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1 Introduction

Kinetic theory [1, 2] is the standard and surprisingly very efficient method of the inves-

tigation of transport phenomena in various physical systems. Classical kinetic theory is

widely used to describe the fluid dynamics, electromagnetic collective excitations in plas-

mas, conductivity in metals, etc. Quantum kinetic theory is indispensable in the study

of transport phenomena in material media at low temperature. Relativistic kinetic theory

is relevant in the studies of the primordial plasma of the early Universe [3, 4], relativistic

heavy-ion collisions [5, 6], compact stars [7], and the recently discovered Dirac [8–14] and

Weyl [15–22] materials whose low-energy excitations are described by the relativistic-like

Dirac and Weyl equations, respectively.

One of the qualitatively new key ingredients in the chiral plasma is the chiral charge,

whose conservation is violated only by the chiral quantum anomaly [23, 24]. Recently,

it was shown that its dynamical evolution can be described using the framework of the

kinetic theory. The corresponding version of the theory, i.e., the chiral kinetic theory was

formulated in refs. [25–27]. This theory relies on the wave-packet semiclassical description

of the anomalous Hall effect [28] in metals which takes into account the Berry curvature

effects [29, 30]. The latter are relevant for the chiral kinetic theory because the Weyl

nodes act as the sources and sinks of the Berry curvature. The chiral kinetic theory was
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derived in the first order in the Planck constant ~ and its equations are linear in electric

as well as magnetic fields. Such a theory successfully incorporates the chiral anomaly [23,

24] and describes the chiral magnetic effect [31]. However, many physical phenomena

require the chiral kinetic theory accurate to higher orders in the electromagnetic field.

The first step in this direction was done in refs. [32, 33] where, by using the wave-packet

semiclassical approach, the chiral kinetic equation valid to the second order in a magnetic

field was derived for fermions with a general band structure. In our recent paper [34],

we provided the explicit expressions for the chiral kinetic theory accurate to the second

order in electromagnetic and axial or pseudoelectromagnetic fields for a simple realization

of relativistic matter in a Weyl material with a single pair of Weyl nodes.

Certainly, it would be very useful to formulate the equations of the chiral kinetic theory

to all orders in electromagnetic fields. A convenient starting point for their derivation is the

equation of motion for the Wigner function [35] (see also refs. [36–40]) in an electromagnetic

field. In a many-body system, the Wigner function is given by the Fourier transform of

the two-point lesser Green’s function with respect to the relative coordinates (see, e.g.,

ref. [41]). Therefore, similarly to the usual distribution function, the Wigner function

describes the dynamics in the phase space, albeit retaining all its quantum aspects.

The equation of motion for the Wigner function in an electromagnetic field is exact and

mathematically equivalent to the Dirac or Weyl equation. By solving this equation in the

perturbation theory in electromagnetic field with the zero-order Wigner function propor-

tional to a combination of the Fermi-Dirac distribution functions, the standard equations of

the chiral kinetic theory were derived in ref. [42]. On the other hand, it is very well known

that the Dirac or Weyl equation is exactly solvable in a constant magnetic field. This

suggests a possible means to analyse the kinetic phenomena for chiral fermions when the

background magnetic field is taken into account nonperturbatively and the corresponding

Wigner function is found exactly. Further, this solution can be used to analyze pertur-

batively the effects of a weak electric field, as well as inhomogeneous and time-dependent

magnetic fields. This provides the main motivation for the study performed in this paper.

In addition, we would like to mention also that such an approach could, in principle, be

extended to the case of a constant background electric field. However, unlike the magnetic

field, the electric field does work. Therefore, even a stationary solution would describe a

nonequilibrium state, in which the pair production can take place. Using the formalism

of the equal-time Wigner function (known also as the Dirac-Heisenberg-Wigner function),

this problem was analyzed in refs. [43, 44]. The rearrangement of the particle occupation

numbers makes the analysis more complicated, therefore, in this paper we consider only

the case of constant background magnetic and axial magnetic fields.

By making use of the equal-time Wigner function, in this study we also address the

thermoelectric properties of chiral plasma in the strong magnetic field limit. In weak fields,

the corresponding anomalous transport was studied in refs. [45, 46] by taking into account

the Berry phase effects. Later, these thermoelectric properties were investigated in the

framework of the chiral kinetic theory for Dirac and Weyl materials in refs. [47–51]. The

authors of ref. [47] showed that the thermoconductivity has the standard linear temperature

dependence expected for a metallic system. In the case where the temperature gradient
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and weak magnetic field are parallel, the longitudinal thermoconductivity is quadratic in

the magnetic field strength, which is somewhat similar to the quadratic correction to the

electric conductivity from the chiral anomaly. If the magnetic field is perpendicular to

the temperature gradient, then the magnetic field correction to the thermoconductivity

is also quadratic, albeit has a negative sign. In this study, we extend the analysis of the

thermoelectric properties of chiral matter to the case of strong background magnetic and

axial magnetic fields.

The paper is organized as follows. The model is described in section 2. The equal-

time Wigner function for chiral fermions in background constant magnetic and axial (or

pseudo-) magnetic fields is explicitly calculated in section 3. In the same section we tested

the obtained Wigner function by studying the chiral magnetic and chiral separation effects,

as well as determining its weak magnetic field expansion. The equations of motion for the

equal-time Wigner function in the lowest Landau level approximation are given in section 4.

The collective excitations as well as the charge and heat transport in the longitudinal

direction with respect to the magnetic field are analyzed in sections 5 and 6, respectively.

The results are summarized in section 7. Some technical details of the derivation and

analysis are collected in several appendices at the end of the paper.

Throughout this paper, we set ~ = 1 and c = 1.

2 Model

The Weyl Hamiltonian for the right-handed λ = + and left-handed λ = − fermions in a

constant magnetic field is given by

Hλ = −iλvF (σ ·∇) + λvF e(σ ·Aλ) + µλ, (2.1)

where vF equals the velocity of light c in the case of relativistic matter or the Fermi velocity

of quasiparticles in a Weyl semimetal. Further, σ = (σx, σy, σz) are the Pauli matrices,

Aλ = (0, x1Bλ, 0) is a vector potential for an effective magnetic field Bλ = B + λB5 that

points in the +z direction, and µλ = µ + λµ5 is an effective chemical potential, where µ

is the fermion number chemical potential and µ5 is the chiral chemical potential. Here,

we included the interaction of the chiral fermions with an axial magnetic (or, equivalently,

pseudomagnetic) field B5. Such a field interacts with the different sign depending on

the fermion chirality. While this field is typically absent in relativistic matter systems

(except for, possibly, in the primordial plasma of the early Universe before the electroweak

transition) it can be easily induced by mechanical strains in Weyl and Dirac semimetals [52–

58]. The characteristic strengths of the pseudomagnetic field in Dirac and Weyl materials

range from about B5 ≈ 0.3 T, when a static torsion is applied to a nanowire of Cd3As2 [57],

to approximately B5 ≈ 15 T, when a thin film of the same material is bent [58].

The wave functions of Hamiltonian (2.1) are derived in appendix A. Their final ex-

pressions read

ψn=0,p2,p3(x) = |eBλ|1/4eip3x3+ip2x2Y0(ξ)PsB

(
0

1

)
, (2.2a)
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ψn>0,p2,p3(x) = |eBλ|1/4
√

2v2
Fn|eBλ|

2v2
Fn|eBλ|+ (εn − sBvFλp3)2PsBe

ip3x3+ip2x2

×

{
Yn(ξ)

(
0

1

)
− i λ

vF
√

2n|eBλ|
(εn − sBvFλp3)Yn−1(ξ)

(
1

0

)}
, (2.2b)

where

εn=0 = sBvFλp3, (2.3a)

εn>0 = ±vF
√
p2

3 + 2n|eBλ| (2.3b)

are the energy dispersion relations at the lowest n = 0 and higher n > 0 Landau levels,

respectively. In eqs. (2.2a) and (2.2b), we used the operator

PsB =
(1− sB)

2
σx +

(1 + sB)

2
, (2.4)

which interchanges spinor components of the wave functions when the sign sB = sgn (eBλ)

changes. We also used the following shorthand notation:

Yn(ξ) =
1√

2nn!
√
π
e−ξ

2/2Hn(ξ), (2.5)

where Hn(ξ) denote the Hermite polynomials and ξ ≡
√
|eBλ| [x1 + p2/(eBλ)].

The Wigner function of a many-body system can be defined in terms of the second

quantized fermion and antifermion fields. In a constant magnetic field, the former reads

Ψ̂(x) =

∞∑
n=0

∫
dk2dk3

(2π)2

[
ân,k2,k3ψn,k2,k3(x) + b̂†n,k2,k3φn,k2,k3(x)

]
, (2.6)

where the summation over the Landau levels and the integration over the correspond-

ing momenta are performed. Here, ân,k2,k3 denote the particle annihilation operators

and b̂†n,k2,k3 are the antiparticle creation operators. (The Hermitian conjugate field will

be similarly given in terms of particle creation and antiparticle annihilation operators

â†n,k2,k3 and b̂n,k2,k3 , respectively.) Both sets of creation and annihilation operators sat-

isfy the conventional anticommutator relations. While the spinors for particle states

ψn,k2,k3 are given by eqs. (2.2a) and (2.2b), the spinors for antiparticles are defined by

φn,k2,k3 ≡ ψn,k2,k3 |εn→−|εn|.

3 Wigner function in a constant magnetic field

In a relativistic theory, there are several varieties of the Wigner functions. The Lorentz-

covariant forms of the Wigner function were proposed in the context of relativistic quantum

statistical mechanics [59, 60], as well as in the quantum transport of QCD [36–38]. How-

ever, the covariant formulations lead to conceptual difficulties when one attempts to solve

the kinetic equation as an initial-value problem. In addition, the physical interpretation

of the covariant Wigner function is quite obscure. The alternative approach is to use the
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equal-time Wigner function [43] which breaks explicitly the Lorentz covariance because the

Fourier transform with respect to the relative time coordinate is not performed. However,

such an equal-time Wigner function poses a mathematically well-defined initial-value prob-

lem and its interpretation as a quasiprobability distribution function in the phase space is

physically transparent [43, 44, 61, 62]. [Note that the Wigner function is a quasiprobability

distribution function because it can take negative values]. The situation is quite similar

to the study of the Bethe-Salpeter equation which is also fully covariant, but a physical

interpretation of the Bethe-Salpeter two-body wave function is rather obscure.

The equal-time Wigner operator for the Weyl fermions is given by [43]

Ŵαη(x,p) =
1

2

∫
d3y e−ip·yeiΦ(r+,r−)

[
Ψ̂†η (r+) , Ψ̂α (r−)

]
, (3.1)

where Ψ̂α and Ψ̂†η are the spinor components of the chiral fermion fields given by eq. (2.6)

and its Hermitian conjugated expression, respectively; r± = x ± y/2, the square brackets

denote the commutator, and the Schwinger phase

Φ(r+, r−) = −e
∫ r+

r−

drAλ(r) = −eBλy2x1 (3.2)

ensures the gauge invariance of Ŵαη(x,p). It is worth noting that instead of the usual

normal ordering, where the vacuum parts are simply omitted, we employed the Schwinger

prescription with a commutator [63]. In the absence of external fields, both definitions

are physically completely equivalent. However, for time-dependent electromagnetic fields,

the definition of normal ordering is ambiguous. In such a case, one should use the

Schwinger prescription, which defines the Wigner function correctly transforming under

the charge conjugation.

To obtain a statistical description, the Wigner operator has to be appropriately av-

eraged. In order to do this, we introduce the density matrix operator ρ̂, which at finite

chemical potential and temperature reads

ρ̂ =
1

Z
e−β(Ĥλ−µλN̂λ), (3.3)

and defines the probability of the realization of a given quantum state. Here, β = 1/T is the

inverse temperature, Ĥλ is the second quantized Hamiltonian, N̂λ is the particle number

operator, and Z denotes the partition function. By definition, the latter is given by

Z = Tr
[
e−β(Ĥλ−µλN̂λ)

]
=
∑

Φ

〈Φ|e−β
[
(|εn|−µλ)â†n,k2,k3

ân,k2,k3−(−|εn|−µλ)b̂†n,k2,k3
b̂n,k2,k3

]
|Φ〉

=
∏

n,k2,k3

(
1 + e−β(|εn|−µλ)

)(
1 + e−β(|εn|+µλ)

)
, (3.4)

where Tr[. . . ] denotes the trace over the Hilbert space of the multi-particles states |Φ〉 =

| . . . , Nmi , . . . , N̄mj , . . .〉 with Nmi particles in state mi and N̄mj antiparticles in state mj .

Note that the minus sign at the b̂†n,k2,k3 b̂n,k2,k3 term in the exponent comes from the normal

ordering of the anticommutating fermion operators.
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By definition, the Wigner function is the ensemble average of the Wigner opera-

tor (3.1), i.e.,

Wαη(x,p) ≡ Tr
(
Ŵαη(x,p)ρ̂

)
. (3.5)

Its detailed derivation in the case of chiral fermions in a constant external magnetic field

is presented in appendix B. The final result can be conveniently given in the form of an

expansion in the Pauli matrices,

W (x,p) = w0(x,p) + λ

3∑
i=1

σiwi(x,p). (3.6)

Henceforth, we will omit the arguments of w0, w, and W . Strictly speaking, the corre-

sponding functions do not depend on spatial coordinates when the magnetic field is uniform.

The explicit expressions for the vector components of the Wigner function w = tr(σW )/2

are given by

w1 = 2e−p
2
⊥/|eBλ|

∞∑
n=0

∑
εn

(−1)n
vF p1

|εn|
L1
n−1

(
2p2
⊥

|eBλ|

){
θ(εn)

1+eβ(|εn|−µλ)
+

θ(−εn)

1+eβ(|εn|+µλ)
− 1

2

}
,

(3.7a)

w2 = 2e−p
2
⊥/|eBλ|

∞∑
n=0

∑
εn

(−1)n
vF p2

|εn|
L1
n−1

(
2p2
⊥

|eBλ|

){
θ(εn)

1+eβ(|εn|−µλ)
+

θ(−εn)

1+eβ(|εn|+µλ)
− 1

2

}
,

(3.7b)

w3 =λsB
e−p

2
⊥/|eBλ|

2

∞∑
n=0

∑
εn

(−1)n

|εn|

×

{
−

[
(|εn|+sBλvF p3)Ln

(
2p2
⊥

|eBλ|

)
+(|εn|−sBλvF p3)Ln−1

(
2p2
⊥

|eBλ|

)]
θ(εn)

1+eβ(|εn|−µλ)

+

[
(|εn|−sBλvF p3)Ln

(
2p2
⊥

|eBλ|

)
+(|εn|+sBλvF p3)Ln−1

(
2p2
⊥

|eBλ|

)]
θ(−εn)

1+eβ(|εn|+µλ)

+
1

2

[
(εn+sBλvF p3)Ln

(
2p2
⊥

|eBλ|

)
+(εn−sBλvF p3)Ln−1

(
2p2
⊥

|eBλ|

)]}
, (3.7c)

where p2
⊥ = p2

1+p2
2, θ(x) denotes the unit step function, and the sum

∑
εn

takes into account

both positive and negative branches of the energy spectrum at n > 0. The scalar part

of the Wigner function w0 = tr(W )/2 defines the quasiprobability distribution function

fW,λ(p) ≡ 2w0. The explicit expression of the latter reads

fW,λ(p) = 2e−p
2
⊥/|eBλ|

{
θ(ε0)

1+eβ(|ε0|−µλ)
− θ(−ε0)

1+eβ(|ε0|+µλ)
− sgn(ε0)

2

}
+e−p

2
⊥/|eBλ|

∞∑
n=1

(−1)n

|εn|

×

{[
(|εn|+sBλvF p3)Ln

(
2p2
⊥

|eBλ|

)
−(|εn|−sBλvF p3)Ln−1

(
2p2
⊥

|eBλ|

)]
1

1+eβ(|εn|−µλ)

−
[
(|εn|−sBλvF p3)Ln

(
2p2
⊥

|eBλ|

)
−(|εn|+sBλvF p3)Ln−1

(
2p2
⊥

|eBλ|

)]
1

1+eβ(|εn|+µλ)

−sBλvF p3

[
Ln

(
2p2
⊥

|eBλ|

)
+Ln−1

(
2p2
⊥

|eBλ|

)]}
. (3.8)
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Figure 1. The dependence of the normalized Wigner quasiprobability distribution functions on p3
(left panel) and p⊥ (right panel) at Bλ = 0 (red solid lines) and Bλ 6= 0 (blue dashed and green

doted lines correspond to the right-handed and left-handed fermions, respectively). In the left panel

p⊥ = µ/vF and p3 = µ/vF in the right panel. The other parameters are set as follows: µ5 = 0,

T = 0.5µ, B5 = 0, and eB = 10 (µ/vF )2.

In order to get a better insight into the Wigner quasiprobability distribution function

fW,λ(p), it is instructive to compare it with the standard quasiprobability fFD(p) at Bλ =

0, which is given in terms of the Fermi-Dirac functions, i.e.,

fFD(p) = nF(εp − µλ)− nF(εp + µλ) (3.9)

where εp = vF |p| and nF(x) = 1/(eβx + 1) is the Fermi-Dirac distribution function. The

numerical comparison of the two quasiprobability distribution functions is shown in figure 1.

As we can see, the inclusion of the magnetic field leads to several qualitative changes

in the dependence of the quasiprobabilities on the longitudinal and transverse momenta,

presented in the left and right panels of figure 1, respectively. While the quasiprobability

function (3.9) is always positive (assuming µλ > 0), its counterpart in the background

magnetic field takes negative values in a range of momenta. Such negative values of the

quasiprobability originate from the quantum effects that cannot be captured by usual

distribution functions. As is seen from the left panel in figure 1, the dependence of the

quasiprobability distribution function fW,λ(p) on p3 is asymmetric in the longitudinal

component of momentum p3, as well as in chirality. A chiral asymmetry is also clearly

visible in the right panel in figure 1, where the distributions fW,±(p) have different widths

and heights as functions of p⊥.

Further, we plot the dependence of the vector component of the Wigner function along

the magnetic field w3 on p3 and p⊥ in the left and right panels of figure 2, respectively.

Similarly to the Wigner quasiprobability distribution function, the corresponding depen-

dence is also asymmetric with respect to p3 and the chirality. Note that the asymmetry is

well-pronounced at small values of momenta.

Before proceeding further with the analysis of the Wigner function in a strong magnetic

field, we will test our results (3.6)–(3.8) by studying the chiral magnetic effect (CME) and

chiral separation effect (CSE), as well as deriving the weak-field limit of the function W .
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Figure 2. The dependence of the normalized vector component of the Wigner function along the

magnetic field defined by eq. (3.7c) on p3 (left panel) and p⊥ (right panel). Red solid and blue

dashed lines correspond to the right-handed and left-handed fermions, respectively. In the left panel

p⊥ = µ/vF and p3 = µ/vF in the right panel. The other parameters are set as follows: µ5 = 0,

T = 0.5µ, B5 = 0, and eB = 10 (µ/vF )2.

3.1 Chiral magnetic and chiral separation effects

We begin our analysis of the Wigner function (3.6) with the study of the chiral magnetic

and chiral separation effects. The electric and chiral current densities are defined by

j ≡ −evF
∑
λ=±

λ

∫
d3p

(2π)3
tr [σW ] = −2evF

∑
λ=±

∫
d3p

(2π)3
w, (3.10a)

j5 ≡ −evF
∑
λ=±

∫
d3p

(2π)3
tr [σW ] = −2evF

∑
λ=±

λ

∫
d3p

(2π)3
w. (3.10b)

It is worth noting that the factor λ in eq. (3.10a) comes from the definition of the electric

current operator

ji,λ(p) ≡ −e(∂piHλ) = −eλvFσi. (3.11)

Taking into account the Wigner function components given by eqs. (3.7a)–(3.7c) one can

easily see that the only nonzero component of the current is along the ẑ direction. Inte-

grating over p⊥, we obtain

j3,λ = λevF
eBλ

(2π)2

∫
dp3

[
θ(sBλvF p3)

1 + eβ(vF |p3|−µλ)
− θ(−sBλvF p3)

1 + eβ(vF |p3|+µλ)
− sBλ

sgn (p3)

2

]
+ evF

|eBλ|
(2π)2

∞∑
n=1

∫
dp3

p3√
p2

3 + 2n|eBλ|

[
θ(εn)

1 + eβ(|εn|−µλ)
+

θ(−εn)

1 + eβ(|εn|+µλ)
− 1

2

]
= λe

eBλ
(2π)2

∫
dp3T

[
ln
(

1 + eβµλ
)
− ln

(
1 + e−βµλ

)]
= λ

e2Bλµλ
(2π)2

, (3.12)

where the contribution from the higher Landau levels is zero due to the integration over

p3. Performing the summation over chiralities, we find the following standard electric and
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chiral current densities [31, 56, 64, 65]:

j3 =
∑
λ

j3,λ =
e2Bµ5

2π2
+
e2B5µ

2π2
, (3.13)

j3,5 =
∑
λ

λj3,λ =
e2Bµ

2π2
+
e2B5µ5

2π2
. (3.14)

Thus, as expected, we reproduce exactly the standard relations for the CSE and CME

using the Wigner function approach.

3.2 Weak magnetic field expansion

In this subsection we consider the limit of small magnetic fields |eBλ| � p2. After expand-

ing the Wigner function to the linear order in |eBλ|/p2 and performing the summation over

the Landau levels (see appendix C for details), we arrive at the following expressions for

the scalar w0 and vector w parts:

w0 =
1

2
[nF(εp − µλ)− nF(εp + µλ)]

−
λv2

F eBλ
4

vF p3

εp

d

dεp

1

εp

[
nF(εp − µλ) + nF(εp + µλ)− 1

]
+O

(
|eBλ|2

)
, (3.15a)

wj = −vF pj
2

1

εp
[nF(εp − µλ) + nF(εp + µλ)− 1]

+
λv2

F e(Bλ)j
4

1

εp

d

dεp

[
nF(εp − µλ)− nF(εp + µλ)

]
+O

(
|eBλ|2

)
. (3.15b)

The above expressions qualitatively agree with the results obtained in refs. [42, 66, 67].

Note, however, that those papers use the covariant definition of the Wigner function.

Therefore, one needs to integrate their results over the zeroth component of the four-

momentum p0 before comparing with eqs. (3.15a) and (3.15b). It is interesting to note

that we have the additional term −1 in the second square brackets of eq. (3.15a) as well

as in the first square brackets of eq. (3.15b), which is absent in refs. [42, 66, 67]. This

difference is connected with our use of the commutator in the definition of the Wigner

operator (3.1) instead of the usual normal ordering considered in the cited works.

By making use of the explicit expressions for the Fermi-Dirac distribution functions,

the results for the scalar and vector parts of the Wigner function can be rewritten in the

following equivalent form:

w0 '
1

2

{
[1 + e(Bλ ·Ωλ)]nF

(
εp −

λevF (Bλ · p)

2|p|2
− µλ

)
(3.16)

− [1− e(Bλ ·Ωλ)]nF

(
εp +

λevF (Bλ · p)

2|p|2
+ µλ

)}
− e(Bλ ·Ωλ)

2
+O

(
|eBλ|2

)
,

where Ωλ = λp/(2|p|3) is the Berry curvature. This result agrees with the distribution

function in the chiral kinetic theory, except for the last term, which originates from the
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commutator in the definition of the Wigner operator (3.1). Note that due to the presence

of the Berry curvature and magnetic field, the quasiprobability distribution function in

eq. (3.16) can take negative values when the magnetic field is nonzero.

4 Equation of motion for the Wigner function

In this section we present the equation of motion for the equal-time Wigner function in

external electromagnetic fields. According to ref. [43], the corresponding equation reads

D0W + vF
λ

2
D · {σ,W} − iλvF [(σ ·P),W ] = 0. (4.1)

Here {, } and [, ] denote anticommutator and commutator, respectively, and the following

derivatives are used:

D0≡ ∂t+e
∫ 1/2

−1/2
ds (E(r+is∂p)·∂p)≈ ∂t+e(E(r)·∂p)+O [(∇r ·∂p)E(r)] , (4.2a)

D≡ ∂r+e

∫ 1/2

−1/2
ds [B(r+is∂p)×∂p]≈ ∂r+e[B(r)×∂p]+O [(∇r×∂p)B(r)] , (4.2b)

P≡p+ie

∫ 1/2

−1/2
dss [B(r+is∂p)×∂p]≈p+O [(∇r ·∂p)B(r)] . (4.2c)

As one can see from the above equations, the derivatives become local when the external

fields are spatially uniform. In terms of the scalar w0 and vector w parts of the Wigner

function, eq. (4.1) reads

D0w0 + vF (D ·w) = 0, (4.3a)

D0w + vFDw0 + 2λvF [P×w] = 0. (4.3b)

In the next section, we will use eqs. (4.3a) and (4.3b) to study the longitudinal modes of

the chiral magnetic wave (CMW) [68] in the limit of a strong magnetic field. In order to

describe such a collective excitation taking into account the dynamical electromagnetism,

we consider the system subjected to small oscillating electromagnetic fields

E′ = Ee−iωt+ik·r, (4.4a)

B′ = Be−iωt+ik·r, (4.4b)

and a strong constant effective magnetic field B0,λ. [In the case of a weak magnetic field,

the effects of the dynamical electromagnetism were taken into account in refs. [69, 70].] In

this case, the Wigner function can be naturally split in two parts, i.e., W = W (0) + W ′.

While the first part corresponds to the constant external magnetic field B0,λ, the second

one is related to the oscillating fields. The latter can be written in the form

W ′ = W (1)e−iωt+ik·r = w′0 + λ(σ ·w′) = w
(1)
0 e−iωt+ik·r + λ(σ ·w(1))e−iωt+ik·r. (4.5)
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To the linear order in the oscillating electromagnetic fields, the components of the Wigner

function satisfy the following equations:

∂tw
′
0 + vF∂rw

′ + vF e
(
[B0,λ × ∂p] ·w′

)
+ e(E′ · ∂p)

∫ 1/2

−1/2
dsw

(0)
0 (p− sk)

+vF e
[
B′ × ∂p

] ∫ 1/2

−1/2
dsw(0)(p− sk) = 0, (4.6a)

∂tw
′ + vF∂rw

′
0 + vF e [B0,λ × ∂p]w′0 + 2λvF

[
p×w′

]
−vF e

[
B′ × ∂p

] ∫ 1/2

−1/2
dsw

(0)
0 (p− sk) + e(E′ · ∂p)

∫ 1/2

−1/2
dsw(0)(p− sk)

+2ieλvF

∫ 1/2

−1/2
ds s

[[
B′ × ∂p

]
×w(0)(p− sk)

]
= 0. (4.6b)

In order to find the spectrum of collective modes, we should determine the electric current

density j′m which enters the Maxwell’s equations through the polarization vector

P ′m = i
j′m

ω
= χmnE′n, (4.7)

where χmn (m,n = 1, 2, 3 denote spatial components) is the susceptibility tensor. Then,

as is easy to check, the Maxwell’s equations admit a nontrivial solution when the following

characteristic equation is satisfied:

det
[(
ω2 − k2

)
δmn + kmkn + 4πω2χmn

]
= 0. (4.8)

The solution to this equation determines the dispersion relation of electromagnetic collec-

tive modes, such as the chiral magnetic wave.

As we saw in the previous section, the scalar part of the Wigner function is related

to the distribution function of the chiral kinetic theory in the limit of weak magnetic

field. However, the Wigner function is applicable even beyond the weak-field limit. It is

instructive, therefore, to consider the case of a strong constant magnetic field B0,λ ‖ ẑ. In

such a limit, one can use the lowest Landau level (LLL) approximation when only the LLL

contribution is retained. Then, the scalar and vector components of the Wigner function

take the form

w
(0)
0 = e−p

2
⊥/|eB0,λ|f̃LLL(p3), (4.9a)

w(0) = −sBλẑe−p
2
⊥/|eB0,λ|f̃LLL(p3), (4.9b)

where

f̃LLL(p3) ≡ θ(sBλvF p3)nF(sBλvF p3−µλ)−θ(−sBλvF p3)nF(−sBλvF p3+µλ)−λsB sgn (p3)

2
.

(4.10)

Note that both scalar and vector parts of the Wigner function are expressed in terms of

the distribution function on the LLL. The last term in eq. (4.10) is related to our use of the

commutator in the Wigner operator (3.1) and properly describes the vacuum oscillations.
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As we will see below, it is crucial for the correct description of the collective excitations

and transport phenomena in a strong field limit.

In the next two sections, we will use the equal-time Wigner function in the LLL

approximation in order to study: (i) the dispersion relation of the CMW and (ii) the

thermoelectric properties of chiral fermions in a strong magnetic field.

5 The chiral magnetic and pseudomagnetic waves in a strong magnetic

field

In this section, we study the dispersion relation of the CMW in the strong magnetic field

limit by using the equal-time Wigner function approach. In order to simplify the analysis,

we will consider only the case of longitudinal waves, propagating along the direction of the

background field. In other words, the perpendicular components of the wave vector and

the oscillating electric field will vanish, i.e., k⊥ = 0 and E′⊥ = 0. In view of the Maxwell

equations, there will be also no oscillating magnetic field, i.e., B′ = [k×E′]/ω = 0. In this

case, eqs. (4.6a) and (4.6b) reduce to

−iωw(1)
0 + ivFk3w

(1)
3 + eE3e

−p2⊥/|eB0,λ|
∫ 1/2

−1/2
ds∂p3 f̃LLL(p3 − sk3) = 0, (5.1a)

−iωw(1)
3 + ivFk3w

(1)
0 − sBλeE3e

−p2⊥/|eB0,λ|
∫ 1/2

−1/2
ds∂p3 f̃LLL(p3 − sk3) = 0. (5.1b)

Note that due to the one-dimensional nature of the LLL, the equations for the w
(1)
1 and

w
(1)
2 have only the trivial solutions w

(1)
1 = w

(1)
2 = 0. On the other hand, the solution to

the system of coupled equations (5.1a) and (5.1b) is nontrivial, i.e.,

w
(1)
0 = −ieE3e

−p2⊥/|eB0,λ|
∫ 1/2

−1/2
ds
∂p3 f̃LLL(p3 − sk3)

ω + λsBvFk3
, (5.2a)

w
(1)
3 = sBλieE3e

−p2⊥/|eB0,λ|
∫ 1/2

−1/2
ds
∂p3 f̃LLL(p3 − sk3)

ω + λsBvFk3
. (5.2b)

By making use of the definition in eq. (3.10a), we then derive the following correction to

the electric current density proportional to the oscillating electric field:

j′3 = −2ie2vF
∑
λ=±

sBλE
′
3

∫
d3p

(2π)3

e−p
2
⊥/|eB0,λ|

ω + λsBvFk3

∫ 1/2

−1/2
ds∂p3 f̃LLL(p3 − sk3). (5.3)

It should be noted that there is also a non-oscillating contribution to the current that comes

from the zeroth order Wigner function w
(0)
3 . It describes the chiral magnetic and chiral

separation effects, but does not affect directly the dispersion relation of the collective modes.

In order to perform the integral over s on the right-hand side of eq. (5.3) it is convenient

to rewrite the partial derivative with respect to p3 in terms of the partial derivative with
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respect to s, i.e.,

Ik3 ≡
∫ Λ

−Λ
dp3

∫ 1/2

−1/2
ds∂p3 f̃LLL(p3 − sk3) =

∫ Λ

−Λ
dp3

∫ 1/2

−1/2
ds

1

−k3
∂sf̃LLL(p3 − sk3)

= 2sBλ+
2T

sBλvFk3

{
θ(sBλ)

−sBλvFk3

T
+ θ(−sBλ)

sBλvFk3

T

}
− sBλ

= −sBλ. (5.4)

Then, the final result for the electric current density (5.3) reads

j′3 = −2ie2vF
∑
λ=±

λsBeE
′
3

∫
d2p⊥e

−p2⊥/|eB0,λ|

(2π)3

Ik3
ω + λsBvFk3

= ie2vF
∑
λ=±

E′3
ω + λsBvFk3

|eB0,λ|
(2π)2

. (5.5)

Let us first consider the case of an ordinary magnetic field background, i.e., B0 6= 0

but B0,5 = 0. By comparing with eq. (4.7), we extract the following susceptibility tensor:

χ33 = − vF e
2|eB0|

2π2(ω2 − v2
Fk

2
3)
. (5.6)

By substituting this into the characteristic equation (4.8), we then derive the following

positive-energy solution for collective modes:

ω =

√
v2
Fk

2
3 +

2vF e2|eB0|
π

. (5.7)

This frequency corresponds to a chiral magnetic plasmon or, equivalently, the CMW in

the strong-field limit. As we see, the background magnetic field B0 is responsible for the

generation of the plasmon gap,

ΩB0 =

√
2vF e2|eB0|

π
. (5.8)

We note that the above value of the gap agrees with the one obtained in the LLL approx-

imation by a different method in ref. [71]. This is also consistent with the mass of the

resonance-like photon state revealed in QED in a strong magnetic field that is realized in

the kinematic regime m2 � k2
3 � |eB| [72].

Further, let us study the case when there is only an axial magnetic field present, i.e.,

B0 = 0 but B0,5 6= 0. In this case, the susceptibility tensor reads

χ33 = − vF e
2|eB0,5|

2ωπ2(ω + sBvFk3)
. (5.9)

By making use of the characteristic equation (4.8), we then derive the following dispersion

relation of collective modes:

ω =
1

2

(√
v2
Fk

2
3 +

8vF e2|eB0,5|
π

− sBvFk3

)
. (5.10)
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ω, B0≠0

ω, B0,5≠0

2 1 0 1 2

0.0

0.5

1.0

1.5

2.0

2.5

vFk3 ΩB

ω(k3)

ΩB

Figure 3. The frequencies of the collective excitations in the presence of background magnetic

(red solid line) and axial magnetic (blue dashed line) fields, as given by eq. (5.7) and eq. (5.10),

respectively. Here ΩB = ΩB0
at B0 6= 0 and ΩB = ΩB0,5

at B0,5 6= 0.

By analogy with the CMW, we call this mode a chiral pseudomagnetic wave. The dispersion

relations for both types of collective modes (5.7) and (5.10) are plotted in figure 3 as

functions of the longitudinal wave vector k3. The results for a nonzero ordinary magnetic

field B0 (at B0,5 = 0) and a nonzero axial magnetic field B0,5 (at B0 = 0) are shown by

solid red and blue dashed lines, respectively. Note that, the asymmetry of the dispersion

relation of the chiral pseudomagnetic wave is correlated with the sign of eB0,5. In figure 3,

we plotted the results for eB0,5 > 0. The results for eB0,5 < 0 can be obtained simply by

replacing k3 → −k3.

As we can see from figure 3, the chiral pseudomagnetic wave, which is realized in the

case of a nonzero axial magnetic field B0,5 6= 0, is qualitatively different from the gapped

chiral magnetic wave in the presence of a usual magnetic field. Indeed, while the frequency

of the chiral pseudomagnetic wave takes a nonzero value ΩB0,5 =
√

2vF e2|eB0,5|/π at

k3 = 0, its dependence on the wave vector k3 is asymmetric. The corresponding mode

appears to be gapless in the strong-field limit because ω → 0 at large positive k3 when

eB0,5 > 0 (or large negative k3 when eB0,5 < 0). We argue that the gaplessness of

this mode is an artifact of the LLL approximation, which may be formally viewed as the

B0,5 → ∞ limit. In the case of a strong but finite axial magnetic field, the inclusion of

higher Landau levels should make the corresponding mode gapped with the minimum of

the energy obtained at k3 ∼ B0,5. Indeed, this would be consistent with the weak-field

analysis in refs. [69, 70], where such an asymmetric dispersion relation with a minimum

at k3 ∼ B0,5 was predicted. The solution in eq. (5.10) is nothing else, but a strong-field

version of the chiral pseudomagnetic wave that was first obtained in refs. [34, 69, 70].

6 Thermoelectric phenomena in a strong magnetic field

In this section, we study the thermoelectric transport in a chiral plasma in a strong mag-

netic field. In essence, the problem reduces to determining the corrections to the Wigner

function in the LLL approximation and calculating the electric and heat (thermal) cur-
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rents when an additional weak electric field E and a small temperature gradient ∇T 6= 0

are present. [We will take into account only the contribution due to charged chiral par-

ticles leaving aside all other possible contributions.] For simplicity, we will assume that

B0,λ ‖ E ‖∇T ‖ ẑ. In this case, the equations for the Wigner function components (4.3a)

and (4.3b) read

∂tw0 + vF (∇ ·w) + evF ([B0,λ × ∂p] ·w) + e(E · ∂p)w
(0)
0 = 0, (6.1a)

∂tw + vF∇w0 + evF [B0,λ × ∂p]w0 + 2λvF [p×w] + e(E · ∂p)w(0) = 0. (6.1b)

Because of the spatial gradient of temperature, the Wigner function depends on spatial

coordinates, i.e., ∇W = (∇T )∂TW ≈ (∇T )∂TW
(0). Here we assume that the gradient

∇T is small and of the same order of magnitude as E.

By using the Wigner function components calculated in the LLL approximation, see

eqs. (4.9a) and (4.9b), as well as introducing a phenomenological collision term in the

relaxation time approximation on the right-hand sides of eqs. (6.1a) and (6.1b), we obtain

the following set of equations:

e−p
2
⊥/|eB0,λ| [(−sBλ)vF (∇3T )∂T + eE3∂p3 ] f̃LLL(p3) = −w0 − e−p

2
⊥/|eB0,λ|f̃LLL(p3)

τ
, (6.2a)

e−p
2
⊥/|eB0,λ| [vF (∇3T )∂T + (−sBλ)eE3∂p3 ] f̃LLL(p3) = −w3 + sBλe

−p2⊥/|eB0,λ|f̃LLL(p3)

τ
,

(6.2b)

where τ is the relaxation time. As is easy to check, w1 = w2 = 0 in the present setup. It

is worth noting that, in realistic models, the relaxation time may depend on the particle

energy, external fields, as well as other parameters. For simplicity, here we will assume

that τ is a constant. The solutions to eqs. (6.2a) and (6.2b) read

w0 = e−p
2
⊥/|eB0,λ|

{
f̃LLL(p3)− τ

[
(−sBλ)vF∇3T∂T f̃LLL(p3) + eE3∂p3 f̃LLL(p3)

]}
, (6.3a)

w3 = −sBλe−p
2
⊥/|eB0,λ|

{
f̃LLL(p3)− τ

[
(−sBλ)vF∇3T∂T f̃LLL(p3) + eE3∂p3 f̃LLL(p3)

]}
.

(6.3b)

By making use of these results, we can now calculate the electric and heat current densities.

In terms of the Wigner function, the corresponding current densities are given by (see, e.g.,

ref. [47])

j3 = −evF
∑
λ=±

λ

∫
d3p

(2π)3
tr[σ3W ] = −2evF

∑
λ=±

∫
d3p

(2π)3
w3, (6.4a)

jQ3 = vF
∑
λ=±

λ

∫
d3p

(2π)3
(ε0 − µλ) tr[σ3W ] = 2vF

∑
λ=±

∫
d3p

(2π)3
(sBλvF p3 − µλ)w3. (6.4b)

The calculation reduces to four types of integrals, presented in eqs. (D.6) through (D.9) in

appendix D. By making use of the corresponding results, we arrive at the following final
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expressions for the current densities:

j3 =
∑
λ=±

2evF sBλ {I1 − τ [(−sBλ)vF (∇3T )(∂T I1) + eE3I3]}

=
∑
λ=±

λe2B0,λµλ
(2π)2

+ τ
∑
λ=±

|eB0,λ|e2E3vF
(2π)2

, (6.5a)

jQ3 = −
∑
λ=±

2vF sBλ {I2 − µλI1 − τ [(−sBλ)vF (∇3T )∂T (I2 − µλI1) + eE3(I4 − µλI3)]}

=
∑
λ=±

λeB0,λ

2(2π)2

[
µ2
λ −

π2T 2

3
+ v2

FΛ2

]
− τvF (∇3T )

∑
λ=±

|eB0,λ|T
12

. (6.5b)

The last term in eq. (6.5a) is similar to the usual Drude conductivity and is related to

the density of states on the LLL. Similar physical interpretation applies to the last term

in eq. (6.5b) connected with the heat transport. Note that the anomalous Nernst effect,

i.e., the correction to j proportional to the cross product of the Berry curvature and the

temperature gradient [45], is absent in the problem at hand. This fact is not surprising in

view of the one-dimensional nature of the LLL. Last but not least, we note that the last

term in the square brackets in eq. (6.5b) diverges. The corresponding contribution should

be naturally regularized in realistic lattice models.

By comparing eqs. (6.5a) and (6.5b) with the general linear response relation, i.e.,

j3 = j̃3 + σ
(ee)
33 E3 + σ

(eT )
33 (−∇3T ), (6.6a)

jQ3 = j̃Q3 + σ
(Te)
33 E3 + σ

(TT )
33 (−∇3T ), (6.6b)

where j̃3 and j̃Q3 denote the nondissipative parts of the currents proportional to eB0 and

eB0,5 that come from the first terms in eqs. (6.5a) and (6.5b) [see also eqs. (3.13) and (3.14)],

we find that the off-diagonal terms of the thermoelectric conductivity tensor vanish, i.e.,

σ
(eT )
33 = Tσ

(Te)
33 = 0. Therefore, the Seebeck coefficient (or thermopower) S = σ

(eT )
33 /σ

(ee)
33

vanishes too. The thermoconductivity is defined in the absence of electric current and

equals to

κ33 = σ
(TT )
33 − σ

(Te)
33 σ

(eT )
33

σ
(ee)
33

= σ
(TT )
33 . (6.7)

Finally, one can easily check that the Wiedemann-Franz law κ33 = Tσ
(ee)
33 π2/(3e2) and the

Mott relation σ
(eT )
33 = π2T (∂µσ

(ee)
33 )/(3e) = 0 are satisfied. In fact, in the present setup,

κ33 and σ
(ee)
33 are the only nonzero components of the thermal and electric conductivity

tensors, respectively.

In the case of the vanishing axial magnetic field, B0,5 = 0, eqs. (6.5a) and (6.5b) take

the following simpler form:

j3 =
e2B0µ5

2π2
+ τ

e2E3vF |eB0|
2π2

, (6.8a)

jQ3 =
eB0µµ5

2π2
− τvF |eB0|

T∇3T

6
. (6.8b)
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On the other hand, when the ordinary magnetic field vanishes, but a nonzero axial magnetic

field is present, the electric current density is given by

j3 =
e2B0,5µ

2π2
+ τ

e2E3vF |eB0,5|
2π2

. (6.9)

As we see, this is similar to that in eq. (6.8a). However, this is not the case for the heat

current density, i.e.,

jQ3 =
eB0,5

(2π)2

(
µ2 + µ2

5 −
π2T 2

3
+ v2

FΛ2

)
− τvF |eB0,5|

T∇3T

6
. (6.10)

While the dissipative term proportional to the relaxation time is similar to the correspond-

ing term in eq. (6.8b), the nondissipative ones are completely different. For example, they

do not require the presence of both chemical and chiral chemical potentials and could be

nonzero even at µ = µ5 = 0.

Before concluding this section, it is instructive to point that all nondissipative contri-

butions in eqs. (6.9) and (6.10), as well as in eqs. (6.8a) and (6.8b), are bound currents that

can be expressed as curls of other quantities. (In other words, their structure is similar to

the magnetization current jM ∼ [∇ ×M].) This follows from the fact that both B0 and

B0,5 can be expressed as curls of the vector A and axial vector A5 potentials, respectively.

It is interesting to note here that, in the context of Weyl semimetals, the axial potential

A5 (unlike the usual vector potential A) is an observable quantity [54–58] which is related

to the separation between Weyl nodes in the momentum space.

7 Summary

By using the exact solutions of the Weyl equation for chiral fermions in constant mag-

netic and axial magnetic fields, we calculated the equal-time Wigner function for a mag-

netized chiral fermion plasma at finite chemical potential and temperature. This exact

Wigner function is defined by the scalar and vector parts in the basis of the Pauli matrices.

While the vector part is necessary to calculate currents, the scalar part defines the Wigner

quasiprobability distribution function. We checked that, to the linear order in magnetic

field, the latter also agrees with the distribution functions of the chiral kinetic theory. It is

interesting to note that, owing to its quantum nature, the scalar part of the Wigner function

can be negative in a magnetic field. Besides the possibility of negative values (assuming

µλ > 0), the most crucial difference between the standard quasiprobability function, which

is given in terms of the Fermi-Dirac functions, and the Wigner quasiprobability distri-

bution function in a magnetic field is connected with the chirality-correlated asymmetric

dependence of the latter on the longitudinal component of momentum. A similar asym-

metric dependence is found in the vector part of the Wigner function and is principal for

reproducing the correct chiral magnetic and chiral separation effects.

Retaining only the lowest Landau level contribution, the equation for the equal-time

Wigner function in a strong magnetic field is obtained. The constant background magnetic

and axial magnetic (or, equivalently, strain-induced pseudomagnetic) fields are taken into
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account nonperturbatively. In this case the scalar and vector parts of the Wigner function

are both proportional to the distribution function on the LLL. By making use of this

equation, it is found that the longitudinal collective excitations in a strong magnetic field

are gapped plasmons. The magnitude of their energy gap is determined by the value of

the magnetic field. Interestingly, the situation changes qualitatively in the case of the axial

magnetic field. The dispersion relation of the corresponding collective excitation, identified

as the chiral pseudomagnetic wave, is clearly asymmetric in the wave vector. While the

chiral pseudomagnetic wave appears to be gapless in the LLL approximation, we argued

that the corresponding mode is in fact gapped when higher Landau levels are included. As

in the limit of a weak axial magnetic field [69, 70], the minimum energy of the corresponding

mode should be at k3 ∼ B0,5.

By making use of the Wigner function in the LLL approximation, we also studied the

thermoelectric transport of chiral fermions in a strong magnetic field. The analysis was

performed in a phenomenological model where the effects of collisions were introduced into

the equation for the Wigner function via a constant relaxation time. The latter, of course,

is not a very realistic approximation to capture all details of the thermoelectric transport,

but should be sufficient at least for understanding qualitative features. We found that the

electric and heat (thermal) current densities are determined by the density of states on

the lowest Landau level. While the nondissipative part of the heat current density in a

magnetic field requires the presence of both chemical and chiral chemical potentials, its

counterpart in an axial magnetic field is nontrivial when at least one of these parameters

or temperature is present. All nondissipative contributions to currents come in the form of

bound currents that are curls of other quantities. The structures of the dissipative terms

are similar (up to the interchange B0,5 ↔ B0) in the cases of background magnetic B0 and

axial magnetic B0,5 fields.
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A Wave functions of the Weyl Hamiltonian

In this appendix, we derive the wave functions of the model Hamiltonian (2.1) for the

Weyl fermions in a constant magnetic field. In order to solve the eigenvalue problem

Hλψλ = Eψλ, we look for a solution in the form ψλ(x) = eip3x3+ip2x2−iEtϕλ(ξ), where the

new variable ξ is defined by

ξ =
√
|eBλ|

(
p2

eBλ
+ x1

)
. (A.1)
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By noting that ∂x1 = ∂ξ
√
|eBλ|, we check that function ϕλ satisfies the following ordinary

differential equation:[
∂ξ − sBσzξ −

iλσx

vF
√
|eBλ|

(E − µλ − λvF p3σz)

]
ϕλ = 0, (A.2)

where sB = sgn (eBλ). The solution to this equation can be given in the form

ϕλ = Φ+
λ (ξ)u+

λ + Φ−λ (ξ)u−λ , (A.3)

where u±λ are two linearly independent spinors that satisfy the following relations:

σzu
±
λ = ±u±λ , u∓λ =

λσx (E − µλ − λvF p3σz)√
(E − µλ)2 − v2

F p
2
3

u±λ . (A.4)

After substituting the ansatz (A.3) into eq. (A.2) and separating linearly independent terms

proportional to spinors u±λ , we arrive at the following coupled set of equations:[
∂ξΦ

±
λ (ξ)∓ sBξΦ±λ (ξ)− ikΦ∓λ (ξ)

]
= 0, (A.5)[

∂2
ξ ∓ sB − ξ2 + k2

]
Φ±λ (ξ) = 0, (A.6)

where

k ≡

√
(E − µλ)2 − v2

F p
2
3

v2
F |eBλ|

. (A.7)

Solutions of eqs. (A.5) and (A.6) can be expressed in terms of the parabolic cylinder

functions Dp(αξ) [74, 75], i.e.,

Φ−sBλ (ξ) = Dk2/2

(√
2ξ
)
, ΦsB

λ (ξ) = − ik√
2
Dk2/2−1

(√
2ξ
)
. (A.8)

By making use of eq. (A.4), we also determine the explicit form of spinors u±λ for each of

the two possible choices of sB = ±1. The result reads

usBλ = PsB

(
λE−µλ+λsBvF p3

vF
√

2n|eBλ|
0

)
, (A.9)

u−sBλ = PsB

(
0

1

)
, (A.10)

where

PsB =
(1− sB)

2
σx +

(1 + sB)

2
(A.11)

is a matrix operator that interchanges the two components of the spinor when the sign

sB = sgn (eBλ) changes.

The requirement of finite wave functions at |ξ| → ∞ leads to the constraint k2/2 = n,

where n = 0, 1, 2 . . .. Then, the parabolic cylinder functions can be expressed in terms of

the Hermitian polynomials [74, 75]. After fixing the overall normalization constants (by
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using formula 7.374.1 in ref. [75]), we finally obtain the following eigenfunctions of the Weyl

Hamiltonian (2.1):

ψn=0,p2,p3 = |eBλ|1/4eip3x3+ip2x2−iEtY0(ξ)PsB

(
0

1

)
, (A.12)

ψn>0,p2,p3 = |eBλ|1/4
√

2v2
Fn|eBλ|

2v2
Fn|eBλ|+ [En − µλ + sBvFλpz]

2 e
ip3x3+ip2x2−iEtPsB

×

{
Yn(ξ)

(
0

1

)
− iλ(En − µλ + sBvFλpz)

vF
√

2n|eBλ|
Yn−1(ξ)

(
1

0

)}
, (A.13)

where

Yn(ξ) =
1√

2nn!
√
π
e−ξ

2/2Hn(ξ). (A.14)

The corresponding energies for the lowest (n = 0) and higher (n > 0) Landau levels are

En=0 = µλ − sBvFλp3 = µλ + ε0, (A.15)

En>0 = µλ ± vF
√
p2

3 + 2n|eBλ| = µλ + εn>0, (A.16)

respectively. [Note that in the main text we changed the sign at p3 in order to use the

same notations in the Wigner function, where momenta are opposite with respect to that

in the wave functions.]

B Derivation of the Wigner function in a constant magnetic field

In this appendix, we provide the details of the calculation of the equal-time Wigner func-

tion of chiral fermions in a constant external magnetic field. Let us write the Wigner

operator (3.1) explicitly

Ŵαη(x,p) =
1

2

∑
n,n′

∫
d3y

∫
d2q

(2π)2

∫
d2q′

(2π)2
e−ip·yeiΦ(r+,r−)

×

{[
2â†n,qân′,q′ − (2π)2δn,n′δ(q− q′)

]
ψ†η,n,q(r+)ψα,n′,q′(r−)

+
[
â†n,qb̂

†
n′,q′ − b̂

†
n′,q′ â

†
n,q

]
ψ†η,n,q(r+)φα,n′,q′(r−)

+
[
b̂n,qân′,q′ − ân′,q′ b̂n,q

]
φ†η,n,q(r+)ψα,n′,q′(r−)

−
[
2b̂†n,qb̂n′,q′ − (2π)2δn,n′δ(q− q′)

]
φ†η,n,q(r+)φα,n′,q′(r−)

}
, (B.1)

where r± = x±y/2, the phase Φ(r+, r−) = −e
∫ r+
r−

drAλ(r) = −eBλy2x1 ensures the gauge

invariance of Ŵαη, and we used the standard anticommutation relations for the fermion

particle creation and annihilation operators â†n,q, ân,q, as well as their antiparticle b̂†n,q, b̂n,q
counterparts. While the spinors for particle states ψn,q are given by eqs. (A.12) and (A.13),

– 20 –



J
H
E
P
0
8
(
2
0
1
7
)
1
0
3

the spinors for antiparticles are defined by φn,q ≡ ψn,q|εn→−|εn|. For simplicity, we set also

q = (q2, q3) and q′ = (q′2, q
′
3).

The Wigner function is defined as an average of the Wigner operator over the Hilbert

space of the multi-particle states |Φ〉 = | . . . , Nmi , . . . , . . . , N̄mi , . . .〉 with Nmi particles in

state mi, and N̄mi antiparticles in state mi, i.e.,

Wαη(x,p) = Tr
(
Ŵαη(x,p)ρ̂

)
=
∑

Φ

〈Φ|Ŵ (x,p)ρ̂|Φ〉 (B.2)

=
∞∑
n=0

∫
d3y

∫
d2q

(2π)2
e−ip·y−ieBλy2x1

∑
εn

tr

{
ψ†η,n,q(r+)ψα,n,q(r−)

θ(εn(q))

1+eβ(εn(q)−µλ)

−φ†η,n,q(r+)φα,n,q(r−)
θ(−εn(q))

1+e−β(εn(q)−µλ)

− 1

2

[
θ (εn(k))ψ†η,n,q(r+)ψα,n,q(r−)−θ (−εn(k))φ†η,n,q(r+)φα,n,q(r−)

]}
.

Here the density matrix operator ρ̂ is given by eq. (3.3) in the main text. Further, β = 1/T

is the inverse temperature,
∑

εn
denotes the summation over positive and negative branches

of the energy spectrum, and θ-functions are the unit step functions which select the proper

sign of the energy of particles and antiparticles.

In order to proceed with the evaluation of the Wigner function (B.2), we first calculate∫
d3ye−ip·ye−ieBλy2x1ψ†η,n,qψα,n,q =

∫
d3ye−ip·ye−ieBλy2x1−iq3y3−iq2y2

×
√
|eBλ|

1 + [εn(q3)+sBvFλq3]2

2v2Fn|eBλ|

{
Yn(ξ+)Yn(ξ−)

[
1 + sB

2
δα2δη2 +

1− sB
2

δα1δη1

]

+
[εn(q3) + sBvFλq3]2

2nv2
F |eBλ|

Yn−1(ξ+)Yn−1(ξ−)

[
1− sB

2
δα2δη2 +

1 + sB
2

δα1δη1

]
− Yn(ξ+)Yn−1(ξ−)

iλ[εn(q3) + sBλvF q3]

vF
√

2n|eBλ|

[
1− sB

2
δα2δη1 +

1 + sB
2

δα1δη2

]
+ Yn−1(ξ+)Yn(ξ−)

iλ[εn(q3) + sBλvF q3]

vF
√

2n|eBλ|

[
1− sB

2
δα1δη2 +

1 + sB
2

δα2δη1

]}
, (B.3)

where

ξ± =
√
|eBλ|

(
q2

eBλ
+ x1 ±

y1

2

)
, ξ =

√
|eBλ|

(
q2

eBλ
+ x1

)
. (B.4)

Using the table integral 7.377 in ref. [75], we find the following auxiliary expressions:∫
dy1e

−ip1y1e−
|eBλ|y

2
1

4 Hn

[√
|eBλ|

(
q2

eBλ
+ x1 +

y1

2

)]
Hn

[√
|eBλ|

(
q2

eBλ
+ x1 −

y1

2

)]
= (−1)n

e−p
2
1/|eBλ|√
|eBλ|

2n+1√πn!Ln

[
2

(
ξ2 +

p2
1

|eBλ|

)]
, (B.5)
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and∫
dy1e

−ip1y1e−
|eBλ|y

2
1

4 Hn

[√
|eBλ|

(
q2

eBλ
+ x1 ±

y1

2

)]
Hn−1

[√
|eBλ|

(
q2

eBλ
+ x1 ∓

y1

2

)]
= (−1)n−1 e

−p21/|eBλ|√
|eBλ|

2n+1√π(n− 1)!

(
ξ − ip1√

|eBλ|

)
L1
n−1

[
2

(
ξ2 +

p2
1

|eBλ|

)]
, (B.6)

where Lmn (x) are the generalized Laguerre polynomials [75]. The above expressions allows

us to obtain the diagonal∫
d3ye−ip·ye−ieBλy2x1ψ†α,n,qψα,n,q =

1

2π
δ(p3 + q3)δ(p2 + q2 + eBλx1)e−ξ

2−p21/|eBλ|

×
4(−1)nv2

Fn|eBλ|
2v2
Fn|eBλ|+ [εn(q3) + sBvFλq3]2

{
Ln

[
2

(
ξ2 +

p2
1

|eBλ|

)][
1 + sB

2
δα2 +

1− sB
2

δα1

]

− [εn(q3) + sBvFλq3]2

2v2
Fn|eBλ|

Ln−1

[
2

(
ξ2 +

p2
1

|eBλ|

)][
1− sB

2
δα2 +

1 + sB
2

δα1

]}
, (B.7)

and off-diagonal α 6= η∫
d3ye−ip·ye−ieBλy2x1ψ†η,n,qψα,n,q =

1

2π
δ(p3+q3)δ(p2+q2+eBλx1)

−iλ[εn(q3)+sBλvF q3]

vFn
√
|eBλ|

×
4(−1)n−1v2

Fn|eBλ|e−ξ
2−p21/|eBλ|

2v2
Fn|eBλ|+[εn(q3)+sBvFλq3]2

L1
n−1

[
2

(
ξ2+

p2
1

|eBλ|

)]
×

{(
sBq2−ip1√
|eBλ|

+
√
|eBλ|x1

)[
1+sB

2
δα1δη2+

1−sB
2

δα2δη1

]

−

(
sBq2+ip1√
|eBλ|

+
√
|eBλ|x1

)[
1−sB

2
δα1δη2+

1+sB
2

δα2δη1

]}
, (B.8)

parts of the Wigner function Wαη(x,p). The latter can be represented in the following

matrix form:

W (x,p) = PsB

(
W11 W12

W21 W22

)
P−1
sB
, (B.9)

where

W11 = −e−p2⊥/|eBλ|
∞∑
n=0

∑
εn

(−1)nLn−1

(
2p2⊥
|eBλ|

)
|εn|

{
(|εn| − sBλvF p3)

θ(εn)

1 + eβ(|εn|−µλ)

− (|εn|+ sBλvF p3)
θ(−εn)

1 + eβ(|εn|+µλ)
− 1

2
[εn − sBλvF p3]

}
, (B.10)

W22 = e−p
2
⊥/|eBλ|

∞∑
n=0

∑
εn

(−1)nLn

(
2p2⊥
|eBλ|

)
|εn|

{
(|εn|+ sBvFλp3)

θ(εn)

1 + eβ(|εn|−µλ)

− (|εn| − sBvFλp3)
θ(−εn)

1 + eβ(|εn|+µλ)
− 1

2
[εn + sBλvF p3]

}
, (B.11)
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W12 = W ∗21 = 2e−p
2
⊥/|eBλ|

∞∑
n=0

∑
εn

(−1)n
λvF p−
|εn|

L1
n−1

(
2p2
⊥

|eBλ|

)

×

{
θ(εn)

1 + eβ(|εn|−µλ)
+

θ(−εn)

1 + eβ(|εn|+µλ)
− 1

2

}
. (B.12)

Here p2
⊥ = p2

1 + p2
2, p± = p1 ± isBp2, and we omitted the arguments of Wnm. Then the

Wigner function of form (3.6) can be easily determined using the following relations:

w0 ≡
W11 +W22

2
, w1 ≡ λ

W12 +W21

2
, w2 ≡ iλsB

W12 −W21

2
, w3 ≡ λsB

W11 −W22

2
.

(B.13)

C Weak magnetic field limit

In this appendix, we derive the Wigner function in the limit of a weak magnetic field. The

coefficients W11, W22, W12, and W21 in eqs. (B.10) through (B.12) are

W11 ≡ A− −A+ + δA, (C.1)

W22 ≡ B− −B+ + δB, (C.2)

W12 ≡ C− + C+ + δC, (C.3)

W21 ≡W ∗12, (C.4)

where

A∓ = −e−p2⊥/|eBλ|
∞∑
n=0

(−1)nLn−1

(
2p2
⊥

|eBλ|

)
(|εn| ∓ sBλvF p3)

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
, (C.5)

B∓ = e−p
2
⊥/|eBλ|

∞∑
n=0

(−1)nLn

(
2p2
⊥

|eBλ|

)
(|εn| ± sBλvF p3)

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
, (C.6)

C∓ = 2e−p
2
⊥/|eBλ|

∞∑
n=0

(−1)nL1
n−1

(
2p2
⊥

|eBλ|

)
λvF p−
|εn|

θ(±εn)

1 + eβ(|εn|∓µλ)
, (C.7)

and

δA = −e−p2⊥/|eBλ|
∞∑
n=0

(−1)nLn−1

(
2p2
⊥

|eBλ|

)
sBλvF p3

|εn|
, (C.8)

δB = −e−p2⊥/|eBλ|
∞∑
n=0

(−1)nLn

(
2p2
⊥

|eBλ|

)
sBλvF p3

|εn|
, (C.9)

δC = −2e−p
2
⊥/|eBλ|

∞∑
n=0

(−1)n
λvF p−
|εn|

L1
n−1

(
2p2
⊥

|eBλ|

)
. (C.10)

In order to sum over all Landau levels, we employ the following tricks:

|εn| ∓ sBλvF p3

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
=

∞∑
m=0

(2n|eBλ|)m
G

(m)
1 (p2

3)

m!

= lim
s1→−0

∞∑
m=0

(
dm

dsm1
e2s1n|eBλ|

)
G

(m)
1 (p2

3)

m!
, (C.11)
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|εn| ± sBλvF p3

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
=
∞∑
m=0

(2n|eBλ|)m
G

(m)
2 (p2

3)

m!

= lim
s1→−0

∞∑
m=0

(
dm

dsm1
e2s1n|eBλ|

)
G

(m)
2 (p2

3)

m!
, (C.12)

1

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
=

∞∑
m=0

(2n|eBλ|)m
G

(m)
3 (p2

3)

m!

= lim
s1→−0

∞∑
m=0

(
dm

dsm1
e2s1n|eBλ|

)
G

(m)
3 (p2

3)

m!
, (C.13)

1

|εn|
=

∞∑
m=0

(2n|eBλ|)m
G

(m)
4 (p2

3)

m!
= lim

s1→−0

∞∑
m=0

(
dm

dsm1
e2s1n|eBλ|

)
G

(m)
4 (p2

3)

m!
, (C.14)

where G
(m)
i denotes the m-th derivative with respect to its argument and the following

shorthand notations are used:

G1

(
p2

3 + 2n|eBλ|
)

=
|εn| ∓ sBλvF p3

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
, (C.15)

G2

(
p2

3 + 2n|eBλ|
)

=
|εn| ± sBλvF p3

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
, (C.16)

G3

(
p2

3 + 2n|eBλ|
)

=
1

|εn|
θ(±εn)

1 + eβ(|εn|∓µλ)
, (C.17)

G4

(
p2

3 + 2n|eBλ|
)

=
1

|εn|
. (C.18)

Performing the summation over Landau levels by using formula 7.414.8 in ref. [75],

we obtain

A∓ = e−p
2
⊥/|eBλ| lim

s1→−0

∞∑
m=0

dm

dsm1

e2s1|eBλ|
exp

(
p2⊥

|eBλ|(1+e−2s1|eBλ|)

)
1 + e2s1|eBλ|

G
(m)
1 (p2

3)

m!


' 1

2

∞∑
m=0

(p2
⊥)m

m!
G

(m)
1 (p2

3) +
|eBλ|

2

∞∑
m=0

(p2
⊥)m−1

(m− 1)!
G

(m)
1 (p2

3) +O(|eBλ|2)

' 1

2
G1(εp) +

|eBλ|
2

(
d

dp2
⊥
G1(εp)

)
+O(|eBλ|2), (C.19)

B∓ = e−p
2
⊥/|eBλ| lim

s1→−0

∞∑
m=0

dm

dsm1

exp

(
p2⊥

|eBλ|(1+e−2s1|eBλ|)

)
1 + e2s1|eBλ|

G
(m)
2 (p2

3)

m!


' 1

2

∞∑
m=0

(p2
⊥)m

m!
G

(m)
2 (p2

3)− |eBλ|
2

∞∑
m=0

(p2
⊥)m−1

(m− 1)!
G

(m)
2 (p2

3) +O(|eBλ|2)

' 1

2
G2(εp)− |eBλ|

2

(
d

dp2
⊥
G2(εp)

)
+O(|eBλ|2), (C.20)
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C∓ = −2λvF p−e
−p2⊥/|eBλ| lim

s1→−0

∞∑
m=0

dm

dsm1

e2s1|eBλ|
exp

(
p2⊥

|eBλ|(1+e−2s1|eBλ|)

)
(1 + e2s1|eBλ|)2

G
(m)
3 (p2

3)

m!


' −λvF p−

2

∞∑
m=0

(p2
⊥)m

m!
G

(m)
3 (p2

3) +O(|eBλ|2) ' −λvF p−
2

G3(εp) +O(|eBλ|2), (C.21)

where εp ≡ vF |p|. The coefficients δA, δB, and δC read

δA= sBλvF p3e
−p2⊥/|eBλ| lim

s1→−0

∞∑
m=0

dm

dsm1

e2s1|eBλ|
exp

(
p2⊥

|eBλ|(1+e−2s1|eBλ|)

)
1+e2s1|eBλ|

G
(m)
4 (p2

3)

m!


' sBλvF p3

2

∞∑
m=0

(p2
⊥)m

m!
G

(m)
4 (p2

3)+sBλvF p3
|eBλ|

2

∞∑
m=0

(p2
⊥)m−1

(m−1)!
G

(m)
4 (p2

3)+O(|eBλ|2)

' sBλvF p3

2
G4(εp)+sBλp3

|eBλ|
2

(
d

dp2
⊥
G4(εp)

)
+O(|eBλ|2)

=
sBλvF p3

2εp
−sBλv3

F p3
|eBλ|
4ε3p

+O(|eBλ|2), (C.22)

δB=−sBλvF p3e
−p2⊥/|eBλ| lim

s1→−0

∞∑
m=0

dm

dsm1

exp

(
p2⊥

|eBλ|(1+e−2s1|eBλ|)

)
1+e2s1|eBλ|

G
(m)
4 (p2

3)

m!


' −sBλvF p3

2

∞∑
m=0

(p2
⊥)m

m!
G

(m)
4 (p2

3)+sBλvF p3
|eBλ|

2

∞∑
m=0

(p2
⊥)m−1

(m−1)!
G

(m)
4 (p2

3)+O(|eBλ|2)

'−sBλvF p3

2
G4(εp)+sBλvF p3

|eBλ|
2

(
d

dp2
⊥
G4(εp)

)
+O(|eBλ|2)

=−sBλvF p3

2εp
−sBλv3

F p3
|eBλ|
4ε3p

+O(|eBλ|2), (C.23)

δC =−2λvF p−e
−p2⊥/|eBλ| lim

s1→−0
(−1)

∞∑
m=0

dm

dsm1

e2s1|eBλ|
exp

(
p2⊥

|eBλ|(1+e−2s1|eBλ|)

)
(1+e2s1|eBλ|)2

G
(m)
4 (p2

3)

m!


' λvF p−

2

∞∑
m=0

(p2
⊥)m

m!
G

(m)
3 (p2

3)+O(|eBλ|2) =
λvF p−

2
G3(εp)+O(|eBλ|2)

=
λvF p−

2εp
+O(|eBλ|2). (C.24)

Combining the above results together and using eq. (B.13), we obtain eqs. (3.15a)

and (3.15b) in the main text.

D Useful formulas

In this appendix, we present some key formulas used in the calculation of the electric and

heat current densities, defined by eqs. (6.4a) and (6.4b) in the main text.
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Let us start by presenting the result for the following table integral:∫ ∞
0

dp3 p
n
3

1

1 + e(vF p3∓µλ)/T
= −T

n+1Γ(n+ 1)

vn+1
F

Lin+1

(
−e±µλ/T

)
, n ≥ 0, (D.1)

where Lin(x) is the polylogarithm function (see formula 1.1.14 in ref. [76]). [Note that

in the given reference Lin(x) ≡ F(x, n).] The polylogarithm function at n = 0, 1 can be

rewritten as follows:

Li0 (−ex) = − 1

1 + e−x
, (D.2)

Li1 (−ex) = − ln (1 + ex). (D.3)

The following identities for the polylogarithm functions are useful when taking into account

the antiparticles contributions:

ln(1 + ex)− ln(1 + e−x) = x, (D.4)

Li2(−ex) + Li2(−e−x) = −x
2

2
− π2

6
. (D.5)

By making use of the table integral in eq. (D.1), it is straightforward to check the following

results for the four types of integrations encountered in the calculation of the electric and

heat current densities:

I1 =

∫
d3p

(2π)3
e−p

2
⊥/|eB0,λ|f̃LLL(p3) =

|eB0,λ|
2(2π)2

µλ
vF
, (D.6)

I2 =

∫
d3p

(2π)3
e−p

2
⊥/|eB0,λ|sBλvF p3f̃LLL(p3) =

|eB0,λ|
4vF (2π)2

(
µ2
λ +

π2T 2

3
− v2

FΛ2

)
, (D.7)

I3 =

∫
d3p

(2π)3
e−p

2
⊥/|eB0,λ|∂p3 f̃LLL(p3) = −

eB0,λ

2(2π)2
λ, (D.8)

I4 =

∫
d3p

(2π)3
e−p

2
⊥/|eB0,λ|sBλvF p3 ∂p3 f̃LLL(p3) = −

eB0,λ

2(2π)2
λµλ, (D.9)

where f̃LLL(p3) is the Wigner function in the LLL approximation defined in eq. (4.10). It

should be noted that the last term in the parentheses on the right-hand side of eq. (D.7)

contains a quadratic divergency that stems from −λsB sgn (p3) /2 term in the function

f̃LLL(p3).
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