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1 Introduction

In the past decade, supersymmetric localization has provided a plethora of exact results

in supersymmetric field theories with various amounts of supersymmetry and in various

numbers of dimensions (see [1] for a collection of review articles). Of particular importance

have been the partition functions on round spheres, whose computations in supersymmetric

theories motivated the F -theorem [2, 3] and generalizations thereof [4–7], provided new

precision tests of the anti-de Sitter / conformal field theory (AdS/CFT) correspondence [2,

8–12], as well as various exact results for correlation functions in superconformal field

theories (SCFTs) [5, 13–19]. Our work here stems from noticing a potential coincidence

in [20, 21]: after localization, the partition function of the 5d maximally supersymmetric

(N = 2) Yang-Mills (MSYM) theory on a round S5 has an identical form to the partition

function of 3d Chern-Simons (CS) theory on a round S3! For example, if the gauge group

is U(N), then the S5 partition function takes the form of an N -dimensional integral [20, 21]

(see also [22–24])

ZS5 ∝
∫
dNλ e

− 4π3R

g2
YM

∑N
i=1 λ

2
i
∏
i<j

[2 sinh [π(λi − λj)]]2 , (1.1)
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where R is the radius of S5, and where we ignored an overall proportionality factor. For the

same choice of U(N) gauge group, the S3 partition function of CS theory at renormalized

level k can also be written as an N -dimensional integral [25–27]:1

ZS3 ∝
∫
dNλ eiπk

∑N
i=1 λ

2
i

∏
i<j

[2 sinh [π(λi − λj)]]2 . (1.4)

The two formulas (1.1)–(1.4) take the same form provided that we analytically continue

the 3d partition function to pure imaginary values of k and identify

k = i
4π2R

g2
YM

. (1.5)

The appearance of the 3d CS partition function from that of 5d MSYM theory seems rather

surprising because the 3d CS theory breaks parity and is topological, while 5d MSYM

preserves parity and, although it is IR free, its correlation functions at intermediate energy

scales are far from trivial.

Nevertheless, we will explain the similarity in the form of the expressions in (1.1)

and (1.4) by showing that one can obtain a full 3d CS theory (not just its partition function)

on an S3 submanifold of S5. In particular, we identify explicitly a sector of renormalized
1
8 -BPS Wilson loop operators W ren

R (K) in the 5d MSYM theory whose shapes are general

knots K that are restricted to belong to a great S3 ⊂ S5. Here, R is a representation of the

gauge group G. We propose that these Wilson loops correspond to the usual Wilson loop

operators W 3d
R (K) in the effective 3d CS theory. In particular their 5d expectation values

compute knot invariants in S3. For small g2
YM, we can of course compute the expectation

value of W ren
R (K) from 5d Feynman diagrams. As we show, due to the supersymmetry

preserved, the contributions at each order in g2
YM can be put in the form of certain integrals

that compute classical knot invariants, such as the Gauss linking integral. This lends direct

support for our proposal.

An important point we want to emphasize is that the naively-defined 5d 1
8 -BPS Wilson

loop WR(K) is not topological. However its dependence on the shape of the loop is rather

special and can be canceled by a combination of counter-terms associated with the length

L(K) of the loop and torsion T (K) of the loop in S3. Therefore we can define a topological

renormalized Wilson loop W ren
R (K) by multiplying WR(K) by a factor depending on L(K)

and T (K). While the length L(K) is an innocuous 1d local counter-term on the Wilson

loop, the torsion T (K) is a 1d Chern-Simons term associated to the so(2) normal bundle in

S3, and it introduces framing dependence (choice of a trivialization for the normal bundle)

1In the conventions adopted here, the usual CS path integral for compact gauge group G is given by

ZCS =

∫
DAe−i

kb
4π

∫
Tr (AdA− 2i

3
A3) , (1.2)

with hermitian gauge field A. This differs from the convention in [28] by Ahere = −iAthere so that the gauge

covariant derivative is Dhere = d− iAhere. Here kb is the bare CS level and the renormalized CS level k is

k = kb + h sgn(kb) , (1.3)

where h is the dual Coxeter number of the gauge group G.

– 2 –
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in W ren
R (K). This is parallel to what happens in 3d CS theory where a framing of the knots

K (as well as for the underlying 3-manifold) is required to define the topological Wilson

loop observables.2 In particular, for our proposal to work, the framing dependence of the

renormalized 5d supersymmetric Wilson loop must match that of the 3d Wilson loop in

CS theory.

Our result has an interesting implication for the 6d superconformal theories with (2, 0)

supersymmetry [29–31], which are labeled by an ADE Lie algebra g. As argued in [32–36],

the 5d N = 2 MSYM theory with Lie algebra g can be obtained from dimensionally reduc-

ing the 6d (2, 0) theory on a small circle of radius R6 = g2
YM/(4π

2), with an appropriate

R-symmetry twist along this circle in order to preserve N = 2 supersymmetry in 5d. More

precisely, the dimensional reduction gives the 5d N = 2 MSYM theory supplemented by a

particular set of higher derivative corrections suppressed in R6. The existence of a sector

of 5d MSYM theory captured by 3d Chern-Simons theory implies the existence of a simi-

lar sector of the (2, 0) theory when the latter is placed on S5 × S1 in the small R6 limit.

(See also [37–47] for other ways of relating 3d Chern-Simons theory to (2, 0) theories.) In

this dimensional reduction, the non-trivial observables computed by Chern-Simons theory,

namely the 1/8-BPS Wilson loop operators of 5d MSYM mentioned above, arise as certain

1/8-BPS two-dimensional surface operators in the (2, 0) theory that wrap the S1 factor.

We emphasize that although the 5d MSYM is unrenormalizable, an UV complete definition

of the 5d Wilson loop observables is given by the surface operators in the (2, 0) theory.

When g2
YM ∼ R6 is large, the 6d description by the (2, 0) theory becomes more natural.

In this case one may contemplate whether it is possible to provide evidence for the existence

of a Chern-Simons subsector of the (2, 0) theory using holography. At large N , the AN -type

(2, 0) theory is dual to M-theory on AdS7 × S4, with N units of four-form flux threading

the S4 factor. As will be explained in section 6, to place the field theory on S5 × S1 while

preserving SUSY, one has to analytically continue the AdS7×S4 background to Euclidean

signature and perform the bulk analog of the R-symmetry twist needed in the field theory.

In this setup, the simplest two-dimensional surface operators are those that in 5d become

Wilson loop operators in the fundamental representation of SU(N), and they correspond

to M2-branes that end on the boundary of the bulk geometry.

A potential difficulty in comparing 11d M-theory to 5d MSYM theory is that the

5d MSYM description is a reliable approximation only when R6 is small, while the 11d

description is reliable in the opposite limit, when R6 is large. When R6 is small one

could work in type IIA string theory, as we do in section 6.2, but this description becomes

uncontrolled in the asymptotic region, where the dilaton blows up. Nevertheless, experience

in other situations involving supersymmetric localization in 5d suggests that the expressions

for supersymmetry-protected quantities computed in 5d MSYM theory hold in fact for all

R6, and not just when R6 is small. For example, it was shown in [48] that one can use

5d MSYM to reproduce the characters of protected chiral algebras that are subsectors

of the (2, 0) theories [49]. The intuition behind this non-renormalization result is that

higher derivative corrections to the 5d MSYM action are likely to be Q-exact and thus do

2In other words, there is a framing anomaly for the topological Wilson loops in 3d CS theory.
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not affect Q-invariant observables.3 (Here, Q is a supercharge preserved by our protected

sector.) Thus, assuming that the same intuition holds true in the case of interest to us, we

conjecture that at any R6, there exists a sector of the (2, 0) AN theory on S5 × S1 that is

captured by 3d Chern-Simons theory.

The holographic duals of some of the operators in this sector (namely those that reduce

to Wilson loops in the fundamental representation of SU(N) in 5d) are Euclidean M2-

brane that preserve two supercharges, wrap the S1 circle, and at the boundary of the bulk

spacetime approach the product between the S1 factor and a knot K that lies within an S3

submanifold of S5. That the dual boundary operators are captured by CS theory implies

that their expectation values, identified at leading order in large N as the regularized and

appropriately renormalized M2-brane action, are independent of continuous deformations

of K. While we do not construct explicitly the M2-brane embeddings that extremize the

M2-brane action, we nevertheless use supersymmetry to derive the first order equations they

obey, and we show, using methods similar to those in [54–56], that the regularized on-shell

action (supplemented with the same finite counter terms as in the field theory computation)

is indeed a topological invariant of K. Its value agrees with the corresponding Wilson loop

expectation value in the 3d CS theory in the strong coupling regime. This is thus a test of

our conjecture that the (2, 0) theory on S5 × S1 contains a 3d Chern-Simons sector.

Given the above nontrivial checks for both the weak and strong coupling limits of

our proposal, we proceed to derive the 3d CS sector of the N = 2 MSYM on S5 by

performing a supersymmetric localization computation that is different from the one that

led to (1.1). The appearance of 3d Chern-Simons theory from 5d MSYM theory can

be already anticipated given various supersymmetric localization results present in the

literature. In four dimensions refs. [16, 57] showed that, with an appropriate choice of

supercharge, the N = 4 SYM theory placed either on the positively-curved S4 or on its

negatively-curved analog H4, localizes to a 2d Yang-Mills theory on an S2 submanifold of

S4 or an H2 submanifold of H4, respectively. In five dimensions, it was shown in [58] that

N = 2 MSYM on H5 localizes to Chern-Simons theory on an H3 subspace of H5. Given

the analogy with the four-dimensional situation, it is then natural to guess that one can

3The supersymmetric higher-derivative corrections to the 5d MSYM theory can be classified into D-

terms and F-terms. The former come from descendants of local scalar operators O with respect to all of the

16 supercharges of the MSYM. The F-terms, on the other hand, arise when starting with local operators O
that preserve a subset of the supercharges, so that one only needs to act with a subset of the supercharges

in order to obtain a fully supersymmetric term. Such terms in the flat space limit are classified in [50, 51].

While the D-terms are obviously Q-exact with respect to any supercharge Q, this is not typically the

case for the F-terms. For example, in 4d, if Q is a supercharge that does not have a definite chirality, then

F-terms constructed as chiral superspace integrals are not Q-invariant. (For a concrete example, see [18]

where the S4 partition function of 4d N = 2 SYM was shown to depend on F-term deformations.)

Here, the possible F-term higher derivative correction to the 5d MSYM consist of: a 1
2
-BPS F-terms given

by the supersymmetric completions of TrF 4 and (TrF 2)2, and a 1
4
-BPS F-term that involves D2(TrF 2)2,

with a particular contraction of the 5d spacetime indices [50, 51]. However it was shown in [52] that such

terms must be absent in the 5d effective theory from the S1 compactifcation of the A1 (2, 0) theory (in this

case due to the trace relations it suffices to show it for TrF 4). A modification of the argument there would

be needed to prove the absence of such F-terms in the S1 compactification of general (2, 0) theories. It is

plausible that one should make use of the conformal invariance of the 6d (2, 0) theory as in [53].

– 4 –
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also show that the N = 2 MSYM theory on S5 localizes to Chern-Simons theory on S3.

One of our goals here is to spell out this computation. More explicitly, using an off-shell

formulation of 5d MSYM on S5 that preserves the supercharge Q, we show that N = 2

MSYM on S5 localizes to 3d CS theory on the S3 submanifold and supersymmetric Wilson

loops that preserve Q become ordinary Wilson loops in the CS theory. One important

subtlety in the localization computation, which we do not fully address in this paper and

hope to come back to in the future, is related to the choice of reality condition for the 5d

fields and possible complex solutions to the BPS equations.

The rest of this paper is organized as follows. In section 2 we review the relation

between the (2, 0) theory on S5 × S1 and N = 2 MSYM on S5. In section 3, we define

the 1
8 -BPS Wilson loops in the 5d MSYM and explain the relation to surface operators in

the 6d (2, 0) theory. Motivated by perturbative results for these Wilson loops which we

present in section 4, we give a proposal for the effective 3d Chern-Simons theory in section 5

along with predictions for the strongly coupled limit of these observables. In section 6, we

study the holographic duals of the 1
8 -BPS surface operators in M-theory and match to the

field theory prediction. Lastly, in section 7 we describe the localization computation that

reduces 5d MSYM on S5 to Chern-Simons theory on S3. We end with a brief summary

and future directions in section 8.

2 Review of N = 2 SYM on S5

In this section, we begin with a review of N = 2 SYM on S5 and its relation to the 6d

(2, 0) theory.

2.1 The 5d MSYM action on S5

In any number of spacetime dimensions, the maximally supersymmetric Yang-Mills theory

in flat space can be obtained by dimensional reduction of the 10d super-Yang-Mills theory

on a flat torus. The SYM theory in 5d can be written in terms of an N = 2 vector multiplet,

which consists of a gauge field Aµ, µ = 1, . . . , 5, five scalars ΦI , I = 1, . . . , 5, as well as

fermions ΨA, A = 1, . . . , 4, whose spinor indices we suppress, all transforming in the adjoint

representation of the gauge group G. The ΦI and the ΨA transform, respectively, in the 5

and the 4 of the so(5)R R-symmetry algebra. The 5d flat space Euclidean Lagrangian is

Lflat =
1

g2
YM

tr

[
1

4
FµνF

µν +
1

2
DµΦIDµΦI +

i

2
Ψ̄AγµDµΨA

− 1

4
[ΦI ,ΦJ ]2 − i

2
Ψ̄A(γ̂I)A

B[ΨB,Φ
I ]

]
,

(2.1)

where Dµ = ∂µ−iAµ is the gauge covariant derivative, Fµν = ∂µAν−∂νAµ−i[Aµ, Aν ] is the

gauge field strength,4 γµ and γ̂I are spacetime and so(5)R gamma matrices respectively, and

Ψ̄B ≡ (ΨT
AC)ĈAB . (2.2)

4The fields Aµ and ΦI are taken to be hermitian here.
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For the two antisymmetric charge conjugation matrices C (with spacetime spinor indices)

and Ĉ (with so(5)R spinor indices) see appendix A. In Lorentzian signature, the condi-

tion (2.2) could be interpreted as a symplectic Majorana condition provided that Ψ̄B is

identified as the Dirac adjoint of ΨB. In Euclidean signature, we take Ψ̄B simply to be

given by (2.2).

The action for 5d SYM on S5 can be obtained by covariantizing the expression (2.1)

and adding curvature corrections. These curvature corrections are fixed by demanding

invariance under the N = 2 supersymmetry algebra on S5, which is su(4|2). The bosonic

part of this algebra consists of the su(4) ∼= so(6) rotational symmetry of S5 as well as an

so(3)R⊕so(2)R ∼= su(2)R⊕u(1)R R-symmetry. (We will interchangeably use so(3)R⊕so(2)R
and su(2)R⊕u(1)R to describe the R-symmetry.) This R-symmetry algebra is a subalgebra

of the so(5)R ∼= usp(4)R present in the flat space limit. The fact that only an so(3)R⊕so(2)R
R-symmetry is preserved implies that the five scalars ΦI split into two groups Φi, i = 1, 2,

and Φa, a = 3, 4, 5, that may appear asymmetrically in the curvature corrections to (2.1).

Indeed, the Lagrangian of the N = 2 SYM theory on S5 is

LS5 =Lflat +
1

g2
YM

tr

[
4

2r2
(Φa)2 +

3

2r2
(Φi)2 − i

4r
Ψ̄A(γ̂12)A

BΨB −
1

3r
εabcΦ

a[Φb,Φc]

]
,

(2.3)

where εabc is a totally anti-symmetric tensor of so(3)R with ε345 = ε345 = 1. The bosonic

fields are all hermitian but as usual in Euclidean theories, we do not impose reality

conditions on the fermions ΨA.5 The Lagrangian (2.3) is invariant under the SUSY

transformations

δAµ =− ε̄AγµΨB

δΦI =− iε̄A(γ̂I)A
BΨB

δΨ =− i

2
Fµνγ

µνε− 1

2
[ΦI ,ΦJ ]γ̂IJε+DµΦIγµγ̂Iε+

2

r
Φaγ̂a12ε+

1

r
Φiγ̂iγ̂12ε

(2.5)

which are parametrized by a Grassmann even spinor εA (with ε̄ defined as in (2.2)) obeying

the Killing spinor equation

∇µε =
1

2r
γµγ̂

12ε . (2.6)

Under the su(2)R⊕ u(1)R R-symmetry subalgebra of so(5)R that is preserved on S5, the 4

decomposes as 21/2 + 2−1/2. Correspondingly, the Killing spinor ε splits as

ε = ε+ + ε− (2.7)

according to the eigenvalues of ε± under iγ̂12, which generates u(1)R acting on so(5)R
spinors. We identify ε+ with the supercharges Q, and the ε− with the supercharges S,

5Consequently, all bosonic terms in the 5d Lagrangian are hermitian except for the cubic term

LYM ⊃
1

g2
tr

[
− 1

3r
εabcΦ

a[Φb,Φc]

]
. (2.4)

– 6 –
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su(2)R irrep u(1)R charge

Aµ 1 0

Φi 1 ±1

Φa 3 0

Ψ 2 ±1/2

Q,S 2 ±1/2

Table 1. R-symmetry quantum numbers of the various fields that appear in the Lagrangian as

well as of the supercharges.

whose names are motivated by uplifting to 6d which we will describe in more detail in

section 2.3. See also table 1. Note that in order for the SUSY algebra generated by εA
to be su(4|2), one should additionally impose a reality condition on εA — a possible such

reality condition is ε̄A = (εA)†.

2.2 Localized S5 partition function and Chern-Simons matrix model

In [20, 21] (see also [22, 23, 59]), the S5 partition function was computed using supersym-

metric localization using a supercharge that squares to translations along the great circles

of S5 that form the orbits of the Hopf fibration. For simplicity, let us review the result for

the U(N) gauge theory — for more general formulas, see [21]. For general N ≥ 1 theories

on S5, the partition function localizes to self-dual instanton solutions on the CP2 base of

the Hopf fibration. In the maximally supersymmetric case, it was shown in [20, 21] that

the contributions from the different instanton sectors are proportional to one another, and

the partition function factorizes into a product of a perturbative contribution Zpert and a

contribution from instantons Zinst,

Z = ZpertZinst , (2.8)

where

Zpert =
1

N !

∫
dNλ e

− 4π3R

g2
YM

∑N
i=1 λ

2
i
∏
i<j

(2 sinhπ(λi − λj))2 . (2.9)

and

Zinst =
1

η(q)N
, η(q) ≡ q

1
24

∞∏
n=1

(1− qn), q ≡ e
− 8π3R

g2
YM . (2.10)

The partition function is not the only quantity one can compute with this technique.

In [21], it was shown that the expectation values of Wilson loops operators in representation

R of U(N)

WR =
1

dimR
trR

[
Pexp

(∮
ds(iAµẋ

µ + Φ|ẋ|)
)]

(2.11)

that are extended along a Hopf fiber (with Φ a particular scalar that can be taken to be

Φ5) are given by

〈WR〉 =
1

N !Zpert dimR

∫
dNλ e

− 4π3R

g2
YM

∑N
i=1 λ

2
i
∏
i<j

(2 sinhπ(λi − λj))2 trR(e2πλ) (2.12)

– 7 –
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As observed in [20, 21], the above integrals also calculate the partition function and

expectation values of 1/2-BPS Wilson loop operators in 3d N = 2 Chern-Simons theory

on S3 [27] at imaginary Chern-Simons level

k = i
4π2R

g2
YM

. (2.13)

As mentioned in the Introduction, we will provide an explanation of these result.

2.3 The 6d (2, 0) superconformal index

As we will now review, the N = 2 SYM partition function on S5 is related to the partition

function of the 6d (2, 0) theory on S1 × S5, with certain boundary conditions along the

S1 circle that preserve the su(4|2) subalgebra. (We will explain these boundary conditions

shortly.) This S1 × S5 partition function can also be interpreted as an su(4|2)-preserving

superconformal index of the 6d (2, 0) theory up to an overall normalization e−βE0 deter-

mined by the supersymmetric Casimir energy E0. To understand how this is achieved, let

us start from the superconformal algebra of the (2, 0) theory, osp(8∗|4), and discuss how

su(4|2) is embedded in it. The generators of osp(8∗|4) and their scaling dimension ∆ are:

Mα
β (rotations / boosts, ∆ = 0) ,

Pαβ (translations, ∆ = 1) ,

Kαβ (special conformal transformations, ∆ = −1) ,

H (dilatation, ∆ = 0) ,

RAB (usp(4)R R-symmetry, ∆ = 0) ,

QαA (Poincaré supersymmetry, ∆ = 1/2) ,

SαA (superconformal transformations, ∆ = −1/2) ,

(2.14)

where lowercase lower / upper indices α, β = 1, . . . , 4 correspond to chiral / anti-chiral

spinor representations of the Lorentz algebra so(5, 1) (or equivalently fundamental / anti-

fundamental indices of sl(4)), and uppercase indices A, B = 1, . . . , 4 correspond to the

fundamental representation of the usp(4)R R-symmetry. The various commutation rela-

tions obeyed by the generators (2.14) are collected in appendix B.

The su(4|2) algebra can then be obtained as the subalgebra of osp(8∗|4) that commutes

with, say, the generator H − R13+R24
2 . This condition selects all generators of osp(8∗|4)

with the property that

(# of usp(4) indices equal to 1 or 2)− (# of usp(4) indices equal to 3 or 4) = ∆ ; (2.15)

the generators of su(4|2) thus are:

{Mα
β ; H − (R13 +R24); R13 −R24, R12, R34; Qα1, Qα4; Sα3, S

α
2} . (2.16)

(See also appendix B.2 for details.) One can then define the su(4|2)-preserving supercon-

formal index of the (2, 0) theory as

I(β) = tr
[
(−1)F e−β(H−(R13+R24)/2

]
, (2.17)

– 8 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
5

where the trace is computed in the Hilbert space of the (2, 0) theory when this theory is

placed on a round S5 of radius R. In path integral language, this index is computed by

the S1 × S5 partition function, with the radius of S1 being related to β via β = 2πR6/R,

with anti-periodic boundary conditions for all fermions along the S1 (implementing the

(−1)F factor), and with a non-trivial holonomy along S1 for a background gauge field that

couples to the R-symmetry current jµ13 − j
µ
24 (implementing the eβ(R13−R24)/2 factor). It

is a supersymmetric quantity because it is invariant under the su(4|2) algebra.

It has been conjectured that the index I(β) (or equivalently the su(4|2)-preserving

S1 × S5 partition function) of the (2, 0) theory is equal to the S5 partition function of

N = 2 SYM with a gauge group that is identified with the ADE Lie algebra associated

to the 6d parent.6,7 Such a picture is natural in the limit of a small 6d circle, where as

R6 → 0, the effective description becomes N = 2 SYM on S5 [34]. The 5d gauge theory

contains instanton particles which are identified with the Kaluza-Klein modes on S1. By

matching their masses, one obtains the following relation between the 5d gauge coupling

and the 6d circle

4π2

g2
YM

=
1

R6
. (2.18)

One may worry, however, that this picture may fail to be true away from the small R6 limit,

and so one may lose information by focusing on the 5d effective gauge theory description.

It is however believed that, as long as one is interested in supersymmetric observables, the

5d SYM description can be used reliably at all R6 because the higher derivative couplings

in the 5d effective theory are expected to be either Q-exact or vanish on the BPS locus.

The localization technique however requires keeping track of the entire tower of KK modes

by 5d Nekrasov instanton partition functions, which have the rather simple form (2.10)

due to maximal SUSY here. This allows the instanton contributions which is a series in

e
− 2πR

R6 to be resummed and even to be reexpanded, if we wish, in e−R6/R for large R6 [21].

3 Protected sector of 5d MSYM

3.1 1/8-BPS Wilson loops in 5d MSYM

As in any gauge theory, a nontrivial set of observables in the 5d MSYM are the Wilson

loops. A Wilson loop in 5d MSYM is defined on a closed curve K in S5 in a certain

representation R of the gauge group G,

WR(K) =
1

dimR
trR P exp

[
i

∮
Âµdx

µ

]
, Âµ ≡ Aµ + iSµI(x)ΦI (3.1)

6It is possible to define a more refined superconformal index of the (2, 0) theory by including fugacities for

various symmetry generators in su(4|2) that commute with a given supercharge and its conjugate [60]. The

most general such index involves three fugacities, and it can be computed using the squashed S5 partition

function of N = 1 SYM with a massive adjoint hypermultiplet [21].
75d MSYM with a non-simply laced gauge group arises from the S1 compactification of the 6d (2, 0)

theory with an outer-automorphism twist [61]. The twist is implemented by a codimension-1 topological

symmetry defect longitudinal to the 5d spacetime [62].
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where SµI parametrizes the position-dependent coupling of the Wilson loop to the 5 scalar

fields in the N = 2 vector multiplet.

For special choices of the scalar coupling matrix S, the loop operator WR(K) preserves a

subset of the supercharges in su(4|2). A necessary condition for this to happen is that (3.1)

is invariant under δ2
ε for some Killing spinor ε. In general, δ2

ε takes the form

δ2
ε = −ivµ∂µ −

i

2
wIJRIJ , vµ ≡ ε̄γµε , wIJ ≡ ε̄γIJ γ̂12ε , (3.2)

where vµ is a Killing vector and RIJ is an R-symmetry generator. Assuming vµ and wIJ

are not identically zero,8 the Wilson loop WR(K) is invariant under δ2
ε only if the loop K

is preserved by the Killing vector vµ. In common scenarios, K is in fact a loop generated

by the Killing vector vµ. A different and more interesting case, which is only possible for

theories with a sufficiently large number of supersymmetries, is when vµ has a nonzero

dimensional fixed-point set M. If this is the case, it is possible for the loop K to lie

anywhere within M and for WR(K) (with appropriate matter couplings) to preserve the

SUSY generated by ε. This situation is well-studied in the context of Wilson loops in

N = 4 SYM where there are 1
16 -BPS Wilson loops of arbitrary shapes on S3 ∈ R4 [55].

Here we will construct similar loop operators in 5d MSYM on S5.

The 5d MSYM on S5 is invariant under an so(6) isometry, thus the commutant of

an so(2) subgroup generated by vµ can be at most so(2) × so(4). It is then easy to see

that the largest submanifold that can be fixed by vµ is a great S3. For concreteness, let

us consider the S5 being parameterized by the embedding coordinates Xi constrained by∑6
i=1X

2
i = R2, where R is the radius of S5, and let us take the great S3 fixed by vµ to be

located at X1 = X2 = 0. Up to normalization, the Killing vector vµ is then given by

vµ = uµ12 , (3.3)

where uij are the Killing vectors corresponding to the so(6) symmetry of S5:

uij ≡ Xi
∂

∂Xj
−Xj

∂

∂Xi
. (3.4)

If we consider the stereographic coordinates x1,2,3,4,5 defined by

X1≤i≤5 =
xi

1 + x2

4R2

, X6 = R
1− x2

4R2

1 + x2

4R2

, (3.5)

8In principle we can consider a nilpotent supercharge in the complexified superalgebra (which does not

satisfy the reality condition ε̄A = (εA)† of su(4|2)). In this case, the Wilson loop can be anywhere on S5

while preserving this supercharge. We do not study this case because it cannot give a (tractable) non-trivial

topological theory simply due to the fact that loops on S5 cannot be linked.

More generally, instead of the background on S5 preserving su(4|2), we can consider the twisted back-

ground (valid for any Riemannian five manifold) for the 5d MSYM by identifying the so(5) spacetime

symmetry with the so(5)R rotation such that a unique scalar nilpotent supercharge from 4 × 4 of so(5) is

preserved. In this case, we have 1
16

-BPS supersymmetric Wilson loops that couple to all 5 scalars in the

form (3.1). However the expectation value of such observables in the twisted theory is expected to be unity

following the same analysis as in [63] for 4d N = 4 SYM.
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then the great S3 is parameterized by stereographic coordinates xi ≡ {x3, x4, x5}. (Note

the difference between the fonts used for the indices i and i.)

More explicitly, we will consider a Killing spinor ε (to be found shortly) such that

δ2
ε ∝ iu12 +R12 , (3.6)

where R12 generates so(2)R rotation so that R12(Q) = 1 and R12(S) = −1. Up to a

rotation by the so(4) isometry of the S3, so(2) transverse rotation, as well as so(3)R×so(2)R
transformation, we can fix ε to correspond to ε(Q) with

Q =
1

2
(Q14 + S14 −Q21 − S21) . (3.7)

Here the boldfaced indices are raised and lowered by the symplectic form ΩAB and ΩAB.

See appendix B.2 for details about the notation.

If we label the supercharges as Qs4s5s1s2s3 and Ss4s5s1s2s3 by their spins (eigenvalues) with

respect to the so(6) rotation generators M12,M34,M56, as well as the spins s4, s5 with

respect to the Cartans R12, R34 of so(2)R × so(3)R, we can write9

Q =
1

2
(Q+−

++− + S−+
−−+ −Q++

+−+ − S−−−+−) . (3.10)

We are interested in Wilson loops (3.1) on an arbitrary curve K ⊂ S3.10 The invariance

under δε requires

ẋi(δεAi + iSiJδεΦ
J)
∣∣
K = 0 . (3.11)

Using (2.5), this imposes the condition
[
−ε̄Bγi + SiJ ε̄

A(γ̂J)A
B
]

ΨB = 0 for arbitrary Ψ.

Taking Ψ = γ̂Iε, we can then solve for S:

SiI =
ε̄γiγ̂Iε

ε̄ε
. (3.12)

Explicitly using our supercharge (3.7), eq. (3.12) reads

Sia = −e2Ω

((
1− x2

4R2

)
δia +

xixa
2R2

+
εiaγxγ
R

)
, Si1 = Si2 = 0 . (3.13)

The matrix S satisfies the relations

SiaSja = e2Ωδij , SiaSib = e2Ωδab , detS = −e3Ω . (3.14)

9The indices of the so(6) chiral spinor in terms of si are

(1, 2, 3, 4) = (+ +−,+−+,−−−,−+ +) (3.8)

The similar relation for the anti-chiral spinor simply comes from flipping each ±. The lower boldfaced

indices for so(2)R × so(3)R ⊂ usp(4)R in terms s4, s5 are

(1,4) = (++,+−) (3.9)

See (B.1) for details.
10There are also supersymmetric Wilson loops along the Killing vector field vµ. See appendix C. Here

we will focus on the Wilson loops on S3 transverse to vµ.
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Figure 1. On the left, an example Wilson loop K that lies in a great S3 ⊂ S5, plotted after

performing a stereographic projection from S3 to R3. On the right, we plot the shape of the loop

in the internal S2 ⊂ S4. We interpolate in coloring from light to dark as we go around the loop in

both figures. The colors are coordinated between the two plots.

Alternatively, we can reexpress S in terms of the embedding coordinates as11

Sia =
1

R
ηija Xi∂iXj , (3.15)

where η is the anti-self-dual ’t Hooft η symbol

η3 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 , η4 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , η5 =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 , (3.16)

obeying the relations

ηija = −1

2
εijklηkla , ηija η

kl
a = δikδjl − δilδjk − εijkl . (3.17)

Geometrically S gives rise to a map from a knot K in S3 to a curve on an auxilary S2

parametrized by
∑5

a=3Θ
2
a = 1,

K : xi(t) → Θa(t) = ẋiSia(t) . (3.18)

The image curve on S2 generally have self intersections (see figure 1). As we will see in

section 6.5, this auxiliary S2 and the image curve Θa(t) will play an important role in the

holographic computation of these Wilson loop observables.

From now on, when we refer to the Wilson loop observables (3.1), we will always take

the loop K to be contained in the S3 at x1 = x2 = 0, and we will take the matrix S to be

given by (3.14) or (3.15). The set of all such Wilson loops form a protected sector of the

5d MSYM theory. Let us understand the symmetries of our protected subsector. The S3

11We note that exactly the same scalar coupling matrix here defines 1
16
-BPS Wilson loops in 4d N = 4

SYM [55]. Despite the kinematic similarity between the 4d and 5d Wilson loops, as we will see in the later

section, the underlying theories and consequently the Wilson loop correlators are very different.
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parameterized by xi has isometry so(3)l×so(3)r, corresponding to the following generators

of so(6):

so(3)l : M34 +M56, M35 −M46, M45 +M36 ,

so(3)r : M34 −M56, M35 +M46, M45 −M36 .
(3.19)

The form of the scalar coupling matrix S in (3.15) indicates that S is invariant under

so(3)l. While S is not invariant under so(3)r, it is invariant under the diagonal subgroup

so(3)diag ⊂ so(3)r × so(3)R

so(3)diag : M34 −M56 + 2R34, M35 +M56 + 2R35, M45 −M36 + 2R45 . (3.20)

Thus the bosonic symmetry of our Wilson loops on S3 contains so(3)diag × so(3)l, which

can be thought of as the twisted isometry on S3. It can be checked that the so(3)diag

generators can be obtained by anticommuting Q with other supercharges in su(4|2), so

they are Q-exact.

Moreover so(2)R acts trivially on S but rotates Q to

Q̃ =
i

2
(Q14 − S14 −Q21 + S21) =

i

2
(Q+−

++− − S−+
−−+ −Q++

+−+ + S−−−+−) , (3.21)

which is also preserved by our Wilson loops. Consequently the Wilson loops actually

preserve 2 out of the 16 supercharges of su(4|2), and thus are 1
8 -BPS. It is easy to check that

{Q, Q̃} = [so(3)diag,Q] = [so(3)diag, Q̃] = [so(3)l,Q] = [so(3)l, Q̃] = 0 , (3.22)

and therefore, the subgroup of su(4|2) preserved by our subsector is

[su(1|1) o so(2)R]× so(3)diag × so(3)l , (3.23)

where the su(1|1) factor is generated by Q, Q̃. The so(2)R is as an automorphism of su(1|1)

and it only acts on the odd generators.

The fact that the generators of so(3)diag are Q-exact means that the 1/8-BPS Wilson

loop observables (3.1) (when restricted to S3 and when the scalar couplings are given by

S) change only by Q-exact terms if we perform an so(3)diag rotation. Consequently, be-

cause these 1/8-BPS Wilson loop operators are also Q-invariant, it follows that correlation

functions of the form

〈WR1(K1) · · ·WRn(Kn)〉 (3.24)

remain unchanged if we act with an so(3)diag on any one of the WRi(Ki) operators. This

statement should be understood only up to contact terms; the correlation function can

change if, as we perform such an so(3)diag rotation on a given Ki, this Ki crosses another

loop Kj with i 6= j. In the next sections, we will provide evidence for a stronger result,

namely that the 1/8-BPS Wilson loop subsector of 5d MSYM is in fact described by a 3d

Chern-Simons theory at a complexified value of the Chern-Simons coupling. Such a result

would not only imply the invariance of (3.24) under the action of so(3)diag on any of the

WRi(Ki) operators, but also much stronger conditions.
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3.2 The flat space limit and relation to topologically twisting

The form of our Wilson loops (3.1) and the symmetries of the protected subsector (3.23)

are reminiscent of that the topologically twisted theory of [64]. This is most clear if we

take the flat space limit of our setup by sending R→∞. Then the scalar coupling matrix

S is simply

Sia = −δia. (3.25)

Our Wilson loops are now defined by the twisted connection Âi = Ai− iΦi and they lie on

the R3 parametrized by xi = (x3, x4, x5).

These are precisely the same observables in the topologically twisted version of 5d

MSYM on R+ ×M4. Recall that in [64], the so(5)R symmetry of the 5d MSYM is broken

to so(3)R × so(2)R by the boundary condition at the end of R+. The structure group on

the four-manifold M4 is so(4) = su(2)l × su(2)r. The topological twist is implemented

by identifying the so(3)R factor with the su(2)r factor. Equivalently, this is achieved by

turning on an su(2)R background that coincides with the su(2)r spin connection.

We emphasize that despite the similarity between our observables and the twisted

versions in [64], the underlying theories that govern their dynamics, are different. In

particular, we have 5d MSYM on S5 with the usual non-topologically twisted background

which preserves the maximal amount of supersymmetries.

3.3 Wilson loops that preserve more supersymmetries

As explained in section 3.1, for each great S3 in S5, we can construct a protected subsector

of mutually 1
8 -BPS Wilson loops. If we further restrict the curve K to lie in particular

submanifolds of S3, more supersymmetries can be preserved.

For instance, if K lies on a great S2 inside S3, the corresponding Wilson loop is 1
4 -BPS.

Of course in a given S3 there’s a continuous family of great S2’s. For such Wilson loops

to be mutually 1
4 -BPS, they have to lie on the same S2. To be concrete, without loss of

generality let us take this S2 to be given by x1 = x2 = x3 = 0 in the S5 stereographic

coordinates. The Wilson loops are defined with twisted connection

Â = A+ iηaijΦ
aXidXj (3.26)

restricted to the S2. They are invariant under the transverse so(3) rotation generated by

Mij for i, j = 1, 2, 3. They preserve four supercharges, Q
1/4
α and its Majorana conjugate

Q
1/4
β for α, β = 1, 2 (which are so(3) doublet indices) and

Q1/4
1 =

1

2
(Q14 −Q21) =

1

2
(Q+−

++− −Q++
+−+) ,

Q1/4
2 =

1

2
(Q34 −Q41) =

1

2
(Q+−
−−− −Q++

−++) ,

Q
1/4
1 =

1

2
(S14 − S21) =

1

2
(S−+
−++ − S−−−+−) ,

Q
1/4
2 =

1

2
(S34 − S41) =

1

2
(S−+

+++ − S−−+−−) .

(3.27)
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Their anticommutators give the so(3) as well as an so(2) rotation generated by M56 −
R34. Together these bosonic generators and the supercharges (3.27) furnish an su(2|1)

subalgebra of su(4|2). Furthermore, the su(2|1) is invariant under the twisted isometry on

S2 generated by

so(3)′diag : M45 +R45,M46 +M35,M56 −M34 . (3.28)

Thus the total symmetry of this 1
4 -BPS sector of loop operators on S2 is

su(2|1)× so(3)′diag (3.29)

If K is further constrained to be a great circle on S3 ⊂ S5, we recover the familiar

well-studied 1
2 -BPS Wilson loop. In this case, there are no two non-overlapping Wilson

loops that are mutually BPS. We can take this S1 to be given by x1 = x2 = x3 = x4 = 0

in the stereographic coordinates. The Wilson loop is defined with twisted connection

Â = A+ iΦ5(X5dX6 −X6dX5) = A− i dx5Φ5

1 +
x2

5
4R2

, (3.30)

and it is invariant under the transverse so(4) = su(2)l × su(2)r rotation. This Wilson loop

preserves eight supercharges, namely Q
1/2
α and Q

1/2
α̇ , and their Majorana conjugates Q

1/2
β

and Q
1/2

β̇
:

Q1/2
1 ≡ Q14 = Q+−

++−, Q1/2
2 ≡ Q34 = Q+−

−−−,

Q1/2

1̇
≡ Q21 = Q++

+−+, Q1/2

2̇
≡ Q41 = Q++

−++

Q1/2
1 ≡ S14 = S−+

−−+, Q1/2
2 ≡ S34 = S−+

+++,

Q1/2

1̇
≡ S21 = S−−−+−, Q1/2

2̇
≡ S41 = S−−+−− . (3.31)

Here α, β = 1, 2 and α̇, β̇ = 1, 2 are the doublet indices for su(2)l and su(2)r respectively.

The su(2)l in combination with Q
1/2
α , Q

1/2
β generates an su(2|1)l algebra, with the central

u(1) being generated by M56+R12+2R34. The su(2)r with Q
1/2
α̇ , Q

1/2

β̇
generates an su(2|1)r

algebra, with the central u(1) is generated by −M56 +R12 − 2R34. The total symmetry of

the 1
2 -BPS sector is

su(2|1)l × su(2|1)r × so(2) (3.32)

where the so(2) is generated by M56 −R34.

3.4 Relation to surface operators in 6d

Given the embedding of the 5d SUSY algebra on S5 into that of the 6d (2, 0) theory

compactified on S1, the 1
8 -BPS Wilson loop operators in 5d MSYM are expected to lift to

1
8 -BPS surface operators in the 6d theory wrapping the S1. When the 6d theory is free,

namely, a single (2, 0) tensor multiplet, such a surface operator on Σ = S1 × K, can be

described explicitly as

WR(Σ) = exp

[
i

∫
Σ

(
Bτµ + iSµI(x)ΦI

)
dτ ∧ dxµ

]
, (3.33)
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where Bµν is the self-dual tensor and ΦI denotes the 5 scalar fields. The relation to the

5d description is obvious: Bτµ reduces to Aµ and ΦI becomes the 5d scalars. For the

interacting case, we do not have such an explicit description of the surface operators in 6d

but M-theory and dualities give us crucial guidance.

Recall that the 6d (2, 0) (A-type) theory describes the low energy dynamics of a stack

of M5 branes. Surface defects in the (2, 0) theory can be engineered by M2-brane ending

along a codimension-4 locus on the M5 branes. The M2-brane sources the self-dual 3-form

field strength and can preserve a fraction of the (2, 0) supersymmetry on the M5 branes. If

we reduce the M2-M5 configuration along a common direction by circle compactification,

we end up with a fundamental string ending on D4-branes in type IIA string theory. We

are familiar with the fact that the endpoint of a fundamental string inserts a Wilson line

operator in the fundamental representation in the SYM theory governing the low energy

dynamics of the D4 branes. At high energy (strong coupling), the D4 brane worldvolume

theory gets completed by that of the M5 brane. We expect observables protected by

supersymmetry, such as the BPS Wilson loops, to lift to unique observables in 6d, up

to potential counter-terms that are suppressed in the small S1 limit. It is an interesting

question to systematically classify such supersymmetric counter-terms but we will not

pursue it in this paper (see appendix D.2 for a discussion in this direction).

4 Knot invariants from 5d perturbation theory

In this section, we use perturbation theory to study the 1
8 -BPS Wilson loop observables

defined in the previous section. For simplicity, we will focus on the abelian case and

comment on the non-abelian extension towards the end of the section.

4.1 Abelian theory

To compute the abelian Wilson loop (3.1) of a given U(1) charge q perturbatively,

〈Wq(K)〉 =

〈
1 + iq

∮
K
Â− 1

2
q2

∮
K
Â

∮
K
Â+ . . .

〉
(4.1)

we need to determine the propagators for the gauge fields Aµ and scalars Φa on S5. For

simplicity, we will perform a change of coordinates sending xµ → 2Rxµ and set R = 1.

To simplify the formulas for the propagators, it is useful to introduce the chordal

distance between two points on S5 with stereographic coordinates x and y and embedding

coordinates X and Y , respectively, to be

s(X,Y ) ≡ |X − Y | = 2|x− y|
√

1 + x2
√

1 + y2
. (4.2)

The chordal distance is related to the geodesic distance θ(X,Y ) = arccos(X · Y ) by

s(X,Y ) = 2 sin θ(X,Y )
2 . Recall that the scalars Φa have mass m2 = 4 on S5.12 The

two point function is then given by [65]

〈Φa(x)Φb(y)〉 =
g2

YM

24π3
f1(s)δab , f1(s) ≡ 2F1(2, 2, 5/2, 1− s2/4) , (4.3)

12The conformal mass on S5 is m2 = 15
4

. The scalars Φi and Φa are thus not conformally coupled.
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where s = s(X(x), Y (y)). The gauge field Aµ on the other hand has two point function [65]

〈Aµ(x)Aν(y)〉 =
g2

YM

12π3

dX

dxµ
· dY
dyν

f2(s) , f2(s) ≡ 2F1(1, 3, 5/2, 1− s2/4) . (4.4)

The leading order contribution to (4.1) comes from the two point function

I ≡
∮
dt1

∮
dt2

〈
ẋi(Ai + iSiaΦ

a)(x)ẏj(Aj + iSjbΦ
b)(y)

〉
, (4.5)

which after using Sia(x) = ηija Xi
dXj
dxi and Sjb(y) = ηklb Yk

dYl
dxj , the eqs. (4.3)–(4.4) for the

propagators, as well as the identities (3.17) obeyed by the ’t Hooft symbols, can be writ-

ten as

I ≡
∮
dt1

∮
dt2(I1 + I2)

I1 ≡
1

12π3

[
f2(s)(Ẋ · Ẏ )− 1

2
f1(s)

(
(X · Y )(Ẋ · Ẏ )− (X · Ẏ )(Ẋ · Y )

)]
I2 ≡

1

24π3
f1(s)εijklXiẊjYkẎl ,

(4.6)

where we view X and Y as functions of t1 and t2, respectively. Further using

X · Y = 1− s2(X,Y )

2
, X ·X = Y · Y = 1 , X · Ẋ = Y · Ẏ = 0 , (4.7)

we can simplify I1 to

I1 =
1

4π3
∂t1∂t2 arccos2

(
s(X,Y )

2

)
. (4.8)

The integral over t2 picks up the discontinuity Disct1=t2

[
∂t1 arccos2

(
s
2

)]
= −π

∣∣∣Ẋ∣∣∣
and gives

I1 ≡
∫
dt1dt2I1 = − 1

4π2

∫
dt1

∣∣∣Ẋ∣∣∣ = − 1

2π
L(K) , (4.9)

where 2πL(K) is the length of the loop K. In the case when L = ∪iKi is a union multiple

loops, L(L) =
∑

i L(Ki).
We now turn our attention to I2 and show that its integral gives the linking number

on S3. Let us first recall the familiar Gauss integral formula for the linking number of two

knots K1,2 in flat R3:

lk(K1,K2) =
1

4π

∮
K1

dxi

∮
K2

dyjεijk
(x− y)k

|x− y|3
=

1

4π

∫
dt1dt2 εijk ẋ

iẏj∇k
(y)

1

|x− y|
. (4.10)

On S3 the generalization of this formula is [66]:

lk(K1,K2) =
1

4π

∫
dt1dt2 εijk

(
P i

l ẋ
l
)
ẏj∇k

(y)Φ(θ) , (4.11)
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where P i
µ is an operator that performs the parallel transport between the tangent spaces

at x and y,13 θ is the geodesic distance (given below (4.2)), and

Φ(x, y) ≡ π − θ
sin θ

. (4.13)

It is easy to see that the flat space limit of (4.11) is (4.10). Both (4.11) and (4.10) define

a topological invariant for a pair of knots.

In the case of a single knot K1 = K2 = K, the same integral gives

sl0(K) =
1

4π

∮
K
dxi

∮
K
dyj εljkP

l
i∇k

(y)Φ(θ) (4.14)

which is well-defined and finite.14 This is sometimes referred to as the writhe or cotorsion

of the knot K in the literature. Although sl0(K) is not topological, there is a natural

counter-term, known as the torsion

T (K) =
1

2π

∫
dt |ẋ| τ ≡ 1

2π

∫
dxi εijk

nj D
Dtn

k

|ẋ|
(4.15)

defined using a normal vector field ni of unit norm along K, where D
Dt is the covariant

derivative along the tangent direction of the knot Ki.15 It measures 1
2π times the phase

swept by ni as one goes around the knot once. The variation of the torsion under small

deformations of K, cancels that of sl0(K), so that

δ(sl0(K) + T (K)) = 0 (4.16)

Indeed if we define a new knot Kf , known as the framed contour of K by an infinitesimal

translation in the ni direction, the ordinary linking number of K and Kf is nothing but the

above combination

lk(K,Kf ) = sl0(K) + T (K) . (4.17)

Thus we can define a topological invariant sl(K) associated to a framed knot by

sl(K) ≡ lk(K,Kf ) = sl0(K) + T (K) . (4.18)

This quantity is known as the self-linking number of K. Under a change of framing, the

self-linking number shifts by an integer.

13An explicit formula is [67]

Pij = −1

4

(
2a(θ) ∂i∂jθ

2 + b(θ)∂iθ
2∂jθ

2) ,
a(θ) =

sin θ

θ
, b(θ) =

1− a(θ)

θ2
.

(4.12)

14Despite the apparent pole in the Φ as |x− y| → 0, the integrand is always finite [68].
15The torsion term can be thought of as a 1d CS term along the knot that measures the holonomy (total

phase) of the so(2) spin connection on the normal bundle of K in a Riemannian 3-manifold. We discuss

some elements of curve geometry in appendix D.1.
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Getting back to our Wilson loop in 5d MSYM, by plugging in the stereographic coor-

dinates (3.5) into (4.11) and also into the integral I2 ≡
∫
dt1dt2 I2, we conclude after some

algebra that

I2 = − 1

2π
sl0(K) . (4.19)

If K has multiple components Ki,

I2 = − 1

2π

(∑
i

sl0(Ki) +
∑
i 6=j

lk(Ki,Kj)

)
(4.20)

Hence, combing (4.9) with (4.20), we obtain the final expression for I in the case where

K has a single component is:

I = − 1

2π
(L(K) + sl0(K)) . (4.21)

Using Wick contractions, it is easy to see the higher order contributions in (4.1) complete

it into the following formula

〈W ({Ki, qi})〉 ≡
〈∏

i

Wqi(Ki)
〉

= exp

[
g2

YM

4π

(∑
i

q2
i L(Ki) +

∑
i

q2
i sl0(Ki) +

∑
i 6=j

qiqj lk(Ki,Kj))

)] (4.22)

for the expectation value of a collection of linked 1
8 -BPS Wilson loops in the 5d abelian

theory. This expression is independent of the choice of framing for the Wilson loops, but

it has a mild dependence on the shape of the loop.

We can introduce a renormalized version of our 5d Wilson loop by multiplying it by a

counter-term that removes the shape dependence:

W ren
q (K) ≡Wq(K) exp

[
−
g2

YM

4π
q2(L(K)− T (K))

]
. (4.23)

Consequently, their expectation values of the renormalized loop operators are given by

〈W ren({Ki, qi})〉 ≡
〈∏

i

W ren
qi (Ki)

〉

= exp

g2
YM

4π

∑
i

q2
i sl(Ki) +

∑
i 6=j

qiqj lk(Ki,Kj)

 . (4.24)

This expression is topological, but it now transforms under a change of framing because

under such a change, we have

sl(Ki)→ sl(Ki) + fi fi ∈ Z. (4.25)
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4.2 Non-Abelian generalization

For the non-abelian generalization of (4.1) in MSYM with gauge group G, the perturbative

computation involves the same diagrams at order g2
YM. The only difference from the abelian

case is that we need to sum over the propagators for each color, giving

〈WR(K)〉 = 1 +
g2

YM

4π

dimG

dimR
(L(K) + sl0(K)) +O(g4

YM) (4.26)

for a single knot K. Similarly, we define the renormalized Wilson loop

W ren
q (K) ≡Wq(K) exp

[
−
g2

YM

4π

dimG

dimR
(L(K)− T (K))

]
(4.27)

and

〈W ren
R (K)〉 = 1 +

g2
YM

4π

dimG

dimR
sl(K) +O(g4

YM) . (4.28)

At O(g4
YM) order, seven more Feynman diagrams contribute, and the number grows further

at higher orders [63].

5 Proposal for an effective Chern-Simons description

5.1 Chern-Simons description of 1/8-BPS Wilson loops

The result (4.24) in the 5d MSYM theory is reminiscent of the formula for the expectation

values of Wilson loops in 3d Abelian Chern-Simons theory on S3. Indeed, a collection of

framed Wilson loops Ki with charges qi in the U(1)k Chern-Simons theory on S3 gives [28]

〈W3d({Ki, qi})〉 = exp

[
iπ

k

(∑
i

q2
i sl(Ki) +

∑
i 6=j

qiqj lk(Ki,Kj)

)]
, (5.1)

with the same framing dependence as in (4.25). Therefore we conclude that in the free 5d

Abelian theory, the 1/8-BPS Wilson loop sector is captured by 3d Chern-Simons theory:

〈W ren({Ki, qi})〉 = 〈W3d({Ki, qi})〉 , (5.2)

provided that the Chern-Simons level is analytically continued to the pure imaginary value

k = i
4π2

g2
YM

=
2πi

β
. (5.3)

Recall that the 5d 1/8-BPS Wilson loops are necessarily contained within a great S3, and

it is this S3 that should be identified with the S3 on which the Chern-Simons theory is

defined. The imaginary value of CS level in (5.3) requires an analytic continuation of the

usual CS path integral as explained in [69]. A similar correspondence between 5d 1/8-BPS

Wilson loops and Wilson loops in 3d CS theory holds to order g2
YM in the non-Abelian

theory: the result (4.28) matches the corresponding result in the 3d CS theory provided

that one again makes the identification in (5.3).
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(a) T2,−2
(b) T2,−3 (c) T2,−4

(d) T2,−5 (e) T2,−6 (f) T3,−3

(g) 41 hyperbolic knot (h) Whitehead link (i) Borromean rings

Figure 2. A list of basic knots and links. In the first two rows we list the first several torus knots

and links. In the third row we give examples of non-torus knot and links. Here the orientation of

the links are chosen such that the right most (two for (a), (c), (e) and (h), three for (f) and (i))

vertical strands are oriented upwards.

Instead of computing higher order Feynman diagrams explicitly, motivated by the

abelian result and the weak coupling limit of the nonabelian generalization, we conjecture

that the final answer is again given by the corresponding 3d CS theory with gauge group

G and renormalized level (5.3), such that

〈W ren
G ({Ki, Ri})〉 = 〈W 3d

G ({Ki, Ri})〉 . (5.4)

In the next sections, we will provide evidence for this proposal from holography. In sec-

tion 7, we will then provide the first steps of a direct proof of (5.4) that uses supersymmetric

localization.

5.2 Parity properties of the CS sector

The proposal above raises an immediate puzzle: the fact that the 5d MSYM theory is parity

preserving in flat space seems in contradiction with the fact that Chern-Simons theory is
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parity violating. So let us briefly comment on the parity properties of this Chern-Simons

sector of 5d MSYM as well as of the corresponding 6d (2, 0) theory on S1 × S5.

Without loss of generality, we can take the 3d parity operator P3d to act by x3 → −x3

on S3 such that

Âi(x3)→ Pi
jÂj(−x3) , (5.5)

with Pi
j = diag(−1, 1, 1). The CS action changes sign under P3d. Equivalently P3d maps

the theory with level k to a partner CS theory at level −k.

The 5d MSYM in flat space on the other hand is invariant under a 5d parity P5d that

acts not only on the gauge field, but also on the fermions and scalars of the 5d theory. Up

to a conjugation by so(5) spacetime rotation and so(5)R transformation, P5d acts by

Ψ(x3)→ iγ̂3γ3Ψ(−x3) ,

Ai(x3)→ Pi
jAj(−x3) , A1,2(x3)→ A1,2(−x3) ,

Φa(x3)→ Pa
bΦb(−x3) , Φ1,2(x3)→ Φ1,2(−x3) .

(5.6)

In particular P2
5d = (−1)F where F is the spacetime fermion number.

On S5, the same parity transformation P5d together with the transformation on the

scalar coupling matrix S,16

Sia(x3)→ Pi
jPa

bSjb(−x3) (5.8)

reduced precisely to P3d in the 3d CS sector. However, P5d is no longer a symmetry on

S5. Indeed, the curvature couplings

LYM ⊃ tr

[
− i

4R
Ψ̄γ12Ψ− 1

3R
εabcΦ

a[Φb,Φc]

]
(5.9)

flip sign under P5d.
17

From the 6d perspective, P5d lifts to the CPT symmetry of the (2, 0) theory. In

particular the CP is identified with P5d while the time reversal T gives rise to the sign flip

in (5.7) relative to (2.6) [21]. Consequently, CPT maps one su(4|2) subalgebra of osp(8∗|4)

that commutes with H − R13+R24
2 to another that commutes with H + R13+R24

2 .18 These

16Recall that S is defined in terms ratios of bilinears in ε. This transformation of S is naturally induced

by P5d acting on the Killing spinor as ε(x3)→ ε′(x3) = iγ̂3γ3ε(−x3). In particular ε′ satisfies

∇µε′ = − 1

2r
γµγ̂

12ε′ . (5.7)

Note the flipped sign relative to (2.6).
17There is however a parity symmetry P′5d of the 5d MSYM on S5 which acts by

Ψ(x3)→ iγ̂3γ1Ψ(−x3) ,

Ai(x3)→ Pi
jAj(−x3) , A1,2(x3)→ A1,2(−x3),

Φ1(x1, xi)→ −Φ1(−x1, xi) , ΦI 6=1(x1, xi)→ ΦI(−x1, xi) .

(5.10)

In the flat space limit, P5d and P′5d are equivalent by an so(5)R rotation, which is no longer true on S5

due to the curvature couplings (5.9). In the 3d CS sector, P′5d has no natural intepretation. Rather it

maps one CS sector to another within the 5d MSYM on S5.
18In particular it sends the 6d Poincare supercharges Q to the superconformal supercharges S.

– 22 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
5

two su(4|2) subalgebras are associated with isomorphic yet distinct 5d MSYM sectors of

the (2, 0) theory that come from two choices of R-symmetry twisting when compactifying

the 6d theory on S1. Consequently, the parity transformation in the 3d CS theory relates

two isomorphic 3d CS sectors of the 6d (2, 0) theory with opposite CS levels.

5.3 Knot invariants in the strong coupling limit

In this section, we will use (5.4) and known results in CS theory to extract predictions for

our 1
8 -BPS Wilson loops at strong coupling. In the next section, we will compare these

predictions to the analogous quantities computed using holography.

For simplicity, here we will focus on 5d MSYM with gauge group G = U(N) and

Wilson loops in the fundamental representation R = .19 According to our proposal, the

protected sector of 1
8 -BPS Wilson loops is then described by the 3d U(N) CS theory with

renormalized level k given by (5.3). (The bare level is k0 = k − N .) It is convenient to

introduce parameters

q ≡ exp

(
2πi

k

)
= eβ , λ ≡ qN = eNβ . (5.11)

In terms of q and λ, the unknot Wilson loop in the fundamental representation has

expectation value

〈W (K)〉 =
λ

sl(K)
2

N

λ
1
2 − λ−

1
2

q
1
2 − q−

1
2

. (5.12)

More generally, for a link L made from knots Ki, i = 1, . . . , r, each in the fundamental

representation, we have

〈W (L)〉 =
λ

sl(L)
2

N

λ
1
2 − λ−

1
2

q
1
2 − q−

1
2

H(L) , with sl(L) ≡
∑
i

sl(Ki) +
∑
i 6=j

lk(Ki,Kj) . (5.13)

In the literature, these results are often presented with the canonical framing on S3 in

which case all self-linking numbers of irreducible knots sl(Ki) vanish. The last factor H(L)

in (5.13) is the HOMFLY polynomial of L which has the following structure

H(L) =
∞∑
i=0

pi(λ
1
2 )z2i+1−r, z = q

1
2 − q−

1
2 (5.14)

such that pi are Laurent polynomials in λ
1
2 (see for example [70]).

Graded by both λ and q (separately via analytic continuation), the Wilson loop ob-

servable (5.13) gives a large class of so-called quantum knot invariants for knots on S3.

19The U(N) MSYM contains two decoupled sectors described by U(1) and SU(N) gauge theories respec-

tively. Correspondingly, the 6d uplift is a tensor product of the free (2, 0) theory and AN−1 interacting

theory. On the holographic side, only the interacting AN−1 part is relevant. Here we choose not to separate

them as the formula looks simpler for U(N) and keep in mind that in the strict large N limit we can safely

ignore the contribution from the U(1) factor.
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Classical knot invariants such as framed linking numbers can be recovered in the expan-

sion with respect to the effective gauge coupling 1/k. This is exactly the perturbative

expansion we have computed from Feynman diagrams in section 4.

As a consistency check, we see that in the Abelian case, we have N = 1, and conse-

quently λ = q and H = 1 [70]. Then (5.13) matches (4.24), as expected. For the nonabelian

case, in the weak coupling limit β � 1, we also see (5.13) agrees with (4.28). Below we

would like to consider the opposite limit

N →∞, q fixed , (5.15)

and consequently λ→∞, because in this limit there is a weakly-coupled dual supergravity

description of the theory, as will be discussed in the next section. In the limit (5.15), the

dominant contribution from the HOMFLY polynomial H(L) of a link L comes from the

maximal degree in λ
1
2 , which we denote by ζ(L). Therefore, (5.13) becomes

〈WU(N)(L)〉 ≈ λ
1
2

(1+sl(L)+ζ(L)) , as N →∞. (5.16)

We will compare the holographic results to this formula.

6 Holographic dual of the topological surface operators

As explained in the previous sections, when the gauge group is SU(N), the 5d MSYM

theory can be obtained as a twisted reduction of the AN−1 (2, 0) theory on S5×S1, which

at large N has a weakly coupled supergravity description. The Wilson lines in the Yang-

Mills theory become surface operators in the (2, 0) theory completely wrapping S1. We

would like to check using the holographic prescription that their expectation values are

shape-independent and agree with our conjectured result in eq. (5.16).

6.1 The 11d supergravity background

The supergravity background corresponding to the AN−1 (2, 0) theory on S5×S1 is a back-

ground of 11d SUGRA that has an S5 × S1 slicing and that preserves 16 supercharges. It

is obtained by a small modification of the AdS7×S4 background that describes the super-

conformal (2, 0) theory on conformally flat spaces which preserves 32 supercharges. So let

us first describe the AdS7×S4 and relevant properties, and then the modification required.

6.1.1 AdS7 × S4 Lorentzian background

To establish conventions, let us start by introducing the 11d supergravity action in mostly

plus Lorentzian signature20 (see for example [71]):

Sbos =
1

2κ2
11

∫
d11x

√
−G

(
R− 1

48
FMNPQF

MNPQ

)
− 1

12κ2
11

∫
A3 ∧ F4 ∧ F4 ,

− 1

2κ2
11

∫
d11x

√
−G
[
ψ̄Mγ

MNPDNψP

+
1

96
ψ̄M

(
γPQRSMNFPQRS + 12γPQFPQ

MN
)
ψN + · · ·

] (6.1)

20We use conventions in which γMγN + γNγM = 2ηMN . For a Majorana spinor χ, the conjugate χ̄ is

defined as χ̄ = χTC, where C is a charge conjugation matrix (a unitary matrix obeying CT = −C and

(γµ)T = −CγµC−1. We also have χ̄ = χ†iγ0, which implies χ† = χTCiγ0.
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where GMN is the metric,21 A3 is the 3-form gauge potential with field strength F4 = dA3,

ψ is the gravitino, and κ11 is the 11d gravitational constant related to the Planck length

`p through

2κ2
11 = (2π)8`9p . (6.2)

The ellipses in (6.1) denote higher order terms in the gravitino field. This action is invariant

under local SUSY transformations22

δeaM =
1

2
ε̄γaψM ,

δψM = DM ε+
1

288

(
γPQRSM − 8γQRSδPM

)
FPQRSε ,

δAMNP = −3

2
ε̄γ[MNψP ] .

(6.3)

A solution of the equations of motion following from (6.1) is AdS7 × S4 with 4-form

flux threading S4:

ds2 = L2ds2
7 +

1

4
L2ds2

S4 , F4 =
3L3

8
volS4 , (6.4)

where ds2
7 and ds2

S4 are the line elements on unit curvature radius AdS7 and S4, respectively,

volS4 is the volume form on S4, and L is a constant related to the field theory quantity

N via

L3

`3p
= 8πN . (6.5)

For our purposes, it is convenient to write the AdS7 metric as

ds2
7 = −(cosh ρ)2dt2 + dρ2 + (sinh ρ)2ds2

S5 (6.6)

using a radial coordinate ρ, a (non-compact, Lorentzian) time coordinate t, and a round

five-sphere. This metric is convenient for describing the (2, 0) theory on R × S5, as the

conformal boundary obtained as ρ→∞ in (6.6) is precisely R× S5.

It will be convenient to parameterize the five-sphere in (6.6) by coordinates Xi, i =

1, . . . , 6 obeying
∑6

i=1X
2
i = 1 and the internal four-sphere in (6.4) by coordinates Θa,

a = 1, . . . , 5, obeying
∑5

a=1 Θ2
a = 1. The line elements are then

ds2
S5 =

6∑
i=1

dX2
i , ds2

S4 =

5∑
a=1

dΘ2
a . (6.7)

21We use xM for the 11d coordinates and upper case indices from the middle of the alphabet (M , N , P ,

etc.) for all tangent space indices in 11d.
22The linearized gravitino variation can equivalently be written as δψM = DM ε +

1
288

(
FPQRSγMγ

PQRS − 12FMPQRγ
PQR

)
.
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Alternatively, we can view S4 as a circle parameterized by an angle ϕ = arg(Θ1 + iΘ2)

fibered over a unit three-ball, with the circle shrinking at the boundary of the ball. The

metric and volume form are

ds2
S4 = dθ2 + sin2 θds2

S2 + cos2 θdϕ2 , volS4 = sin2 θ cos θ dθ ∧ volS2 ∧dϕ , (6.8)

where ds2
S2 and volS2 are the metric and volume forms of a unit radius two-sphere, and

θ ∈ [0, π/2].

In order to perform our desired modification of the background (6.4), we should develop

a more thorough understanding of its symmetries. The bosonic symmetries are so(6, 2)×
so(5) isometries represented by 28 + 10 = 38 Killing vectors v = vM∂M . Of particular

importance will be the Killing vector ∂t generating translations in t as well as the generators

uij and wab of so(6) and so(5), respectively,

uij = Xi
∂

∂Xj
−Xj

∂

∂Xi
, wab = Θa

∂

∂Θb
−Θb

∂

∂Θa
. (6.9)

The fermionic symmetries of the background (6.4), which complete the so(6, 2)× so(5)

bosonic symmetries into the supergroup osp(8∗|4), correspond to the solutions of δψM = 0.

These equations have 32 linearly independent solutions for the Killing spinors ε. They can

be written as

ε(x) = N(x)η , (6.10)

where η is an arbitrary 32-component constant spinor and N(x) is a specific position-

dependent matrix. The spinors ε transform under so(6, 2) × so(6) as (8,4), and thus a

convenient basis in this 32-dimensional space is given by simultaneous eigenspinors un-

der the Cartan generators of so(6, 2) × so(5). In particular, we label the spinors by the

eigenvalues under

Cartans of so(6, 2) : ∂t, u12, u34, u56 ,

Cartans of so(5) : w12, w34 .
(6.11)

Note that when δψM = 0, eq. (6.3) can be used to write the Lie derivative of ε with

respect to a Killing vector vM as

Lvε =

[
vMDM +

1

4
∂MvNγ

MN

]
ε

=

[
− v

M

288

(
γPQRSM − 8γQRSδPM

)
FPQRS +

1

4
∂MvNγ

MN

]
ε ≡ −Mv(x)ε ,

(6.12)

where Mv(x) is a position-dependent matrix that depends on the Killing vector vM . Be-

cause the Killing spinors have the form (6.10), it follows that M̃v ≡ N−1(x)Mv(x)N(x) is

position-independent, and the eigenvalue equation Lvε(x) = λvε(x) becomes M̃vη = λvη.

Here, λv denotes the eigenvalue with respect to the Killing vector v.
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The Killing vectors in (6.11) are normalized such that the possible eigenvalues of the

spinors are ± i
2 . Using the matrices M̃v derived as above, an explicit computation shows

that the eigenvalue λ∂t is given by

λ∂t = −4λu12λu34λu56 . (6.13)

Thus, we have a total of 32 possible choice for the remaining eigenvalues, as we can arbi-

trarily specify (λu12 , λu34 , λu56 , λw12 , λw34) and then determine λ∂t from (6.13). We can thus

label the Killing spinor with eigenvalues (λu12 , λu34 , λu56 , λw34 , λw12) = i
2(s1, s2, s3, s4, s5)

as εs4s5s1s2s3 , where the si = ±. When s1s2s3 = −1, then λ∂t = −i/2 and these spinors corre-

spond to Q generators, and when s1s2s3 = 1, then λ∂t = i/2 and these spinors correspond

to S generators.

6.1.2 Euclidean background

We would now like to modify the Lorentzian background of the previous section in such

a way that 1) the t direction becomes a periodic circle parameterized by τ , and 2) the

background preserves half the supercharges. These two requirements are achieved if after

the Euclidean continuation, we also perform a twist that makes half the Killing spinors

τ -independent. This condition is ensured by the relation:

∂τ = −i(∂t + w12) . (6.14)

Equivalently, if we write w12 = ∂ϕ for some angular coordinate ϕ, then we can replace

t and ϕ in (6.4) everywhere with −iτ and ϕ − iτ , respectively. This change of variables

does not affect the symmetries of the background, but it does make certain Killing spinors

independent of τ : in particular, the Q-type generators with s5 = + are independent of τ ,

and so are the S-type generators with s5 = −. In terms of τ , the metric and four-form can

be obtained from (6.4):

ds2 =L2

[
(cosh ρ)2dτ2 + dρ2 + (sinh ρ)2

6∑
i=1

dX2
i

]

+
L2

4

[
dθ2 + sin2 θds2

S2 + cos2 θ(dϕ− idτ)2
]

F4 =
3L3

8
sin2 θ cos θ dθ ∧ volS2 ∧(dϕ− idτ) ,

(6.15)

where we used the parameterization (6.8) of the internal four-sphere. For the gauge poten-

tial A3, we can choose a gauge in which we define it separately on two different patches as

A3 =


L3

8
sin3 θ volS2 ∧(dϕ− idτ) , on patch excluding θ = π/2 ,

L3

8
sin3 θ volS2 ∧(dϕ− idτ)− L3

8
volS2 ∧dϕ , on patch excluding θ = 0 .

(6.16)
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We now make τ compact by imposing the identification τ ∼ τ + 2πR6.23 This identifi-

cation breaks half of the supersymmetries, and it preserves the other half. In particular, it

preserves the supersymmetries generated by the τ -independent ε’s mentioned above: the

Q-type generators with s5 = + and the S-type generators with s5 = −:

Q’s : ε++
++−, ε

++
+−+, ε

++
−++, ε

++
−−−, ε

−+
++−, ε

−+
+−+, ε

−+
−++, ε

−+
−−− ,

S’s : ε−−−−+, ε
−−
−+−, ε

−−
+−−, ε

−−
+++, ε

+−
−−+, ε

+−
−+−, ε

+−
+−−, ε

+−
+++ .

(6.17)

These are the fermionic generators of su(4|2).

6.1.3 Killing spinor

In section 3.1, we defined the supercharge (3.7). This supercharge corresponds to the

Killing spinor

ε = ε−+
+−+ + ε+−−+− + ε++

−++ + ε−−+−− . (6.18)

While the Killing spinors εs4s5s1s2s3 are uniquely determined by the corresponding eigenvalue

equations up to overall normalization factors, the relative factors in (6.18) are determined

by the condition that the spinor ε obeys the Majorana condition in 11d Lorentzian signa-

ture, ε† = εT iCγ0, and that it is invariant under the isometries generated by

u12 + w34 , u13 + w35 , u23 + w45 ,

u12 + u34 , u13 − u24 , u23 + u14 ,
(6.19)

in accordance with the commutation relations (3.22) satisfied by the field theory super-

charge Q.

6.2 Reduction to type IIA

In the limit of small R6, it may be useful to also consider the type IIA reduction of the 11d

background presented in the previous section. If we take the 10d gravitational constant to

be related to the 11d one via κ2
11/κ

2
10 = 2π`sgs = 2πLR6 (i.e. we compactify on a circle of

circumference 2π`sgs = 2πLR6), where `s =
√
α′ is the string length and gs is the string

coupling, then the type IIA string frame metric is

ds2 = L2

√
cosh2 ρ− cos2 θ

4

[
dρ2 + sinh2 ρ ds2

S5 +
1

4

(
dθ2 + sin2 θds2

S2

)
+

1

4

cosh2 ρ cos2 θ

cosh2 ρ− cos2 θ
4

dϕ2

]
.

(6.20)

23Here, we work in units in which the radius R of the five-sphere is set to R = 1.
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The type IIA dilaton φ as well as the R-R one-form gauge potential A1, the R-R three-form

gauge potential A3, and the NS-NS two-form gauge potentials are given by

eφ =

(
cosh2 ρ− cos2 θ

4

)3/4

,

A1 = −i L cos2 θ

4 cosh2 ρ− cos2 θ
dϕ ,

A3 =
L3

8
sin3 θ volS2 ∧dϕ ,

B2 = −iL
2

8
sin3 θ volS2 .

(6.21)

As we can see, this background does not contain an AdS factor, so it does not describe

a conformal field theory; it describes N = 2 SYM on S5.24 The background is smooth

everywhere, but it becomes strongly coupled in the UV, at large ρ, so in the type IIA duality

frame we cannot reliably describe the small R6 behavior. Note also that the isometry of the

internal part of this background is only su(2)× u(1), matching the R-symmetry of N = 2

SYM on S5.

6.3 Minimal surfaces and calibration

6.3.1 General Setup

In Lorentzian signature, for an M2-brane with worldvolume M parameterized by coordi-

nates σm, m = 0, 1, 2, the action is

SLor = τM2

[
−
∫
M
d3σ
√
−g +

∫
M
A3

]
, (6.22)

where g is the determinant of the induced metric on the worldvolume of the brane

gmn = ∂mx
M∂nx

NGMN , (6.23)

and τM2 = 1
(2π)2`3p

is the M2-brane tension. (The dimensionless combination τM2L
3 = 2N

π

in field theory variables — see (6.5).) Using (6.3), it can be checked that the action (6.22)

is invariant under the supersymmetries generated by Killing spinors ε obeying

− 1

6
√
−g

εmnp∂mx
M∂nx

N∂px
PγMNP ε = ε , (6.24)

with ε012 = 1.

For a Euclidean M2-brane embedding, one has to continue (6.25) to Euclidean signa-

ture. If the coordinates parameterizing the brane worldvolume are σm, with m = 1, 2, 3

S = τM2

[∫
M
d3σ
√
g − i

∫
M
A3

]
. (6.25)

24In a recent paper [72], the on-shell action of the IIA solution dual to spherical D4 branes was computed

and compared to the free energy of 5d N = 2 SYM on S5.
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This action is invariant under

− i

6
√
g
εmnp∂mx

M∂nx
N∂px

PγMNP ε = ε , (6.26)

with ε123 = 1. From now on we work with Euclidean embeddings.

To explore the consequences of supersymmetry, let us multiply eq. (6.26) by ε† on

the left:

− i

6
√
g
εmnp∂mx

M∂nx
N∂px

P ε†γMNP ε = ε†ε . (6.27)

Dividing this relation by the ε†ε and multiplying it by
√
g, we obtain

1

6
εmnp∂mx

M∂nx
N∂px

PJMNP =
√
g , JMNP = −iε

†γMNP ε

ε†ε
. (6.28)

The relation (6.28) then implies that we can compute the volume of the manifold M by

simply integrating J : ∫
M

√
g =

∫
M
J . (6.29)

Therefore, the Euclidean action for a supersymmetric M2-brane is

S = τM2

∫
M

(J − iA3) . (6.30)

In fact, one can show that the integral of J over the manifold M always provides a

bound on its volume. Indeed, because the matrix γM ≡ − 1
6
√
−g ε

mnp∂mx
M∂nx

N∂px
PγMNP

that multiplies ε on the l.h.s. of (6.26) squares to the identity matrix, as can be easily

checked, we must have that for any surface M,

1 ≥
∣∣∣ ε̄γMε
ε̄ε

∣∣∣ =

∣∣∣∣εmnp∂mxM∂nxN∂pxPJMNP

6
√
g

∣∣∣∣ , (6.31)

which implies that

Vol(M) =

∫
M
d3x
√
g ≥

∣∣∣∣∫
M
J

∣∣∣∣ . (6.32)

The inequality (6.32) is thus saturated when M is a BPS (or anti-BPS) surface. If we can

then also show that J is a closed 3-form (as will be the case for us), then J is a calibration.

6.3.2 Explicit formulas

We are interested in surfaces M that are located at X5 = X6 = Θ1 = Θ2 = 0 (and hence

θ = π/2) and wrap the τ direction. Such surfaces would be described by

τ = σ3 , Xi(σ
1, σ2) , Θa(σ

1, σ2) , ρ(σ1, σ2) , (6.33)

with i = 1, . . . , 4 and a = 3, . . . , 5 with the constraints
∑4

i=1X
2
i =

∑5
a=3 Θ2

a = 1. In other

words, these surfaces lie within a product between an S3 ⊂ S5 in spacetime and S2 ⊂ S4

– 30 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
5

in the internal space. Thus, in computing the form J introduced in (6.28) we can restrict

ourselves to the space X5 = X6 = Θ1 = Θ2 = 0.

Within this space, plugging in the Killing spinor ε given in (6.18) into the definition

of J in (6.28), we find

J = L3dτ ∧
[

1

2
d
(
sinh2 ρ η

)
+

1

4
volS2

]
, (6.34)

where the one-form η and the two-form volS2 are

η = ΘaXidXj(ηa)ij , volS2 = Θ3dΘ4 ∧ dΘ5 + Θ4dΘ5 ∧ dΘ3 + Θ5dΘ3 ∧ dΘ4 . (6.35)

One can check that the form (6.34) is closed, so it is a calibration (on the space X5 = X6 =

Θ1 = Θ2 = 0).

For supersymmetric M2-brane embeddings we have

S = SI + SII , SI = τM2

∫
M
J , SII = −τM2

L3

8

∫
M

volS2 ∧dτ , (6.36)

where Σ is the M2-brane world volume anchored on the cutoff surface at constant ρ = ρc.
25

The quantity SII is simply equal to the area of the projection of the bulk surface onto

the internal two-sphere. In the absence of self-intersections of the M2-brane, this area is

equal to the area (with signs) of the region on S2 that is enclosed by the boundary curve

Θ
(bdy)
a (σ1) ≡ Θa(σ1, σ2(ρc, σ

1)), which is measured by a Wess-Zumino action SWZ[Θ(bdy)].

Thus, we write

SII = 2πτM2R6
L3

8
SWZ[Θ(bdy)

a ] . (6.37)

In order to find the precise shape of the supersymmetric surface, one needs to solve a

set of first order equations that can be shown to imply the second order equations obtained

by varying (6.36). Following a similar derivation of the first order equations as the one

presented in [54], first notice that (6.34) implies

GττJτM
NJτN

P = −δPM . (6.38)

Then, for the embedding (6.33), let us work in conformal gauge where
√
ggmn =

√
g33δ

mn,

with m,n = 1, 2 and
√
g = g11

√
g33 = g22

√
g33 and g12 = 0. Let us define

P =
2πLR6

4

∫
d2σ

√
GττGMN

(
aMaN + bMbN

)
,

aM ≡ ∂1x
M −

√
GττJτ

M
P∂2x

P , bM ≡ ∂2x
M +

√
GττJτ

M
P∂1x

P .

(6.39)

25We think of this cutoff surface as a probe M5-brane as in the setup of ref. [73]. Because the M2-brane

has a nontrivial profile in the internal space, the M5-brane has to also have a nontrivial shape in the internal

directions so that the M2-brane can end on it. We leave for future work an analysis of whether this probe

M5-brane can preserve supersymmetry.
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The quantity P obeys P ≥ 0 by virtue of the M2-brane embedding being a Riemannian

manifold. Expanding out the expression for P and using (6.38), we see that P ≥ 0 is

equivalent to

P =
2πLR6

2

∫
d2σ

√
GττGMN

[
∂1x

M∂1x
N + ∂2x

M∂2x
N
]
−
∫
M
J ≥ 0 . (6.40)

The first term in (6.40) is nothing but Vol(M) in conformal gauge, so (6.40) is equivalent

to Vol(M) ≥
∫
M J . As we showed in section (6.3.1), BPS M2-brane embeddings saturate

this inequality. But from the definition of P in (6.39) we see that the inequality is saturated

if and only if aM = bM = 0 pointwise. These conditions can be equivalently rewritten as

GMNa
N = GMNb

N = 0, or more explicitly,

JτMN
∂xN

∂σ1
= −

√
GττGMN

∂xN

∂σ2
,

JτMN
∂xN

∂σ2
=
√
GττGMN

∂xN

∂σ1
.

(6.41)

These are the first order equations obeyed by the BPS M2-brane embeddings.

The equations (6.41) would in general have to be solved numerically. It will be useful,

however, to also have an expansion near the boundary of AdS. Assuming that σ2 = 0 is

the boundary, we can write

Xi(σ
1, σ2) = X

(0)
i (σ1) + (σ2)2X

(2)
i (σ1) + · · · ,

Θa(σ
1, σ2) = Θ(0)

a (σ1) + (σ2)2 log σ2 Θ(2L)
a (σ1) + (σ2)2Θ(2)

a (σ1) + · · · ,

eρ(σ1,σ2) =
2ρ(0)

σ2
+ ρ(2)σ2 + · · · .

(6.42)

Solving (6.41), we obtain

Θ(0)
a = ηa

ij
X

(0)
i Ẋ

(0)
j∣∣Ẋ(0)
∣∣ ,

ρ(0) =
1∣∣Ẋ(0)
∣∣ ,

X
(2)
i =

∣∣Ẋ(0)
∣∣2

4
X

(0)
i −

3Ẋ(0) · Ẍ(0)

4
∣∣Ẋ(0)

∣∣2 Ẋ
(0)
i +

1

4
Ẍ(0) ,

ρ(2) =
Ẋ(0) ·

...
X

(0)

3
∣∣Ẋ(0)

∣∣3 +
Ẍ(0) · Ẍ(0)

2
∣∣Ẋ(0)

∣∣3 −
(
Ẋ(0) · Ẍ(0)

)2
3
∣∣Ẋ(0)

∣∣5 ,

(6.43)

etc. Note the appearance of ’t Hooft symbols ηija defined in (3.16) in the the first equality

above. To leading order at large eρ, the r.h.s. of the first equation in (6.43) is just the

supersymmetric scalar coupling matrix S in (3.15) that defines our 1
8 -BPS Wilson loops in

5d MSYM, contracted with the tangent vector to the loop.

Finally, the cutoff surface should be regarded as a probe M5-brane, and the M2-

brane ending on it determines the shape of the Wilson loop. Correspondingly, we are
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holding X
(bdy)
i (σ1) = Xi(σ

1, σ2(ρc, σ
1)) fixed and not X

(0)
i (σ1). We can express X

(0)
i in

a series form (the expansion parameter being e−2ρc) by first determining σ2(ρ, σ1) from

the last equation of (6.42), and then solving the equation X
(bdy)
i (σ1) = Xi(σ

1, σ2(ρc, σ
1))

perturbatively using the first equation of (6.42). We found it convenient to first express

everything in term of X
(0)
i , and then re-expand the results to get everything in term

of X
(bdy)
i .

6.4 Type IIA perspective

Instead of considering the M2-brane embeddings wrapping the τ circle, one can equivalently

consider a fundamental string worldsheet M′ in the type IIA background presented in

section 6.2. In Euclidean signature, the fundamental string action is

S =
1

2πα′

[∫
M′

d2σ
√
g − i

∫
M′

B2

]
. (6.44)

This action is identical to (6.25) for M2-branes wrapping the τ circle, as can be checked

from the relations `sgs = LR6 and `p = `sg
1/3
s , which imply

2πLR6τM2 =
1

2πα′
. (6.45)

Further specializing to worldsheets located at X5 = X6 = 0 and θ = π/2, we find

from (6.20)–(6.21) that the string worldsheet moves in a 6d ambient space with metric

ds2
6d = L2 cosh ρ

[
dρ2 + sinh2 ρ ds2

S3 +
1

4
sin2 θds2

S2

]
(6.46)

and B-field

B2 = −iL
2

8
volS2 . (6.47)

The reduction of the calibration three-form (6.34) to this space is a calibration two-form

J (2) = L2

[
1

2
d(sinh2 ρ η) +

1

4
volS2

]
, (6.48)

and J
(2)
M

N is equal to an almost complex structure on the 6d space (6.46): indeed, we have

J
(2)
M

NJ
(2)
N

P = −δPM . The action of a calibrated string worldsheet can be written as

S = SI + SII , SI =
1

2πα′

∫
M′

J (2) , SII = − 1

2πα′
L2

8

∫
M′

volS2 , (6.49)

which precisely equals (6.36) upon using (6.45).

The first order equations obeyed by the calibrated string worldsheet are just an equiv-

alent way of writing (6.41):

J
(2)
MN

∂xN

∂σ1
= −G6d

MN

∂xN

∂σ2
,

J
(2)
MN

∂xN

∂σ2
= G6d

MN

∂xN

∂σ1
,

(6.50)

where now G6d
MN is the 6d metric in (6.46). These are the equations of pseudo-holomorphic

curves in the complex structure J
(2)
M

N .
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6.5 Area from calibration

In this section we compute the renormalized area of the 1/8-BPS M2-brane, which matches

the proposal (5.16). First, we evaluate the regularized bulk action with the M2-brane

anchored on the cutoff surface at ρ = ρc. To get a finite result, we have to use holographic

renormalization, and we find that a minimal scheme gives a precise match with (5.16).

Finally, we comment on the absence of the Graham-Witten anomaly [74] for our BPS

M2-branes.

6.5.1 The regularized bulk action

In (6.36) we decomposed the regularized M2-brane action S(reg) into two terms: S(reg) =

SI + SII, where SI comes from the calibration 3-form integrated over the M2-brane, SII is

the contribution of the
∫

ΣA3 term. After performing the trivial integral of dτ over the M-

theory circle, SI involves two terms, one coming from the form dτ ∧ d
(
sinh2 ρ η

)
while the

other from dτ∧volS2 — see (6.36) and (6.34). The second term equals −2SII, while the first

term has to be evaluated by explicit computation.26 To perform the computation, we follow

the strategy outlined in the last paragraph of section 6.3.2. While the intermediate results

look extremely complicated, there are amazing simplifications occuring when converting

from X
(0)
i to X

(bdy)
i . The final result is:27

S
(reg)
M2 =

πR6τM2L
3

4

[∫
dσ1

∣∣∣Ẋ(bdy)
∣∣∣ (e2ρc − 2

)
+ SWZ[Θ(bdy)]

]
. (6.52)

We would like to show that this quantity equals a constant independent of the shape28 of

the boundary plus local counterterms that can be removed by the regularization procedure.

6.5.2 The counter term action

The next step in computing physical quantities in QFT is to add to the regularized quan-

tity S(reg) the contribution of local counter terms, Scounter. Holographic renormalization

proceeds by constructing Scounter on the cutoff surface ρ = ρc. This is usually done in

26Since the term dτ ∧ d
(
sinh2 ρ η

)
in SI is exact, it reduces to an integral on the cutoff surface at

ρ = ρc. Though the divergent part of (6.52) as we send ρc → ∞ is obvious from the integral of η on

the boundary curve, to extract the subleading finite part in (6.52) requires the near-boundary asymptotic

expansion (6.42)–(6.43) of the solution to (6.41).
27In terms of quantities on the asymptotic boundary, the result is more complicated, namely

S
(reg)
M2 =

πR6τM2L
3

4

[∫
dσ1

[∣∣∣Ẋ(0)
∣∣∣ (e2ρc −

(
X(0)′′

)2

− 1

)
− 2

d

dσ1

(
Ẋ(0) · Ẍ(0)∣∣Ẋ(0)

∣∣3
)]

+ SWZ[Θ(0)]

]
,

(6.51)

where for any quantity f(σ1), we used the notation f ′ ≡ ḟ∣∣Ẋ∣∣ for the reparameterization invariant deriva-

tive. (For example, X ′′ = 1∣∣Ẋ∣∣ d
dσ1

Ẋ

|Ẋ| .) Note that the total derivative term is not invariant under the

reparameterizations of the boundary curve.
28By shape dependence, we mean potential changes of the Wilson loop observables under continuous

deformations of the underlying link L of knots Ki such that no crossing happens. In knot theory literature,

this is the notion of ambient isotopy.
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the lower dimensional AdS supergravity theory after reducing on the internal manifold (S4

in our case), because the higher dimensional perspective on holographic renormalization

is somewhat underdeveloped (see, however, [75, 76]). In our case it is easy to see that

− τM2
2 Area(∂Σ) cancels the divergent contribution to the M2-brane action, where following

the philosophy explained above, by Area(∂Σ) we only mean the area projected onto the

AdS directions and neglect the motion of the M2-brane on S4:29,30

Scounter = −τM2L
3

2
Area(∂Σ)

= −πR6τM2L
3

4

∫
dσ1

∣∣∣Ẋ(bdy)
∣∣∣ e2ρc .

(6.55)

In addition to the divergent counterterm (6.55), we have the freedom of adding some finite

local counter terms; this freedom is analyzed thoroughly in appendix D.

6.5.3 The renormalized action

Adding together SM2 and Scounter, we obtain:

S
(ren,min)
M2 ≡ SM2 + Scounter =

πR6τM2L
3

4

(
−2

∫
dσ1

∣∣∣Ẋ(bdy)
∣∣∣+ SWZ[Θ(bdy)]

)
= βN

(
− L(K) +

SWZ[Θ(bdy)]

4π

)
,

(6.56)

where in the second line we used τM2L
3 = 2N

π and β = 2πR6. To ease the notation, we

drop the superscript (bdy) in the rest of the section.

The Wess-Zumino term is the area of the projection of the M2-brane to the internal

S2. One way to relate it to various geometric quantities related to the Wilson loop is to

take its variation under geometric deformations of the loop. A well-known property of the

Wess-Zumino action is that while it cannot be written as a local covariant expression, its

variation gives a local term. The Wess-Zumino term can be written as:

SWZ[Θ] =

∫
d2σ

1

2
εijkεIJΘi∂IΘj∂JΘk . (6.57)

29If we took into account the motion on S4 as well the answer in (6.55) would instead take the form

−πR6τM2L
3

4

∫
dσ1

∣∣∣Ẋ(bdy)
∣∣∣ (e2ρc +

1

2

(
Θ(bdy)′

)2
)
, (6.53)

where the extra 1
2

(
Θ(bdy)′)2 term is a finite local counter term, and can be cancelled without any difficulty

as we explain in appendix D.2.
30We note that imitating the Legendre transformation prescription for AdS5 × S5 of ref. [77], we obtain

the same counter term as in (6.55). We write the background (6.15) in coordinates

ds2 = cosh2 ρdτ2 + sinh2 ρdΩ2
5 +

DY aDY a

4Y 2
,

Y a ≡ e−2ρΘa DY a = dY a −AabY b , A12 = −A21 = −idτ ,
(6.54)

and write the counter term
∫
dσ1PaY

a, which evaluates to the same result as (6.55). (Choosing different

coordinates would lead to a result that differs by finite counter terms.) Unlike ref. [77], we do not have a

brane construction that reproduces our background, and we do not have a string-duality-based derivation

of this prescription either.
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Its variation can be written as:

δSWZ[Θ] =

∫
d2σ εijkεIJΘi∂IδΘj∂JΘk =

∫
dσ1 εijkΘiδΘj∂1Θk , (6.58)

where we repeatedly used the fact that δx lies in the plane of (∂1Θ, ∂2Θ) and hence

εijkε
IJδΘi∂IΘj∂JΘk = 0. Using that Θa = ηa

ij XiẊj

|Ẋ| (see (6.43)), (6.58) can be written in

a reparameterization-invariant form as31

δSWZ[Θ] = −
∫
ds
∣∣∣Ẋ∣∣∣ εijkδΘiΘjΘ

′
k =

∫
dσ1

∣∣∣Ẋ∣∣∣ (δX ′ ·X ′ + εijklδX
′
iXjX

′
kX
′′
l

)
.

(6.59)

This quantity can be written in terms of the variation of the length L(K) and torsion

TFS(K) of the loop K, where the index FS on the torsion means that it is computed in the

Frenet-Serret frame reviewed in appendix D.1.32 The variations of these two quantities are

2πδL(K) =

∫
dσ1 δ

∣∣∣Ẋ∣∣∣ =

∫
dσ1

∣∣∣Ẋ∣∣∣ (δX ′ ·X ′) ,
2πδTFS(K) =

∫
dσ1 δ

(∣∣∣Ẋ∣∣∣ τFS

)
=

∫
dσ1

(∣∣∣Ẋ∣∣∣ εijklδX ′iXjX
′
kX
′′
l + (tot. der.)

)
.

(6.60)

Combining (6.60) with (6.59), we learn that

δ

[
SWZ[Θ]

4π
− L(K) + TFS(K)

2

]
= 0 . (6.61)

Eq. (6.61) means that the quantity in the square brackets remains unchanged under

continuous deformations of the link:33

SWZ[Θ]

4π
− 1

2
(L(K) + TFS(K)) = −pFS

2
, (6.62)

where pFS is a constant associated to the family of links that can be deformed into each

other. Below we will argue that pFS is in fact an integer.

Using the formulas (D.5) and (D.11), we can rewrite the 2nd term on the l.h.s. of (6.62)

in a more suggestive way that only involves Θ

L(K) + TFS(K) =
1

2π

∫
dσ1

∣∣∣Ẋ∣∣∣ (1 + τFS) =
1

2π

∫
dσ1

∣∣∣Ẋ∣∣∣ (1−
εijklXiX

′
jX
′′
kX
′′
l

(X ′′)2 − 1

)
(BPS loop)

= − 1

2π

∫
dσ1

∣∣∣Ẋ∣∣∣ εabcΘaΘ̇bΘ̈c∣∣∣Θ̇∣∣∣3 = − 1

2π

∫
ds
∣∣∣Θ̇∣∣∣κg(Θ) ≡ −K[Θ] ,

(6.63)

31We note that writing everything in terms of reparameterization invariant derivatives requires care, as

for example δ(X ′) 6= (δX)′. Instead, δ(X ′) = δ Ẋ

|Ẋ| = δẊ

|Ẋ| − Ẋ
(δẊ)·Ẋ
|Ẋ|3 = (δX)′ −X ′ [(δX)′ ·X ′].

32We use the torsion TFS(K) in the Frenet-Serret frame for its explicit integral form. Torsion T (K) in a

general frame differs from TFS(K) by an integer.
33The condition is that the curvature κ does not vanish, so that the Frenet-Serret frame is well-defined.
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where we used the standard formula for the geodesic curvature of a curve on a surface

κg(Θ) = εabcΘaΘ̇bΘ̈c

|Θ̇|3
. Then (6.62) becomes

SWZ[Θ]

4π
+

1

2
K[Θ] = −pFS

2
, (pFS ∈ Z) , (6.64)

which can be thought of an extension of the Gauss-Bonnet theorem34 that associates a

topological invariant to the map Θ and the integrality of pFS follows from [78, 79].

Recall that the map Θ(σ1, σ2) captures how the M2-brane moves in the internal S2 ⊂
S4. The value of the constant pFS depends on the topology of the map Θ that extends the

boundary values Θ(bdy)(σ1) at σ2 = 0. As usual, given a fixed Θ(bdy), SWZ[Θ]
4π has an integer

ambiguity under different choices of extensions, which will shift pFS by an even integer

in (6.64) (pFS mod 2 is independent of the extension). We will not attempt to determine

pFS here given a general boundary knot K. Instead we will compute pFS for some examples

in the next section.

Plugging (6.64) back into (6.56) we obtain for a general link

〈W (min)(L)〉 = λ
1
2

(L(L)−T (L)) λ
p
2 . (6.65)

We emphasize that p by construction is a topological invariant of the knot L that also

depends on a choice of framing. In the FS frame, we have p = pFS and T (L) = TFS(L).

In writing (6.65), we have used the fact that T (L)− p is framing independent in order to

write the answer in a frame-independent way.35

6.6 Comparison with Chern-Simons theory

6.6.1 General remarks

In the holographic result (6.65), we see that the first factor includes all the shape depen-

dence in terms of local geometric quantities, which can be absorbed in the definition of the

Wilson loop observable, W ren(L) ≡ λ−
1
2

(L(L)−T (L))W (min)(L). Remarkably, the minimal

holographic renormalization scheme agrees with the field theory scheme used in (4.23).

In appendix D.2 we analyze the local counterterms allowed by the six-dimensional

origin of the theory, and conclude that the torsion term cannot be uplifted to a local

counterterm in 6d. Consequently, the coefficient of the torsion term in the expression

for the non-renormalized loop is universal. The fact that the coefficient obtained in our

holographic computation matches that in Chern-Simons theory gives a strong check of our

proposal that the 1/8-BPS Wilson loops are described by Chern-Simons theory. While the

coefficient of the length term is not fixed by these considerations, the likely explanation for

its match with field theory is that the minimal holographic renormalization scheme is the

only one preserving supersymmetry.

34It is a generalization of the usual Gauss-Bonnet theorem in the sense that the bounding curve is an

immersed (as opposed to embedded) closed curve on the target S2. Unlike an embedded curve, an immersed

curve can have self-intersections.
35This follows from (6.62) since SWZ[Θ] does not depend on the choice of framing. The latter is in turn

a consequence of the invariance of the S matrix under twisted so(4) rotation so(3)l × so(3)diag in (3.19)

and (3.20) on S3.

– 37 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
5

For the renormalized Wilson loop operator W ren(L), our holographic result (6.65)

implies

〈W ren(L)〉 = λ
p
2 (p ∈ Z) , (6.66)

which is a framed topological invariant of L. Comparing to the field theory predic-

tion (5.16), we see that we indeed get λ
1
2 raised to an integer power, and we see that

both (6.66) and (5.16) have the same framing dependence (because both p(L) and sl(L)

have the same framing dependence as the torsion T (L)). We do not know a general formula

for p given an arbitrary loop L on S3, but based on the subsequent special cases analyzed,

it is reasonable to conjecture that

p = 1 + sl(L) + ζ(L) . (6.67)

Below we gather evidence for this equality in various examples. In the examples be-

low, all formulas are given in the Frenet-Serret frame. Converting to other frames is

straightforward.

6.6.2 Latitude loop and match with the literature

From now on we will parametrize the loops with t instead of σ1. Let us take a latitude

loop given in embedding coordinates by:

X =
(
a cos t a sin t

√
1− a2 0

)
, (6.68)

for some 0 < a ≤ 1. Its image in the internal S2 is

Θ =
(√

1− a2 cos t
√

1− a2 sin t −a
)
. (6.69)

This latitude loop is an unknot U . The HOMFLY polynomial for any unknot is H(U) = 1,

and its self linking number in the FS frame vanishes. Thus, our CS prediction for its

expectation value is

〈W ren
U(∞)(U)〉 = λ

1
2 ⇐⇒ pFS = 1 . (6.70)

In the holographic approach, we can argue that pFS = 1 in two ways. The first way

is as follows. First, notice that for a great circle loop, when a = 1, the M2-brane sits at

the South Pole of the internal S2 and wraps the equator of the spatial S3 for all values

of the radial coordinate ρ. For 0 < a < 1, the M2-brane approaches the curve (6.69) at

the boundary, which is a circle in the Southern hemisphere of S3. For the M2-brane to

minimize its area, its shape in the internal S2 is given by a curve (6.69) at any fixed ρ with

the parameter a = a(ρ) now a function of ρ. At the deepest point in the bulk (i.e. smallest

value of ρ), we should have a = 1, so that the tip of the M2-brane is at the South Pole of S2.

This leads us immediately to the conclusion pFS = 1 from the curve counting explanation

below (6.64).
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Figure 3. On the left, we plot a pair of Wilson loops in the negative Hopf link configuration on S3

(after stereographic projection). On the right, the two unknots mapped to two points on S2 ⊂ S4.

We interpolate in coloring from light to dark as we go around the loop in both figures. The colors

are coordinated between the two plots.

Another way to argue that pFS = 1 is to find the shape of the M2-brane numerically

by solving the first order equations (6.41) in this case. We performed this exercise and

compute the regularized on-shell action, obtaining a very precise numerical match with

the formula

S
(reg)
M2 =

βN

2

[
ae2ρc − (a+ 1)

]
,

〈W (min)(K)〉 = e−S
(ren,min)
M2 = λ

1
2
(a+1) ,

(6.71)

from which we can read off pFS = 1. Ref. [80] also computed the latter result for a = 1 (in

which case the Wilson loop is 1/2-BPS), and found agreement with the localization answer

〈W (min)(K)〉 = λ from [21].

6.6.3 Hopf link and large-N factorization

Let us think of S3 as the Hopf fibration over a base S2, and take our next Wilson loop

example to be the union of two Hopf fibers located at different base points. Because the

Hopf fibers are great circles, their images under S are isolated points in the internal S2.36

Let us parametrize the base S2 by η ∈ [0, π/2] and ξ ∈ [0, 2π), we rescale and identify

t ∈ [0, 4π) with the fiber coordinate. For every (η, ξ), the Hopf fiber

X =
(
sin η cos

(
ξ+t
2

)
sin η sin

(
ξ+t
2

)
cos η cos

(
−ξ+t

2

)
cos η sin

(
−ξ+t

2

))
(6.72)

has an image on S2 given by:

Θ =
(
sin 2η cos ξ sin 2η sin ξ cos 2η

)
. (6.73)

See figure 3 for an illustration.

As explained above, the dual M2-brane corresponding to each fiber is a disk × S1 in

AdS7 and a point in S2. While the projection of the M2-branes to AdS7 intersect at ρ = 0,

36In this case, these points are just the base points of the fibers, if we identify the S2 base of the Hopf

fibration with the internal S2.
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the M2-branes are disjoint in the full spacetime, as they sit at different points in S2, as can

be seen from (6.72). Then the holographic answer trivially factorizes for the Hopf link:

〈W ren(Hopf)〉 = 〈W ren(great circle)〉2 = λ (6.74)

corresponding to p = 2, which matches the Chern-Simons prediction (5.16) because

1 + slFS(Hopf) + ζ(Hopf) = 1 + 2lk(K1,K2) + 3 = 2 , (6.75)

where we used that in the FS frame the self-linking numbers vanish for each fiber, the

linking number of the two fibers is lk(K1,K2) = −1, and ζ(Hopf) = 3.37

In general, whenever the bulk M2-branes corresponding to all disjoint knots in a link

are also disjoint in the bulk, holography predicts factorization for the expectation value of

the Wilson loop in the strong coupling limit. Then, if the Chern-Simons prediction (5.16)

is true, it has to be the case that for L = ∪iKi,

1 + sl(L) + ζ(L) =
∑
i

(1 + sl(Ki) + ζ(Ki)) , (6.77)

which is an equality that the Chern-Simons prediction (5.16) obeyed in the case of two Hopf

links. As a trivial generalization, this equality holds for multiple unknots linked pairwise

as Hopf links. Below we also verify this equality for torus links. The simplest example

where we found that (6.77) does not hold is the Whitehead link (in one orientation).38 But

it does hold for other non-torus links such as the Borromean rings. It would be interesting

to study the corresponding bulk M2-branes in this and other non-factorizing cases.

6.6.4 Torus knots and links

The torus knot Tm,−n with gcd(n,m) = 1 on S3 is parametrized, in embedding space, by39

X =
(
a cos(mt) a sin(mt)

√
1− a2 cos(nt)

√
1− a2 sin(nt)

)
, (6.81)

37The HOMFLY polynomial for the negative Hopf link is

H(Hopf) = z−1λ(λ1/2 − λ−1/2)− λ1/2z . (6.76)

38See figure 2 (h) for the Whitehead link. It consists of two unknots with zero linking number. The

HOMFLY polynomial for the Whitehead link is

H(Whitehead) =
λ+ λz4 − (λ− 1)2z2 − 1√

λz
, (6.78)

which gives ζ = 2 (the mirror Whitehead link has ζ = 1).
39By SO(4) invariance on S3, we have the equivalence

Tm,n = Tn,m = T−m,−n (6.79)

On the other hand, under parity Tm,n gets mapped to its mirror Tm,−n. In general for Wilson loop in

representation R in a CS theory with gauge group G, the expectation values satisfy [70]

〈W 3d
G (R,K)〉(q, λ) = 〈W 3d

G (R,K)〉(q−1, λ−1) (6.80)

where K is the mirror (parity transform) of K and q ≡ e
2πi
k , λ ≡ e

2πih
k with h the dual Coxeter number

of G.
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where t ∈ [0, 2π) and 0 ≤ a ≤ 1. The first nontrivial example is the well-known trefoil

knot, which has (m,n) = (2, 3). The image in S2 of (6.81) is:

Θ =
(
A cos((m− n)t) A sin((m− n)t) (n− (m+ n)a2)ω

)
, (6.82)

where ω ≡ 1/
√
m2a2 + n2(1− a2) > 0 and A ≡ (m+ n)a

√
1− a2 ω. We show a slightly

deformed T2,−5 with its image in S2 on figure 1.40

The HOMFLY polynomial of the torus knot Tm,−n for n,m > 0 is41 [70]

H(Tm,−n) =
q − 1

λ− 1

(λq−1)(m−1)(n−1)/2

qm − 1

∑
p+i+1=m
p,i≥0

(−1)iqni+
1
4

(p(p+1)−i(i+1))

∏i
j=−p(λ− qj)

[i]![p]!
,

(6.83)

where [i] ≡ qi/2 − q−i/2 and [i]! = [i][i − 1] · · · [1]. In particular, in the M-theory limit

λ→∞, we obtain H(Tm,−n) ≈ λζ(Tm,−n)/2 with

ζ(Tm,−n) = mn− |m− n| − 1 . (6.84)

Further using the self-linking number in Frenet-Serret frame, sl(Tm,−n) = −mn, we find

that the Chern-Simons prediction is

〈W ren(Tm,−n)〉 = λ−
1
2
|m−n| ⇐⇒ pFS = − |m− n| . (6.85)

Let us compare this to the holographic result. To do that we need the values of the

following geometric quantities:

L(K) =
1

ω
, TFS(K) = −mnω , (6.86)

with ω defined right after (6.82). We also need to evaluate the WZ term, which as discussed

in detail below (6.64) depends on the extension of Θ(t) into a (topological) disk.

Instead of determining the extension explicitly from the equations (6.41) satisfied by

the M2-brane, we consider the simplest candidate extensions of Θ(t) in (6.82) that wrap

either the southern and northern hemispheres. We will refer to them as Θ̂(1,2) to differen-

tiate from the actual M2-brane profile Θ(σ1, σ2). These extensions lead to the following

integrals for the WZ term

S
(1)
WZ =

∫ 0

a
da′
∫ 2π

0
dt εijkΘ̂

(1)
i ∂tΘ̂

(1)
j ∂a′Θ̂

(1)
k ,

S
(2)
WZ =

∫ 1

a
da′
∫ 2π

0
dt εijkΘ̂

(2)
i ∂tΘ̂

(2)
j ∂a′Θ̂

(2)
k ,

(6.87)

which evaluate to

S
(1,2)
WZ

4π
=

1

2

(
1

ω
−mnω ± (m− n)

)
. (6.88)

40We deformed slightly the torus knot in that figure in order for its S2 image to not be a multiply wrapped

circle.
41Note that H(Tm,−n) is invariant under m ↔ n although not obvious. See [81] for a rewriting that

makes this symmetry manifest.
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Thus for m > n, combining (6.88) and (6.86) with (6.63) and (6.64), the simple extension

Θ̂(1) that wraps the southern hemisphere gives the answer

pFS = −(m− n) , (6.89)

which matches with the field theory prediction (6.85). For m < n, the simple extension

Θ̂(2) that wraps the northern hemisphere

pFS = (m− n) (6.90)

does the job.

It would be interesting to verify from the shape of the M2-brane in the internal S2

whether the simple extensions above are correct. More precisely, since pFS is topological,

we only need to see whether Θ can be continuously deformed into Θ̂(1,2).

A generalization of the torus knots are torus links which we will label by Tm,−n with

gcd(m,n) = r > 1. A torus link consists of r linked torus knots of the type Tm/r,−n/r such

that the total linking number between each pair of knots is∑
i 6=j

lk
(
T

(i)
m/r,−n/r, T

(j)
m/r,−n/r

)
= −mn+

mn

r
. (6.91)

The simplest example T2,−2 is nothing but the negative Hopf link consisting of two linked

unknots with linking number −1. (The negative Hopf link was analyzed in section 6.6.3.)

The HOMFLY polynomial of a general Tm,−n torus link was computed in [82–84]. While the

HOMFLY polynomial of the torus link is more complicated than for the torus knot, their

maximum degrees in λ determining the M-theory limit are given by the same expression

as (6.84). It is easy to check using this explicit expression and (6.91) that the expectation

value of the Wilson loop forming this link obeys the large N factorization formula (6.77),

1 + sl(Tm,−n) + ζ(Tm,−n) =
r∑
i=1

(
1 + sl(T

(i)
m/r,−n/r) + ζ(T

(i)
m/r,−n/r)

)
. (6.92)

Another way of saying this is that p(Tm,−n) =
∑r

i=1 p(T
(i)
m/r,−n/r). Note that this equality

holds for any framing. It would be interesting to understand in detail the corresponding

bulk M2-branes, which we expect to not intersect just like in the Hopf link example that

we discussed in section 6.6.3.

6.7 Comments on non-BPS Wilson loops and the Graham-Witten anomaly

Since the regularized M2-brane action diverges quadratically with the short distance cutoff

ε ≡ e−ρc , based on the Graham-Witten anomaly [74] (see also [85]), we could have expected

to encounter a logarithmic divergence. The regularized action (6.51), however, does not

exhibit such a divergence.

To understand this issue better, we have analyzed non-BPS Wilson loops by solving

in an asymptotic expansion the second order equations for minimal area M2-branes that
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do not follow the appropriate trajectory in the internal S4 to make them BPS. For the

divergent terms, we found

SM2 =
πR6τM2L

3

4

∫
dσ1

∣∣∣Ẋ∣∣∣ [ 1

ε2
+
(
κ2 −Θ′2

)
log ε+ . . .

]
, (6.93)

where κ is the curvature of the curve within S3. For a quick review of its definition, and

for its expression in terms of Xi see appendix D. From (D.11) we see that the logarithmic

divergence is absent for the BPS loops we focused on in this paper. The κ2 term originates

from the Graham-Witten anomaly [74] for surface operators in the 6d theory.42 In fact, it

was argued by [85] that because of this logarithmic divergence, the expectation values of

surface operators are not well-defined. We see that the BPS loops avoid this conclusion by

having a compensating term coming from the scalars.

7 3d Chern-Simons from localization

In this section, we aim to use supersymmetric localization to derive the 3d CS sector of

5d MSYM on S5 that we conjectured in section 5. We will proceed by first giving an

off-shell formulation of 5d MSYM with gauge group G on S5 that realizes one of the two

supercharges Q used to define our 1/8-BPS Wilson loops. The novelty of our choice of

Q is that it squares to a Killing vector that fixes a great S3 inside S5.43 We analyze

supersymmetric (BPS) equations for the SYM fields with respect to Q. Without using an

explicit reality condition for the fields, we provide evidence that the BPS locus is a certain

real slice in the space of complex G-connections on the great S3 weighted by a Chern-

Simons action with level (2.13). Moreover the 1
8 -BPS Wilson loops (3.1) of 5d MSYM

descend to familiar Wilson loops in the 3d CS theory as we have conjectured in section 5.

In the end, we will comment on the choice of reality conditions and related issues.

7.1 5d MSYM with off-shell Q

In this section, we find it convenient to write the 5d MSYM theory in terms of a dimensional

reduction of 10d fields, whereby we group the 5d gauge field Aµ and the 5 scalars ΦI into an

object AM , M = 1, . . . , 10, and we likewise group the four four-component spinors ΨA into

a sixteen-component spinor Ψ. We take AM and Ψ to depend only on the 5d coordinates.

For more details, we refer the reader to appendix E for the translation between this notation

and the 5d notation used in previous sections. See also appendix A for 10d gamma matrices

and relevant identities.

To perform SUSY localization, we need an off-shell realization of Q (or equivalently δε)

for the 5d MSYM action. The general 5d MSYM action with some off-shell supersymmetry

can be obtained after introducing seven auxiliary fields Km with m = 1, 2, . . . , 7,

LYM =
1

2g2
YM

tr

[
1

2
FMNF

MN + ΨΓMDMΨ− 1

2R
ΨΛΨ +

3

R2
ΦiΦi +

4

R2
ΦaΦa

− 2

3R
εabc[Φa,Φb]Φc +KmKm

]
,

(7.1)

42On the worldsheet that the bulk M2-brane ends on on S5 × S1 the Graham-Witten anomaly is the

Willmore energy, SM2 ⊃ τM2L
3

8

∫
d2ξ
√
γ
(
KA
αβK

A,αβ − 1
2
KAKA

)
log ε.

43Recall that for all previous localization computations on S5, the localizing supercharge squares to a

Killing vector with no fixed points but rather fixed circles (Hopf fibers over CP2).

– 43 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
5

where a = 8, 9, 10 and i = 6, 7. More explicitly, (7.1) is invariant under the off-shell

supersymmetry transformation δε given by

δεAM = iεΓMΨ ,

δεΨ = − i
2
FMNΓMNε− 2i

5
ΓµiΦ

i∇µε− 4i

5
ΓµaΦ

a∇µε+Kmνm ,

δεK
m = −νmΓMDMΨ +

1

2R
νmΛΨ ,

(7.2)

provided that we choose the pure spinor variables νm to satisfy

νmΓMε = 0 , νmΓMνn = δmnεΓ
Mε , νmα ν

m
β + εαεβ =

1

2
εΓMεΓ̃

M
αβ . (7.3)

These equations determine νm in terms of ε up to an so(7) transformation under which the

νm and the Km transform as a seven-dimensional vector.

From now on, we take ε to correspond to our supercharge Q also introduced in (3.7),

for which a convenient set of pure spinors is given by44

ν1 =
x1Γ̃1̂ + x2Γ̃2̂√

x2
1 + x2

2

x1Γ6̂ − x2Γ7̂√
x2

1 + x2
2

ε ,

νi =
x1Γ̃1̂ + x2Γ̃2̂√

x2
1 + x2

2

Γîε , i = 2, 3, 4,

νj =
x1Γ̃1̂ + x2Γ̃2̂√

x2
1 + x2

2

Γ
ĵ+3

ε , j = 5, 6, 7.

(7.4)

7.2 BPS configurations

The BPS configurations with respect to δε are solutions of the equations

Ψ = δεΨ = 0 . (7.5)

Using (E.3), we can write δεΨ as the following 16 complex equations:

δεΨ = − i
2
FMNΓMNε+

i

R
(Γ̃iΦ

i + 2Γ̃aΦ
a)Λε+Kmνm = 0 , (7.6)

which we need to solve. To better explain the action of Q2, let us write the S5 line

element as

ds2
5 = sin2 ϑd%2 + dϑ2 + cos2 ϑdΩ2

3 (7.7)

(see appendix F for details). The coordinates used in (7.7) make manifest the (singular)

fibration of a circle S1
% over a 4-ball B4 (see figure 4). The fiber S1

% achieves maximal size at

the center ϑ = π
2 of B4, while the fixed S3 is located at ϑ = 0, where the S1

% shrinks to zero

size. The rotation generator M12 in δ2
ε acts simplify by translating in the fiber direction.

44Here we use hatted indices in Γî and Γ̃î to denote frame indices so that these gamma matrices are

constants.

– 44 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
5

S1
%

B4
ϑ = π

2

S3
ϑ=0

Figure 4. S5 viewed as a fibration of S1
% over B4. The S3 of interest sits at the boundary of B4

at ϑ = 0.

Instead of working with the explicit components of (7.6), a convenient trick is to first

look at the square of the supersymmetry transformation δε

δ2
εAµ = −ivνFνµ + i[Dµ, v

IΦI ] ,

δ2
εΦa = −ivνDνΦa + [Φa, v

IΦI ]− ωabΦb ,

δ2
εΦi = −ivνDνΦi + [Φi, v

IΦI ]− ωijΦj ,

δ2
εΨ = −ivNDNΨ− i

4
∇µvνΓµνΨ− 1

4
ωIJΓIJΨ ,

δ2
εK

m = −ivMDMK
m −MmnKn .

(7.8)

where

vµ∇µ = − i

R
εΓµε∇µ = − 1

R
∇% ,

vIΦI = − i

R
εΓIεΦI = i sinϑ(sin %Φ7 + cos %Φ6) ,

ωab =
2

R
εΓ̃abΛε = 0 ,

ωij =
1

R
εΓ̃ijΛε = − i

R
(δ6iδ7j − δ7iδ6j) ,

Mmn ≡ ν[mΓµ∇µνn] − 1

2R
ν[mΛνn] = 0 .

(7.9)

These variations in (3.6) must vanish as a consequence of the BPS equations. We thus

obtain the following constraints on the bosonic fields

1

R
F%µ = −[Dµ, v

IΦI ] ,

1

R
[D%,Φa] = i[Φa, v

IΦI ] ,

1

R
[D%,Φi] = i[Φi, v

IΦI ]− ωijΦj ,

1

R
[D%,K

m] = i[Km, vIΦI ] .

(7.10)
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We can define twisted fields

Φ̂6 = cos %Φ6 + sin %Φ7 , Φ̂7 = sin %Φ6 − cos %Φ7 (7.11)

and twisted connection

D% = D% + iR sinϑΦ̂6 , Dϑ,ζ,ξ,Φ = Dϑ,ζ,ξ,Φ . (7.12)

Then the equations (7.10) simply state

F%µ ≡ i[D%, Dµ] = 0 , [D%,Φa] = 0 , [D%, Φ̂i] = 0 , [D%,Km] = 0 , (7.13)

which implies that all the bosonic fields are covariantly constant along %.

The next step is to analyze equation (7.6) restricted to B4, for which the reality

condition on the fields are crucial and we will comment on this in section 7.4.

7.3 The 3d Chern-Simons action

Assuming that the smooth BPS configurations are determined by the fields on the boundary

S3 of B4, we are ready to derive the action governing the dynamics on the BPS locus. Using

covariance along %, the bosonic part of the 5d SYM action becomes

S =
π

g2
YM

∫
B4

d4x
√
gB4 tr

[
1

2
FMNF

MN +
3

R2
ΦiΦi

+
4

R2
ΦaΦa −

2

3R
εabc[Φa,Φb]Φc +KmKm

]
.

(7.14)

In appendix G, we show that this induced action on B4 is a total derivative and integrates

to an action on the S3 boundary of B4 given by

S =
π

g2
YM

∫
S3

d3x e3ΩTr

[
εabcS i

c(ΦaFib) +
2

3
εabc(ΦaΦbΦc)− ie−3ΩεijkSai (ΦaFjk)

− 1

2
e−3Ωεijk(AiFjk +

2

3
iAiAjAk) + 2ΦaΦa

]
,

(7.15)

where e2Ω = 1/
(
1 + x2

i /4
)2

is the usual stereographic conformal factor. Here we have set

R = 1 for convenience and we will restore R at the end using dimensional analysis. Note

in particular the appearance in (7.15) of the S matrix defined in (3.13).

It is natural to expect that the S3 action (7.15) can be rewritten in terms of the twisted

connection Âµ = Aµ + iSµaΦ
a introduced in (3.1), which is manifestly δε-invariant. Indeed

by using

e3ΩεabcS j
cSk
a∇jS i

bΦiΦk = −εijkSbi∇jS l
bΦkΦl = −2e3ΩΦiΦ

i (7.16)

and
1

3

√
gεabcΦa[Φb,Φc] = −2

3
Φ̂3 , (7.17)

– 46 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
5

with Φ̂i = SiaΦ
a, the action can be further simplified to

S =− π

g2
YM

∫
S3

d3xTr

[
− Φ̂(dΦ̂− 2iAΦ̂)− 2

3
Φ̂3 + 2iΦ̂F +AdA− 2

3
iA3

]
=− π

g2
YM

∫
S3

d3xTr

[
ÂdÂ− 2

3
iÂ3

]
.

(7.18)

As promised, this expression is precisely the 3d Chern-Simons action on S3 at (renormal-

ized) level

k = i
4π2R

g2
YM

= i
R

R6
, (7.19)

where we have restored the radius R of S5.

We emphasize that the action we obtain here should be interpreted as a real CS action

with gauge group G and an imaginary level rather than a complex CS action. In the

localization computation here, this reality property should arise as a consequence of the

reality properties of the bosonic fields AM that we have not yet specified (see the end of next

subsection). As explained in [69], the imaginary level does not need to be quantized and the

CS path integral is well-defined on particular contours determined by the gradient flow.45

By consistency with the results of [20], the path integral contour Γ from the localization

of 5d MSYM on S5 must be such that the partition function

Zpert
S5 =

∫
Γ
DÂ exp

[
− ik

4π

∫
Tr

(
ÂdÂ− 2

3
iÂ3

)]
(7.20)

correctly reproduces the matrix model in (1.1), which is simply an analytic continuation

of the usual CS matrix model. Moreover insertions of the 1
8 -BPS Wilson loops (3.1) on S5

simply correspond to ordinary Wilson loops

W 3d
G (K, R) =

1

dimR
trR Pei

∮
K Â (7.21)

inserted in the CS path integral (7.20).

We point out that (7.20) differs from the usual (analytically continued) CS path integral

in that the CS coupling k here does not receive further one-loop renormalization. This is a

consequence of the difference between the path integral measure DÂ here and that of the

analytically continued CS [64].

7.4 Comments on reality conditions

As usual, the idea of supersymmetric localization is to introduce a Q-exact deformation of

the original action,

S → S + t

∫
d5x
√
gTr δV , where V = (δεΨ)†Ψ , (7.22)

45It would be interesting to make explicit the relation between these contours of [69] and the contour Γ

inherited from the SUSY localization of the 5d MSYM.
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so that for t → ∞, the path integral localizes to solutions of the BPS equation δεΨ = 0.

For this to be well-defined, one needs to ensure that the contour of the path integral is

such that the localizing term δεV is δε-closed and has a positive real part.

Here our choice of localizing supercharge Q gives (7.6), which can be rewritten as

δεΨ =− i

2
FµνΓµνε− 1

2
[ΦI ,ΦJ ]ΓIJε− iDµΦIΓ

µIε+
i

R
(Γ̃iΦ

i + 2Γ̃aΦ
a)Λε+Kmνm .

(7.23)

It is reasonable to assume that the reality conditions of the bosonic fields in MSYM are

(Aµ)† = Aµ , (ΦI)
† = ΦI , (Km)† = Km , (7.24)

which were chosen such that the undeformed action (7.1) has a positive-definite real part.

Using the conjugation properties of the Killing spinor and auxiliary pure spinors,

ε∗ = Cε , ν∗2,3,4 = Cν2,3,4 , ν∗1,5,6,7 = −Cν1,5,6,7 , (7.25)

where C = C ⊗ Ĉ is the so(5)× so(5)R charge conjugation matrix,46 we obtain

−(δεΨ)†C =
i

2
FµνεΓ̃

µν +
1

2
[ΦI ,ΦJ ]εΓ̃IJ − iDµΦIεΓ̃

µI +
i

R
εΛ(Γ̃iΦ

i + 2Γ̃aΦ
a)

−
∑

m=2,3,4

Km(νm)T +
∑

m=1,5,6,7

Km(νm)T .
(7.26)

Now the localizing term

δεV = δε((δεΨ)†Ψ) = (δεΨ)†δεΨ + fermionic (7.27)

is by construction positive-definite. The invariance
∫
δ2
εV = 0 is also immediate since the

charge conjugation matrix C, the Killing spinor ε, and the auxiliary spinors νm are all

invariant under the bosonic symmetry generators that appear in δ2
ε :

L∂%ε+
1

4
ωijΓ

ijε = 0 , L∂%νm +
1

4
ωijΓ

ijνm = 0 . (7.28)

One may potentially worry about the violation of so(7) symmetry for the auxilary fields Km

by the localizing term due to the opposite signs in front of K2,3,4 and K1,5,6,7 in (7.26).47 In

our case, since δ2
ε does not induce any so(7) rotation, this does not spoil the δε invariance

of the localizing term.

The full set of BPS equations is then given by δεΨ = (δεΨ)† = 0. We solve these 32

equations as follows: 18 of them comes from contractions with εΓM (which are dependent

due to the identity (A.13)) and impose that the various fields are covariantly constant; 7

of the equations can be used to determine Km; the remaining 7 equations involve purely

46We emphasize C here should not be confused with the charge conjugation matrix for Spin(9, 1) spacetime

symmetry of the 10d SYM in the Lorentzian signature. In terms of the Spin(10) chiral spinor representation

used here, C is represented by a rank-5 gamma matrix.
47For readers more familiar with the 5d N = 1 localization literature, K2,3,4 here correspond to the DI

auxiliary fields in the 5d N = 1 vector multiplet, and K1,5,6,7 are related to the FA, F̄A auxiliary fields in

the hypermultiplet [20].
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the SYM fields and determine their profile in the bulk of B4 in terms of their boundary

values on S3.48

Demanding the fields to be smooth everywhere, we find that the BPS equations require

the boundary fields to satisfy

F − Φ̂ ∧ Φ̂
∣∣∣
S3

= dAΦ̂
∣∣∣
S3
. (7.29)

Consequently the twisted connection is flat

F̂ = 0 , (7.30)

where the Hodge star is defined with respect to the spherical metric on S3.49

In other words, with the naive reality condition on the MSYM fields, the BPS locus

of is dramatically constrained. In particular for G = U(1), this implies that the CS action

we found would vanish on the BPS locus, and our Wilson loops will only have trivial

expectation values, which contradicts with what we have found by perturbation theory in

section 4. This indicates that a refined analysis is needed for the BPS locus, with possibly

different reality conditions and/or possible complex saddles taken into account.50 We hope

to come back to this subtle issue in the future.

8 Discussion

To summarize, we have identified a protected sector of 1
8 -BPS Wilson loop operators in

the 5d MSYM theory on S5. They are defined along arbitrary loops that are contained in

a great S3 within S5. Motivated by the results in [20, 21] for the similarity between the

partition functions and circular Wilson loop expectation values in the 5d MSYM theory

and the 3d Chern-Simons theory on S3, we proposed that the sector of 5d MSYM theory

consisting of our more general 5d Wilson loop operators is described by a 3d Chern-Simons

theory with the same gauge group as in the 5d MSYM, but a level analytically continued

to an imaginary value determined by the 5d gauge coupling. In particular, the expectation

values of our Wilson loops in 5d are topological and compute knot invariants. Since the 5d

MSYM is related by compactification to the 6d (2, 0) theory on S1 × S5, our Wilson loops

lift to a sector of 1
8 -BPS surface operators in the (2, 0) theory, whose correlation functions

should also be topological according to our proposal.

We verified this proposal in the weak coupling expansion by explicit Feynman diagram

computations in the 5d MSYM on S5. In the strong coupling regime, we considered the

large N limit and invoked the holographic description in M-theory. The surface operators

48Here we focus on the smooth solutions to the BPS equations. There are also singular solutions to the

BPS equations δεΨ = (δεΨ)† = 0 with finite classical actions. They are 5d instantons wrapping a great S1

that links the S3 and their contributions to the S5 function are captured by (2.10).
49The same constraints arises in the localization computation of Pestun that identifies a 2d Yang-Mills

subsector of 4d N = 4 SYM on S4.
50A similar problem happened for the localization computation in [86] for 4d N = 2 SYM on S4. There

the naive reality condition also only gives trivial solutions to the BPS equations (when fields are assumed

to be smooth) and it lead to a contradiction with the expected dependence of the sphere partition function

on gYM.
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are described by probe M2-branes in AdS7 × S4. The 1
8 -BPS condition for the surface

operator maps to the requirement that the M2-branes wrap calibrated cycles, with the

precise calibration form determined by supersymmetry. Although in general we did not

determine the shapes of these calibrated M2-branes, we could nevertheless evaluate the

values of the on-shell action. The results match the prediction from the CS theory descrip-

tion. Finally, we presented the first steps toward a derivation of the 3d CS sector from

supersymmetric localization of the 5d MSYM. Assuming an implicit reality condition, we

saw how the 3d CS theory arises as a cohomological sector of the 5d theory, but we did

not present a complete proof. To complete the proof from localization, we would need a

better understanding of the admissible reality conditions of the fields of 5d MSYM and of

the contributions from any possible complex saddles to the localized partition function.

The holographic check of our proposal only focuses on the 6d uplift of 5d Wilson loops

in the fundamental representation of SU(N) and in that it is valid only at leading order in

1/N . It would be interesting to consider 6d surface operators coming from 5d Wilson loops

in other representations of the SU(N) gauge group. For instance, after the uplift to 6d,

the Wilson loops in symmetric or antisymmetric tensor product representations of SU(N)

correspond to wrapped M5-branes in AdS7 × S4 [87–89]. It would also be interesting to

go beyond the leading order in large N by including the effects of the backreaction of the

probe M2-branes and quantum corrections.

The (2, 0) SCFT is known to have a family of 3d CS sectors which are dual to certain

3d N = 2 gauge theories under 3d-3d dualities [37, 42, 47, 90]. Though the CS sectors

there were discovered by performing topological twists and the resulting CS theories appear

to be quite different from ours, it is not inconceivable that they are related by a deeper

structure in the 6d (2, 0) theory.

The 6d (2, 0) theory has a protected sector of 1
4 -BPS operators known as the chiral

algebra [49]. The chiral algebra is defined on a two-plane in the 6d spacetime and was

conjectured to coincide with a holomorphic (chiral) W-algebra Wg associated to an ADE

Lie algebra g. The vacuum character of the chiral algebra can be computed by a particular

limit of the S1×S5 partition function for the 6d (2, 0) theory and it matches with the known

W-algebra character [49]. This was refined in [48] by including additional surface defects

and codimension-2 defects that preserve the supercharge that defines the chiral algebra.

These defects act on the local operators on the chiral algebra plane and the corresponding

S1×S5 partition function with defect insertions compute characters of certain non-vacuum

representations of the chiral algebra [48]. It would be interesting to study how our more

general surface defects can further refine the chiral algebra sector.

Finally, there are additional observables in the 5d MSYM theory on S5 that are

mutually supersymmetric with respect to the 1
8 -BPS Wilson loops on the S3 submanifold.

In particular in appendix C, we have introduced a family of 1
4 -BPS Wilson loops that

extend along the S1 fibers over the base B4. Insertions of such Wilson loops in the 5d

MSYM path integral would modify the localization computation by introducing point like

sources on B4. This suggests that there exists a generalization of the topological 3d CS

sector that we have proposed here for the 5d MSYM theory, given by a certain 4d effective

theory with both point and loop operators. It would be very interesting to investigate this

construction further.
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A Spinor conventions

A.1 5d spacetime and internal gamma matrices

Here we record our 5d spinor conventions. In this subsection all indices are taken to be flat.

We denote the 5d spacetime gamma matrices by γµ and the internal so(5)R gamma

matrices by γ̂I . They satisfy the usual Clifford algebra

{γµ, γν} = 2δµν14, {γ̂I , γ̂J} = 2δIJ14 . (A.1)

More explicitly, we choose these gamma matrices to be

γ1 = σ1 ⊗ σ1 , γ2 = σ2 ⊗ σ1 , γ3 = −σ3 ⊗ σ1 , γ4 = −12 ⊗ σ2 , γ5 = 12 ⊗ σ3 . (A.2)

and

γ̂1 = σ3 ⊗ σ1 , γ̂2 = 12 ⊗ σ2 , γ̂3 = −σ1 ⊗ σ1 , γ̂4 = −σ2 ⊗ σ1 , γ̂5 = 12 ⊗ σ3 . (A.3)

Note that these gamma matrices are all hermitian. We define the charge conjugation matrix

C for the spacetime so(5) spinor

C = iσ2 ⊗ σ3 , (A.4)

which satisfies

C2 = −1 , CT = −C , (Cγµ)T = −Cγµ , (Cγµν)T = (Cγµν) . (A.5)

Similarly for so(5)R spinors we have

Ĉ = iσ2 ⊗ σ3 , (A.6)

which satisfy the similar set of conditions as above with internal gamma matrices. The

default position of the spinor indices are

(γµ)αβ , (γ̂I)A
B, Cαβ , ĈAB . (A.7)
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A.2 10d gamma matrices

The Euclidean 10d gamma matrices for the chiral spinor of so(10) satisfy

{ΓM , Γ̃N} = 2δMN116 (A.8)

and can be chosen to be symmetric 16 × 16 matrices as

Γµ = i(Cγµ)⊗ Ĉ , ΓI = −C ⊗ (Ĉγ̂I) ,

Γ̃µ = −i(γµC−1)⊗ Ĉ−1 , Γ̃I = −C−1 ⊗ (γ̂IĈ
−1) .

(A.9)

In particular

Λ = −iΓ8Γ̃9Γ10 = iC ⊗ Ĉγ̂12 . (A.10)

The higher rank Gamma matrices are defined as usual by

ΓMN ≡ Γ̃[MΓN ] , Γ̃MN ≡ Γ[M Γ̃N ] ,

ΓMNP ≡ Γ[M Γ̃NΓP ] , Γ̃MNP ≡ Γ̃[MΓN Γ̃P ] ,

ΓMNPQ ≡ Γ̃[MΓN Γ̃PΓQ] , Γ̃MNPQ ≡ Γ[M Γ̃NΓP Γ̃Q] ,

ΓMNPQR ≡ Γ[M Γ̃NΓP Γ̃QΓR] , Γ̃MNPQR ≡ Γ̃[MΓN Γ̃PΓQΓ̃R] .

(A.11)

In particular ΓMNP , Γ̃MNP are anti-symmetric and ΓMNPQR, Γ̃MNPQR are symmetric.

We also have

(ΓMN )t = −Γ̃MN , (ΓMNPQ)t = Γ̃MNPQ . (A.12)

Below we list some useful Gamma matrix identities,

ΓM(αβΓMγ)δ = 0 (A.13)

and

ΓPQΓMN = −2δM[P δ
N
Q] − 4δ

[M
[P ΓQ]

N ] + ΓPQ
MN ,

ΓMΓNP = 2δM [NΓP ] + ΓMNP ,

ΓABCΓMN = ΓABCMN − 3(δN [AΓBC]M − δM [AΓBC]N ) + 6δM [AΓBδC]N .

(A.14)

A.3 Explicit su(4|2) Killing spinors

A basis for the Killing spinors solving (2.6), in the stereographic coordinates, takes the form

ε(QαA) =eΩ/2

(
1− i

2r
e−Ωxµγµ

)
ζ(α) ⊗ ξ(A) ,

ε(SαA) =eΩ/2

(
1 +

i

2r
e−Ωxµγµ

)
Cζ(α) ⊗ Ĉξ(A) ,

(A.15)

where ζ and ξ are constant spinors of the spacetime so(5) rotation symmetry and of so(5)R,

respectively. More explicitly

ζ(1) = ζ(1) =


1

0

0

0

 , ζ(2) = ζ(2) =


0

1

0

0

 , ζ(3) = ζ(3) =


0

0

1

0

 , ζ(4) = ζ(4) =


0

0

0

1

 ,

(A.16)
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and

ξ(1) = ξ(1) =

(
1

0

)
⊗

(
1

0

)
, ξ(2) = ξ(2) =

(
0

1

)
⊗

(
0

1

)
. (A.17)

B Supersymmetry algebras

B.1 6d (2, 0) superconformal algebra osp(8∗|4)

The 6d (2, 0) superconformal algebra osp(8∗|4) is generated by the Poincare supercharges

QαA and the superconformal charges SB
β , where A,B are indices for the fundamental

representation of sp(4)R symmetry and α, β are indices for the chiral and anti-chiral spinor

representations of the Lorentz algebra so(5, 1) (or equivalently the fundamental and anti-

fundamental representations of sl(4)).51 The commutation relations are given by

{QαA, QβB} = ΩABPαβ ,

{SAα, SBβ} = ΩABK
αβ ,

{QαA, SBβ} = ΩAB

(
Mα

β +
1

2
δβαH

)
+ δβαRAB ,

[Pαβ ,K
γδ] = 4δ

[γ
[βMα]

δ] + δ
[γ
[αδ

δ]
β]H ,

[Pαβ ,Mγ
δ] = 2δδ[αPβ]γ +

1

2
δδγPαβ ,

[Kαβ ,Mγ
δ] = − 2δ[α

γ K
β]δ − 1

2
δδγK

αβ ,

[Mα
β ,Mγ

δ] = − 2δδ[αMγ]
δ ,

[RAB, RCD] = 2ΩA(CRD)B + 2ΩB(CRD)A ,

[QαA, RBC ] = 2ΩA(BQαC) ,

[SA
α, RBC ] = 2ΩA(BSC)

α ,

[H,QαA] =
1

2
QαA ,

[H,SA
α] = − 1

2
SA

α ,

(B.2)

51In [20], these supercharges are denoted by Q±±±±± and S±±±±± subjected to the chiral and anti-chiral

constraint respectively for their spacetime spinor representations. Here the ± are usual 2d spinor indices

for the so(2) subgroups. For reader’s convenience, the translation these notations is

lower α : (1, 2, 3, 4) = (+ +−,+−+,−−−,−+ +) ,

upper β : (1, 2, 3, 4) = (−−+,−+−,+ + +,+−−) ,

lower A : (1,2,3,4) = (++,−+,−−,+−) ,

upper B : (1,2,3,4) = (−−,+−,++,−+) .

(B.1)
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where ΩAB is the skew-symmetric invariant tensor of sp(4)R with Ω13 = Ω42 = 1.52 At is

useful to represent these commutation rules using the oscillator representation [91] in terms

of four pairs of fermionic oscillators cα, c̃
β , and four bosonic oscillators aA which satisfy

{cα, c̃β} = δβα , [aA, aB] = ΩAB , (B.3)

and then

QαA = cαaA, SA
α = c̃αaA ,

Pαβ = cαcβ , Kαβ = c̃αc̃β , Mα
β = cαc̃

β − 1

4
δβαcγ c̃

γ , H =
1

2
cαc̃

α ,

RAB = a(AaB) .

(B.4)

B.2 5d supersymmetry algebra su(4|2)

The superalgebra osp(8∗|4) contains a maximal subalgebra

osp(8∗|4) ⊃ su(4|2)⊕ u(1) . (B.5)

Each embedding of the su(4|2) algebra into osp(8∗|4) can be specified by a choice of the

u(1) generator that commutes with su(4|2). As mentioned in the main text, for the choice

H − R13 +R24

2
, (B.6)

the generators of su(4|2) are:

{Mα
β ; H − (R13 +R24); R13 −R24, R12, R34; Qα1, Qα2; Sα3, S

α
4} , (B.7)

or after raising the indices with ΩAB with Ω13 = Ω42 = 1,

{Mα
β ; H − (R1

1 +R4
4); R1

1 −R4
4, R1

4, R4
1; Qα1, Qα4; Sα1, Sα4} . (B.8)

In the same order as written above, they are the so(6)× u(1)R × su(2)R generators as well

as the supersymmetry generators respectively. We can now think about the 1,4 indices as

the su(2)R doublet indices.

In the main text, for notational convenience we sometimes denote the so(6) rotation

and su(2)R× u(1)R generators differently by Mij , Rab, and R12 respectively, making mani-

fest the vector indices. The relation between the two notations is as follows. For the so(6)

rotation generators, we have

Mij =i(τij)α
βMβ

α , (B.9)

where τij = τ[iτ̃j] and τi, τ̃j with i, j = 1, 2, . . . , 6 are so(6) gamma matrices in the chiral

and anti-chiral bases respectively. In particular

M12 =M1
1 +M2

2 −M3
3 −M4

4 ,

M34 =M1
1 −M2

2 −M3
3 +M4

4 ,

M56 = −M1
1 +M2

2 −M3
3 +M4

4 .

(B.10)

Similarly for the su(2)R × u(1)R generators, we have

R12 = R1
1 +R4

4 , R34 = R1
1 −R4

4 , R35 = iR1
4 − iR4

1 , R45 = R1
4 +R4

1 .

(B.11)

52Here we adopt the natural convention that identifies the 6d charge conjugation matrix ΩAB with the

5d charge conjugation matrix ĈAB .
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C Supersymmetric Wilson loops along the fiber

In addition to the Wilson loops discussed in the main text that are defined on S3 transverse

to Killing vector field vµ in δ2
ε , there are also supersymmetric Wilson loops along the

direction of vµ.53 In other words, the Wilson loops lie along the S1 fibers over the base

B4. In particular, they are invariant under a transverse so(4) rotation on B4.

These Wilson loops take the form

WR(K) =
1

dimR
trR P exp

∮
i

(
Aµ +

ẋµ
ẋ · v

vI(x)ΦI

)
dxµ , (C.1)

with vI ≡ −ε̄γ̂Iε. Here δεWR(K) = 0 follows from the identity

ivµε̄γµ − vI ε̄γ̂I = 0. (C.2)

Following the similar analysis as in section 3.1, one can check that (C.1) actually

preserves the following 4 supercharges

Q1
L = Q14 − S21 , Q2

L = Q11 + S24 , Q2
L = Q21 − S14 , Q1

L = Q24 + S11 ,

(C.3)

and they are thus 1
4 -BPS. The supercharges QαL and QβL are doublets that transform in the

same way under so(3)R and the so(3)l subgroup of so(4) transverse rotations, while they are

singlets under the so(3)r subgroup of so(4). They satisfy the following anti-commutation

relations
{QαL,Q

β
L} = {QαL,Q

β
L} = 0 ,

{QαL,Q
β
L} = 2εαβ(M12 +R12) .

(C.4)

Therefore the full symmetry preserved by the sector formed by all Wilson loops (C.1) is[
su(1|1)⊕ su(1|1)

u(1)
o (so(3)R × so(3)l)

]
⊕ so(3)r , (C.5)

where the u(1) factor in the quotient is generated by M12 +R12.

A general Wilson loop of the type (C.1) will be 1
4 -BPS but is only invariant under a

subalgebra of the bosonic part of (C.5). The special Wilson loop along the great S1 fiber

at the center of B4 (θ = π
2 ) preserves the full symmetry (C.5).

D Analysis of local counter terms

D.1 Curve geometry on S3

For a curve γ(s) parameterized by the proper length s relative to a reference point, the

Frenet-Serret equations on curved space take the form

d

ds
γ(s) = t ,

D

Ds
t = κn ,

D

Ds
n = −κt+ τb ,

D

Ds
b = −τn , (D.1)

53It would be interesting to systematically classify the supersymmetric loop operators in 5d MSYM

following [92].
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where (t, n, b) are the tangent, normal, and binormal unit vectors, κ is the curvature and

τ is the torsion of the curve, and D
Ds denotes the covariant derivative along the curve

D
Ds ≡ t

α∇α. These equations uniquely determine t; n is also uniquely determined by (D.1)

and by the requirement that κ > 0; and b is uniquely determined by (D.1) together with a

certain handedness condition for the frame: for a right-handed frame, we have

εαβγt
αnβbγ = 1 , (D.2)

where α, β, . . . are tangent space indices of S3 and εαβγ is an anti-symmetric tensor nor-

malized such that ε123 =
√
g. Consequently, while we always have κ > 0, the torsion τ can

have either sign.

Standard discussions of submanifolds involve the extrinsic curvature, which for a curve

we can denote by KA
curve, where A runs over the two transverse directions. The curvature

κ is expressed in terms of the extrinsic curvature as κ =
√
KA

curveK
A
curve, and hence it is

framing independent. The torsion τ is a frame-dependent quantity. It is easy to verify that

the definition of torsion given in (4.15) for a general normal vector field agrees with the τ

defined here, provided we use the n of the Frenet-Serret frame as the normal vector field.

In embedding coordinates, the Frenet-Serret equations take the form:

X ′ = t ,

t′ +X = κn ,

n′ = −κt+ τb ,

b′ = −τn ,

(D.3)

where we relaxed the unit speed condition and defined f ′ ≡ ḟ

|Ẋ| for the reparameterization-

invariant derivative (for example, X ′′ = 1

|Ẋ|
d
dt

Ẋ

|Ẋ|) as in the main text. If we parameterize

the S3 using the stereographic projection from the North pole, and if the handedness condi-

tion (D.2) holds in this parameterization, then the handedness condition in the embedding

space is

εijkltinjbkXl = 1 , (D.4)

with i, j, k, l being tangent indices in R4 and ε1234 = 1.

In terms of the embedding coordinates, one can derive the explicit expressions for the

curvature and torsion:

κ2 = (X ′′)2 − 1 ,

τ = − 1

κ2
εijklXiX

′
jX
′′
kX
′′′
l

(D.5)

by starting with the r.h.s. of each equation in (D.5) and using (D.3) repeatedly.

D.2 On finite local counter terms

In the main text we worked with a minimal holographic renormalization scheme. In this

appendix, we analyze what local counter terms are allowed based on dimensional analysis.
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Of course, counter terms should respect both SUSY and Weyl invariance (or restore them,

if the regularization scheme breaks them), however here we do not make use of these

additional constraints.

We want to use the knowledge that the theory is secretly 6-dimensional, and the counter

terms should respect the full 6-dimensional coordinate invariance. We also want to write

down a counter term action that only depends on the intrinsic geometry of the surface

operator that becomes the Wilson loop upon dimensional reduction. First, we need to

understand dimensional analysis, hence we temporarily restore the radii of the S5 and S1,

R and R6, and consequently we have
∑

iX
2
i = R2. We want to write down a dimensionless

local action. The energy dimensions of the different quantities that we are working with

are the following:

[Xi] = −1 , [τ ] = −1 , [Θa] = 0 , [t] = −1 , [R,R6] = −1 ,

[∇α] = 1 , [Aµ] = 1 , [γαβ ] = 0 , [RABCD] = 2 , [KA
αβ ] = 1 , (D.6)

where Aµ is the background R-symmetry gauge field, RABCD is the Riemann tensor where

A,B, · · · = 1, . . . , 4 label transverse directions, and KA
αβ is the extrinsic curvature where

α, β, · · · = 1, 2 label tangential directions. We would like to construct the most general

gauge and diffeomorphism invariant local action. The ingredients that we can use are the

Riemann tensor of the ambient space, S5 × S1, the extrinsic curvature, and the intrinsic

Ricci scalar R of the string world sheet. A choice of independent terms is

S
(finite)
counter = τM2L

3

[ ∫
d2ξ
√
γ

(
a1K

A
αβK

A,αβ + a2K
AKA + a3Ricci

+ a4R
A
A + a5R

AB
AB + a6DαΘaDαΘa

)]
,

(D.7)

where KA = KA,α
α , Dα = ∇α − iAα, and RAB and Ricci are the Ricci tensor and Ricci

scalar of the ambient space. The intrinsic Ricci scalar R or the Riemann tensor with

tangential indices do not make an appearance, as they are not linearly independent of the

rest of the tensors.54,55

54Concretely, Gauss’ equation implies that the intrinsic Ricci scalar is R = Ricci− 2RAA +KA
αβK

A,αβ −
KAKA, and other contractions of the Riemann tensor with tangential indices are given as

Rαα = Ricci−RAA ,
RαAαA = RAA −RABAB ,

Rαβαβ = Ricci− 2RAA +RABAB .

(D.8)

55Imposing Weyl invariance alone cannot fix the form of S
(finite)
counter. Combining the tensors in (D.7) into

combinations that are invariant under Weyl rescalings, gµν → e2ω gµν , we still have four independent

structures:

τM2L
3

[∫
d2σ
√
γ

(
â1

(
KA
αβK

A,αβ − 1

2
KAKA

)
+ â2R+ â3W

AB
AB + â4DαΘaDαΘa

)]
, (D.9)

where the combination of the extrinsic curvatures is known as the Willmore energy, R is the Ricci scalar of

the induced metric, and WAB
AB is the Weyl tensor projected onto the transverse space. Once we specialize

to S5 × S1 and the 1/8 BPS loops, only the Willmore energy contributes. It would be interesting to

understand if these terms are supersymmetric.
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Let us evaluate this finite counter term action on the 1/8-BPS surface operators of the

6d theory that wrap the M-theory circle. From the 5d perspective we get a Wilson loop

characterized by the data of curve geometry on S3 reviewed above in appendix D.1, and

in terms of this data the resulting expression is:

S
(finite)
counter =2πR6 τM2L

3

∫
dt
∣∣∣Ẋ∣∣∣ (b1κ2 + b2Ricci+ b3

(
Θ′
)2)

, (D.10)

with b1 = a1 + a2, b2 = a3 + 3
5a4 + 3

10a5, b3 = a6, where we used that S5 is a maximally

symmetric space. For the BPS operators we consider, the Θa are determined from the

first equation in (6.43). An explicit computation starting with this equation and using the

identities (3.17) for the ’t Hooft symbol gives(
Θ′
)2

= κ2 = (X ′′)2 − 1

R2
, (D.11)

hence we only have two independent counter terms at constant order. Note that upon

setting R = 1 (which implies Ricci = 20 for S5 × S1), the Ricci term becomes the length

term we denoted L(K) in the main text.

Had we started from the perspective of a Wilson loop in S5, setting the overall factor

to 2πR6 =
g2
YM
2π (as opposed to an arbitrary function of gYM) would require a nontrivial

justification. If such a justification could be provided, then from the perspective of the

curve
∫
dt
∣∣Ẋ∣∣τ and SWZ[Θ] may look admissible counter terms.56 Neither of these terms

is completely local however, as was discussed at various points in the paper:
∫
dt
∣∣Ẋ∣∣τ

introduces framing dependence, while the value of SWZ[Θ] depends on the extension Θ(t)

into a (topological disk).57 Thus, a careful argument purely in 5d could rule them out

as allowed local counter terms. The higher dimensional origin of the counter term action

straightforwardly sets their coefficients to zero.

E 5d SYM in 10d notation

In flat space, the action of the N = 2 SYM theory in 5d can be obtained by dimensionally

reducing the 10d SYM action. In 10d, the SYM Lagrangian takes the simple form

L =
1

2g2
YM

tr

[
1

2
FMNF

MN + ΨTΓMDMΨ

]
, (E.1)

where Ψ is a 16-component Majorana-Weyl spinor, DM = ∂M − iAM is the covariant

derivative and FMN = i[DM , DN ] = ∂MAN − ∂NAM − i[AM , AN ] is the field strength of

the 10d gauge field, with M,N = 0, . . . , 9 being 10d space-time indices raised and lowered

with the mostly plus signature metric ηMN = diag{−,+, . . . ,+}.58 The 5d N = 2 SYM

56Adding them to the action would lead to an ambiguous final answer for the Wilson loop expecta-

tion value.
57Also SWZ[Θ] only exists if Θa is restricted to S2 (instead of taking values on S4). Because of the

Graham-Witten anomaly of non-BPS loops (discussed in section 6.7) the finite counter terms only make

sense for BPS loops, hence imposing the supersymmetric condition that Θa lies on S2 is reasonable.
58The fields AM are taken to be hermitian here in contrary with the convention of [15, 59].
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Lagrangian is the same as (E.1), with the only difference being that the fields do not

depend on 5 of the 10 directions. We take these directions to be 6, 7, 8, 9, 0, and denote the

components of the gauge field in these directions by Φ,59

ΦM = AM , M = 6, 7, 8, 9, 0 , (E.2)

in order to emphasize that they are scalar fields in 5d.

The action for 5d SYM on S5 can be obtained by covariantizing the expression (E.1)

and adding curvature corrections. These curvature corrections are fixed by demanding

invariance under the N = 2 supersymmetry algebra on S5, which is su(4|2). The bosonic

part of this algebra consists of the su(4) ∼= so(6) rotational symmetry of S5 as well as an

su(2)R⊕u(1)R R-symmetry. The fermionic generators are parameterized by 16-component

Majorana-Weyl spinors ε of the same chirality as Ψ, obeying the Killing equation

Dµε =
1

2R
Γ̃µΛε , (E.3)

where Λ is a constant matrix with real entries that obeys Λ2 = −1. We take Λ = Γ890 as

in [59]. The S5 metric is given by

ds2 = e2Ωdx2, eΩ ≡ 1

1 + x2

4R2

. (E.4)

in the stereographic coordinates xµ. The explicit solutions of the equation (E.3) in the

standard frame are

ε =e
Ω
2

(
1 +

1

2R
xµΓ̃µ̂Λ

)
εs , (E.5)

with εs an arbitrary Majorana-Weyl constant spinor, and thus eq. (E.3) indeed has a 16-

parameter family of solutions, as appropriate for the number of fermionic generators of

su(4|2). The constant matrix Λ breaks the so(5) R-symmetry of the flat space theory (E.1)

down to the su(2)R⊕u(1)R R-symmetry mentioned above, inducing a split of the five scalar

fields ΦM , M = 6, 7, 8, 9, 0, into two groups. With the choice Λ = Γ890, the two groups

are Φi, with i = 6, 7 (which are singlets of su(2)R and have charges ±1 under u(1)R), and

Φa, with a = 8, 9, 0 (which form a triplet of su(2)R and have charge 0 under u(1)R). See

table 1.

The scalars Φa and Φi then appear asymmetrically in the curvature corrections to the

Lagrangian and to the SUSY transformation rules. For the Lagrangian, we have [22, 59]60

LYM =
1

2g2
YM

tr

[
1

2
FMNF

MN + ΨTΓMDMΨ− 1

2R
ΨTΛΨ

+
3

R2
ΦiΦi +

4

R2
ΦaΦa +

2i

3R
εabc[Φa,Φb]Φc

]
,

(E.7)

59In the main text, for notational convenience, we have used Φi to denote the scalars Φ6,7 and Φa to

denote the scalars Φ8,9,10 where Φ10 = iΦ0.
60The path integral for 5d MSYM is defined by

ZYM =

∫
DADΨe−

∫
d5x
√
gL. (E.6)
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with ε890 = −ε890 = −1. The action is invariant under the SUSY transformations

δεAM = iεTΓMΨ ,

δεΨ = − i
2
FMNΓMNε− 2i

5
ΓµiΦ

iDµε− 4i

5
ΓµaΦ

aDµε .
(E.8)

It can be checked that the anti-commutator of two SUSY transformations obeys the rela-

tions given by the su(4|2) algebra provided (as usual) that the fermion equations of motion

are obeyed.

We note that the kinetic term for Φ0 has the opposite sign in (E.7). To define a con-

vergent path integral, we take its Wick rotation Φ0 = iΦ10 and also make the replacement

Γ0 = −iΓ10, Γ̃0 = −iΓ̃10. From now on, we will work with the Wick rotated action for the

5d MSYM which can be put in the conventional form using the decomposition of the 10d

Gamma matrices into the 5d ones in appendix A. In particular in the Euclidean theory

Λ = iC ⊗ Ĉγ̂12.

F Differential geometry on S5

We write S5 in the stereographic coordinates as

ds2 =
dx2(

1 + x2

4R2

)2 , (F.1)

where x represents the coordinate of a point in R5, and dx2 is the line element on flat R5.

Alternatively, we can make the S1
% fibration over D4 obvious by writing

ds2 = R2(dϑ2 + sin2 ϑd%2 + cosϑ2dΩ2
3) , (F.2)

with ϑ ∈ [0, π2 ]. The embedding coordinates can be related to the stereographic coordinates

via (3.5) and to the coordianates in (F.2) through

X1 =R sinϑ sin % ,

X2 =R sinϑ cos % ,

X3 =R cosϑ sin ξ sin ζ sinφ ,

X4 =R cosϑ sin ξ sin ζ cosφ ,

X5 =R cosϑ sin ξ cos ζ ,

X6 =R cosϑ cos ξ ,

(F.3)

where ϑ ∈ [0, π2 ] and ξ, ζ ∈ [0, π] and %, φ ∈ [0, 2π].

G Details of the localization computation

Here we provide some details for the manipulations of the SYM action (7.14) on the BPS

locus on B4. For notational simplicity we will set R = 1 and only restore units in the end.
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We define for convenience

Γ% ≡ −i
Γµv

µ

vµvµ
, (G.1)

which satisfies

εΓ%ε = 1 , (G.2)

and at % = 0, we have

Γ% =
i

sinϑ
Γ1̂ . (G.3)

From the BPS equation (7.6), we have on the BPS locus

KmKm = −
(

1

2
FMNΓMNε−(Γ̃iΦ

i+2Γ̃aΦ
a)Λε

)T
Γ%

(
1

2
FMNΓMNε−(Γ̃iΦ

i+2Γ̃aΦ
a)Λε

)
=

1

4
FMNFPQεΓ̃

MNΓ%Γ
PQε+ ΦiΦ

i + 4ΦaΦ
a − FMNεΓ̃

MNΓ%(Γ̃jΦ
j + 2Γ̃bΦ

b)Λε .

(G.4)

Using the fact that on the BPS locus all fields are covariantly constant in %, we drop all %

derivatives in (G.4) and evaluate the integrand at % = 0.61 Using the explicit form of the

Killing spinor ε, we obtain

FMNFPQεΓ̃
MNΓ%Γ

PQε = −2FMNF
MN +

i

sinϑ
FMNFPQεΓ

MNPQ1̂ε ,

FMNεΓ̃
MNΓ%Γ̃jΦ

jΛε =
i

sinϑ
FMNΦjεΓ̃

1̂MNjΛε− 2i

sinϑ
FMjΦ

jεΓ̃M 1̂Λε ,

FMNεΓ̃
MNΓ%Γ̃aΦ

aΛε =
i

sinϑ
FMNΦaεΓ̃

1̂MNaΛε− 2i

sinϑ
FMaΦ

aεΓ̃M 1̂Λε

(G.5)

on B4. Here, we again repeatedly used the fact that all fields are covariantly constant in %.

Hence

KmKm =− 1

2
FMNF

MN + ΦiΦ
i + 4ΦaΦ

a +
i

4 sinϑ
FMNFPQεΓ

MNPQ1̂ε

− i

sinϑ
FMNΦjεΓ̃

1̂MNjΛε+
2i

sinϑ
FMjΦ

jεΓ̃M 1̂Λε

− 2i

sinϑ
FMNΦaεΓ̃

1̂MNaΛε+
4i

sinϑ
FMaΦ

aεΓ̃M 1̂Λε ,

(G.6)

and the bosonic action (7.14) becomes

S =
π

g2
YM

∫
B4

√
gB4d4x sinϑ tr

[
4ΦiΦi + 8ΦaΦa −

2

3
εabc[Φa,Φb]Φc

+
i

4 sinϑ
FMNFPQεΓ

MNPQ1̂ε− i

sinϑ
FMNΦjεΓ̃

1̂MNjΛεε

+
2i

sinϑ
FMjΦ

jεΓ̃M 1̂Λ− 2i

sinϑ
FMNΦaεΓ̃

1̂MNaΛε+
4i

sinϑ
FMaΦ

aεΓ̃M 1̂Λε

]
.

(G.7)

61A careful analysis shows that the % derivatives all cancel on the BPS locus. Explicitly the % derivative

terms are

2FM%F
M
QεΓ

Qε− 2FM%ΦjεΓ
M Γ̃jΛε− 4FM%ΦaεΓ

M Γ̃aΛε = 2iFi%F
i
Qv

Q − 2Fi%ΦjεΓ̃
ijΛε− 4Fb%ΦaεΓ̃

abΛε

= 2Fi%ω
ijΦj − 2Fi%Φjω

ij = 0 .
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In order to show that the above integrand is a total derivative, we further compute

1

4
FMNFPQεΓ

MNPQ1̂ε

= εΓµIνJ 1̂εDµ tr(ΦIFνJ) +
1

3
εΓµIJK1̂εDµ tr(ΦIFJK)

+ εΓµAνρ1̂εDµ tr(ΦIFνρ) +
1

2
εΓµνρσ1̂εDµ tr

(
AνFρσ +

2i

3
AνAρAσ

)
=Dµ

(
εΓµIνJ 1̂ε tr(ΦIFνJ) +

1

3
εΓµIJK1̂ε tr(ΦIFJK)

+ εΓµIνρ1̂ε tr(ΦIFνρ) +
1

2
εΓµνρσ1̂ε tr

(
AνFρσ +

2i

3
AνAρAσ

))
+ 3εΛΓaνi1̂ε tr(ΦaFνi − ΦiFνa) +

4

3
sinϑεabc tr(ΦaFbc)

+ 2εΛΓaνρ1̂ε tr(ΦaFνρ) .

(G.8)

In addition, we have

− FMNΦjεΓ̃
1̂MNjΛε− 2FMNΦaεΓ̃

1̂MNaΛε

=− 2FµaΦjεΓ̃
1̂µajΛε− 2 sinϑεabcΦaFbc + 4FµiΦaεΓ̃

1̂µaiΛε− 2FµνΦaεΓ̃
1̂µνaΛε ,

(G.9)

and similarly

DµTr (ΦjΦjεΓ̃
µ1̂Λε) = 2Tr (FMjΦ

j)εΓ̃M 1̂Λε− 4i sinϑTr (ΦjΦj) , (G.10)

and

−DµTr (ΦiΦaεΓ̃
1̂µaiΛε) = −Tr (FµaΦi)εΓ̃

1̂µaiΛε− Tr (FµiΦa)εΓ̃
1̂µaiΛε . (G.11)

Combining the five equations above, we can simplify the bosonic action (G.7) to

S =
iπ

g2
YM

∫
B4

√
gB4d4xDµTr

[
εΓµIνJ 1̂ε(ΦIFνJ) +

1

3
εΓµIJK1̂ε(ΦIFJK)

+ εΓµIνρ1̂ε(ΦIFνρ) +
1

2
εΓµνρσ1̂ε

(
AνFρσ +

2i

3
AνAρAσ

)
+ ΦjΦjεΓ̃

µ1̂Λε

+ 2ΦaΦaεΓ̃
µ1̂Λε− ΦiΦaεΓ̃

1̂µaiΛε

]
,

(G.12)

which is indeed a total derivative on B4 and integrates to the boundary S3 at ϑ = 0,

S =
iπ

g2
YM

∫
S3

√
gS3d3xnµTr

[
εΓµaνb1̂ε(ΦaFνb) +

1

3
εΓµabc1̂ε(ΦaFbc) + εΓµaνρ1̂ε(ΦaFνρ)

+
1

2
εΓµνρσ1̂ε

(
AνFρσ +

2i

3
AνAρAσ

)
+ 2ΦaΦaεΓ̃

µ1̂Λε

]
,

(G.13)

where nµ is the unit normal to the boundary S3. In the above equation, we have thrown

away the last term from (G.12) because it vanishes at ϑ = 0 and also the third to last term

in (G.12) because Φ6,7 decouple (they have a quadratic action and can be integrated out).
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The above expression can be further simplified using the following identities at ϑ = 0

nµεΓ̃
µ1̂Λε = −i , nµεΓ̃

µ3451̂ε =
i

cos6 ξ
2

, nµεΓ
µ8901̂ε = −1 , nµ = −δµ2 cos2 ξ

2
,

(G.14)

and the metric on S3 which is determined by the conformal factor

e2Ω =
1(

1 +
∑5
i=3 x

2
i

4

)2 = cos4 ξ

2
.

(G.15)

With all these ingredients, the action on S3 becomes

S =− iπ

g2
YM

∫
S3

d3x
√
gS3 Tr

[
εΓ2̂ajb1̂ε(ΦaFjb) +

1

3
εΓ2̂abc1̂ε(ΦaFbc) + εΓ2̂ajk1̂ε(ΦaFjk)

+
1

2
εΓ2̂jkl1̂ε

(
AjFkl +

2i

3
AjAkAl

)
+ 2ΦaΦaεΓ̃

2̂1̂Λε

]
=

π

g2
YM

∫
S3

d3x e3ΩTr

[
εabcS j

c(ΦaFjb) +
2

3
εabc(ΦaΦbΦc)− ie−3ΩεijkSai (ΦaFjk)

− 1

2
e−3Ωεjkl

(
AjFkl +

2i

3
AjAkAl

)
+ 2ΦaΦa

]
,

(G.16)

where in the 2nd equality we used the tensor Sai defined in (3.13) and the following

identities,

εΓ1̂2̂3̂4̂5̂ε = −i , εΓ1̂2̂8̂9̂1̂0ε = 1 , εΓ1̂2̂jabε = −iεabcS j
c , e3ΩεΓ1̂2̂jkaε = εijkSai . (G.17)
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