(p1, p2, p3, p4)→
(W1)

I1
I′1

(W1)
I2
I′2
w−52 w4

3 M{I
′
1,I
′
2},{5/2},{−2},{0}(p1, p2, p3, p4) . (2.14)

Thus, objects constructed from helicity spinors and spin spinors can correspond to scat-

tering amplitudes only if they are Lorentz invariant and have the above transformation

law under the little group. This imposes restrictions on the functional forms of objects

that make up scattering amplitudes. Indeed, three point amplitudes involving all massless

particles are completely fixed by this restriction. At three points, we have,

2p1.p2 = 〈12〉[12] = 0 , 2p2.p3 = 〈23〉[23] = 0 , 2p3.p1 = 〈31〉[31] = 0 . (2.15)

We must choose either the λ or the λ̃ to be proportional to each other. The two solutions

are the MHV configuration

λ̃1 = 〈23〉ζ̃ λ̃2 = 〈31〉ζ̃ λ̃3 = 〈12〉ζ̃ , (2.16)

and the anti-MHV configuration

λ1 = [23]ζ λ2 = [31]ζ λ3 = [12]ζ . (2.17)
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Using these along with locality (which constrains the mass dimension of the momentum

dependence), one can show that the three point amplitudes can only take the following form,

Mh1h2h3 = g 〈12〉h1+h2−h3〈23〉h2+h3−h1〈31〉h3+h1−h2 , if h1 + h2 + h2 > 0

= g̃ [12]h3−h1−h2 [23]h1−h2−h3 [31]h2−h3−h1 , if h1 + h2 + h2 < 0 . (2.18)

In cases involving one or more massive particles, Lorentz invariance and little group co-

variance are not sufficient to completely fix the amplitude. However, they narrow down

the form of the amplitude to a finite number of terms. For an exhaustive analysis, we refer

the reader to [18] and [36, 37]. In this paper, we will discuss only the amplitudes relevant

to us.

2.3 The high energy limit of spin-spinors

When particle energies are much higher than their masses, it is intuitive to treat them as

massless. We can formalize this by expanding the spin-spinors in a convenient basis in

little group space,

λIα = λαζ
−I + ηαζ

+I (2.19)

=
√
E + p ζ+α (p) ζ−I(k) +

√
E − p ζ−α (p) ζ+I(k)

λ̃α̇I = λ̃α̇ζ
+
I − η̃α̇ζ−I

=
√
E + p ζ̃−α (p) ζ+I (k)−

√
E − p ζ̃+α̇ (p) ζ−I (k) , (2.20)

where λ, λ̃ are the helicity spinors, ζ±I are eigenstates of spin 1/2 along the momentum.

We give explicit expressions for all objects involved are in appendix A. Here, we just note

that ηα, η̃α̇ ∝
√
E −m = m+O(m2). Taking the high energy limit corresponds to taking

m/E → 0. In this limit, the spin-spinors reduce to massless helicity ones. Finally, it should

be pointed out that we must take special care while taking the high energy limit of 3-point

amplitudes. Owing to the special three point kinematics, factors like 〈12〉 or [12] can tend

to zero in the high energy limit.

3 Three particle amplitudes

3-particle amplitudes are the fundamental building blocks of scattering amplitudes. In this

paper, we are interested in analyzing the bosonic content of the standard model both in

the UV and IR. The spectrum in the UV is comprised solely of massless particles. The

three point amplitudes are completely determined by Poincare’ invariance and little group

scaling as outlined in section 2. The form of these amplitudes was given in eq. (2.18). We

will use this formula to write down all the relevant 3-particle amplitudes in section 3.2. All

the amplitudes in the UV obey the SU(2)L ×U(1)Y symmetry.

The spectrum in the IR consists of massive particles and a single massless vector. 3-

particle amplitudes involving massive particles are not completely fixed. They can have

several contributing structures. In section 3.1, we will write down all the relevant ampli-

tudes. The amplitudes in the IR obey only a U(1)EM symmetry.

– 5 –
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Finally, we will demand that the high energy limit of the IR amplitudes is consistent

with the amplitudes in the UV. We will find that this consistency is possible only if the

masses of particles in the IR are related in a specific way. These turn out to be the usual

relations involving the Weinberg angle.

3.1 The IR

The spectrum in the IR consists of the following particles.

• Three massive spin 1 bosons (W+,W−, Z) which have masses (mW ,mW ,mZ) and

charges (+,−, 0) respectively under a global symmetry group U(1)EM . Note that

W+ and W− are eigenstates of the U(1)EM generator. They must have equal mass

as they are related by charge conjugation.

• One massless spin 1 boson, the photon, γ which is not charged under the U(1)EM .

• One massive scalar, the higgs, h which is also uncharged under U(1)EM .

The only symmetry of the IR is the U(1)EM. We will now discuss all the relevant three

point amplitudes in the IR. Owing to the existence of various identities amongst the spin-

spinors, each amplitude can be written in a multitude of different ways. In many of the

cases below, we have chosen particularly convenient ways of writing them. Different forms

of the three point amplitudes lead to different expressions for four point amplitudes. The

difference between these are contact terms that can be fixed by imposing other constraints

on the amplitude. While the form of the contact term will depend on the form of the

three point amplitudes used, the final amplitude will be the same. We will elaborate on

these comments in the appropriate places below. In the rest of the paper we will follow

the convention that the lines in bold face in the diagrams correspond to massive particles

while the lines which are not in bold face correspond to massless ones.

W+W−Z

1W+

2W−

3Z =
eW

m2
WmZ

[〈12〉[12]〈3|p1 − p2|3] + cyc.] (3.1)

This is a form of the three point amplitude that is chosen to suit our needs. It should be

noted that it can be reduced to a combination of <> and [ ]. As an example, consider the

first term in the above equation which can be re-written as follows,

〈12〉[12]〈3|p1 − p2|3〉 = 2 (m1[12]〈23〉[31]−m2[12][23]〈31〉+m3[12]〈23〉〈31〉) , (3.2)

where we made use of the Schöuten identity 〈12〉3 + 〈23〉1 + 〈31〉2 = 0.

– 6 –
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W+W−γ

1W+

2W−

3+γ = e x+12[12]2 (3.3)

We discuss other forms of writing the same vertex in appendix B.

ZZh

1Z

2Z

3h =
eHZZ
mZ

〈12〉[12] +
N1

mZ

(
〈12〉2 + [12]2

)
(3.4)

W+W−h

1W+

2W−

3h =
eWWH

mW

〈12〉[12] +
N2

mW

(
〈12〉2 + [12]2

)
(3.5)

We will set N1 = N2 = 0 in what follows since these terms do not have a well defined high

energy limit as explained below eq. (3.16)2

hhh

1h

2h

3h = eHHHmh (3.6)

3.2 The UV

The UV spectrum of the electroweak sector of the standard model consists of the following

• One massless spin-0 particle Φ = {φ1, φ2, φ3, φ4} with four real degrees of freedom in

the fundamental representation of SO(4) = SU(2)L × SU(2)R.

• One massless spin-1 particle B with charge 1
2 under a global U(1)Y symmetry group.

• Three massless spin-1 particles (W1,W2,W3), in the adjoint representation of SU(2)L.

These are not charged under the group U(1)Y . In order to facilitate easy compar-

ison to the massive particles in the IR, we will work with particle states W± =
1√
2

(
W 1 ± iW 2

)
which are eigenstates of the U(1)EM symmetry in the IR.

2The factor of N2
mW

or N1
mZ

could be replaced by N2
Λ

or N1
Λ

where Λ is some energy scale much higher

than mW and mZ . Such contributions might arise from loop level corrections and will be much smaller

than the terms shown here.
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The electroweak sector has an SU(2)L × U(1)Y symmetry. The generators of these sym-

metries are related to the generators of SO(4) listed in appendix E as follows.

T 1 ≡ X1 T 2 ≡ X2 T 3 = X3 TB = Y 3 . (3.7)

The generator of U(1)EM, which we denote by Q, can be written as a linear combination

of the generators of the UV

eQ = α g T 3 + β g′ TB, (3.8)

where e is U(1)EM coupling. Since T± = 1√
2

(
T 1 ± iT 2

)
are eigenstates of Q, we are free

to work with the states W± in the UV. We will now list all the relevant amplitudes in the

UV. The superscripts on the particles indicate the corresponding helicities.

W+W−W 3

1+W+

2+W−

3−W 3 = g
〈12〉3
〈23〉〈31〉 (3.9)

W+ΦΦ

1+W+

2i

3j = g(T−)ij
〈12〉〈31〉
〈23〉 (3.10)

W−ΦΦ

1j

2+W−

3i = g(T+)ij
〈12〉〈23〉
〈31〉 (3.11)

W 3ΦΦ

1i

2j

3+W 3 = g(T 3)ij
〈23〉〈31〉
〈12〉 (3.12)

These amplitudes must be proportional to a generator T {+,−,3} of the SU(2). For explicit

forms of these generators, see appendix E.
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BΦΦ

1i

2j

3+B = g′(TB)ij
〈23〉〈31〉
〈12〉 (3.13)

The above list doesn’t contain any WWB or WBB amplitudes since the W ’s are not

charged under the U(1)Y . Note that all the above amplitudes involve particles whose

helicities, h1, h2, h3 are such that
∑
hi > 0. The amplitudes with

∑
hi < 0 are given by

flipping <>→ [ ].

3.3 The HE limit of the IR

All the amplitudes in the IR listed above have one or more factors of 1
m . At first glance, this

seems to suggest that they blow up in the UV and cannot be matched onto any 3-particle

amplitude of massless particles. However, we will see that all these factors of inverse mass

drop out when we take the special 3 particle kinematics into account and carefully take the

high energy limit. Many of these high energy limits are worked out in [18] and [36]. For

more details about these computations, please refer to appendix C. We present the results

here in a form compatible with our conventions. For each massive leg, in order to take the

high energy limit we must first specify the component which we are interested in.

W+W−Z

1W+

2W−

3Z HE−−−−−→



1+W+

2+W−

3−Z = eW
〈12〉3
〈23〉〈31〉

1+W+

20W−

30Z = −eW mZ
mW

〈12〉〈31〉
〈23〉

10W+

2−W−

30Z = −eW mZ
mW

〈12〉〈23〉
〈31〉

10W+

20W−

3+Z = eW
m2

Z−2m2
W

m2
W

〈23〉〈31〉
〈12〉

(3.14)
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Amplitudes with one longitudinal mode and two transverse modes vanish in the high en-

ergy limit.

W+W−γ

1W+

2W−

3+γ HE−−−−−→



1+
W+

2+
W−

3−γ = e 〈23〉
3

〈23〉〈31〉

10
W+

20
W−

3+γ = −2e 〈23〉〈31〉〈12〉

(3.15)

W+W−h and ZZh

1X

2X

3H HE−−−−−→



10X

2+X

30h = − eHXX
2
〈12〉〈23〉
〈31〉

1+X

20X

30h = eHXX
2
〈12〉〈31〉
〈23〉

(3.16)

where X = W,Z. The high energy limit of amplitudes involving two transverse mode

vanish. This is consistent with the fact that we have no WWΦ amplitudes in the UV.

Here, we can also see that the HE limit involving two transverse modes would be ill defined

if the terms in eq. (3.5) and eq. (3.4) involving N1 and N2 are included. This was the

main motivation for setting N1 = N2 = 0. Furthermore, the high energy limit of the

all longitudinal component of these amplitudes also vanish implying that there is no Φ3

interaction in the UV. For more details, please see appendix C.2.

hhh

1h

2h

3h HE−−−−−→ 0 (3.17)

The hhh amplitude vanishes in the HE limit due to the explicit factor of mh. This is again

consistent with the fact that there is no Φ3 amplitude in the UV.
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3.4 UV-IR consistency

Thus far, we have specified the structure of the IR which consists of the interactions

among the W±, Z, γ and h which preserve the U(1)EM symmetry and the structure of the

UV which consists of the interactions among the W a, B,Φ which preserve the SU(2)L ×
U(1)Y symmetry. We must now ensure that they are compatible with each other. We

take the high energy limit of the IR amplitudes and demand that they are equal to the

appropriate amplitudes in the UV. We refer to this process as ‘UV-IR matching’. This

imposes many constraints and determines the couplings in the IR in terms of those in the

UV. Furthermore, it also imposes constraints on the masses of the particles in the IR. To

begin with, we must relate the degrees of freedom in the IR to the ones in the UV. We

assume that they are related by the following orthogonal transformation
W+

W−

Z

γ

 =


O++ O+− O+3 O+B

O−+ O−− O−3 O−B
OZ+ OZ− OZ3 OZB
Oγ+ Oγ− Oγ3 OγB



W+

W−

W 3

B

 (3.18)

Clearly, we must have O+− = O+3 = O+B = O−+ = O−3 = O−B = 0. This is a result

of working with the same states in the UV and IR and of U(1)EM charge conservation.

Orthogonality demands that the matrix be block diagonal, and so we have the simpler re-

lation (
Z

γ

)
=

(
cos θw −sin θw
sin θw cos θw

)(
W 3

B

)
(3.19)

for some unknown angle θw. All the massive particles in the IR have longitudinal compo-

nents which must be generated by some linear combination of the scalars in the UV. We

assume that

W+(0)
= UW+iΦi W−

(0)
= UW−iΦi Z

(0)
= UZiΦi (3.20)

The remaining linear combination of the components of Φ, h = UhiΦi has an independent

existence. Indeed, it is well known that its presence is crucial for the theory to have good

UV behaviour. The high energy limit of each of the three point amplitudes in the IR

must be equal to some combination of the amplitudes in the UV. This determines the

masses in the IR in terms of the couplings in the UV. It also imposes some constraints

on the couplings in the UV. All the constraints arising from eq. (3.14)–eq. (3.16) are

determined below.

W+W−Z. There are a total of 27 components to the W+W−Z amplitude corresponding

to the (+,−, 0) spin component of each particle. Amplitudes with just one longitudinal

mode all vanish in the high energy limit. This is consistent with the fact that there are no

WWΦ, WBΦ, BBΦ amplitudes in the UV. The independent constraints arising from the

remaining components are given below. Recall that the superscript on the particle is its

helicity. These are also listed at the top of each diagram for particles 1, 2 and 3 respectively.

– 11 –



J
H
E
P
0
8
(
2
0
2
0
)
0
3
9

(+ +−)

1+W+

2+W−

3−Z ≡ OZ3

1+W+

2+W−

3−W 3 (3.21)

Using the expressions from eq. (3.14) and eq. (3.9), we get

eW
〈12〉3
〈23〉〈31〉 = gOZ3

〈12〉3
〈23〉〈31〉 =⇒ eW = g cos θw . (3.22)

The absence of a W+W−B interaction in the UV means that there is no term proportional

to OZB on the r.h.s.

(0 0 +)

10W+

20W−

3+Z ≡ UW+i UW−j OZ3

1i

2j

3+W 3 + UW+i UW−j OZB

1i

2j

3+B .

(3.23)

Using eq. (3.14), eq. (3.12) and eq. (3.13) in the above gives,

eW
m2

Z − 2m2
W

m2
W

〈23〉〈31〉
〈12〉 = UW+i

(
gOZ3 T 3

ij + g′OZB TBij
)
UW−j

〈23〉〈31〉
〈12〉 (3.24)

=⇒ eW
m2

Z − 2m2
W

m2
W

= UW+i

(
g cos θw T

3
ij − g′ sin θw T

B
ij

)
UW−j . (3.25)

(+ 0 0)

1+W+

20W−

30Z = UW−i UZj

1+W+

2i

3j (3.26)

Again, eq. (3.14) and eq. (3.10) give

−eW
mZ

mW

〈12〉〈31〉
〈23〉 = g UW−i T

−
ij UZj

〈12〉〈31〉
〈23〉

=⇒ −eW
mZ

mW

= g UW−i T
−
ij UZj . (3.27)
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W+W−γ. Since the photon is massless in the IR, the W+W−γ amplitude only has 18

components. This leads to the following constraints.

(+ +−)

1+
W+

2+
W−

3−γ ≡ Oγ3

1+W+

2+W−

3−W 3 (3.28)

eW
〈12〉3
〈23〉〈31〉 = gOγ 3

〈12〉3
〈23〉〈31〉 (3.29)

=⇒ e = g sin θw (3.30)

(0 0 +)

10
W+

20
W−

3+γ ≡ UW+i UW−j Oγ3

1i

2j

3+W 3 + UW+i UW−j OγB

1i

2j

3+B

−2e
〈23〉〈31〉
〈12〉 = UW+i

(
gOγ3 T 3

ij + g′OγB TBij
)
UW−j

〈23〉〈31〉
〈12〉 (3.31)

=⇒ −2e = UW+i

(
g sin θwT

3
ij + g′ cos θw T

B
ij

)
UW−j (3.32)

W+Zγ. Conservation of the U(1)EM charge in the IR must be imposed. This is achieved

by setting the W+Zγ amplitude to zero. A similar equation is given by setting the W−Zγ

amplitude to zero.

(0 0 +)

10
W+

20Z

3+γ ≡ UW+i UZj Oγ3

1i

2j

3+W 3 + UW+i UZj OγB

1i

2j

3+B

0 = UW+i

(
gOγ3 T 3

ij + g′OγB TBij
)
UZj
〈23〉〈31〉
〈12〉 (3.33)

=⇒ 0 = UW+i

(
g sin θw T

3
ij + g′ cos θw T

B
ij

)
UZj (3.34)
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ZZh

(+ 0 0)

1+Z

20Z

30h ≡ UZi UHj OZ3

1+W 3

2i

3j + UZi UHj OZB

1+B

2i

3j

eZZH
〈12〉〈31〉
〈23〉 ≡ UZi

(
gOZ3 T 3

ij + g′ OZB TBij
)
Uhj
〈12〉〈31〉
〈23〉

=⇒ eZZH = UZi
(
g cos θw T

3
ij − g′ sin θw T

B
ij

)
UHj (3.35)

W+W−h

(+ 0 0)

1+W+

20W−

3h ≡ UW−i Uhj

1+W+

2i

3j

eWWH

〈12〉〈31〉
〈23〉 ≡ g UW−i T−ij Uhj

〈12〉〈31〉
〈23〉

=⇒ eWWH = g UW−iT
−
ij Uhj (3.36)

As already highlighted, eq. (3.1) and eq. (3.30) yield

e = g sin θw and eW = g cos θw (3.37)

Further, the remaining set of constraints (3.22)–(3.36) can be solved by the ansatz

UW+ =
g

mW

T− · V UW− =
g

mW

T+ · V

UZ =
1

mZ

(
g cos θw T

3
ij − g′ sin θw T

B
ij

)
· V (3.38)

where V = {v1, v2, v3, v4}. Note that despite the similarity of this equation with the usual

Lagrangian based description of the Higgs mechanism, V does not have the interpretation

as the vacuum expectation value of scalar field here. With the above anstaz, we find

v1 = v2 = 0 , tan θw =
g′

g

mZ = g
√
v23 + v24 , mW = g cos θw

√
v23 + v24

cos θw =
eWWH

eZZH
(3.39)
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We get the exact solutions as the Standard Model because we have restricted the form

of the three point amplitude in eq. (3.1). Allowing for other structures will generalize

the relation between mZ and mW . Further note that when g′ → 0, we have θw = 0 and

mZ = mW . Here, we see the emergence of the custodial SU(2) = SO(3). The three particles

W±, Z all have equal mass in the limit where the hypercharge coupling vanishes.

Note, the combination of generators in the anstaz (3.38) has the same form as the

generators one would associate to the W± and Z gauge fields from a field theory perspective.

The generator Q associated with the photon can be found in eq. (3.33). Substituting the

values in eq. (3.39), we find the familiar Q = T 3 + TB such that Q · V = 0.

4 Four point amplitudes in the electroweak sector

As we explained in the previous section, the structure of three point amplitudes is severely

restricted by Poincare’ invariance and little group constraints. The construction of four

point amplitudes from the three point ones requires more work. Translation invariance

is assured by the delta function in eq. (2.12) and Lorentz invariance is guaranteed if we

build the amplitude from the invariants in eq. (2.5) and eq. (2.10). These amplitudes

must be little group tensors of the appropriate rank (or in the case of massless particles

have appropriate little group weights). This still leaves open a multitude of possibilities.

But beyond three points, we have new constraints arising from causality. The amplitude

must factorize consistently on all the poles, i.e. when some subset of the external momenta

goes on shell, the residue on the corresponding pole must factorize into the product of

appropriate lower point amplitudes. In particular, if the exchanged particle is massless, we

must have

M → Ma h
L Ma−h

R

P 2
. (4.1)

Here and below, a is an index for the intermediate particle. In cases where there are

particles which may have identical helicity and mass, this index distinguishes between

them. Similarly for the exchange of a particle with mass m and spin S, we have

M →
M

a{I1,...,I2S}
L Ma

R{I1,...,I2S}

P 2 −m2
=
Ma
L{I1,...,I2S}ε

I1J1 . . . εI2SJ2SMa
R{J1,...,J2S}

P 2 −m2
. (4.2)

For the rest of this section, we will work with four particle amplitudes with particles 1 and

2 incoming and 3 and 4 outgoing. Diagrammatically,

p2

p1

pI

aS

p3

p4

2 3

1 4

= −p1

−p2

pI

1

2

I{I1,...,I2S} ×ε
I1J1 . . . εI2SJ2S

p2I −m2
× p3

p4

−pI

3

4

I{J1,...,J2S}

(4.3)
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At four points, there are only three possible factorization channels defined by

s = (p1 + p2)
2 u = (p1 − p3)2 t = (p1 − p4)2 . (4.4)

We must ensure that the four point amplitude factorizes into appropriate three point

amplitudes on all these channels. We do this by computing the residues in the s, t and u

channels and (
Rs

s−m2
s

+
Rt

t−m2
t

+
Ru

u−m2
u

)
,

where ms,mt,mu are the masses of the particles exchanged in the s, t, u channels respec-

tively. This procedure will yield local amplitudes for almost all cases. Only in the case of

the W+W−γ amplitude, which has one massless particle and two particles of equal mass,

this yields a four point amplitude with x factors which must be eliminated to get a local

expression. We will go into more details in the corresponding section.

This represents only the factorizable part of the four point amplitude. We will find

that these need to be supplemented by contact terms which depend on the specific form

of the three point vertices. We can determine these by specifying the UV behaviour of

the four point amplitudes. For the case of the Standard Model, we demand that they do

not have any terms which grow with energy. This ensures that the theory doesn’t violate

unitarity. This lets us determine the required contact terms. The complete four point

amplitude is then written as

M4 =

(
Rs

s−m2
s

+
Rt

t−m2
t

+
Ru

u−m2
u

)
+ P (λi, λ̃i) ,

where P is a Lorentz invariant polynomial in the spin spinors corresponding to the four

particles with the appropriate number of little group indices.

4.1 W+W− →W+W−

In this section, we analyze the scattering of W+W− → W+W−. For the sake of explicit

calculations, we make the following choice for the 4 particle kinematics (with particles 1,

2, 3 and 4 corresponding to W−,W+,W+,W− respectively.

p1 = (E, 0, 0, p) p2 = (E, 0, 0,−p) (4.5)

p3 = (E, p sin θ, 0, p cos θ) p4 = (E,−p cos θ, 0,−p cos θ)

We will see that, based on the three point amplitudes listed in section 3.1, the scattering

can occur in the s and t channels via the exchange the Z, A or h.

p2

p1

p3

p4

2W+ 3W+

1W− 4W−

⊃ Z/γ

2W+ 3W+

1W− 4W−

+ Z/γ

2W+ 3W+

1W− 4W−

+ H

2W+ 3W+

1W− 4W−

+ h

2W+ 3W+

1W− 4W−

(4.6)
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4.1.1 s-channel

• Z exchange. We can glue together two W+W−Z three point amplitudes and construct

the residue in the s-channel.

(MZ
L ){I1I2} =

eW
m2

WmZ

(〈12〉[12]〈I|(−p1)− (−p2)|I] + cyc.){I1I2} (4.7)

(MZ
R ){I1I2} =

eW
m2

WmZ

(−〈34〉[34]〈I|p3 − p4|I] + cyc.){I1I2} (4.8)

Here I = p1 + p2 is the momentum exchanged and we have suppressed the little group

indices corresponding to the external particles. The residue on the s-channel is

RZs = (MZ
L ){I1I2}(MZ

R ){I1I2}

Evaluating this expression yields

RZs =
e2W
m4

W

{
2 〈12〉 [12] 〈34〉 [34] (p1 − p2).(p3 − p4) (4.9)

+ 4
(
〈42〉 [24] 〈1|p2|1] 〈3|p4|3] + 〈31〉 [13] 〈2|p1|2] 〈4|p3|4]− (1 ↔ 2)

)
+ 2

(
〈12 〉[12] 〈4|p3|4] 〈3|p1 − p2|3] + 〈12〉 [12] 〈3|p4|3] 〈4|p1 − p2|4]

− (1, 2 ↔ 3, 4)
)}

The full details of the calculation are presented in appendix D.

• Photon exchange. This corresponds to gluing together the two W+W−γ vertices.

There are two possibilities

M−L =
e

mW

x−12 〈12〉2 M+
R =

e

mW

x+34 [34]2 (4.10)

M+
L =

e

mW

x+12 [12]2 M−R =
e

mW

x−34 〈34〉2

where the superscripts indicate the helicity of the photon. Note that the definition of x-

factors differs slightly from appendix B due to the fact that p1 and p2 are now incoming

momenta. The appropriate definitions are

(−p1 + p2)αα̇
2m

λαI = x+12 λ̃Iα̇
(p3 − p4)αα̇

2m
λαI = x+34 (−λ̃Iα̇)

(−p1 + p2)αα̇
2m

λ̃α̇I = x−12 λIα
(p3 − p4)αα̇

2m
(−λ̃α̇I ) = x−34 λIα

The extra minus sign that accompanies λ̃Iα̇ in the equations defining x±34 is because the

momentum I is incoming. The residue corresponding to the photon exchange is a sum over

both the possibilities in eq. (4.10).

RAs =
e2

m2
W

(
x−12x

+
34〈12〉2[34]2 + x+12x

−
34[12]2〈34〉2

)
(4.11)
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We must now eliminate the x-factors in order to obtain a local expression for this residue.

There are multiple ways to achieve this and they generally result in different expressions

for the residue. It is important to emphasize that while these forms are precisely equal

on the factorization channel, they all lead to different expressions away from the pole.

Since the physical amplitude must be the same, they yield different contact terms. The

complete details of the calculation are delegated to appendix D. Here, we present two

different expressions for the residue on the s−channel.

Rγs =
e2

2m4
W

{
(p1 − p2).(p3 − p4) 〈12〉 [12] 〈34〉 [34] (4.12)

+
(
〈12〉[12]

[
〈3| (p1 − p2) (p1 + p2) |4〉 [34]− 〈34〉 [3| (p1 + p2) (p1 − p2) |4]

]
− 〈1| p1 + p2 |4] [3| p1 + p2 |2〉 [12] 〈34〉+ (1, 2↔ 3, 4)

)}
where (1, 2 ↔ 3, 4) means 1 ↔ 3 and 2 ↔ 4 simultaneously. This expression can be

manipulated to look identical to eq. (4.9). This requires the use of the following Schöuten

identities

〈3| (p1 − p2) I |4〉 [34]− 〈34〉 [3| I (p1 − p2) |4]

= 2
(
〈4| p3 |4] 〈3| (p1 − p2) |3] − (3↔ 4)

)
, (4.13)

and

〈1| I |4] [3| I |2〉 [12] 〈34〉+ (1, 2↔ 3, 4)

= 4
(
〈42〉 [24] 〈1| p2 |1] 〈3| p4 |3] + 〈31〉 [13] 〈2| p1 |2] 〈4| p3 |4] − (1 ↔ 2)

)
, (4.14)

where I = p1 + p2. These identities are true only on the factorization channel I2 = 0

on which we can write Rγs = RZs (mZ = 0). This is not true away from the factorization

channel. Consequently the contact terms that must be added to achieve the correct UV

behaviour differ. This explicitly demonstrates the dependence of contact terms on the

specific form of the three point amplitudes.

• Higgs exchange. This is the simplest to compute. We just glue together the following

amplitudes.

ML =
eWWH

mW

〈12〉[12] MR =
eWWH

mW

〈34〉[34] , (4.15)

which directly yields

Rhs =
e2WWH

m2
W

〈12〉[12]〈34〉[34] . (4.16)

The complete contribution of the s− channel is

Ms =

(
RZs

s−m2
Z

+
Rγs
s

+
Rhs

s−m2
h

)
.
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4.1.2 t-channel

The computation of the t-channel residues is very similar to that of the s-channel. In fact,

we can obtain them from the s− channel ones by the replacement p2 ↔ −p4. The results

are presented below with I = p1 − p4.

• Z exchange

RZt =
e2W
m4

W

{
2 〈14〉 [14] 〈32〉 [32] (p1 + p4).(p3 + p2) (4.17)

+ 4
(
〈31〉 [13] 〈4| p1 |4] 〈2| p3 |2]− 〈42〉 [24] 〈1| p4 |1] 〈3| p2 |3]− (1 ↔ 4)

)
+ 2
(
〈12 〉[14] 〈2| p3 |2] 〈3| p1 + p2 |3] + 〈14〉 [14] 〈3| p2 |3] 〈2| p1 + p4 |2]− (1 ↔ 4)

)}

• Photon exchange. The residue on the t− channel resulting from gluing together two

W+W−γ amplitudes is

Rγt =
e2

2m4
W

{
− (p1 + p4).(p3 + p2) 〈14〉 [14] 〈32〉 [32] (4.18)

+
(
〈14〉 [41]

[
〈3| (p1 + p4) (p1 − p4) 2〉 [32]− 〈32〉 [3| (p1 − p4) (p1 + p4) |2]

]
+ 〈1| p1 − p4 |2] [3| p1 − p4 |4〉 [14] 〈32〉+ (1, 4↔ 3, 2)

)}

• Higgs exchange

Rht =
e2WWH

m2
W

〈14〉 [14] 〈23〉 [23] (4.19)

The total contribution from the t−channel is

Mt =

(
RZt

t−m2
Z

+
Rγt
t

+
Rht

t−m2
h

)
4.1.3 Contact terms

The quantity M ≡Ms+Mt has been constructed to have the correct factorization proper-

ties. As explained before, the behaviour away from the factorization channels depends on

the specific forms of the three point amplitudes. We can impose further constraints on the

amplitude to fix it completely. It is evident that the high energy limit of the amplitude is

ill defined due to the presence of the 1
m4

W
poles which leads to amplitudes which grow with

energy as E4. This violates perturbative unitarity. If we insist that the theory has a well

defined high energy limit, we must add contact terms (which by definition have 0 residue

on the factorization poles) to cancel this E4 growth.3 The form of the contact terms can be

3We thank the authors of [30] for pointing out to us that this contact term can also be derived by UV-IR

matching as in section 3.4.
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deduced by figuring out which components of the amplitude grow in the UV. Plugging in

the 4-particle kinematics in (4.5), we find that only the all longitudinal component grows

as E4,

M → 4E4

m4
W

(
e2 + e2W

)
(−5− 12 cos θ + cos 2θ) . (4.20)

The following contact term serves to kill these high energy growths

cWWWW =
e2 + e2W
m4

W

(−〈12〉[12]〈34〉[34] + 2〈13〉[13]〈24〉[24]− 〈14〉[14]〈23〉[23]) . (4.21)

Adding these contact terms, we find that the amplitude still grows as E2/m2
W . Demanding

that the coefficient of this growing term vanishes enforces e2WWH = 2(e2 + e2W ).

4.2 W+Z →W+Z

The 4 particle kinematics appropriate to this situation is

p1 = (E1, 0, 0, p) p2 = (E2, 0, 0,−p) (4.22)

p3 = (E2, p sin θ, 0, p cos θ) p4 = (E1,−p sin θ, 0,−p cos θ)

This configuration automatically satisfies momentum conservation. We can rewrite E2 in

terms of E1 by using the on-shell constraint as E2 =
√
E2

1 −m2
W +m2

Z . We can build

this amplitude by gluing together two W+W−Z amplitudes in two ways and by gluing a

W+W−h and a ZZh amplitude.

p2

p1

p3

p4

2Z 3Z

1W+ 4W+

⊃ W+

2Z 3Z

1W+ 4W+

+ W+

2Z 4Z

1W+ 4W+

+ h

2Z 3Z

1W+ 4W+

(4.23)

We present the final expressions below. The calculations are very similar to those involved

in W+W− →W+W−.

• s-channel W-exchange

RWs =
eW

m4
Wm

2
Z

{
2(m2

W−m2
Z)2〈12〉[12]〈34〉 [34]

+m2
W

(
2〈12〉 [12]〈34〉 [34] (p1−p2).(p3−p4)

+4
[
〈42〉 [24]〈1|p2|1]〈3|p4|3]−〈32〉[23]〈1|p2|1]〈4|p3|4]+(1,3↔ 2,4)

]
+2
[
〈12〉[12]

(
〈4|p3|4]〈3|p1−p2|3]−(3↔ 4)

)
+(1,2↔ 3,4)

])}
(4.24)
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• u-channel W-exchange

RWu =
eW

m4
Wm

2
Z

{
2(m2

W−m2
Z)2〈13〉[13]〈24〉 [24]

+m2
W

(
−2〈13〉 [13]〈24〉 [24] (p1+p3).(p2+p4)

+4
[
−〈43〉 [34]〈1|p3|1]〈2|p4|2]−〈32〉[23]〈1|p3|1]〈4|p2|4]+(1,2↔ 3,4)

]
+2
[
−〈13〉[13]

(
〈4|p2|4]〈2|p1+p3|3] +(2↔ 4)

)
+(1,3↔ 2,4)

])}
(4.25)

• t-channel Higgs-exchange

Rht =
eWWH

mW

eZZH
mZ

〈23 〉[23] 〈14 〉[14] . (4.26)

• Contact terms. We are again in the familiar situation where the quantity(
RWs

s−m2
W

+
RWu

u−m2
W

+
Rht

t−m2
h

)
,

factorizes correctly on all the factorization channels. However, the all longitudinal com-

ponent again grows with energy as can be seen by evaluating this using the kinematics in

eq. (4.22). We find that the following contact term is needed to fix this and have a well

behaved theory in the UV,

cWZWZ =
e2W
m4

W

(〈12〉 [12] 〈34〉 [34] + 〈23〉 [23] 〈14〉 [14]− 2〈24〉 [24] 〈13〉 [13]) . (4.27)

Furthermore, to kill growth at O(E2), we must also have eWWH eZZHm
3
W = e2W m

3
Z .

4.3 W+W− → Zh

We next consider the scattering W+W− → Zh with the following kinematics

pµ1 = (E1, 0, 0, p1) pµ2 = (E1, 0, 0,−p1) (4.28)

pµ3 = (E3, p2 sin θ, 0, p2 cos θ) pµ4 = (E4,−p2 sin θ, 0,−p2 cos θ)

Using on-shell constraints, we can eliminate p1, p2, E3, E4 in favor of E1,

p1 =
√
E2

1 −m2
W p2 =

√
E2

2 −m2
Z E3 =

m2
Z −m2

h + 4E2
1

4E1
, E4 =

4E2
1 −m2

Z +m2
h

4E1
.

We can build this amplitude by gluing together (W+W−Z,Zhh) on the s−channel and by

gluing together (W+W−h, ZZh) in the u and t channels as shown

p2

p1

p3

p4

2W+ 3Z

1W− 4h

⊃ Z

2W+ 3Z

1W− 4h

+ W+

2W+ 3Z

1W− 4h

+ W−

2W+ 3Z

1W− 4h

(4.29)
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Using the familiar procedure, we get

• s-channel Z exchange

RZs =
eZZH eW
m2

W

(−〈12〉 [12] 〈3|p1 − p2|3]− 2〈23〉 [23] 〈1|p2|1] + 2〈13〉 [13]〈2|p1|2]) (4.30)

• u-channel W exchange

RWu =
eW eWWH

mWmZ

(−〈13〉 [13]〈2|p1 + p3|2] + 2〈23〉 [23]〈1|p3|1]− 2〈12〉 [12]〈3|p1|3]) (4.31)

• t-channel W exchange

RWt =
eW eWWH

mWmZ

(−〈23〉 [23] 〈1|p2 + p3|1] + 2〈13〉 [13]〈2|p3|2]− 2〈12〉 [12] 〈3|p2|3])

(4.32)

• Contact terms. In this case, the component of the amplitude with W+,W−, Z all

being longitudinal grows with energy. However, there are no possible contact terms that

are compatible with Lorentz invariance and the little group. The vanishing of the growing

term imposes a constraint on the couplings eWWH , eZZH ,

eZZH
eWWH

=
mW

mZ

(4.33)

4.4 W+W− → hh

To compute this amplitude, we can glue together two W+W−h amplitudes in the t and u

channels.

p2

p1

p3

p4

2W− 3h

1W+ 4h

⊃ W+

2W− 3h

1W+ 4h

+ W+

2W− 3h

1W+ 4h

+
h

2W+ 3h

1W− 4h

(4.34)

• t-channel W exchange

RWt =
e2WWH

m2
W

(
−m2

W 〈12〉 [12] − 1

2
〈1| p1 − p4|1] [2|p1 − p4 |2〉

)
(4.35)

• u-channel W exchange

RWu =
e2WWH

m2
W

(
−m2

W 〈12〉 [12] − 1

2
〈1| p1 − p3|1] [2|p1 − p3 |2〉

)
(4.36)

• s-channel h exchange

Rhs =
eWWH eHHHmH

mW

〈12〉 [12] (4.37)
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• Contact terms. The contact term necessary to kill the O(E2) growth is

cWWHH =
e2WWH

2m2
W

〈12〉 [21] (4.38)

4.5 hh→ hh

The only three point amplitudes which contribute to this are the hhh vertices eq. (3.6).

As opposed to the usual, Lagrangian based approach to the Higgs mechanism, where we

discover the new triple higgs vertex in the IR, here we must include its contribution simply

because it is non zero and contributes to this scattering process.

p2

p1

p3

p4

2h 3h

1h 4h

⊃ h

2h 3h

1h 4h

+ h

2h 4h

1h 4h

+
h

2h 3h

1h 4h

(4.39)

The complete amplitude is

Mhhhh = e2HHHm
2
h

(
1

s−m2
h

+
1

t−m2
h

+
1

u−m2
h

)
+ λ (4.40)

where λ is a contact term.

5 Conclusions and outlook

We have presented a completely on-shell description of the higgs mechanism within the

Standard Model. We see that all the physics is reproduced by demanding consistent fac-

torization, correct ultraviolet behaviour and consistency of the UV and IR. The precise

relations between the masses of the W±, Z and θw depend on the structures that have

been included in the three point W+W−Z amplitude. Our choice of the three point am-

plitude in eq. (3.1) ensured that we reproduced the usual result. We have constructed four

particle, tree-level amplitudes from three particle amplitudes. The construction of higher

point amplitudes and extensions to loop amplitudes are the obvious next questions. While

the construction of higher point, tree level amplitudes is in principle, straightforward, the

computation of loop amplitudes is more challenging. In particular, an on-shell version of

the renormalization group is completely unknown and is a open problem. We have also

restricted the particle content of the scalar sector to a single, real scalar transforming un-

der an SO(4) global symmetry. We have studied the Higgs mechanism for SU(2)L×U(1)Y
breaking to U(1)EM, relevant to electroweak symmetry breaking. It would be interesting

to extend this analysis to completely general theories.

This work is a preliminary step in connecting modern methods in scattering ampli-

tudes to the real world. There have been many developments in new ways of thinking

about scattering amplitudes. It has proved useful to think of them as differential forms
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on kinematic space [38]. These differential forms are associated to geometric structures in

many cases. The physics of scattering amplitudes emerges from simple properties of the

underlying geometry as seen in the few known cases [39–43]. It would therefore be use-

ful to rewrite amplitudes in the Standard Model as differential forms. This would lay the

groundwork for an attempt to look for hidden geometric structure within these amplitudes.
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A Conventions

In this appendix, we explicitly state all our conventions. We work with the metric signature

(+,−,−,−). SU(2)L (of the bosons in the UV) and SL(2,C) spinor indices are raised and

lowered using

εαβ = −εαβ =

(
0 −1

1 0

)
(A.1)

We raise and lower the SL(2,C) as follows

λα = εαβλβ λβ = εβαλ
α λ̃α̇ = εα̇β̇λ̃β̇ λ̃β̇ = εβ̇α̇λ̃

α̇ .

We use the same tensor for lowering and raising the indices of the massive little group

SU(2)L with the convention

λαI = λJα εJI λIα = λαJ ε
JI .

Note that the Greek SL(2,C) spinor indices are raised and lowered on the left while the

Latin little group indices are raised and lowered on the right. We also make use of angle

and square spinors which are defined as

|i〉 := |i〉Iα = λIα, 〈i| := 〈i|αI = λαI , (A.2)

|i] := |i]α̇I = λ̃α̇I , [i| := [i|Iα̇ = λ̃Iα̇.

With this the momentum can be written as,

pαα̇ = εJI |i〉I [i|J = εJIλ
I
αλ̃

J
α̇, pα̇α = εJI 〈i|I |i]J = εJIλ

αI λ̃α̇J .

We follow the convention that undotted indices are contracted from top to bottom while

dotted indices are contracted from the bottom to the top.

〈ij〉 = 〈i|αI |j〉Jα, [ij] = [i|Iα̇|j]α̇J (A.3)

〈i|pk|j〉 = 〈i|αIpkαβ̇ |j〉β̇J , [i|pk|j〉 = [i|Iα̇pα̇βk |j〉Jβ
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In this notation, the Dirac equation reads

〈i|pi = mi[i| pi|i] = −mi|i〉 (A.4)

pi|i〉 = −mi|i] [i|pi = mi〈i|

We can expand λIα and λ̃α̇I as explained in eq. (2.19)

λIα = λα ζ
−I + ηα ζ

+I (A.5)

=
√
E + p ζ+α (p) ζ−I(k) +

√
E − p ζ−α (p) ζ+I(k)

λ̃α̇I = λ̃α̇ ζ
+
I − η̃α̇ ζ−I (A.6)

=
√
E + p ζ̃−α (p) ζ+I (k)−

√
E − p ζ̃α̇(p) ζ−I (k)

where

ζ+I =

(
1

0

)
, ζ−I =

(
0

−1

)
, ζ+I =

(
0

1

)
, ζ−I =

(
1

0

)
, (A.7)

and

ζ+α (p) =

(
cos θ

2

sin θ
2e
iφ

)
, ζ−α (p) =

(
−sin θ

2e
−iφ

cos θ
2

)
(A.8)

ζ+α̇ (p) =

(
−sin θ

2e
iφ

cos θ
2

)
, ζ−α̇ (p) =

(
cos θ

2

sin θ
2e
−iφ

)
. (A.9)

With this choice, we have the following contractions

λIαζ
+
I = λα λIαζ

−
I = −ηα

λ̃Iα̇ζ
+
I = −η̃α̇ λ̃Iα̇ζ

−
I = −λ̃α̇ . (A.10)

Furthermore, using (A.4) we can deduce following relations between λ and η

pαα̇λ
α = −mη̃α̇ pαα̇η

α = mλ̃α̇

pαα̇η̃
α̇ = mλα pαα̇λ̃

α̇ = −mηα (A.11)

B Amplitudes with one massless particle and 2 equal mass particles

Three particle amplitudes involving one massless particle and two massive particles of equal

mass present a difficulty. Consider the three particle amplitude with both particles 1 and

2 having mass m, spins S1 and S2 and a third massless particle of helicity h. In order to

construct such amplitudes, it is useful to have a Lorentz invariant object which has the

correct helicity weight for particle three and is invariant under the little groups for particles

1 and 2. Unfortunately, the obvious candidates vanish,

[3| p1 |3〉 = 2 p1.p3 = 0 [3| p2 |3〉 = 2 p2.p3 = 0 . (B.1)

The x-factors defined in [18] solve this problem. In our paper, we adopt a slightly different

definition and notation which we explain below. For all outgoing momenta, we define

(p1 − p2)αα̇
2m

λα3 = x+12 λ̃3α̇
(p1 − p2)αα̇

2m
λ̃α̇3 = x−12 λ3α . (B.2)
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Under little group scaling of particle 3, the helicity spinors scale as λ3 → t−1λ3 and

λ̃3 → t λ̃3. It follows that x+12 → t−2 x+12 and x−12 → t2 x−12. An object with helicity h

transforms as t−2h under a little group scaling. This justifies the ± signs on the x-factors.

We can obtain explicit expressions for the x-factors by contracting eq. (B.2) with

reference spinors ξα or ξ̃α̇.

x+12 =
〈3|p1 − p2|ξ]

2m[3 ξ]
x−12 =

〈ξ|p1 − p2|3]

2m〈ξ 3〉 . (B.3)

These are the same as the conventional expressions for polarization vectors of massless

particles upto a factor of 1
m . It is crucial that the x-factors are independent of the reference

spinor. To see this, consider two different definitions of x+12 with reference spinors ξ1 and

ξ2. Their difference,

〈3|p1 − p2|ξ1]
2m[3 ξ1]

− 〈3|p1 − p2|ξ2]
2m[3 ξ2]

= −〈3|p1 − p2|3][ξ1 ξ2]

2m[3 ξ1][3 ξ2]
= 0 , (B.4)

where the first equality follows from a Schöuten identity and the second from eq. (B.1).

We can build three point amplitudes using the x-factors. Here, we will focus on the

amplitude involving two spin 1 particles of mass m and a massless particle of helicity ±1.

The contributing structures are

〈12〉2 x±12 [12]2 x±12 〈13〉 [23]〈12〉 〈13〉 〈23〉〈12〉 . . . (B.5)

We pick our amplitudes to be 〈12〉2 x−12 and [12]2 x+12. This corresponds to minimal cou-

pling. For more details about this and amplitudes corresponding to multipole moments,

see [22]. We can also compare these with the vertices that we get from the usual Feynman

rules (for a photon with positive helicity)

ε+3 · (p1 − p2) ε1 · ε2 + ε1 · (p2 − p3) ε2 · ε+3 + ε2 · (p3 − p1) ε+3 · ε1 , (B.6)

where

(ε+3 )αα̇ ≡
λ3α ξα̇
[3 ξ]

(ε1)
I1 I2
αα̇ ≡ 1

m
λ
{I1
1α λ̃

I2}
1α̇ (ε2)

J1 J2

ββ̇
≡ 1

m
λ
{J1

2β λ̃
J2}
2β̇

. (B.7)

Using these definitions in eq. (B.6) and applying Schöuten identities to eliminate the ref-

erence spinors, it reduces to

x+12
2m

[12]

(
〈21〉+

〈13〉〈31〉
mx+12

)
= − x

+
12

2m
[12]2 . (B.8)

The following identities are useful in showing this equality

[12] = 〈12〉 − 〈1|P |2]

m
(B.9)

= 〈12〉+
1

2m
([1|P |2〉 − 〈1|P |2]) ,

[21] = 〈21〉+
〈23〉〈31〉
mx+

= 〈21〉+
[23][31]

mx−
. (B.10)

Similarly, for a negative helicity photon we have,

−x−12
2m
〈21〉

(
[12] +

[23][31]

mx−

)
=

x−12
2m
〈21〉2 . (B.11)
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C High energy limits of 3 point amplitudes

In this section, we will evaluate the high energy limits of select three point amplitudes for

illustrative purposes.

C.1 HE limits of WWZ

1W+

2W−

3Z HE (+ +−)−−−−−−−−−−−−→

1+W+

2+W−

3−Z (C.1)

We will compute the HE limit of the WWZ amplitude with legs 1 and 2 having plus helicity

and leg 3 having minus.

MWWZ =
eW

m2
WmZ

[〈12〉[12]〈3|p1 − p2|3] + cyc.] HE (+ +−)−−−−−−−−−−−−→M++−
WWZ . (C.2)

We can get this component by contracting MWWZ with ζ+I1ζ
+
I2
ζ+J1
ζ+J1
ζ−K1

ζ−K2
where

{I1, I2}, {J1, J2} and {K1,K2} are the little group indices corresponding to legs 1,2 and 3

respectively. This gives

M++−
WWZ =

eW
m2

WmZ

(
〈12〉[η1 η2]〈η3|p1 − p2|3] + 〈2η3〉[η23]〈1|p2 − p3|η1] (C.3)

+ 〈η31〉[3η1]〈2|p3 − p1|η2]
)
.

The leading term should be O(1) for the HE limit to be well defined. Remembering that

for massless 3-particle kinematics, with helicity (+ + −), we have λ̃1 = 〈23〉ξ, λ̃2 = 〈31〉ξ
and λ̃3 = 〈12〉ξ, we find that all square brackets involving λ̃i vanish. Further, we have

〈iηi〉 = mi, [ηii] = mi and pi = λiλ̃i+ηiη̃i. This allows us to simplify the above expression to

M++−
WWZ =

2 eW
mZ

(
−〈2η3〉〈23〉 +

〈η31〉
〈31〉

)
= 2 eW

〈12〉3
〈23〉〈31〉 , (C.4)

where we have made use of the Schöuten identity,

〈12〉〈η33〉+ 〈23〉〈η31〉+ 〈31〉〈η32〉 = 0 . (C.5)

The other HE limits may be obtained in a similar manner.

C.2 HE limits of WWh and ZZh

In this section, we will illustrate all the HE limits of different components of the WWh

amplitude. The computations for ZZh are identical. We begin with both legs being trans-
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verse.

1W+

2W−

3h HE(+−)−−−−−−−−−→

1+W+

2−W−

3h = M+−
WWH (C.6)

MWWH =
eWWH

mW

〈12〉[12] +
N2

mW

(
〈12〉2 + [12]2

)
HE(+−)−−−−−−−−−→M

+−
WWH (C.7)

As before, we must project with the appropriate little group tensors to get the required

components. This gives

M+−
WWH =

eWWH

mW

〈1η2〉[η12] +
N2

mW

(
〈1η2〉2 + [η12]2

)
∝ mW → 0 . (C.8)

This the HE limit involving two transverse components of opposite helicity vanishes.

Next consider,

1W+

2W−

3h HE(++)−−−−−−−−−→

1+W+

2+W−

3h = M++
WWH (C.9)

M++
WWH =

eWWH

mW

〈12〉[η1η2] +
N2

mW

(
〈12〉2 + [η1η2]

2
)
. (C.10)

The first term is proportional to mW and vanishes. However, 〈12〉2 is finite in the HE limit

while 1
mW

diverges. This forces us to set N2 = 0. A similar analysis shows that we must

have N1 = 0 for the WWZ amplitude to have a well defined HE limit. For the rest of the

computations in this appendix, we will work with N2 = 0. We move on to the components

of the amplitude which contain one transverse and one longitudinal mode.

1W+

2W−

3h HE(+0)−−−−−−−−−→

1+W+

20W−

3h = M+0
WWH . (C.11)

M+0
WWH =

eWWH

2mW

(〈12〉[η12]− 〈1η2〉[η1η2]) =
eWWH

2mW

〈12〉〈31〉
〈23〉 , (C.12)
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where we have used [η12] = mW
〈31〉
〈23〉 . Finally, the all longitudinal component

1W+

2W−

3h HE(00)−−−−−−−−→

10W+

20W−

3h = M00
WWH (C.13)

M00
WWH =

eWWH

mW

(〈12〉[12]− 〈1η2〉[1η2]− 〈η12〉[η12] + [η1η2]〈η1η2〉) . (C.14)

Recalling that 〈12〉[12] = p23 = m2
h and ηi ∝ mW , we see that leading term in M00

WWH is

O(mW ) and vanishes in the HE limit (here we are assuming that m2
h/mW → 0).

D Computation of 4-particle amplitudes

In sections 4.1–4.2, we glue together two three point amplitudes to construct the four point

amplitude. In cases in which the exchanged particle has spin 1, the following identities

are useful

εI1J1εI2J2I
α{I1 Ĩα̇I2}Iβ{J1 Ĩβ̇j2} =

1

2

(
εαβεα̇β̇m2

I − I α̇βI β̇α
)

= εαβεα̇β̇m2
I −

1

2
I α̇αI β̇β . (D.1)

Note that the second equality can be obtained by using a property of the two dimensional

Levi Civita tensor

εI1J1εI2J2 + εI1I2εJ2J1 + εI1J2εJ1I2 = 0 . (D.2)

The following identities are useful in the computation of the 4 point amplitude in sec-

tion 4.1.1

[12] = 〈12〉 − 〈1I〉〈I2〉
mx+12

= 〈12〉 − [1I][I2]

mx−12
, (D.3)

〈34〉 = [34] +
〈3I〉〈I4〉
m+

34

= [34] +
[3I][I4]

mx−34
, (D.4)

and

x+12x
−
34 + x−12x

+
34 =

1

2m2
(p1 − p2) · (p3 − p4) . (D.5)

E Generators of SO(4) and the embedding of SU(2) ×U(1)Y

The representation of the generators of SU(2)× U(1) as 4×4 matrices was also introduced

in [45]. These are derived by identifying the appropriate subgroups of SO(4) whose gener-

– 29 –
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ators are

A1 = i


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , A2 = i


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , A3 = i


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



B1 = i


0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0

 , B2 = i


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 , B3 = i


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 .

The following combinations can be used to identify the SU(2) and U(1) subgroups

X+ =
1

2
√

2
(A1 + iA2 +B1 + iB2) , Y + =

1

2
√

2
(A1 + iA2 −B1 − iB2) ,

X− =
1

2
√

2
(A1 − iA2 +B1 − iB2) , Y − =

1

2
√

2
(A1 − iA2 −B1 + iB2) ,

X3 =
1

2
(A3 +B3) , Y 3 =

1

2
(A3 −B3) . (E.1)

It is easy to see that they satisfy two copies of the SU(2) algebra[
X+, X−

]
= X3,

[
X3, X+

]
= X+,

[
X3, X−

]
= −X−,[

Y +, Y −
]

= Y 3,
[
Y 3, Y +

]
= Y +,

[
Y 3, Y −

]
= −Y − . (E.2)

We will associate the generators X±, X3 with the symmetry SU(2)L. These are referred

to as T±, T 3 in the paper, such that T± ≡ 2X±. The U(1)Y is a subgroup of the SU(2)

formed by Y ±, Y 3 and we will set TB ≡ 2Y 3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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