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1 Introduction

Integrability plays a key role in quantitative understanding of the planar AdS5/CFT4 cor-

respondence and strongly coupled quantum field theories (QFT). For a review, see [1] and

references therein. Exploration of integrability based methods to studying non-perturbative

properties of QFT is one of the research focuses in theoretical physics. Integrable quantum

field theories in spacetime dimension higher than two are quite rare, among which the

planar N = 4 super Yang-Mills (SYM) theory in four-dimensional spacetime is the most

famous example.

N = 6 superconformal Chern-Simons in three-dimensional spacetime is another exam-

ple [2]. The integrable structure established in the ABJM theory mainly focuses on single

trace operators which correspond to closed spin chains in field theory or closed strings in the

gravity dual theory [3–6]. See review [7] and references therein. In our previous paper [8],

we studied the anomalous dimension problem of determinant like operators in ABJM the-

ory under the inspiration of the fact that integrable structure can be found in SYM open

spin chain constructed from giant graviton [9, 10]. We have computed the anomalous

dimension matrix of the following determinant like operators up to two-loop order

OW = εa1...aN ε
b1...bN (A1B1)a1

b1
. . . (A1B1)

aN−1

bN−1
W aN
bN
, (1.1)
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where

W = (A2B2) · · · (χ) · · · (A2B2). (1.2)

The determinant like operators in the ABJM theory can be viewed as an open spin

chain with the Hamiltonian given by their anomalous dimension matrix. The gravity dual

description of these operators is open strings attached to the giant graviton–D4-brane

wrapping a CP2 inside CP3, while the operator with W = A1B1 is dual to the D4-brane

itself [11, 12]. Strong evidence on the integrability of this open spin chain has been found

in paper [8] based on the coordinate Bethe ansatz approach and a much more solid proof

was given in [13]. In this paper, we want to push these results to higher loops to obtain

the asymptotic Bethe ansatz equations. We do this by the assumption of integrability still

survives at higher loops. We choose W = (A2B2)L as our open spin chain vacuum, and the

field χ is an elementary excitation belongs to either A-particles or B-particles and both are

transformed in the four-dimensional representation of centrally extended su(2|2) algebra.

At the boundaries, the symmetry preserved by the bulk breaks down to su(1|2).

The ABJM giant graviton open spin chain has two types of particle which we named

A-particle and B-particle and are charge conjugate to each other. The bulk dispersion

relation is

ε(p) =
1

2

√
1 + 16h2(λ) sin2

(p
2

)
(1.3)

where the h(λ) is the so called interpolation function with the weak coupling expan-

sion [14–16]

h(λ) = λ− π2

3
λ3 +O(λ5), (1.4)

and in paper [17], the authors conjectured a exact formula of h(λ) by comparing the quan-

tum spectral curve method [6] and supersymmetric localization. The anomalous dimension

of determinant like operator is related to the bulk energy of the spin chain as

∆ =

KI
A∑

j=1

(
ε
(
pAj
)
− 1

2

)
+

KI
B∑

j=1

(
ε(pBj )− 1

2

)
(1.5)

where KI
A,K

I
B is the number of momentum carrying A-particle and B-particle respectively.

The remaining part of this paper is organized as follows: in section 2, we briefly review

the su(2|2) invariant S-matrix and obtain the bulk S-matrices of ABJM giant graviton open

spin chain. In section 3, we fix the boundary scattering amplitudes by symmetry analysis

and computation from the weak coupling region. In section 4, we define the double row

transfer matrices and the eigenvalues are easily obtained based on people’s previous work.

The asymptotic Bethe ansatz equations are also given in this section. In section 5, we

discuss the weak coupling limit of our asymptotic Bethe ansatz equations. By a sequence

of actions of fermionic dualities, we obtain the two-loop scalar sector (SU(4) sector) Bethe

equations. Making use of the “gauge” transformation on Bethe equations, we can obtain

the same set of equations derived in our previous paper. Finally, we conclude in section 6

and some details on “gauge” transformation are given in the appendix A.
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2 The bulk S-matrices

As mentioned above, the symmetry preserved by the bulk of the ABJM giant graviton open

spin chain is centrally extended su(2|2). It’s convenient to use the generalized rapidity z1, z2

to parameterize the su(2|2) invariant S-matrix. In this paper, we use the form of su(2|2)

invariant S-matrix given in [18]

S(z1, z2) =

10∑
k=1

ak(z1, z2)Λk, (2.1)

where Λk are su(2) ⊕ su(2) invariant matrices and ak(z1, z2) are the corresponding coeffi-

cients. The explicit expressions can be found in that paper.

It’s useful to introduce spectral parameter x and u

x± +
1

x±
=
u± i

2

h(λ)
, x± ≡ x

(
u± i

2

)
. (2.2)

The momentum p and energy ε of the fundamental magnon are

eip =
x+

x−
, ε =

1

2
+ ih(λ)

(
1

x+
− 1

x−

)
. (2.3)

The generalized rapidity is defined on a torus with half periods

ω1 = 2K(k), ω2 = 2iK(1− k)− 2K(k), (2.4)

where K(k) stands for the complete elliptic integral of the first kind with elliptic modulus

k = −16h2(λ). The spectral parameters x, the momentum and the energy of magnon can

be expressed in terms of Jacobi elliptic functions of the generalized rapidity z

x± =
1

4h(λ)

(cnz

snz
± i
)

(1 + dnz), p(z) = 2amz, ε(z) =
1

2
dn(z). (2.5)

The S-matrix is unitary

S12(z1, z2)S21(z2, z1) = I12, (2.6)

and satisfies the Yang-Baxter equation

S12(z1, z2)S13(z1, z3)S23(z2, z3) = S23(z2, z3)S13(z1, z3)S12(z1, z2). (2.7)

Here I is the identity matrix.

The particle anti-particle transformation or crossing transformation is defined by

p(z)→ −p(z), ε(z)→ −ε(z), (2.8)

which can be described by the shift of the rapidity along the imaginary half period ω2

x±(z)→ 1

x±(z)
= x±(z ± ω2). (2.9)

– 3 –
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We also note that the reflection

p(z)→ −p(z), ε(z)→ ε(z) (2.10)

corresponds to a transformation on rapidity z → −z

x±(−z) = −x∓(z). (2.11)

The S-matrix also satisfies the (quasi) crossing relations

C−1
1 St112(z1, z2)C1S12(z1 + ω2, z2) =

1

f(x1, x2)
I12,

St212(z1, z2)C2S12(z1, z2 − ω2)C−1
2 =

1

f(x1, x2)
I12,

(2.12)

where C is the charge conjugation matrix

C =

(
σ2 0

0 iσ2

)
. (2.13)

Here σ2 is the Pauli matrix and f(x1, x2) is a scalar function defined by

f (x1, x2) =

(
x+

1 − x
−
2

) (
1− 1

x−1 x
−
2

)
(
x+

1 − x
+
2

) (
1− 1

x−1 x
+
2

) . (2.14)

The scattering matrices of A-particle and B-particle are given by

SAA(z1, z2) = SBB(z1, z2) = S0(z1, z2)S(z1, z2),

SAB(z1, z2) = SBA(z1, z2) = S̃0(z1, z2)S(z1, z2).
(2.15)

We assume SAA and SAB satisfy the unitary conditions, which imply

S0(z1, z2)S0(z2, z2) = 1, S̃0(z1, z2)S̃0(z2, z1) = 1. (2.16)

The identification of the B-particles as charge conjugates of the A-particles suggests the

following crossing relations [5]

C−1
1 SAAt112 (z1, z2)C1SAB12 (z1 + ω2, z2) = I12,

SAAt212 (z1, z2)C2SAB12 (z1, z2 − ω2)C−1
2 = I12.

(2.17)

Then using the relation (2.12), the scalar factor should satisfy

S0(z1, z2)S̃0(z1 + ω2, z2) = S0(z1, z2)S̃0(z1, z2 − ω2) = f(x1, x2). (2.18)

The constraints eq. (2.16) and eq. (2.18) can be solved as1

S0(z1, z2) =
x+

1 − x
−
2

x−1 − x
+
2

1− 1
x+

1 x
−
2

1− 1
x−1 x

+
2

√
x−1
x+

1

√
x+

2

x−2
σ(z1, z2), S̃0(z1, z2) =

√
x−1
x+

1

√
x+

2

x−2
σ(z1, z2),

(2.19)

1The equations satisfied by the scalar of S-matrices has another solution, which is given by S0(z1, z2)

and S̃0(z1, z2) interchanged in eq. (2.19). These two solutions correspond to two possible choices of grading

in ABJM higher loops Bethe ansatz equations. We adopt the η = +1 grading or su(2) grading in the

main text.
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where σ is the BES dressing phase [19] and has the following properties

σ (z1, z2)σ (z2, z1) = 1,

σ (z1 + ω2, z2)σ (z1, z2) =
x−2
x+

2

(
x−1 − x

+
2

) (
1− 1

x−1 x
−
2

)
(
x+

1 − x
+
2

) (
1− 1

x+
1 x
−
2

) ,
σ (z1, z2 − ω2)σ (z1, z2) =

x+
1

x−1

(
x−1 − x

−
2

) (
1− 1

x−1 x
+
2

)
(
x+

1 − x
+
2

) (
1− 1

x+
1 x
−
2

) .
(2.20)

3 Boundary reflection matrices

3.1 Boundary su(1|2) symmetry and boundary crossing

In paper [8], we have computed the reflection matrices of the scalar sector at leading order

(two loops). We find the reflection matrices are diagonal which means the A-particle and

B-particle will not mix when they are scattered at the boundaries (at least at two-loop

level). We assume that this property is still preserved at higher loops. Thus there are two

kinds of reflection matrices at each boundary. Similar to the analysis of N = 4 SYM open

string attached to Y = 0 brane [10], symmetry preserved by the boundary of our integrable

open system is su(1|2), which can fix the right boundary reflection matrices up to some

scalar factors

RA− (p) = RA−0 (p)R− (p) = RA−0 (p) diag
(
e−i

p
2 ,−ei

p
2 , 1, 1

)
,

RB− (p) = RA−0 (p)R− (p) = RB−0 (p) diag
(
e−i

p
2 ,−ei

p
2 , 1, 1

)
.

The left boundary reflection matrices are related to the right ones as

RA+(p) = RA−(−p), RB+(p) = RB−(−p). (3.1)

There are two types of particles in the bulk, both are transformed under fundamental repre-

sentation of su(2|2). Therefore the bulk Zamolodchikov-Faddeev (ZF) algebra is described

by two kinds of creating operators

A†i (p),B
†
i (p), i = 1, · · · , 4

which satisfy

A†i (p1)A†j(p2) = SAA(p1, p2)i
′j′

ij A†j′(p2)A†i′(p1),

B†i (p1)B†j(p2) = SBB(p1, p2)i
′j′

ij B†j′(p2)B†i′(p1),

A†i (p1)B†j(p2) = SAB(p1, p2)i
′j′

ij B†j′(p2)A†i′(p1),

B†i (p1)A†j(p2) = SBA(p1, p2)i
′j′

ij A†j′(p2)B†i′(p1).

(3.2)

The associativity of the bulk ZF algebra implies the Yang-Baxter equation (YBE). In

order to incorporate the boundary integrable systems, it’s useful to introduce the boundary

– 5 –
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creating operator B [20]. Following the strategy in [21], for the right boundary, we introduce

the right boundary creating operator BR satisfying the right boundary ZF algebra

A†i (p)BR = RA−(p)i
′
i A
†
i′(−p)BR,

B†i (p)BR = RB−(p)i
′
i B
†
i′(−p)BR.

(3.3)

The consistent condition of the bulk ZF algebra and the right boundary ZF algebra gives

the boundary Yang-Baxter equation (BYBE). It’s easy to see the right boundary ZF

algebra implies the right boundary unitary

RA−(p)RA−(−p) = I, RB−(p)RB−(−p) = I. (3.4)

In terms of scalar factors, we have

RA−0 (p)RA0 (−p) = 1, RB−0 (p)RB0 (−p) = 1. (3.5)

In order to obtain the boundary crossing unitary relation, we consider the following sin-

glet operator

I(p) = I1(p) + I2(p), (3.6)

where

I1(p) = CijA†i (p)B
†
j(p̄), I2(p) = CijB†i (p)A

†
j(p̄), (3.7)

and p̄ is the crossed momentum, defined by

x±(p̄) =
1

x±(p)
. (3.8)

Scattering the singlet operator off the right boundary, we must have

I(p)BR = I(−p̄)BR. (3.9)

Firstly, considering the I1(p) term, we obtain

I1(p)BR = CijA†i (p)B
†
j(p̄)BR

= CijRB−(p̄)j
′

j A
†
i (p)B

†
j′(−p̄)BR

= CijRB−(p̄)j
′

j S
AB(p,−p̄)i

′j′′

ij′ B
†
j′′(−p̄)A

†
i′(p)BR

= CijRB−(p̄)j
′

j S
AB(p,−p̄)i

′j′′

ij′ R
A−(p)i

′′
i′ B
†
j′′(−p̄)A

†
i′′(−p)BR

≡ I2(−p̄)BR.

(3.10)

Similarly, for the I2(p) term, we have

I2(p)BR = CijB†i (p)A
†
j(p̄)BR

= CijRA−(p̄)j
′

j S
BA(p,−p̄)i

′j′′

ij′ R
B−(p)i

′′
i′ A
†
j′′(−p̄)B

†
i′′(−p)BR

≡ I1(−p̄)BR.

(3.11)

– 6 –
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Using the relation (3.9), we obtain

CijRB−(p̄)j
′

j (p̄)SAB(p,−p̄)i
′j′′

ij′ R
A−(p)i

′′
i′ = Cj

′′i′′ ,

CijRA−(p̄)j
′

j (p̄)SBA(p,−p̄)i
′j′′

ij′ R
B−(p)i

′′
i′ = Cj

′′i′′ .
(3.12)

In terms of the scalar factors RA−0 (p), RB−0 (p), the above boundary crossing relations imply

RA−0 (p)RB−0 (p̄) =
1

σ(p,−p̄)
. (3.13)

We define

fb(p) =
x− + 1

x−

x+ + 1
x+

. (3.14)

A solution of eq. (3.5) and eq. (3.13) is given by the ansatz2

RA−0 (p) = RB−0 (p) = R−0 (p), (3.15)

where

R−2
0 (p) = F (p)σ(p,−p) 1√

fb(p)
(3.16)

and F (p) is a CDD-type factor satisfies

F (p)F (p̄) = 1, F (p)F (−p) = 1. (3.17)

The CDD-type factor F (p) can be fixed by comparing with the reflection matrix obtained

from the weak coupling result

F (p) = −e−
ip
2 , (3.18)

which we will discuss in the next subsection.

3.2 Fixing the CDD factor

We now turn to the weak coupling region. We can fix the CDD factor by comparing the

quantized momentum of single particle excitation computed in two different ways [23].

The two-loop Hamiltonian of the ABJM open spin chain from giant graviton is

given in [8]

H =λ2
2L−3∑
l=2

(
I−Pl,l+2+

1

2
Pl,l+2Kl,l+1+

1

2
Pl,l+1Kl+1,l+2

)
QA1

1 QB1
2L

+λ2QA1
1

(
I+ 1

2
K1,2−P1,3+

1

2
P1,3K1,2+

1

2
P1,3K2,3

)
QA1

1 QB1
2L

+λ2QA1
1 QB1

2L

(
I+ 1

2
K2L−1,2L−P2L−2,2L+

1

2
P2l−2,2lK2L−2,2L−1+

1

2
P2L−2,2LK2L−1,2L

)
QB1

2L

+λ2QA1
1

(
I−QA

†
1

2

)
QB1

2L+λ2QA1
1

(
I−QB

†
1

2L−1

)
QB1

2L , (3.19)

2We have utilized the solution given in [22]: σ(p,−p)σ(p̄,−p̄) = fb(p)

σ2(p,−p̄) and the fact fb(p) =

fb(p̄), fb(p)fb(−p) = 1.

– 7 –
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where the trace operator K and permutation operator P are defined as

(Kij)
IiIj
JiJj

= δIiIjδJiJj , (Pij)
IiIj
JiJj

= δ
Ij
Ji
δ
Ij
Ji
, (3.20)

and the Q operators are defined as

Qφ|φ〉 = 0, Qφ|ψ〉 = |ψ〉, for ψ 6= φ. (3.21)

The shortest operator described the one particle excitation has the form

|p〉
B†1

=f
B†1

(1) |1〉
B†1

+f
B†1

(2) |2〉
B†1

with L = 2, where we have used the same notation in [8].

The anomalous dimension of this operator is related to bulk energy ε(p) of the magnon as

∆ = ε (p)− 1

2
=

1

2

√
1 + 16h2 (λ) sin2

(p
2

)
− 1

2
= 4λ2 sin2

(p
2

)
+O

(
λ3
)
. (3.22)

The eigenvalue equation is

H |p〉
B†1

= ∆ |p〉
B†1

=

(
λ2 −λ2

−λ2 2λ2

)(
f
B†1

(1)

f
B†1

(2)

)
. (3.23)

Comparing with the solution of the eigenvalue equation in [8], we can get the first eigenvalue

when f
B†1

(1)/f
B†1

(2) = 1−
√

5
2 i.e. when p = 3π/5

∆+ =
3 +
√

5

2
λ2 = 4λ2 sin2

(
3π

10

)
, (3.24)

and the second eigenvalue with f
B†1

(1)/f
B†1

(2) = 1+
√

5
2 , which means p = π

5

∆− =
3−
√

5

2
λ2 = 4λ2 sin2

( π
10

)
. (3.25)

In a similar way, we find the possible momentum values of a single A1 excitation to be

p = π
5 ,

3π
5 with L = 3. For L = 4, we obtain p = π

7 ,
3π
7 ,

5π
7 .

We now turn to the boundary Bethe-Yang (BBY) equation of a single particle excita-

tion. As mentioned previously, the boundary scattering amplitudes are fixed by boundary

symmetry and boundary crossing as

R+ (−p) = R− (p) = R (p) = R0 (p) diag
(
e−i

p
2 ,−ei

p
2 , 1, 1

)
, (3.26)

where

R2
0(p) = −e−

ip
2

1√
fb(p)

. (3.27)

Then for a single particle excitation, the BBY equation reads

e−2ipLR+(−p)R−(p) = e−2ipLR2
0(p)diag(e−ip, eip, 1, 1) = 1. (3.28)

At leading order, this reduce to

e−2ipLdiag(e−ip, eip, 1, 1) = −1. (3.29)

– 8 –
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For a single B†1 excitation, we obtain the quantized momentum

pn =
nπ

2L+ 1
, n = 1, 3, · · · , 2L− 1. (3.30)

Similarly, for a single A1 excitation, the quantized momentum is

pn =
nπ

2L− 1
, n = 1, 3, · · · , 2L− 3. (3.31)

These give the same results with the Hamiltonian based computation.

4 Asymptotic Bethe ansatz equaitons

4.1 Double row transfer matrices

As mentioned before, there are two type of excitations in ABJM open spin chain from

giant graviton which we call A-particles and B-particles. The two-body S-matrices between

elementary excitations can be written as

SAA(p1, p2) = SBB(p1, p2) = S0(p1, p2)S(p1, p2),

SAB(p1, p2) = SBA(p1, p2) = S̃0(p1, p2)S(p1, p2),
(4.1)

where S(p1, p2) is the su(2|2) invariant S-matrix normalized in su(2) compatible way [18]

and we choose the scalar factor in the su(2) grading as

S0(p1, p2) =
x+

1 − x
−
2

x−1 − x
+
2

1− 1
x+

1 x
−
2

1− 1
x−1 x

+
2

√
x−1
x+

1

√
x+

2

x−2
σ(p1, p2), S̃0(p1, p2) =

√
x−1
x+

1

√
x+

2

x−2
σ(p1, p2).

(4.2)

In order to obtain the right boundary Bethe-Yang equations from the double row

transfer matrices, we should define the fundamental double row transfer matrices as fol-

lowing [23–25]3

D(p,{pAi ,pBi })

= Tra

KIA+1∏
i=KI

SABai (p,pB
ĩ

)

1∏
i=KIA

SAAai (p,pAi )R−a (p)

KIA∏
i=1

SAAia (pAi ,−p)
KI∏

i=KIA+1

SABia (pB
ĩ
,−p)R̆+

a (−p)


D̃(p,{pAi ,pBi })

= Tra

KIA+1∏
i=KI

SBBai (p,pB
ĩ

)

1∏
i=KIA

SBAai (p,pAi )R−a (p)

KIA∏
i=1

SBAia (pAi ,−p)
KI∏

i=KIA+1

SBBia (pB
ĩ
,−p)R̆+

a (−p)


where

R−(p) = R0(p)R−(p), R̆+(−p) = R̆+
0 (−p)R̆+(−p), KI = KI

A+KI
B, ĩ = i−KI

A. (4.3)

3Fundamental means we trace over the four-dimensional representation of centrally extended su(2|2),

and we arrange the supersymmetric grading as BBFF .
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R−0 is given by eq. (3.27) and

R− (p) = diag
(
e−

ip
2 ,−e

ip
2 , 1, 1

)
. (4.4)

R̆+(p) is defined through

R−a (p) = Tra′
(
Paa′SAAaa′ (p,−p) R̆+

a′(−p)
)

(4.5)

such that the boundary Bethe-Yang equations can be obtained from the double row transfer

matrices as

e−2ipAj LD
(
pAj ,
{
pAi , p

B
i

})
= −1, e−2ipBj LD̃

(
pBj , {pAi , pBi }

)
= −1. (4.6)

Using the explicit form of the S-matrix, one can solve the equation (4.5) as4

R̆+
0 (−p) =

e−ipR−0 (p)

S0(p,−p)ρ(p)
, R̆+(−p) = (−1)FR−(−p) = diag(e

ip
2 ,−e−

ip
2 ,−1,−1), (4.7)

where

ρ =
(1 + (x−)2)(x+ + x−)

2x+(1 + x+x−)
. (4.8)

The two kinds of double row transfer matrices defined above actually differ only in

some scalar factors. We introduce

D(p,{pAi ,pBi }) = Tra

KIA+1∏
i=KI

Sai(p,p
B
ĩ

)

1∏
i=KIA

Sai(p,p
A
i )R−a (p)

KIA∏
i=1

Sia(p
A
i ,−p)

KI∏
i=KIA+1

Sia(p
B
ĩ
,−p)R̆+

a (−p)

.
Then the two kinds double row transfer matrices can be related as

D(p, {pAi , pBi }) = d(p)D(p, {pAi , pBi }), D̃(p, {pAi , pBi }) = d̃(p)D(p, {pAi , pBi }), (4.9)

where

d(p) = R−0 (p)R̆+
0 (−p)

KIA∏
i=1

S0(p, pAi )S0(pAi ,−p)
KIB∏
i=1

S̃0(p, pBi )S̃0(pBi ,−p),

d̃(p) = R−0 (p)R̆+
0 (−p)

KIA∏
i=1

S̃0(p, pAi )S̃0(pAi ,−p)
KIB∏
i=1

S0(p, pBi )S0(pBi ,−p).

(4.10)

Due to the relation (4.7), we can change the trace in the definition (4.1) to supertrace

D(p,{pAi ,pBi }) = sTra

KIA+1∏
i=KI

Sai(p,p
B
ĩ

)

1∏
i=KIA

S1i(p,p
A
i )R−a (p)

KIA∏
i=1

Sia(p
A
i ,−p)

KI∏
i=KIA+1

Sia(p
B
ĩ
,−p)R−a (−p)

.
The eigenvalue of the fundamental double row transfer matrix of open spin chain from giant

graviton has been conjectured in [24] in the SYM context. However, we just need slightly

4Alternatively, one can determinate the scalar factor R̆0(−p) by comparing the one particle BBY equa-

tion (3.28) and eq. (4.6) [24]. Although not shown here, the two methods agree with each other.
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change some definitions of related functions in that paper for our ABJM case. Taking into

account the minor differences, we can write down the double row transfer matrix eigenvalue

of ABJM open spin chain from giant graviton explicitly as

Λ(xa) =

(
x+
a

x−a

)KII

ρ(xa)

[
KII∏
k=1

x−a −yk
x+
a −yk

yk+x−a
yk+x+

a

−
∏

α=A,B

KI
α∏

i=1

x+
a −xα+

i

x+
a −xα−i

xα−i +x+
a

xα+
i +x+

a

KII∏
k=1

x−a −yk
x+
a −yk

yk+x−a
yk+x+

a

KIII∏
l=1

ua−wl+i
ua−wl

wl+ua+i

wl+ua

−u
+
a

u−a

∏
α=A,B

KI
α∏

i=1

x+
a −xα+

i

x+
a −xα−i

xα−i +x+
a

xα+
i +x+

a

KII∏
k=1

1
x+
a
−yk

1
x−a
−yk

yk+ 1
x+
a

yk+ 1
x−a

KIII∏
l=1

ua−wl−i
ua−wl

wl+ua−i
wl+ua

+
u+
a

u−a

∏
α=A,B

KI
α∏

i=1

x+
a −xα+

i

x+
a −xα−i

xα−i +x+
a

xα+
i +x+

a

1
x−a
−xα+

i

1
x−a
−xα−i

xα−i + 1
x−a

xα+
i + 1

x−a

KII∏
k=1

1
x+
a
−yk

1
x−a
−yk

yk+ 1
x+
a

yk+ 1
x−a

]
, (4.11)

where

xα±i = x±(pαi ), α = A,B. (4.12)

When we evaluate Λ(p) at p = pαj , only the first term survives,

Λ(pαj ) =

(
xα+
j

xα−j

)KII

ρ(xαj )

KII∏
k=1

xα−j − yk
xα+
j − yk

yk + xα−j

yk + xα+
j

. (4.13)

4.2 Bethe ansatz equations

Bethe equations for the auxiliary roots are obtained from the analytic condition of the

double row transfer matrix eigenvalue. There are three types of superficial poles of Λ(xa)

at x+
a = yj ,ua = wl and x−a = 1/yj . The analytic constraints give three sets of equations5

∏
α=A,B

KI
α∏

i=1

yj − xα−i
yj − xα+

i

yj + xα+
i

yj + xα−i

KIII∏
k=1

hvj − wk − i
2

hvj − wk + i
2

hvj + wk − i
2

hvj + wk + i
2

= 1,

w−l
w+
l

KII∏
j=1

wl − hvj − i
2

wl − hvj + i
2

wl + hvj − i
2

wl + hvj + i
2

KIII∏
k=1

wl − wk + i

wl − wk − i
wl + wk + i

wl + wk − i
= −1,

∏
α=A,B

KI
α∏

i=1

yj − xα+
i

yj − xα−i

yj + xα−i
yj + xα+

i

KIII∏
k=1

hvj − wk + i
2

hvj − wk − i
2

hvj + wk + i
2

hvj + wk − i
2

= 1.

(4.14)

We observed that the first and third set of equations are the same. The main or physical

Bethe equations for the massive roots are given by

e−2ipAj Ld(pAj )Λ(pAi ) = −1, e−2ipBj Ld̃(pBj )Λ(pBj ) = −1, (4.15)

5The parameter v is related to y by v + 1
v

= y.

– 11 –



J
H
E
P
0
8
(
2
0
1
9
)
1
0
9

where

d(pAj ) =

−e−ip
A
j /2

√
fb

(
pAj

)
ρ
(
pAj

)

×e−ip
A
j K

I

Σ
(
pAj
) KI

A∏
k=1

(
xA+
j −x

A−
k

)(
1− 1

xA+
j xA−k

)
(
xA−j −x

A+
k

)(
1− 1

xA−j xA+
k

)
(
xA+
j +xA+

k

)(
1+ 1

xA+
j xA+

k

)
(
xA−j +xA−k

)(
1+ 1

xA−j xA−k

) .
Here the Σ(p) is defined as

Σ(p) =
∏

α=A,B

KI
α∏

i=1

σ(p, pαi )σ(pαi ,−p) (4.16)

and a very similar expression can be found for d̃(pBj ).

5 Weak coupling limit

In order to compare the above asymptotic Bethe equations with the two-loop Bethe equa-

tions derived in our previous paper [13], we should rewrite the asymptotic Bethe equations

into a manifestly OSp(2, 2|6) covariant way. In doing so we relabel the roots as

xAi ↔x4,j , i= 1,2, · · · ,KI
A =K4 xBi ↔x4̄,i, i= 1,2, · · · ,KI

B =K4̄

yj↔
1

x1,j
, j= 1,2, · · · ,K1, yK1+j↔x3,j , j= 1,2, · · · ,K3 (KII =K1+K3)

wl↔u2,l, l= 1,2, · · · ,KIII =K2

(5.1)

In weak coupling limit, we have

x± →
u± i

2

h
, fb(p)→ e−ip, Σ(p)→ 0. (5.2)

The asymptotic Bethe ansatz equations then reduce to

1 =
Q−2
Q+

2

∣∣∣∣
u1,k

,

−1 =
u−

u+

Q−1 Q
−
3 Q

++
2

Q+
1 Q

+
3 Q
−−
2

∣∣∣∣
u2,k

,

1 =
Q−2 Q

+
4 Q

+
4̄

Q+
2 Q
−
4 Q
−
4̄

∣∣∣∣
u3,k

,

1 =

(
u− i

2

u+ i
2

)2L′

Q++
4 Q−3

Q−−4 Q+
3

∣∣∣∣
u4,k

,

1 =

(
u− i

2

u+ i
2

)2L′

Q++
4̄
Q−3

Q−−
4̄
Q+

3

∣∣∣∣
u4̄,k

,

(5.3)
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where L′ = L + K1−K3
2 + K4+K4̄−1

2 and we have used the common definition of Baxter

polynomial

Ql(u) =

Kl∏
j=1

(u− ul,j)(u+ ul,j). (5.4)

5.1 Reducing to the scalar sector

In order to obtain the scalar sector Bethe equations and to compare with our previous

result derived in [13], we must do fermionic duality on the Bethe ansatz equations [26, 27].

For this purpose, we define

P1 (x) =

K2∏
j=1

(
x− u2,j −

i

2

)(
x+ u2,j −

i

2

)
−

K2∏
j=1

(
x− u2,j +

i

2

)(
x+ u2,j +

i

2

)
= −2iK2x

2K2−1 + · · · .

(5.5)

The degree of the polynomial P1(x) is 2K2−1 and have 2K1 obvious zeros {±u1,k}k=1,2,··· ,K1

and 0.6 We can write

P1(x) = α1x

K1∏
k=1

(x− u1,k)(x+ u1,k)

K̃1∏
k=1

(x− ũ1,k)(x+ ũ1,k), (5.6)

where K̃1 = K2 −K1 − 1, α1 = −2iK2. Thus we can compute P1(u2,k + i
2))/P1(u2,k − i

2)

in two ways

P1(u2,k + i
2)

P1(u2,k − i
2)

= −
K2∏
j=1

(u2,k − u2,j + i)(u2,k + u2,j + i)

(u2,k − u2,j − i)(u2,k + u2,j − i)
(5.7)

=
u2,k + i

2

u2,k − i
2

K1∏
j=1

(u2,k − u1,j + i
2)(u2,k + u1,j + i

2)

(u2,k − u1,j − i
2)(u2,k − u1,j − i

2)

K̃1∏
j=1

(u2,k − ũ1,j + i
2)(u2,k + ũ1,j + i

2)

(u2,k − ũ1,j − i
2)(u2,k − ũ1,j − i

2)
.

In terms of Baxter polynomial, we have

Q++
2 Q−1

Q−−2 Q+
1

∣∣∣∣
u2,k

= −u
+

u−
Q+

1̃

Q1̃−

∣∣∣∣
u2,k

, (5.8)

where Q1̃ is dual Baxter polynomial of the first type

Ql̃(u) =

K̃l∏
j=1

(u− ũl,j)(u+ ũl,j). (5.9)

6The polynomial P1(x) defined here and P2(x) defined below are odd under reflection: Pi(x) =

−Pi(−x), i = 1, 2.
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Therefore, after apply fermionic duality on the first Dykin node, we obtain

1 =
Q+

2

Q−2

∣∣∣∣
ũ1,k

,

1 =
Q+

1̃
Q−3

Q−
1̃
Q+

3

∣∣∣∣
u2,k

,

1 =
Q−2 Q

+
4 Q

+
4̄

Q+
2 Q
−
4 Q
−
4̄

∣∣∣∣
u3,k

,

1 =

(
u− i

2

u+ i
2

)2L̃′

Q++
4 Q−3

Q−−4 Q+
3

∣∣∣∣
u4,k

,

1 =

(
u− i

2

u+ i
2

)2L̃′
Q++

4̄
Q−3

Q−−
4̄
Q+

3

∣∣∣∣
u4̄,k

,

(5.10)

where 2L̃′ = 2L′ − 2K1 +K2 − 1.

Then we apply fermionic dual on the second Dykin node in the new basis by defining7

P2 (x) =

K̃1∏
j=1

(
x− ũ1,j +

i

2

)(
x+ ũ1,j +

i

2

) K3∏
l=1

(
x− u3,l −

i

2

)(
x+ u3,l −

i

2

)

−
K̃1∏
j=1

(
x− ũ1,j −

i

2

)(
x+ ũ1,j −

i

2

) K3∏
l=1

(
x− u3,l +

i

2

)(
x+ u3,l +

i

2

)
= −2i

(
K3 − K̃1

)
x2K̃1+2K3−1 + · · · .

(5.11)

The degree of the polynomial P2(x) is 2K̃1 + 2K3 − 1 and have 2K2 obvious zeros

{±u2,k}k=1,2,··· ,K2 and 0. We can write

P2(x) = α2x

K2∏
k=1

(x− u2,k)(x+ u2,k)

K̃2∏
k=1

(x− ũ2,k)(x+ ũ2,k), (5.12)

where K̃2 = K̃1 +K3−K2− 1 = K3−K1− 2, α2 = −2i(K3− K̃1). Similarly, by using the

two different expression of P2(x), we can get the following relations

P2

(
u3,k + i

2

)
P2

(
u3,k − i

2

) = −
K3∏
j=1

(u3,k − u3,l + i) (u3,k + u3,l + i)

(u3,k − u3,l − i) (u3,k + u3,l − i)
(5.13)

=
u3,k + i

2

u3,k − i
2

K2∏
j=1

(
u3,k − u2,j + i

2

) (
u3,k + u2,j + i

2

)(
u3,k − u2,j − i

2

) (
u3,k − u2,j − i

2

) K̃2∏
j=1

(
u3,k − ũ2,j + i

2

) (
u3,k + ũ2,j + i

2

)(
u3,k − ũ2,j − i

2

) (
u3,k − ũ2,j − i

2

)
7Fermionic duality on Bethe equations is related to the odd Weyl reflection on simple root systems of

super Lie algebra. See appendix C of [27] for more details.
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and

P2

(
ũ1,k + i

2

)
P2

(
ũ1,k − i

2

) = −
K̃1∏
j=1

(ũ1,k − ũ1,j + i) (ũ1,k + ũ1,j + i)

(ũ1,k − ũ1,j − i) (ũ1,k + ũ1,j − i)
(5.14)

=
ũ1,k + i

2

ũ1,k − i
2

K2∏
j=1

(
ũ1,k − u2,j + i

2

) (
ũ1,k + u2,j + i

2

)(
ũ1,k − u2,j − i

2

) (
ũ1,k − u2,j − i

2

) K̃2∏
j=1

(
ũ1,k − ũ2,j + i

2

) (
ũ1,k + ũ2,j + i

2

)(
ũ1,k − ũ2,j − i

2

) (
ũ1,k − ũ2,j − i

2

) .
Using the above relations, the following Bethe equations after dualization can be

easily derived

−1 =
u−

u+

Q++
1̃
Q−

2̃

Q−−
1̃
Q+

2̃

∣∣∣∣
ũ1,k

,

1 =
Q−

1̃
Q+

3

Q+
1̃
Q−3

∣∣∣∣
ũ2,k

,

−1 =
u+

u−
Q+

2̃
Q−−3 Q+

4 Q
+
4̄

Q−
2̃
Q++

3 Q−4 Q
−
4̄

∣∣∣∣
u3,k

,

1 =

(
u− i

2

u+ i
2

)2L̃′

Q++
4 Q−3

Q−−4 Q+
3

∣∣∣∣
u4,k

,

1 =

(
u− i

2

u+ i
2

)2L̃′
Q++

4̄
Q−3

Q−−
4̄
Q+

3

∣∣∣∣
u4̄,k

.

(5.15)

We now should remove the first and second type of Bethe roots ũ1,k, ũ2,k to obtain the

scalar sector Bethe equation. Applying “gauge” transformation: Q3(u) → u2Q3(u) and

identifying L̃′ = L [28, 29], we found it has the same form with the equations given in [13].

See appendix A for details.

6 Conclusion

In this paper, we have derived the all loop Bethe ansatz equations for our ABJM open

spin chain constructed from giant graviton mainly based on symmetry analysis. We check

our result in the weak coupling region by comparing with the two-loop SU(4) sector Bethe

ansatz equations given in our previous work. By using fermionic duality and “gauge”

transformation, we found our proposal in this paper is consistent with our previous results.

It’s interesting to go beyond the asymptotic region to include all finite-size effect in the

boundary thermodynamic Bethe ansatz (BTBA) framework of the ABJM open spin chain

from giant graviton. The similar treatment of integrable open system from giant graviton

in SYM is fruitful and we hope this also happens in ABJM theory.
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A “Gauge” transformation of Bethe equations

In this appendix, we show that the two-loop scalar sector Bethe ansatz equations have

“gauge” freedom, i.e. the form of Bethe equations is not unique. The different forms are

related by “gauge” transformation which we now discuss. As computed in [13], at two-loop

orders, the vacuum eigenvalues of double row transfer matrices are given by8

Λ0(u) = Λ̄0(u) =
2

d(u)

[
a(u)(u+1)2L(u+2)2L+b(u)u2L(u+1)2L−c(u)u2L(u+2)2L

]
, (A.1)

where

a(u) = (2u+ 3)(u+ 1)2, b(u) = (2u+ 1)(u+ 1)2,

c(u) = 4(u+ 1)3, d(u) = (u+ 1)(2u+ 1)(2u+ 3).
(A.2)

The eigenvalues of a generic state should have the “dressed” form

Λ(u|{ui}) =
2

d(u)

{
a(u)(u+1)2L(u+2)2LQ4(iu− i

2
)

Q4(iu+ i
2
)
+b(u)u2L(u+1)2LQ4̄(iu+ 5i

2
)

Q4̄(iu+ 3i
2

)

−u2L(u+2)2L

[
c1(u)

Q4(iu+ 3i
2

)Q3(iu)

Q4(u+ i
2
)Q3(iu+i)

+c2(u)
Q3(iu+2i)Q4̄(iu+ i

2
)

Q3(iu+i)Q4̄(iu+ 3i
2

)

]}
,

(A.3)

Λ̄(u|{ui}) =
2

d(u)

{
a(u)(u+1)2L(u+2)2LQ4̄(iu− i

2
)

Q4̄(iu+ i
2
)
+b(u)u2L(u+1)2LQ4(iu+ 5i

2
)

Q4(iu+ 3i
2

)

−u2L(u+2)2L

[
c1(u)

Q4̄(iu+ 3i
2

)Q3(iu)

Q4̄(u+ i
2
)Q3(iu+i)

+c2(u)
Q3(iu+2i)Q4(iu+ i

2
)

Q3(iu+i)Q4(iu+ 3i
2

)

]}
.

(A.4)

The functions c1(u), c2(u) must satisfy

c1(u) + c2(u) = c(u). (A.5)

The crossing property of eigenvalues

Λ(−u− 2|{ui}) = Λ̄(u|{ui}) (A.6)

implies

c1(−u− 2) = −c2(u), c2(−u− 2) = −c1(u). (A.7)

The constraints eq. (A.5) and eq. (A.7) cannot determine c1(u), c2(u) uniquely. In fact,

there are two solutions

c1(u) = (2u+ 3)(u+ 1)2, c2(u) = (u+ 1)2(2u+ 1), (A.8)

and

c̃1(u) = u2(2u+ 3), c̃2(u) = (u+ 2)2(2u+ 1). (A.9)

In terms of the eigenvalues of double row transfer matrices eq. (A.3) and eq. (A.4), these

two solutions can be related by the gauge transformation on the Baxter polynomial Q3(u)

Q3(u)→ u2Q3(u). (A.10)
8The two-loop construction of double row transfer matrices is described in detail in paper [13]. In that

paper, only one possible eigenvalues of double row transfer matrices were given. In this appendix, we give

an alternative one and find relations of these two solutions.
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