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1 Introduction

Field theories invariant under global or local N = 2 supersymmetry allow very large classes

of vector, hyper or tensor multiplet interactions characterized by specific sigma-model

geometries. The existence of realizations in which zero or one supersymmetry remains

unbroken at the ground state of the theory is then a relatively vast and complicated subject

which cannot be addressed in theories with more supersymmetries in which the class of

allowed matter and gauge couplings is fatally restrictive.

Consider for instance the simplest global N = 2 Maxwell theory, defined by an ar-

bitrary prepotential F (z). Since its scalar fields cannot break the SU(2)R symmetry, a

spontaneous breaking to N = 1 is clearly impossible.1 Antoniadis, Partouche and Tay-

lor [1] (APT) have however invented many years ago a realization with partial breaking in

1This statement holds with an arbitrary number of Maxwell multiplets.
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which the SU(2)R symmetry is violated by electric and magnetic Fayet-Iliopoulos (FI) terms

inducing a nonlinear deformation of the second supersymmetry variation of one gaugino,

defining it as the (single) goldstino. The ingredients of the model are then a non-canonical

holomorphic prepotential and the FI constants. More recently [2], a similar mechanism has

been shown to exist for a single hypermultiplet on a specific class of hyper-Kähler manifolds

with a (translational) isometry, using its off-shell single-tensor dual formulation [3].

Local N = 2 supersymmetry is more involved in several aspects. Firstly, the super-

gravity multiplet includes the graviphoton and electric-magnetic duality in the local super-

Maxwell theory is extended and powerful [4–6].2 Partial breaking requires the generation

of a massive gravitino N = 1 multiplet, with two spin one fields in a 6B +6F (bosonic plus

fermionic degrees of freedom) on-shell content. Fully spontaneous partial breaking requires

then at least one physical Maxwell multiplet (for the second massive spin one state) and

one hypermultiplet for the SU(2)R breaking. The minimal case of one hypermultiplet on

the SO(4, 1)/SO(4) quaternion-Kähler manifold coupled to a single Maxwell multiplet has

been studied in detail. It was shown that a partial breaking of N = 2 supersymmetry can

be realised for a generic prepotential, so that the APT model is obtained in an appropriate

rigid globally supersymmetric limit [7]. A necessary ingredient3 is the gauging of N = 2

supergravity along magnetic directions of vector fields, or alternatively a standard electric

gauging in a non-prepotential field basis [10].4

A more general analysis was also performed [13, 14] in a class of quaternionic mani-

folds of dimension 4(n+1) that are obtained by the so-called C-map from a special Kähler

manifold of dimension 2n, corresponding to the effective supergravity of the perturbative

type II superstring compactified on a Calabi-Yau threefold [15]. The special Kähler man-

ifold is associated to the scalars of vector multiplets of the mirror theory, while the extra

scalar components are the 2n Ramond-Ramond fields and the universal hypermultiplet of

the string dilaton parametrising for n = 0 an SU(2, 1)/SU(2) × U(1) space broken to a

quaternionic manifold with four isometries upon inclusion of the perturbative (one-loop)

corrections [16–18]. For n 6= 0, it was shown that partial breaking can always be re-

alised in either Minkowski or anti-de Sitter (AdS) vacuum by an appropriate choice of the

embedding tensor that defines the directions of the gauging [19–21], which should have

again some non-vanishing magnetic component. Finally, for the case of the single universal

hypermultiplet (n = 0), no Minkowski N = 1 vacuum was found.

In this work, we perform a general analysis of the N = 2 partial breaking in supergrav-

ity theories containing a single hypermultiplet with two commuting isometries, gauged by

the graviphoton and an additional vector multiplet. We work in a prepotential frame and

use the embedding-tensor formalism [19, 20], for dyonic gaugings of the graviphoton and of

the vector multiplet along two commuting isometries of the hypermultiplet manifold. Our

goal is to provide a generic treatment for N = 1 Minkowski vacua for arbitrary quaternion-

Kähler manifolds, special-Kähler metrics and dyonic gaugings. In addition, we would like to

2The APT model does not have charged states and is invariant under electric-magnetic duality, upon a

simultaneous transformation of the FI electric and magnetic constants.
3To avoid the obstruction described in refs. [8, 9].
4For earlier work, see [11, 12].
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obtain the APT model [1] as an off-shell gravity-decoupling limit. A general quaternionic

manifold of dimension four with two commuting isometries can be parametrised by the

Calderbank-Pedersen (CP) metric [22], where we find a no-go result for N = 1 Minkowski

vacua for a general special Kähler manifold of the vector multiplet, which seems to be in

contradiction with the results obtained for the hyperbolic space SO(4, 1)/SO(4). We prove

that this contradiction is only apparent because the latter space cannot be written in a CP

form, with its torus symmetry identified within the three-dimensional abelian sub-algebra

of SO(4, 1), as a single exception.

The outline of this paper is as follows. In section 2, we present a brief review of the

matter-coupled N = 2 supergravity. We first present the ungauged case exhibiting the

electromagnetic duality transformations in the symplectic formalism (section 2.1). In pass-

ing, we show that a non-prepotential frame can exclusively arise from a magnetic duality

transformation of the theory defined by the superconformal prepotential F = −iX0X1.

We then summarize the gauging of isometries for the hypermultiplet manifold using the

embedding-tensor formalism (section 2.2); in particular, we exhibit the relation of the

scalar potential to the fermion shifts that provide a convenient way to look for partial

supersymmetry breaking N = 1 vacua. In section 3, we make a systematic analysis in the

case of one hypermultiplet with two isometries. We present the CP metric (section 3.1)

and compute the fermion shifts upon gauging its isometries (section 3.2) proving a no-go

theorem for partial breaking in Minkowski space (section 3.3). We also show that partial

breaking in AdS is generically possible and we give an explicit example using a standard

electric gauging of two shift isometries in the case of the universal dilaton hypermultiplet

in type II superstrings compactified on a Calabi-Yau threefold (section 3.4). We then iden-

tify an obstruction for bringing the hyperbolic space in CP coordinates that allows partial

breaking in Minkowski space (section 3.5). In section 4, we return to the general analysis

of the SO(4, 1)/SO(4) which is actually the only quaternionic manifold that does not ad-

mit a CP metric when the two commuting isometries are shifts in the Poincaré coordinates

(section 4.1). We construct explicitly the partial breaking Minkowski vacuum and study its

off-shell gravity-decoupling limit (section 4.2), as well as non-supersymmetric Minkowski

vacua (section 4.3). Section 5 contains some concluding remarks. Finally, we include four

appendices. Appendix A contains useful formulae for the gauging of quaternionic manifolds

with isometries, appendix B elaborates the hyperbolic space in CP coordinates, appendix C

discusses coordinate transformations used to derive the CP metric and appendix D proves

a result on N = 0 vacua of the SO(4, 1)/SO(4) model stated in section 4.3.

2 Matter-coupled N = 2 supergravities

2.1 The kinetic terms

The N = 2 target space M describing the scalar-field kinetic terms of a single hypermul-

tiplet and nV vector multiplets is factorized,

M = MH ×MV , (2.1)

– 3 –
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and both metrics only depend of the scalar fields of their respective multiplets, a property

which by supersymmetry extends to all kinetic terms. The hypermultiplet scalar dynam-

ics is encoded in the four-dimensional quaternion-Kähler metric MH with coordinates

qu = (q1, q2, q3, q4),5

Lhyper = − e

2κ2
gµν huv ∂µq

u∂νq
v. (2.2)

A generic quaternion-Kähler manifold for nH hypermultiplets is Einstein with holonomy

Sp(2nH) × SU(2),6 and dimension 4nH. For nH = 1, since Sp(2) × SU(2) ∼ SO(4), a

particular characterization is needed: the quaternion-Kähler metric is Einstein with an

(anti-) selfdual Weyl curvature tensor. As we will see in the next sections, four-dimensional

metrics with these properties have been studied quite extensively when they admit one or

several continuous isometries, which is the case of interest here.

The N = 2 Maxwell sector is conveniently constructed in the superconformal formu-

lation: it is then defined in terms of a prepotential F (XI) of nV + 1 complex scalar fields,

with Weyl weight one. The index I = 0, . . . , nV includes a compensating multiplet. Its

component fields include the propagating graviphoton, while its two gauginos and complex

scalar are used to gauge-fix superconformal symmetries and solve field equations of aux-

iliary fields in the Weyl multiplet.7 It is a common but unnecessary choice to set I = 0

as the compensator direction. Superconformal invariance requires that F (XI) has Weyl

weight two:

F
(
XI

)
=

(
X0

)2
F

(
XI

X0

)
=

(
X0

)2
F (1, za) = −i

(
X0

)2
f(za), a = 1, . . . , nV, (2.3)

and f(za) is an arbitrary function of the zero-weight scalar fields za = Xa/X0 in the nV

physical Maxwell multiplets: the Poincaré theory is formulated in terms of the scalars za.

There is however a subtlety: electric-magnetic duality acts in the Maxwell sector as

Sp(2(nV + 1),R) linear transformations of the vector of sections

V =

(
XI

FI

)
. (2.4)

Choosing the section vector V (as a function of a given set of scalar fields) defines a

symplectic frame: electric-magnetic duality would imply that the (ungauged, abelian) the-

ory can be equivalently formulated in each symplectic frame obtained by the action of

Sp(2(nV + 1),R) on V .8 In a prepotential symplectic frame, there exists F (X) such that

the sections are

XI = (X0, X0za), FI =
∂

∂XI
F (X), F0 = −iX0[2f(z)− zafa], Fa = −iX0fa, (2.5)

where fa = ∂
∂za f(z). In a prepotential frame, the symplectic-invariant product i(XIF I −

FIX
I
) reads

−X0X
0
[2(f + f)− (za − za)(fa − fa)] = −X0X

0 Y (2.6)

5We use hypermultiplet scalars and metric with dimension mass0.
6Or G× SU(2), G ⊂ Sp(2nH).
7These appear linearly in the lagrangian and then impose constraints.
8The symplectic orbit of V .
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and Y will appear in the Kähler potential of the Poincaré fields za. Note that there is an

ambiguity: this quantity vanishes if

F̂ (XI) = αIJX
IXJ , f̂(za) = i[α00 + 2α0az

a + αabz
azb] (2.7)

with real coefficients αIJ and two prepotentials differing by F̂ describe the same theory.

One may wonder if all frames in the symplectic orbit of a prepotential frame ad-

mit a prepotential, or if there exists orbits which relate prepotential and non-prepotential

frames. The question of the existence of a prepotential frame has been discussed in gen-

eral in ref. [23],9 but the simple case nV = 1, which is of interest here is very simple to

solve explicitly.

Consider a symplectic transformation relating sections V and Ṽ , assuming that V

defines a prepotential frame with prepotential F (X0, X1) and Poincaré scalar z = X0/X1.

Assuming that we identify the compensators in both frames, X0 = X̃0, Sp(2, 2,R) duality

reduces to Sl(2,R) transformations

X̃1 = m1X
1 +m2F1, F̃0 = F0, F̃1 = m3X

1 +m4F1, (m1m4 −m2m3 = 1),

(2.8)

which are electric-magnetic if m2 6= 0 or m3 6= 0. We wish to find a Poincaré scalar

z̃ = X̃1/X̃0 and a prepotential F̃ (X̃I) = −i(X̃0)2g(z̃), which identify sections Ṽ as a

prepotential frame:




X̃1 = X̃0z̃ = X0(m1z − im2fz),

F̃1 = −iX̃0gz̃ = X0(m3z − im4fz),

F̃0 = −iX̃0[2g(z̃)− z̃gz̃] = −iX0[2f(z)− zfz],

=⇒





z̃ = m1z − im2fz,

z = m4z̃ + im2gz̃,

2g(z̃)− z̃gz̃ = 2f(z)− zfz.

(2.9)

The three equations relating f and z with g and z̃ are generated by the Legendre transfor-

mation

m2g(z̃)−
i

2
m4z̃

2 = −izz̃ +m2f(z) +
i

2
m1z

2, (2.10)

which exchanges z and z̃. Clearly, the terms induced by m1 or m4 are irrelevant: they

modify f(z) or g(z̃) by quadratic terms with imaginary coefficient which do not contribute

to the theory. The only relevant case is then m2 = −m−1
3 . The Legendre transformation

implies

m2
2 gz̃z̃ fzz = 1, (2.11)

and it is singular only if f(z) (or g(z̃)) is linear. Hence, the symplectic frame with sections

Ṽ is a prepotential frame with Poincaré field z̃ and prepotential F̃ = −i(X̃0)2g
(
X̃1

X̃0

)
with

a single exception,

F (XI) = −iαX0X1, f(z) = αz (α real), (2.12)

for which (with m1 = m4 = 0)

X̃0 = X0, X̃1 = −iαm2X
0, F̃0 = −iαX1 = −iαX0z, F̃1 = −m−1

2 X1, (2.13)

9Summarized in [24], section 21.2.2, page 474. See also ref. [25].
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and

i(XIF I − FIX
I
) = −αX0X0(z + z) (2.14)

leading to Kähler potential K = − ln(z+z). This simple discussion agrees with the general

argument given in refs. [23] and [24].10 The conclusion is that in the nV = 1 case, all

symplectic orbits connect exclusively prepotential frames, with the single exception of the

orbit of F (X) = −iX0X1 which includes non-prepotential frames.

The first example of partial N = 2 breaking in supergravity [10] was found using

precisely the sections (2.13). An electric gauging of two translation isometries of the hy-

permultiplet manifold SO(4, 1)/SO(4) ∼ Sp(2, 2)/SU(2) × SU(2) in this non-prepotential

frame leads to a two-coupling theory with zero potential and N = 0 for generic values of

the couplings, N = 1 when a linear relation is verified by the couplings, and N = 2 for

zero couplings.

Since the prepotential (2.12) is in the symplectic orbit of the non-prepotential

frame (2.13) and since all other orbits include prepotential frames only, we are always

allowed to work in a prepotential frame with sections (2.5) and to gauge isometries in this

frame: since gauging fixes the electric-magnetic duality symmetry, the theory will then de-

pend on the prepotential, the gauge couplings and the choice of hypermultiplet manifold.

The kinetic terms of the helicity 0,±1
2 fields11 in Poincaré Maxwell multiplets have a

Kähler metric with Kähler potential

K = − ln
[
2(f + f)− (za − za)(fa − fa)

]
. (2.15)

For instance, for scalar fields (in a prepotential frame), the superconformal lagrangian

includes

e−1 Lkin. = −gµνNIJ

(
DµX

I
) (

DνX
J
)
, (2.16)

with

NIJ = −iFIJ+iF IJ =
∂2N

∂XI∂X
J
, N = −iXI(FIJ−F IJ)X

J
= i

(
XIF I −X

I
FI

)
,

(2.17)

and with a covariant derivative DµX
I = (∂µ − iAµ)X

I involving the gauge field of the

superconformal U(1)R symmetry. Eliminating this auxiliary vector field delivers12

e−1 Lkin. = −N

[
1

4
(∂µ lnN)(∂µ lnN) +

∂2 lnN

∂XI∂X
J

(
∂µX

I
) (

∂µX
J
)]

, (2.18)

using the homogeneity of the prepotential. The Poincaré theory can then be obtained in

field coordinates XI = X0(1, za), X0 = κ−1y(z, z) and sections V = yU = y(ZI(z), FI(z))

once the dilatation and U(1)R gauge-fixing conditions

N = −κ−2 −→ (yy)−1 = 2(f + f)− (za − za)(fa − fa) = Y, y = y (2.19)

10But disagrees with statements in ref. [7] for instance.
11Propagating or auxiliary.
12Omitting fermions.
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have been applied. In terms of za then,

e−1 Lkin. = − 1

κ2
gab (∂µz

a)(∂µzb), gab =
∂2K

∂za∂zb
, K = − lnY, y(z, z) = eK/2,

(2.20)

which leads to expression (2.15). The same metric appears in the kinetic terms of the

Poincaré gauginos λia. However the kinetic terms of gauge fields include further contribu-

tions due to the graviphoton:

e−1 Lgauge =
1

4
ImNIJ F

I
µν F

µνJ − e

8
ReNIJ εµνρσ F

µνI F ρσJ , (2.21)

with nV + 1-dimensional metric

NIJ = F IJ + i
NIKX

KNJLX
L

NMNXMXN
, I, J = 0, . . . , nV. (2.22)

Notice that ImNIJ is negative on physical fields.

In the following, we will explicitly consider the case nV = 1 only.

2.2 Fermion shifts, scalar potential, supersymmetry breaking

In N = 2 supergravity, the scalar potential appears when isometries of the theory are

gauged. With the graviphoton and the gauge field of a vector multiplet (nV = 1), we

can gauge two commuting isometries, as required if partial supersymmetry breaking is

envisaged [13]. This of course implies that two commuting isometries should exist and this

defines a class of scalar manifolds for a single hypermultiplet for which explicit metrics are

available. The problem of partial breaking can then be analytically studied in general.

The scalar potential in supergravity theories has a particular structure. The super-

symmetry variation of all fermions ψAI is of the form

δ ψAI ∼ MA
Ij ǫ

j + · · · , (2.23)

where the fermion shift MA
Ij is a function of scalar fields (A runs over all supermultiplets, I

over all fermions in multiplet A, j over all supersymmetries; in N = 2 theories fermions are

always in SU(2) doublets and I = i). If the supermultiplet admits an off-shell realization,

as the N = 2 Maxwell or single-tensor multiplets, the fermion shifts are in general auxiliary

scalar fields. For instance, in a Maxwell N = 2 multiplet with gauginos λi,

δ λi ∼ Y ij ǫj + · · · , Y ij = Y ji, (2.24)

and Y ij is the SU(2) triplet of real (electric) auxiliary fields. For the gravitinos,

δ ψiµ ∼ 1

2
κ2 Sij γµǫj + · · · . (2.25)

The scalar potential is then symbolically [26]

V = e
∑

coeff.× fermion shifts† ×metric× fermion shifts, (2.26)

– 7 –
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where the sum is over all fermions and the coefficients are negative for gravitinos and posi-

tive for spin-12 fields and depend on the normalization chosen for the fermion fields. Hence,

fermion shifts define the ground state of the theory and a nonzero value of a spin-12 fermion

shift at the ground state indicates the presence of a goldstino, or several goldstinos, and then

indicates spontaneous supersymmetry breaking. Analyzing the structure of the fermion

shifts is fundamental when studying the breaking phases of a supersymmetric theory.

In order to obtain the fermion shifts, we need to specify the gauging applied in the

theory. The gauge generators (associated with gauge field I) and the gauge variations

can be defined by electric-magnetic symplectic vectors ΘI
aξa: the embedding tensor ΘI

a

specifies a linear combination of the (commuting) isometries ξa = ξua ∂u of the quaternion-

Kähler metric huv; it defines the coupling constants of the gauged theory. The index I

defines ΘI
a as a fixed symplectic vector associated with each isometry, but we will rather use

ΘI
a = ΩIJg

Ja, (2.27)

and the coupling constants are the numbers gIa.

Consistency of the gauging is guaranteed by the locality constraint on the embedding

tensor [19, 20]

ΘI
aΩIJΘJ

b = 0 , Ω =

(
0 I

−I 0

)
. (2.28)

The hypermultiplet scalar fields are coordinates qu on a (four-dimensional) quaternion-

Kähler space with metric huv. For each isometry vector δaq
u = ξua , one can derive an SU(2)

triplet of prepotentials (or moment maps) solving the differential equation

P x
a = − 1

2κ2
(Jx)u v∇uξ

v
a , x = 1, 2, 3 (2.29)

in terms of the triplet of complex structures Jx.13 As usual, to describe the hypermultiplet

fermions (hyperinos), we need a vielbein f iAu, which for N = 2 is defined by

f iAuΩABf
jB

v =
i

2
(Jx)uv(iε σ

x)ij +
1

2
huv ε

ij =⇒ huv = f iAu εijΩABf
jB

v (2.30)

(i and A are respectively SU(2) and Sp(2nH) = Sp(2) doublet indices and hyperinos carry

index A). Then, for given quaternion-Kähler metric huv, complex structures Jx, isometries

ξua and prepotentials

P ij
a = P x

a (iε σ
x)ij = P ji

a , (2.31)

we obtain the following expressions for the fermion shifts:14

Gravitinos: Sij =
1

κ
eK/2P ij

a U I ΘI
a = Sji , δ ψiµ =

1

2
κ2Sijγµǫj + · · · ,

Gauginos: Wα
ij = −1

κ
eK/2P ij

a ∇αU
I ΘI

a = W ji
α , δ λαi = κ2 gαβW βijǫ

j + · · · ,

Hyperinos: N i
A =

i

κ
eK/2f iBuU

I ΘI
aξua ΩBA, δ ζA = N i

Aǫi + · · · , (2.32)

13Our SU(2) conventions are as in [24] — see also appendix A.
14These shifts hold for fermions with dimension mass

1

2 . Similarly, the scalars and the metrics gαβ and huv

are dimensionless. We use Weyl spinors, ψi
µ, λ

α
i , ζ

A, ǫi are left-handed, ψµi, λ
αi, ζA, ǫi are right-handed.

The SU(2) indices are moved with λi = εijλj and λi = λjεji.

– 8 –



J
H
E
P
0
8
(
2
0
1
8
)
0
4
5

and of their conjugates (Paij = P ij
a

∗):

Gravitinos: Sij =
1

κ
eK/2PaijU

I
ΘI

a ,

Gauginos: Wαij = −1

κ
eK/2Paij∇αU

I
ΘI

a ,

Hyperinos: N i
A = − i

κ
eK/2f jAuU

I
εijΘI

aξua .

(2.33)

The embedding tensor always appears in the combination Θa
IV

I = κ−1 eK/2Θa
IU

I . The

notation ∇α stands for Kähler-covariant derivatives. Since Kähler transformations act as

K → K + λ(z) + λ(z), y → eλ(z) y, ZI(z) → e−λ(z) ZI(z), (2.34)

the covariant derivatives are

∇α y = (∂α −Kα)y = 0, ∇αU
I = (∂α +Kα)U

I , Kα =
∂

∂zα
K. (2.35)

Supersymmetry imposes the identity

δijV = κ2
(
−3Sik Sjk +Wα

ikgαβW βjk

)
+

4

κ2
N i
AN j

A, (2.36)

and the gauging and fermion shifts lead then to the following N = 2 scalar poten-

tial [24, 27, 28]:

e−1
V = −1

2
(ImN )−1IJ ΘI

aΘJ
bP x

a P
x
b + V

I
V JΘI

aΘJ
b

(
−4κ2P x

a P
x
b +

2

κ2
huv ξ

u
aξ

v
b

)
,

(2.37)

where

− 1

2κ2
(ImN )−1IJ = V

I
V J + gαβ̄∇αV

I∇β̄V
J
, ∇αV

I = (∂α +Kα)V
I (2.38)

in terms of the Kähler potential K. For later use, we find useful to express the scalar po-

tential (2.37) in terms of the anti-selfdual covariant derivatives k−auv defined in appendix A:

e−1
V = − 1

2κ4
(ImN )−1IJ ΘI

aΘJ
b k−auvk

−
b
uv +

V
I
V JΘI

aΘJ
b

κ2
(
−4 k−auvk

−
b
uv + 2huv ξ

u
aξ

v
b

)
,

(2.39)

using the identity

P x
a P

x
b =

1

κ4
k−auv k

−
b
uv , (2.40)

which can be proved using eqs. (A.3).

Supersymmetry breaking is then easily discussed. Firstly, at the ground state defined

by the scalar potential, nonzero shifts of the spin-12 fermions indicate the presence of

zero, one or two goldstinos, for a spontaneous breaking into N = 2, 1 or 0 unbroken

supersymmetry(ies). Secondly, if one or two supersymmetries remain unbroken, the value

of the gravitino shift Sij indicates the spacetime geometry of the ground state (AdS or
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Minkowski). Partial breaking N = 2 → N = 1 implies that there should be one (and only

one) spinor ǫ1i for which three conditions must be fulfilled:

〈Wz
ij〉ǫ1i = 0, 〈N i

A〉ǫ1i = 0, 〈Sij〉ǫ1i =
µ

κ2
ǫi1, (2.41)

and the scalar curvature of AdS spacetime is given by R = 4Λ, Λ = −3|µ|2. Furthermore,

the second supersymmetry with spinor parameter ǫ2 should verify either

〈Wz
ij〉ǫ2i 6= 0 or 〈N i

A〉ǫ2i 6= 0. (2.42)

In the next sections, we analyze these conditions on a special Kähler geometry with

arbitrary prepotential F (XI) and a generic quaternion-Kähler geometry for a single

hypermultiplet.

3 The hypermultiplet with isometries and partial breaking

For one hypermultiplet, the four-dimensional quaternion-Kähler geometry is defined as an

Einstein space with constant Ricci curvature proportional to κ2 [29]15 and (anti-) selfdual

Weyl curvature. With one or two isometries, metrics for generic quaternion-Kähler spaces

have been thoroughly discussed. We will use two canonical forms: the Przanowski-Tod

(PT) [30, 31] and the already quoted Calderbank-Pedersen (CP) [22]. Both are defined in

terms of a solution of a differential equation, nonlinear (Toda) for the PT metric for spaces

with one isometry, linear in the CP metric with two commuting isometries. Since we are

interested in the latter case, we first consider the hypermultiplet metric in CP coordinates.

3.1 The CP metric

According to Calderbank and Pedersen [22], a four-dimensional quaternion-Kähler metric

with two commuting isometries can be written in a set of coordinates ρ > 0, η, ψ and ϕ

for every solution F (ρ, η) of the linear equation

∂2F

∂ρ2
+

∂2F

∂η2
=

3F

4ρ2
, (3.1)

with isometries acting as shifts of ψ and ϕ. The line element ds2 = huv dq
udqv is

ds2 =
4ρ2

(
F 2
ρ + F 2

η

)
− F 2

4F 2
dℓ2 +

[(F − 2ρFρ)α− 2ρFηβ]
2 + [(F + 2ρFρ)β − 2ρFηα]

2

F 2
(
4ρ2

(
F 2
ρ + F 2

η

)
− F 2

) ,

(3.2)

where

α =
√
ρ dϕ , β =

dψ + ηdϕ√
ρ

, dℓ2 =
dρ2 + dη2

ρ2
. (3.3)

The metric determinant is (
4ρ2

(
F 2
ρ + F 2

η

)
− F 2

)2

16 ρ4F 8
(3.4)

15For metric guv = κ−2huv as defined in eq. (2.2).
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and positivity requires 4ρ2
(
F 2
ρ + F 2

η

)
> F 2 > 0. The CP metric describes a conformally

anti-selfdual Einstein space16 with scalar curvature normalized to R = −12. It is endowed

with a triplet of SU(2) selfdual 2-forms Jx (complex structures) which are covariantly

constant with an SU(2) connection ωx [22]:

J = Jx iσx=
i

F 2

((
ρ2(F 2

ρ+F 2
η )−

1

4
F 2

)
dρ∧dη
ρ2

+α∧β
)
σ1

+
i

F 2

(
(ρFρ−iσ1ρFη)(α+iσ1β)−

1

2
F (α−iσ1β)

)
∧dρ+iσ1dη

ρ
σ2 ,

ω=ωx iσx=
i

F

(
Fηdρ−

(
1

2
F+ρFρ

)
dη

ρ

)
σ1+

i

F
(α+iσ1β)σ2 ,

(3.5)

and the identities (A.2), (A.3) are satisfied.

On the metric (3.2), Calderbank and Pedersen [22] write:17 “Any selfdual Einstein

metric of nonzero scalar curvature with two linearly independent commuting Killing fields

arises locally in this way (i.e., in a neighbourhood of any point, it is of the form (3.2) up

to a constant multiple).” We will see that a slight inaccuracy in this statement allows for

an exception which is of fundamental importance in our subject.

The two Killing vectors of the CP metric are by construction ξ1 = ∂ϕ and ξ2 = ∂ψ.

Using eq. (2.29), the triplets of Killing prepotentials (or moment maps) are

P x
1 =

1

κ2
√
ρ F




0

− ρ

η


 , P x

2 =
1

κ2
√
ρ F



0

0

1


 . (3.6)

The standard vierbein one-forms of the metric (3.2) are

e0 =

√
4ρ2(F 2

ρ + F 2
η )− F 2

2F

dρ

ρ
, e1 =

√
4ρ2(F 2

ρ + F 2
η )− F 2

2F

dη

ρ
,

e2 =
(F − 2ρFρ)α− 2ρFηβ

F
√

4ρ2(F 2
ρ + F 2

η )− F 2
, e3 =

(F + 2ρFρ)β − 2ρFηα

F
√

4ρ2(F 2
ρ + F 2

η )− F 2
.

(3.7)

We will need the corresponding symplectic vielbeins f iAu obtained from relations

ds2 = δmn e
men = εijΩAB f iAuf

jB
v dq

udqv (3.8)

or

f iAu =
1√
2

(
e0u ε± i exu ε σ

x
)iA

, x = 1, 2, 3 , (3.9)

and we have checked that the f iAu’s satisfy eq. (2.30). We will use the + sign below.

16An Einstein metric with anti-selfdual Weyl curvature.
17It is the point (ii) of their main theorem 1.1.
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3.2 Fermion shifts

Consider a generic dyonic gauging of the two isometries, described by:

ΘI
a =




g0 g1
0 g2
0 0

0 −g3


 , a = 1, 2 , (3.10)

where the embedding tensor ΘI
a is compatible with the locality condition (2.28) and g0,1,2,3

are the gauge couplings. We use a prepotential frame and formulas (2.5) apply. The

corresponding Kähler potential is given in eq. (2.15) for a single z:

K = − lnY, Y = 2(f + f̄)− (z − z̄)(fz − f z) . (3.11)

In order to evaluate the fermion shifts given in (2.32), we use the results of section 3.1.

Defining

c̃ = g1 + g2z + ig3fz + g0η, (3.12)

we find

Sij = −1

κ
eK/2

(
g0P

2
1 δ

ij + i
(
(g1 + g2z + ig3fz)P

3
2 + g0P

3
1

)
(σ1)

ij
)

= − eK/2

κ3
√
ρ F

(
−g0ρ δ

ij + ic̃(σ1)
ij
)

(3.13)

for the gravitino shift, and

W ij
z = −1

κ
eK/2ΘI

aP ij
a ∇zU

I = i eK/2
(g2 + ig3fzz)

κ3
√
ρ F

(σ1)
ij −Kz S

ij ,

N i
A = − eK/2

κ
√
2ρ F

√
4ρ2(F 2

ρ + F 2
η )− F 2

(ρA2σ2 +A3σ3)
iA ,

A2 = −g0F + 2(c̃Fη + g0ρFρ) , A3 = c̃F + 2ρ(−g0ρFη + c̃Fρ) (3.14)

for the shifts of spin-12 fermions.18

3.3 Partial breaking in flat space

The first condition for partial breaking is certainly that the ground state does not lead

to two goldstinos. The determinants of W ij
z and N i

A should vanish at the ground state.

Cancelling the determinant of W ij
z requires

ig2 − g3〈fzz〉 = ∓〈(±ic̃+ g0 ρ)Kz〉 (3.15)

with zero eigenvector19

ǫ̂i(x) =

(
∓1

1

)
v(x), (3.16)

18The fermion shifts have dimension mass3 (S and W ) or mass1 (N).
19The ± or ∓ signs are correlated between the various equations. The parameter function v(x) has

dimension mass−1/2.
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and this ǫ̂i is also eigenvector of Sij with

〈Sij〉 ǫ̂j =
〈

eK/2

κ3
√
ρ F

〉
〈g0ρ± ic̃〉ǫ̂i. (3.17)

The eigenvalue should vanish for a Minkowski ground state:

g0〈ρ〉 = ∓i〈c̃〉 6= 0 (Minkowski) (3.18)

turning condition (3.15) into

g2 + ig3〈fzz〉 = 0 (Minkowski), (3.19)

and then to 〈
W ij
z

〉
= −

〈
KzS

ij
〉

(Minkowski). (3.20)

The determinant of N i
A turns out to be proportional to

(
ρ2A2

)2
+A2

3 = 8 c̃2ρF (Fρ ± iFη), (3.21)

using the Minkowski conditions (3.18) and (3.15). The conditions for the positivity of the

CP metric, ρ, F, F 2
ρ + F 2

η > 0 and condition (3.18) imply that N i
A does not have a zero

eigenvalue. Hence, the partial breaking of N = 2 supersymmetry in Minkowski spacetime

is excluded whenever the hypermultiplet can be described in the CP field coordinates and

metric. According to ref. [22], this would be always the case.

There is an apparent contradiction between this conclusion and the known exis-

tence [10] of a partial breaking on the SO(4, 1)/SO(4) hypermultiplet in Minkowski space-

time. We will see shortly that for this quaternion-Kähler space, and only for this space,

there exists a pair of isometries for which the coordinates used by Calderbank and Ped-

ersen [22] do not exist. This is the earlier quoted exception, leading to a statement of

uniqueness for partial breaking with a single multiplet and two gauged isometries.

3.4 Partial breaking in AdS

The obstruction found for partial breaking into Minkowski spacetime does not exist for

AdS ground states. Partial breaking in this case requires at the first place eq. (3.15). With

this condition, the gaugino and gravitino shifts read

〈W ij
z 〉 = −

〈
g0
√
ρ eK/2

κ3F
Kz

〉 (
1 ±1

±1 1

)
,

〈Sij〉 =
〈

eK/2

κ3
√
ρ F

〉[
∓i〈c̃〉

(
1 ±1

±1 1

)
+ 〈g0ρ± ic̃〉

(
1 0

0 1

)] (3.22)

at the ground state. For the unbroken supersymmetry parameter ǫ̂ (the zero eigenvector

of 〈W ij〉),

δ ψiµ =

〈
eK/2

2κ
√
ρ F

(g0ρ± ic̃)

〉
γµǫ̂

i + · · · , (3.23)
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and the cosmological constant is

Λ = −3

〈
eK

κ2ρF 2

(
g20 ρ

2 + |c̃|2
)〉

. (3.24)

The Minkowski condition (3.18) which cancels Λ does not apply and the second condition

for partial breaking is that ǫ̂ is also a zero eigenvector of the hyperino shift matrix (3.14):

〈ρA2〉 = ∓i〈A3〉 . (3.25)

Solutions to eqs. (3.15) and (3.25) would lead to stable AdS ground states.20

An example. We can realize the above conditions for N = 1 AdS vacua in a specific

example. We consider for this a CP metric with Fη = 0, i.e.

F =
1

2
ρ3/2 − σρ−1/2 , σ = constant . (3.26)

This metric has extended isometry Heisenberg ⋉ U(1) and it describes the scalar mani-

fold of the universal hypermultiplet in type II strings, including the one-loop perturbative

corrections, as obtained in ref. [16]. The case σ = 0 is the tree-level SU(2, 1)/SU(2)×U(1).

From the expressions of A2 and A3 in eq. (3.14), one obtains:

A2 = g0(−F + 2ρFρ) = g0

(
ρ3/2 + 2σρ−1/2

)
, (3.27)

A3 = c̃(F + 2ρFρ) = 2 c̃ρ3/2, (3.28)

and thus the condition (3.25) implies:

Re c̃ = 0 , Im c̃ = ±g0

(
ρ

2
+

σ

ρ

)
, (3.29)

where we dropped the symbols of expectation values. On the other hand, condition (3.15)

yields

− g2 + g3 Im fzz = ±g0ρ ImKz , Re c̃ = −g3Re fzz ± g0ρReKz . (3.30)

It follows that there are four equations that can be solved for the four expectation values

of ρ, η and z. Indeed, using the expression of c̃ in eq. (3.12), one obtains:

g0η = −g1 − g2Re z + g3Re fz, (3.31)

±g0ρ ImKz = g2 − g3 Im fzz, (3.32)

which can be used in the remaining two equations (right part of (3.29) and (3.31)) for

determining z. For instance, for g3 = 0, on finds the solution:

g0η = −g1 − g2Re z , ±g0ρ = 2g2 Im z ,

ReKz =
1

2
, ImKz = − 1

2 Imz
,

(3.33)

where the last two equations determine z, using the expression (3.11) for K. Note that par-

tial N = 2 supersymmetry breaking in AdS can be realised without introducing magnetic

FI coupling terms (g3 = 0).

20Their stability is carefully discussed in the appendix B of ref. [13]. An early example was given in

ref. [12].
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3.5 Hyperbolic space and Calderbank-Pedersen coordinates

We now come back to the issue met at the end of section 3.3. To resolve the case, we will

show that the hyperbolic space cannot be described by a CP metric with shift isometries

on (ϕ, ψ) generated by pairs of elements in the three-dimensional abelian subalgebra of

SO(4, 1).21 In other words, CP coordinates do not exist for this case. To proceed, we

simply compare the value of scalar quantities (independent on the choice of coordinates),

calculated either in CP or in PT coordinates.

The Calderbank-Pedersen metric (3.2) has a well-defined pair of isometries and Killing

vectors. Scalar quantities like those appearing in the identity (2.40) can then be calculated

unambiguously,

k−1uv k
−
1
uv =

ρ2 + η2

ρF 2
, k−1uv k

−
2
uv =

η

ρF 2
, k−2uv k

−
2
uv =

1

ρF 2
, (3.34)

and the dependence on the quaternion-Kähler space is in the function F (ρ, η) only.

Consider now the simplest quaternion-Kähler space,

Sp(2, 2)

Sp(2)× Sp(2)
∼ SO(4, 1)

SO(4)
. (3.35)

This hyperbolic space admits coordinates in which the line element is

ds2 =
1

b20

(
db20 + db21 + db22 + db23

)
. (3.36)

This is a conformally-flat space with Ruv = −3huv. The corresponding symplectic vierbeins

f iA0 = − 1√
2 b0

τ iA1 , f iA1 = − 1√
2 b0

τ iA2 , f iA2 = − 1√
2 b0

τ iA3 , f iA3 =
1√
2 b0

εiA,

(3.37)

where (τx)
iA = (iεσx)

iA, follow from their definition (2.30). The triplet of SU(2) self-dual

two-forms Jx (complex structures)

J1 =
1

b20
(db0 ∧ db3 + db1 ∧ db2) ,

J2 =
1

b20
(db0 ∧ db2 + db3 ∧ db1) ,

J3 = − 1

b20
(db0 ∧ db1 + db2 ∧ db3)

(3.38)

is covariantly constant up to the SU(2) connection ωx

ω1 = −db3
b0

, ω2 = −db2
b0

, ω3 =
db1
b0

. (3.39)

Conditions (A.2) and (A.3) are verified. We are interested in the Killing vectors of two

translation isometries acting on b2 and b3:

ξ1 = ∂b2 , ξ2 = ∂b3 . (3.40)

21See appendix B for a review on H4 coordinates.
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Their Killing prepotential triplets follow from eq. (2.29):

P1 = − 1

κ2b0



0

1

0


 , P2 = − 1

κ2b0



1

0

0


 . (3.41)

In these coordinates and for these isometries, we find the following expression for the scalars

appearing in eq. (2.40):

k−1uv k
−
1
uv =

1

b20
, k−1uv k

−
2
uv = 0, k−2uv k

−
2
uv =

1

b20
. (3.42)

The comparison with the generic values (3.34) obtained for the CP metric indicates that

for these isometries, CP coordinates cannot be found.22

The origin of this obstruction is located in the derivation of the CP metric given in

ref. [22]. This metric is a consequence of the Joyce description for anti-selfdual conformal

metrics with a U(1)× U(1) symmetry [32], the Jones-Tod correspondence for four dimen-

sional anti-selfdual spaces with at least one isometry [33], and the use of Przanowski-

Tod (PT) theorem to determine which metrics, among the Joyce metrics, are Einstein

spaces [30, 31, 34]. In short, to identify the Einstein representatives among the conformal

structures with anti-selfdual Weyl tensor, one employs the PT form where the metric is

generated by a function Ψ(X,Y, Z) solving the continual Toda equation [30, 31, 34]23

ΨXX +ΨY Y + (eΨ)ZZ = 0. (3.43)

The PT line element is then

ds2 =
1

Z2

[
1

U
(dψ + ω)2 + U

(
dZ2 + eΨ

(
dX2 + dY 2

))]
,

dω = UX dY ∧ dZ + UY dZ ∧ dX + (U eΨ)Z dX ∧ dY ,

2U = 2− Z ΨZ .

(3.44)

The quaternion-Kähler metric has one isometry acting on the fourth coordinate ψ and

generated by ∂ψ. The simplest solution is of course

Ψ = C = constant, U = 1, dω = 0, ω = dg(X,Y, Z), (3.45)

for which

ds2 =
1

Z2

[
d(ψ + g)2 + dZ2 + eC

(
dX2 + dY 2

)]
. (3.46)

This is the metric (3.36) with b0 = Z, b1 = eC/2X, b2 = eC/2Y , b3 = ψ+g and the isometry

of the PT metric shifts b3.

In order to make contact with the CP metric, we assume the existence, in the PT

description, of a second isometry generated by ∂ϕ. The case of primary interest for us is a

shift isometry acting on b1 or b2. We choose a translation isometry of the Y coordinate.

22A similar conclusion, technically more involved though, derives from comparing the inner products of

the two isometries, i.e. ξua ξ
v
bhuv.

23As usual, indices indicate derivatives.
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Assume then that ϕ = Y and that Ψ does not depend on Y . Finding the CP coordi-

nates is possible using a transformation due to Ward [35]:24

(
X, Z; eΨ(X,Z)

)
=⇒ (ρ, η; V (ρ, η)) ,

X = Vη , 2Z = ρ Vρ ,
1

4
ρ2 = eΨ ,

ΨXX +
(
eΨ

)
ZZ

= 0 =⇒ 1

ρ
(ρVρ)ρ + Vηη = 0 ,

(3.47)

resulting in the CP metric (3.2), with F =
√
ρ Vρ. This transformation is clearly incom-

patible with a constant Ψ. For this hypermultiplet manifold and for this choice of second

isometry with Killing vector ∂Y , CP coordinates ρ and η do not exist and the argument

against partial breaking proved in the previous section does not hold. The constancy of

the Toda potential is at the origin of this exception.

With SO(4, 1) isometry, the hyperbolic space has a variety of other inequivalent pairs of

commuting isometries. For these pairs, the corresponding Toda potentials are not constant

and CP coordinates do exist. Some examples of CP coordinates for other isometries of the

hyperbolic space are described in appendix B.

4 Partial breaking and the APT model

4.1 The SO(4, 1)/SO(4) model

Ferrara, Girardello and Porrati (FGP) [7, 10] have shown that partial breaking occurs on

the simplest quaternion-Kähler space for one hypermultiplet, SO(4, 1)/SO(4), with two

gauged translation isometries. Explicitly, coordinates (3.36) with

ds2 =
1

b20

(
db20 + db21 + db22 + db23

)
, Lkin. = − e

2(κb0)2
(∂µb

u)(∂µbu), (4.1)

and Killing vectors

ξ1 = ∂b2 , ξ2 = ∂b3 (4.2)

are used for constructing the N = 2 supergravity lagrangian. In ref. [10] they first worked

in the non-prepotential frame described in section 2, eqs. (2.13) and (2.14). Then they

reworked the example in a generic frame with arbitrary prepotential function f(z) [7].

Our objective in this section is to complete the description of the model by showing

explicitly that the N = 2 supergravity theory (at finite κ then) admits a stable ground

state with partial breaking which continuously deforms to the APT model in the gravity-

decoupling limit κ → 0. This can be seen as deriving off-shell the APT lagrangian as the

κ → 0 limit of the SO(4, 1)/SO(4) supergravity lagrangian.25

Using the embedding tensor (3.10), the prepotential frame (2.5) leading to Kähler po-

tential (2.15) and coordinates bu with metric (3.36) for the hypermultiplet, the supergravity

24See appendix C for details.
25Following for instance ref. [36]. Although the statement exists in the literature, we have not found an

explicit construction with an appropriate use of the concept of prepotential frame.
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potential reads:

V =
eK

κ4 b20Kzz̄

[(
g20 + |c|2

)
(−Kzz̄ +KzKz̄) + |cz|2 + c̄czKz̄ + cc̄zKz

]
(4.3)

with c defined as

c = −i(g1 + g2z + ig3fz), (4.4)

and cz = −ig2 + g3fzz. Since hypermultiplet scalars only appear in the prefactor b−2
0 , the

ground state of the potential, in order to escape the runaway of b0, requires Minkowski

geometry, 〈V〉 = 0. In ref. [10], the authors consider the particular case g1 = g2 = 0,

f(z) ∼ z, K = − ln(z + z) and then V ≡ 0.

Notice that the scalar potential (4.3) vanishes if

〈cz〉 = 0 =⇒ g3〈fzz〉 = ig2. (4.5)

Since 〈fzz〉 is imaginary, 〈Kzz〉 = 〈KzKz〉 and 〈V〉 = 0.

4.2 N = 1 Minkowski vacua

The fermion shifts (2.32) induced by this gauging read

Sij =
eK/2

κ3b0
(g0 I2 + c σ3)

ij , N i
A =

eK/2

κ
√
2 b0

(g0 σ3 + c I2)
iA (4.6)

for gravitinos and hyperinos. They verify the relation26

Sik Sjk =
2

κ4
N i
AN j

A . (4.7)

For gauginos,

W ij
z = −κ−1eK/2ΘI

aP ij
a ∇zU

I = −eK/2
cz

κ3b0
(σ3)

ij −Kz S
ij , (4.8)

where we have used

ΘI
a∂zU

I =

(
0

icz

)
. (4.9)

The conditions for partial breaking are then easily stated. To have a common zero eigenvec-

tor forW ij andN i
A, we need a dyonic (electric and magnetic) gauging with g3 6= 0 6= g0 and

〈g3fz − ig2z〉 = ±g0 + ig1 , g3〈fzz〉 = ig2. (4.10)

The first condition 〈c〉 = ±g0 leads to a zero eigenvector ǫ̂ of N
i
A while the second condition

〈cz〉 = 0 ensures that the same ǫ̂ is a zero eigenvector of W ij
z . This second condition for

partial breaking also implies 〈Sij〉ǫ̂j = 0 and 〈V〉 = 0 and then partial breaking can only ex-

ist in Minkowski spacetime. The conditions (4.10) define an N = 1 supersymmetric stable

ground state. In ref. [10] where g1 = g2 = fzz = 0, these conditions reduce to g3 = ±g0 6= 0.

26As matrices, κ2S =
√
2 σ3N .
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Solving the conditions for partial breaking commonly impose, for a given choice of

f(z), particular values or relations on the coupling constants. For instance, a linear f = z,

as used in ref. [10], has partial breaking only if g0 = ±g3 6= 0, g1 = g2 = 0. The conditions

may be impossible to solve: f = z2 forces all gi to be zero (but this example is irrelevant

since the Kähler metric Kzz ≡ 0). For a generic prepotential f(z), one usually finds that

two couplings are determined in terms of the other two.

The spectrum of the partially broken theory includes N = 1 supergravity (2B + 2F
on-shell states), a massive N = 1 gravitino multiplet (gravitino, the two spin-one fields,

one fermion, 6B + 6F), a massless chiral multiplet (2B + 2F) and a chiral multiplet with

the scalar z and mass proportional to the free parameter 〈fzzz〉, precisely as in the APT

model, see below. The four hypermultiplet scalars are massless (two are Goldstone bosons)

and the mass matrix reduces to z only with

〈Vzz̄〉 =
〈

g43Y
4κ4g20b

2
0

|fzzz|2
〉

> 0 , (4.11)

where Y is defined through the Kähler potential (3.11):

K = − lnY , Y = − i(z − z̄)(2g1 + g2(z + z̄))

g3
+ 2(f + f̄) > 0 . (4.12)

Hence, the mass of the scalar z (and of its fermion partner) is given by

m2
z = κ2

〈
Vzz̄

Kzz̄

〉
=

〈
g63Y3

16κ2g40b
2
0

|fzzz|2
〉

(4.13)

since Kzz̄ =
4g2

0

g2
3
Y2

.

At the N = 1 ground state, the value of the hypermultiplet scalar 〈b0〉 is an arbitrary

parameter. From the gravitino shift matrix27 or from the expression of the scalar potential

however, the mass of the massive gravitino scales as

m 3

2

∼ 〈κb0〉−1, (4.14)

and the theory has two order parameters, 〈b0〉 and 〈fzzz〉 for the massive gravitino and

chiral (with z) multiplets respectively.

In order to discuss the gravity-decoupling limit κ → 0 of the supergravity theory and

make contact with the APT model, we first redefine the hypermultiplet scalars (〈b0〉 6= 0):28

b0 = 〈b0〉(1 + κµ̃ b̃0) , bi = κµ̃〈b0〉 b̃i , i = 1, 2, 3, (4.15)

where µ̃ is a mass scale (and κµ̃ ∼ µ̃
MP

is dimensionless). The hypermultiplet kinetic terms

are then

Lhyper = − e µ̃2

2
(
1 + κµ̃b̃0

)2 δuv(∂µb̃
u)(∂µb̃v), (4.16)

and in the limit κ → 0, the kinetic metric is the trivial hyper-Kähler huv = µ̃2δuv.
29

27Which in a Minkowski ground state is proportional to the mass matrix, Sij ∼ κ−2m
ij
3

2

.
28This is a simplistic use of the procedure described in refs. [17, 18, 37, 38].
29We could as well define dimension-one fields with µ̃b̃u → b̃u.
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For the vector multiplet kinetic term, we need as κ → 0

− e

κ2
Kzz(∂µz)(∂

µz) −→ −(iFxx − iFxx)(∂µx)(∂µx), (4.17)

where F(x) is the dimension-two prepotential of the rigid N = 2 theory and x is a dimen-

sion-one scalar. In other words, we need

1

κ2
K(z, z) = − 1

κ2
lnY −→ −ixFx + ixFx + g(x) + g(x) (4.18)

and the Kähler potential of the rigid theory will be K̂(x, x) = −ixFx + ixFx. Following

ref. [7], this is obtained from the formal κ expansion,

f(z) =
1

4
+ λκµ̃ z + κ2

[
iµ̃2F̂ (z) +

1

4
µ̃2(λ+ λ)z2

]
+O(κ3µ̃3), (4.19)

and the definition

F(x) = µ̃2 F̂

(
x

µ̃

)
, (4.20)

with Fx = µ̃ F̂z and Fxx = F̂zz. The arbitrary complex number λ will get a precise value

later on.

With the rescaling (4.15) of the hypermultiplet scalars, a corresponding rescaling of

the Killing vectors, or equivalently a (first) rescaling of the coupling constants, is needed:

gi = κµ̃〈b0〉 g̃i , (4.21)

leading to the scalar potential

V = µ4 eK
(
1 + κµb̃0

)2

[
− 1

κ2µ2

(
g̃20 + |c|2

)
+

1

κ2µ2Kzz

(
g̃20KzKz + |cz + cKz|2

)]
, (4.22)

where c and cz are expressed in terms of g̃i (instead of gi), c = −i(g̃1 + g̃2z) + g̃3fz and

cz = −ig̃2 + g̃3fzz.

Before expanding in powers of κ, we perform a second redefinition of the gauge

couplings,

g̃0 = κµ̃ ĝ0 , g̃1 = κµ̃ ĝ1 , g̃2 = (κµ̃)2 ĝ2 , g̃3 = ĝ3 . (4.23)

The leading terms in the quantities c, cz and Kz appearing in the potential (4.22) are then

c = [ĝ3λ− iĝ1]κµ̃+O(κ2µ̃2), cz =
[
−iĝ2 + 2 (Reλ)2ĝ3 + iĝ3Fxx

]
κ2µ̃2 +O(κ2µ̃2),

Kz = −2Reλκµ̃+O(κ2µ̃2), (4.24)

and, to leading order in κ, the potential reads

V =
µ̃4

K̂xx

[
4(Reλ)2ĝ20 +

∣∣∣−ĝ2 + 2 ĝ1Reλ− 2 ĝ3ReλImλ+ ĝ3Fxx
∣∣∣
2
]
− C

=
1

2 ImFxx
[
ζ2 + |m2 +M2Fxx|2

]
− C (4.25)

=
1

2 ImFxx
∣∣m2 − iζ +M2Fxx

∣∣2 + ζ M2 − C,
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where

m2 = −(ĝ2 − 2 ĝ1Reλ+ 2 ĝ3Reλ Imλ)µ̃2, M2 = ĝ3µ̃
2,

ζ = 2Reλĝ0 µ̃
2, C = µ̃4ĝ20 + µ̃4|ĝ3λ− iĝ1|2.

(4.26)

The scalar potential of a globally supersymmetric theory is not expected to have an irrel-

evant additive constant and we cancel ζM2 − C by choosing

λ =
1

ĝ3
(ĝ0 + iĝ1), (4.27)

which also implies

c = ĝ0 κµ̃+O(κ2µ̃2) = g̃0 +O(κ2µ̃2). (4.28)

This is the leading term in the first condition (4.10) for partial breaking (related to the

gravitino and hyperino shift matrices). The shift matrix for canonically normalized (mass
3

2

dimension) gauginos Λi becomes

δΛi = W ij
x ǫj + · · · , W ij

x =
µ̃2

2 ImFxx

(
4 ĝ20 ĝ3

−1 − cz 0

0 cz

)
, (4.29)

where Kz, cz and c are given in eqs. (4.24) and (4.28).30

Up to here, the analysis has been off-shell only. We now expect that the second

condition (4.10) for partial breaking, which indicates that only one gaugino is a goldstino,

follows from the minimum of the potential, which is at31

ĝ3〈Fxx〉 = ĝ2 + 2iReλĝ0 = ĝ2 + 2i ĝ20/ĝ3. (4.30)

This vacuum equation is also the leading order term of 〈cz〉 = 0, the second condition for

partial breaking (4.10). And for 〈cz〉 = 0, the gaugino shift matrix (4.29) has one zero

eigenvalue. At the ground state, the vector multiplet metric is

2 〈ImFxx〉 = 4
ĝ2o
ĝ23

, (4.31)

and the deformation parameter of the supersymmetry variation in the goldstino direction

is then

δΛgoldstino = M2 + · · · = ĝ3 µ̃
2 + · · · . (4.32)

The coupling constant ĝ3µ̃
2 is the magnetic FI term at the origin of the partial breaking.

The N = 2 multiplet splits in a massless N = 1 Maxwell, including the goldstino, and a

chiral N = 1 multiplet with mass

M2
x =

〈
ĝ63µ

4

16ĝ40
|Fxxx|2

〉
, (4.33)

as expected from eq. (4.13).

In conclusion, we have shown that this N = 2 supergravity theory possesses for all

values of κ an N = 1 ground state which coincides in the limit κ → 0 with the APT

lagrangian and its N = 1 vacuum.

30The shift matrices κ2Sij and N i
A vanish when κ → 0 and hyperinos decouple from the goldstino.

31Metric positivity requires ImFxx > 0.
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4.3 N = 0 Minkowski vacua

The scalar potential (4.3) can also be written

e−1
V =

1

κ4 b20KzzY2

[
2
(
g20 + |c|2

)
Re fzz + Y|cz|2 − cczYz − cczYz

]
. (4.34)

Non-supersymmetric vacua will then follow by solving

∂zh = ∂zh = h = 0, h(z, z) = 2
(
g20 + |c|2

)
Re fzz + Y|cz|2 − cczYz − cczYz, (4.35)

supplemented by stability conditions and the existence of two goldstinos. Since h is real,

eqs. (4.35) give three conditions for the two real components of z. Hence, for a given f(z)

one expects at least one non-trivial condition on the gauge coupling constants: once 〈z〉 is
fixed by ∂zh = 0, the number 〈V〉 must vanish to avoid runaway in b0.

Since czz = g3 fzzz, with the definition (3.11) of Y, it is immediate that 〈fzzz〉 = 0 solves

∂zh = 0. We have already observed that 〈cz〉 = 0 leads to h = 0. Hence, 〈fzzz〉 = 〈cz〉 = 0 is

a solution of conditions (4.35). Since 〈cz〉 = 0 also implies that the gaugino shift matrix has

a zero eigenvector, the determinant of 〈N i
A〉 should be nonzero in an N = 0 ground state:

g0 6= ±〈c〉. (4.36)

This happens in the FGP model [10] with f(z) = z, g1 = g2 = 0 and then c = g3: all

〈z〉 are stable ground states since V ≡ 0, the generic ground state has N = 0 and partial

breaking occurs when g0 = ±g3. Hence we may think that partial-breaking solutions are

surrounded (in the parameter space of the solutions of a model) by N = 0 solutions.

However, assuming

f(z) = f0 + f1 z + f2 z
2 , f0,1,2 ∈ C , (4.37)

leads to the scalar potential

V =
C

κ4b20
, C =

(g20 + |A1|2)Ref2 + |A2|2Ref0 − Ref1Re(A1Ā2)

(Ref1)2 − 4Ref0Ref2
,

A1 = g1 + ig3f1 , A2 = g2 + 2ig3f2 = i cz .

(4.38)

Parameters should be such that the constant C vanishes to avoid a runaway in b0. The

choice cz = 0 with g3f2 6= 0 leads to N = 0 ground states for arbitrary 〈z〉 but the

supplementary condition for an N = 1 vacuum is never verified.

Working out conditions (4.35) leads to two distinct classes of Minkowski vacua:

i. All solutions with 〈fzzz〉 6= 0 and 〈h〉 = 0 are N = 1 vacua already described in

eqs. (4.10).32

ii. Solutions with 〈fzzz〉 = 0 and 〈h〉 = 0 are generically N = 0 vacua.

Stability of the N = 0 ground states is provided in terms of the mass matrix for the six

real scalars bu and z. The non-trivial second derivatives of the potential are 〈Vzz〉 which

vanishes with 〈fzzz〉 = 0 and 〈Vzz〉 which is controlled by the fourth derivative of f . The

vacuum is then unstable except if 〈f (n〉 = 0 for all n > 3 and this leads us naturally to the

choice (4.37).

32For a proof, see appendix D.
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5 Outlook

In summary, our motivation was to classify spontaneous (partial) supersymmetry breaking

in the minimal case of N = 2 supergravity, containing one hypermultiplet and one vector

multiplet. The former could describe the universal dilaton of type II superstrings com-

pactified on a Calabi-Yau threefold, while the latter should gauge together with the N = 2

graviphoton two commuting isometries of the hypermultiplet quaternion-Kähler manifold,

which is necessary in order to obtain a massive N = 1 spin-3/2 multiplet.

The analysis can be done in a general way, since a four-dimensional quaternionic man-

ifold with a two-torus isometry can be put in the Calderbank-Pedersen metric form [22].

To our surprise, using this approach we found a no-go theorem on the existence of

N = 1 Minkowski vacua, which would also hold for any number of abelian vector mul-

tiplets. This result seems in conflict with the well-known example of the hyperbolic space

SO(4, 1)/SO(4) [7]. However, we proved that the hyperbolic space cannot be written in

a Calderbank-Pedersen form, where its torus symmetry lies within the three-dimensional

abelian subalgebra of SO(4, 1). We furthermore showed that it is easy to obtain N = 1

vacua of partially broken supersymmetry in AdS space.

Finally, we revisited the hyperbolic space for gaugings within the three-dimensional

Abelian subalgebra of SO(4, 1), while for the scalars of the vector sector we considered a

generic holomorphic prepotential. We worked out the details for a generic gauging leading

to a supergravity theory with potential (4.3) and possessing N = 1 or N = 0 Minkowski

vacua for all values of κ. For the N = 1 vacua, we also worked out their off-shell gravity-

decoupling limit, and obtained the APT lagrangian [1].

Some open questions remain to be answered, which are outside of our present scope.

Regarding the gauged isometries, on the one hand, one may consider gauging isometries

of the special-Kähler manifold of vector multiplets, or (part of) the SU(2)R R-symmetry

with the compensating hypermultiplet. On the other hand, one may study the effect of

more hypermultiplets, for which however explicit and general metrics for quaternion-Kähler

spaces with isometries are not available.
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A Four-dimensional quaternionic manifolds with isometries

Consider a four-dimensional quaternionic space, described by an Einstein metric with anti-

selfdual Weyl curvature

Wxyrw +
1

2
εxyuvW

uv
rw = 0 , Ruv = −3huv , (A.1)

normalized with R = −12. This space is endowed with a triplet of SU(2) self-dual complex

structures Jxuv, which are covariantly constant modulo an SU(2) one-form connection ωx

∇wJ
x
uv + εxyz ωywJ

z
uv = 0 . (A.2)

The complex structures Jxuv are normalized to satisfy:

(Jx) r
u (Jy) v

r = −δxy δvu−εxyz (Jz) v
u , (Jx) v

u (Jx) r
w = huw gvr−δru δ

v
w+ε vr

uw . (A.3)

Assume that the quaternionic space has some isometries generated by ξa = ξua∂u. As a

consequence of the Bianchi identity for the Riemann tensor, condition (A.1) leads to

∇wk
+
auv = 2P+

uvwrξ
r
a , (A.4)

in terms of the (anti)-selfdual covariant derivatives

k±auv = P±
uv
wr∇wξar ,

P±
uv
wr =

1

2

(
δwruv ± 1

2
εuv

wr

)
, δwruv :=

1

2
(δwu δ

r
v − δruδ

w
v ) .

(A.5)

These (anti)-selfdual covariant derivatives obey the following identities

huv
(
k±aruk

±
bwv + k±bruk

±
awv

)
=

1

2
hrw k±a · k±b , k±a · k±b = hrwhuvk±aruk

±
bwv ,

huv
(
k±aruk

∓
bwv − k∓bruk

±
awv

)
= 0 , hrwhuv k±aruk

∓
bwv = 0

(A.6)

valid for any four-dimensional metric.33

B The hyperbolic space and its Calderbank-Pedersen coordinates

B.1 The hyperbolic space in global and Poincaré coordinates

The SO(4, 1) isometry algebra of the hyperbolic space H4 obtained as SO(4, 1)/SO(4)

includes six compact SO(4) generatorsXuv and four noncompact SO(4, 1)/SO(4) generators

Yu = Xu5, with η55 = −1 = −ηuu. It has a three-dimensional abelian subalgebra related

to noncompactness. In the standard notation or the SO(4, 1) algebra,34

[Xi4 +Xi5, Xj4 +Xj5] = −(η44 + η55)Xij = 0, i, j = 1, 2, 3. (B.1)

The commuting ri = Xi4 + Yi form a vector of SO(3) ⊂ SO(4).

33They follow from SO(4) group theory.
34The same would hold for Xi4 −Xi5.
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We can describe H4 in global coordinates. In this set of coordinates the SO(4) acts

linearly and the line element takes the form

ds2 =
4dxudxu

(1− xvxv)2
, xu = (x1, x2, x3, x4) . (B.2)

Its ten isometry generators are:

Generators of SO(4) : Xuv = xv∂u − xu∂v ,

Generators of SO(4, 1)/SO(4) : Yu =
4 + xvxv

4
∂u −

1

2
xuxv∂v ,

(B.3)

where ∂u = ∂
∂xu . The three-dimensional abelian subalgebra is generated by

r1 = X14 + Y1 , r2 = X24 + Y2 , r3 = X34 + Y3 . (B.4)

In these coordinates, the SO(4) generators act as simple linear variations but the action

of the commuting ri is more involved. The curvature is directly related to the SO(4, 1)-

invariant quantity 1 − xvxv, and these coordinates are then convenient for describing the

(flat or rigid) gravity-decoupling limit.

An alternative coordinate system is the Poincaré patch bu = (b0, b1, b2, b3). The metric

takes the form (3.36)

ds2 =
db20 + db21 + db23 + db23

b20
. (B.5)

In these coordinates, the generators of the three-dimensional abelian subalgebra act as

translations of bi:

ri =
∂

∂bi
. (B.6)

The two sets of coordinates are related by

b0 =
4− xuxu

4(1 + x4) + xuxu
, bi =

4xi

4(1 + x4) + xuxu
, i = 1, 2, 3 . (B.7)

B.2 Calderbank-Pedersen coordinates

The isometry algebra SO(4, 1) admits a variety of pairs of commuting generators and for

each pair, according to ref. [22], there should exist CP coordinates ρ, η, ϕ, ψ. Examples of

(inequivalent) pairs are:

i. A pair of isometries in the three-dimensional abelian subalgebra, for instance r1
and r2.

ii. The Cartan subalgebra of SO(4), chosen as the compact generators X12 and X34, or

a compact and a non compact SO(4, 1) generator, like X12 and Y4 = X45.

iii. A compact generator of SO(4) and one of the ri’s, for instance X23 and r1.

In each case, there are equivalent choices obtained by either SO(4) or SO(3) rotations.

The case (iii) is only one example of pairing one SO(4) generator with any generator in the

SO(2, 1) algebra commuting with it.

We have shown in section 3.5 that CP coordinates do not exist for the case (i). We

here show how CP coordinates can be derived for cases (ii) and (iii).
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Case (ii) — the Cartan algebra of SO(4). This is easily analyzed in coordinates

where the SO(4) has a linear action, i.e. coordinates (B.2). The commuting (compact)

Killing vectors are rotations in planes (12) and (34)

ξ1 = x2∂x1 − x1∂x2 , ξ2 = x4∂x3 − x3∂x4 . (B.8)

We next identify ξ1,2 with the Killing vectors of the CP metric or with linear combinations

of them, and use the identity (3.34) for recognizing the change of coordinates. There are

actually several possibilities and we focus on two cases, following ref. [22].

• The identification (∂ϕ, ∂ψ) = (ξ1, ξ2) leads to

(r1 + ir2)
2 =

η + 1− iρ

η − 1− iρ
, r21 = x21 + x22 , r22 = x23 + x24 ,

F (ρ, η) =
1

2
√
ρ

(√
ρ2 + (η + 1)2 −

√
ρ2 + (η − 1)2

)
.

(B.9)

• Choosing instead (∂ϕ, ∂ψ) = (ξ1 + ξ2, ξ1 − ξ2), we obtain

ρ = 2r1r2 , η = r21 − r22 , F (ρ, η) =
1

2
√
ρ

(√
ρ2 + η2 − 1

)
. (B.10)

Choosing instead ξ1 = X12, ξ2 = Y4 = X45 and using coordinates bu, the Killing vectors are

ξ1 = b2 ∂b1 − b1 ∂b2 , ξ2 = −b0 ∂b0 − b1 ∂b1 − b2 ∂b2 − b3 ∂b3 . (B.11)

Working as above we obtain:

ρ = r

√
b20 + r2 + b23
r2 + b23

, η = − b0b3
r2 + b23

, r2 = b21 + b22 ,

F =
21/4η

√
ρ (t2 + (1− ρ2 − η2)t− 2η2)1/4

, t =
√

(ρ+ 1)2 + η2
√
(ρ− 1)2 + η2 .

(B.12)

In any case, since CP coordinates exist, gauging these isometries does not lead to partial

breaking.

Case (iii) — r1 and X23. This case is more easily analyzed in coordinates bu where r1
is a translation of b1:

ξ1 = ∂b1 , ξ2 = b3∂b2 − b2∂b3 . (B.13)

We again consider two cases:

• With (∂ϕ, ∂ψ) = (ξ1, ξ2), we obtain

ρ =
r

b20 + r2
, η =

b0
b20 + r2

, F (ρ, η) =
η√

ρ(ρ2 + η2)
, (B.14)

where r2 = b22 + b23.
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• The choice (∂ϕ, ∂ψ) = (ξ2, ξ1) leads to

ρ = r , η = b0 , F (ρ, η) =
η√
ρ
. (B.15)

Again, CP coordinates exist and these isometries do not induce partial breaking.

Finally, for completeness and out of curiosity, we present the CP form of the sphere

SO(5)/SO(4) (which cannot describe a hypermultiplet), where all pairs of commuting

isometries are equivalent to X12 and X34. In coordinates where

ds2 =
4dxudxu

(1 + xvxv)2
, ξ1 = x2∂x1 − x1∂x2 , ξ2 = x4∂x3 − x3∂x4 , (B.16)

we again consider two choices of identification [22]:

• Now (∂ϕ, ∂ψ) = (ξ1, ξ2) leads to

(r1 + ir2)
2 =

η + 1− iρ

η − 1− iρ
,

F (ρ, η) =
1

2
√
ρ

(√
ρ2 + (η + 1)2 +

√
ρ2 + (η − 1)2

)
,

r21 = x21 + x22 , r22 = x23 + x24 .

(B.17)

• For (∂ϕ, ∂ψ) = (ξ1 + ξ2, ξ1 − ξ2) we obtain

ρ = 2 r1r2 , η = r21 − r22 , F (ρ, η) =
1

2
√
ρ

(√
ρ2 + η2 + 1

)
. (B.18)

C Ward transformation

Assume that we have a solution V (ρ, η) of the equation

1

ρ
(ρVρ)ρ + Vηη = 0, (C.1)

where indices denote derivatives with respect to η or ρ. A further derivative with respect

to ρ leads to
∂2F

∂ρ2
+

∂2F

∂η2
=

3F

4ρ2
with F (ρ, η) =

√
ρ Vρ, (C.2)

and F (ρ, η) generates via eq. (3.2) a quaternion-Kähler metric in Calderbank-Pedersen

coordinates. Coordinates (ρ, η) can be traded for (X,Z) by a double Legendre transfor-

mation:

V (ρ, η)−Xη − 2Z ln ρ = −K(X,Z). (C.3)

This implies firstly

ρVρ = 2Z, Vη = X, η = KX , 2 ln ρ = KZ . (C.4)
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Secondly

∂Z

∂ρ
=

1

2
(ρVρ)ρ ,

∂Z

∂η
=

ρ

2
Vρη,

∂X

∂ρ
= Vρη,

∂X

∂η
= Vηη, (C.5)

and
∂ρ

∂X
=

ρ

2
KXZ ,

∂ρ

∂Z
=

ρ

2
KZZ ,

∂η

∂X
= KXX ,

∂η

∂Z
= KXZ . (C.6)

As usual, ∂xi

∂xj
= δij for each set of coordinates delivers the relations between the second

derivatives of V and K. Using then eq. (C.1), the relevant equation appears to be

KXX +
ρ2

4
KZZ = 0 (C.7)

as the “Legendre partner” of eq. (C.1). Define finally

Ψ(X,Z) = ln

(
1

4
ρ2
)
, eΨ =

1

4
ρ2 =

1

4
eKZ . (C.8)

The relations induced by the Legendre transformation and eq. (C.7) lead to Toda equation

for Ψ:

ΨXX +
(
eΨ

)
ZZ

= 0. (C.9)

This procedure has been elaborated by Ward in ref. [35] and used in the derivation of the

CP metric [22]. It allows in particular to find CP coordinates for a quaternion-Kähler

metric with two isometries expressed in PT coordinates, for a given Toda solution Ψ.

The case where Ψ is a constant is clearly excluded.

D A proof

In section 4.3 on N = 0 vacua of the SO(4, 1)/SO(4) model, we claim that all solutions of

∂zh = h = 0 with fzzz 6= 0 are N = 1 vacua.35 We give here a proof of this statement.

Recall that, for a given prepotential function f(z),

Y = 2
(
f + f

)
− (z − z)

(
fz − fz

)
, c = −i(g1 + g2z) + g3fz, g3 6= 0. (D.1)

Starting with

h =
(
g20 + |c|2

) (
fzz + f zz

)
+ Y|cz|2 − cczYz − cczYz ,

∂zh = fzzz

[
g20 + cc+ g3 cz Y − g3 cYz + (z − z)ccz

]

= fzzz

[
(g0 + c)(g0 − c) + cz [g3Y + (z − z)(c− c)]

]
(D.2)

and assuming fzzz 6= 0, one finds the factorization:

cz (∂z h) fzzz
−1 + cz (∂z h) f zzz

−1 − g3 h = cz cz

[
g3 Y + (z − z)(c− c)

]
. (D.3)

This quantity should vanish for a solution of ∂zh = h = 0. The solutions are either cz = 0

or g3 Y + (z − z)(c− c) = 0 and in both cases ∂z h = 0 requires c = ±g0.

35In order to avoid cluttering in the formulas, we systematically omit 〈. . .〉 in this appendix.
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• If cz = 0 and c = ±g0 the vacuum has N = 1 supersymmetry: the two conditions for

partial breaking (4.10) are fulfilled.

• If cz 6= 0, the vacuum state would be at g3 Y + (z − z)(c − c) = 0 and c = ±g0 = c.

Then Y = e−K = 0, which is excluded.

Hence, Minkowski N = 0 vacua with fzzz 6= 0 do not exist.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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