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1 Introduction

Two-dimensional supersymmetric gauge theories have a rich dynamics, similar to the one of

their higher-dimensional cousins. In particular, two-dimensional gauge theories with N =

(2, 2) supersymmetry admit infrared-dual descriptions [1–3] reminiscent of four-dimensional

N = 1 Seiberg duality [4]. Thanks to the renewal of supersymmetric localization techniques

in two dimensions [3, 5–7] — see [8, 9] for recent reviews — one can provide highly non-

trivial tests of infrared dualities by matching supersymmetric partition functions of dual

theories. In addition, new exact expressions were also obtained for correlation functions

of certain half-BPS local operators in two-dimensional non-abelian gauge theories [10–12],

generalizing the seminal results of [13–15]. See also [16–28] for related works.

In this note, we study the matching of twisted chiral ring correlation functions across

Seiberg-like dualities. Consider a gauge group G of rank Nc, with Lie algebra g. We

consider the ultraviolet-free, SQCD-like theory consisting of a g-valued vector multiplet

coupled to Nf fundamental flavors — chiral multiplets in the fundamental representation

of g. Schematically, the “electric” and “magnetic” dual gauge groups are [1–3]:

U(Nc) ↔ U(Nf −Nc) ,

USp(2Nc) ↔ USp(Nf − 2Nc − 1) ,

SO(N) ↔ O+(Nf −N + 1)

O−(N) ↔ O−(Nf −N + 1) .

(1.1)

Note that Nf should be odd in USp(2Nc) case. In the case of SO(N), we can have N = 2Nc

or N = 2Nc+ 1 while Nf can be even or odd. In addition, there are distinct ways to define

the action of the discrete Z2 in the O(N) gauge group (the “Z2 orbifold”), denoted O±(N).

This leads to a rich pattern of dualities, which were carefully studied by Hori in [2]. All

the “magnetic” theories also contain “mesons” — gauge singlet chiral multiplets M , which

are coupled to the dual flavors through the superpotential. All the dualities are between

so-called “regular” theories, which are theories without a quantum Coulomb branch [2].

These two-dimensional theories have interesting ‘Coulomb branch’ operators O(σ),

which are gauge-invariant polynomials in the g-valued complex scalar field σ that sits in

the N = (2, 2) vector multiplet. For a U(Nc) gauge group, for instance, we have:

On = Tr(σn) , n = 0, 1, · · · , Nc . (1.2)
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In simple-enough cases, like the ones we will consider, these operators generate the full

twisted chiral ring of the theory. We can compute their correlation functions exactly (in-

cluding all instanton corrections) on a curved-space background preserving the two super-

charges Q− and Q̃+ that commute with σ, thanks to the topological A-twist [13, 15, 29].

Let us consider Σg a closed Riemann surface of genus g. The coupling of the field the-

ory to the metric (and its superpartners) on Σg depends on a choice of R-charges for the

vector-like U(1)R symmetry. To preserve supersymmetry, we must have a flux

1

2π

∫
Σg

dA(R) = g − 1 (1.3)

for the U(1)R background gauge field A
(R)
µ . This leads to the Dirac quantization condition

r(g − 1) ∈ Z , (1.4)

with r the R-charge [29, 30]. In the presence of flavor symmetries (that is, any non-R

global symmetry), we may also turn on fluxes

1

2π

∫
Σg

dA(F ) = nF ∈ Z (1.5)

for background gauge fields coupling to the conserved currents. (Naturally, A
(F )
µ sits in a

background vector multiplet V(F ).) The correlation functions of Coulomb branch operators

on Σg, with background fluxes (1.5) turned on, are given by [10, 11, 17, 31–33]:

〈O(σ)〉g; nF =
∑
σ̂∈SBE

O(σ̂)H(σ̂)g−1
∏
F

ΠF (σ̂)nF , (1.6)

with F an index running over the flavor group. The operator H is the handle-gluing op-

erator [31] and ΠF are flavor flux operators [34], as we will review. Those operators are

functions of σ, and the sum in (1.6) is over the distinct solutions σ = σ̂ of the associ-

ated Bethe equations [35] — the saddle points of the Coulomb-branch effective twisted

superpotential.

In this note, we study these correlation functions in two-dimensional SQCD-like theo-

ries and we prove the equality:

〈O(σ)〉Tg;n = 〈OD(σD)〉TDg;n (1.7)

for any two theories T and TD related by Hori duality as in (1.1). This provides additional

evidence for the dualities. It is also an interesting application of the formula (1.6) and of

related localization formulas given in terms of Jeffrey-Kirwan (JK) residues on the Coulomb

branch [10, 11, 32, 33], which we will briefly review. In the O(N) case, we will also have

to amend those results to account for the non-trivial Z2 twisted sectors when g > 0. For

instance, the matching of correlation functions for the SO(N)/O+(N ′) duality in (1.1) is

particularly non-trivial, because of those twisted-sector contributions on the O+(N ′) side.

The duality relation (1.7) includes some subtle contact terms, which are easily studied

by our methods. In particular, the U(Nc) duality involves non-trivial transformations of

the Fayet-Iliopoulos (FI) parameters for the global symmetries, which were studied in [20].
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Finally, let us address the fact that there are two distinct theories with an “orthogonal

gauge group.” We must note that, since the group O(N) is in fact disconnected, merely

specifying the group does not entirely determine the theory. A convenient way to under-

stand the O±(N) theories is to view them as orbifolds [36, 37] of an SO(N) gauge theory

with Nf chiral multiplets in the vector representation, which has a global Z2 symmetry.

Depending on N and Nf , there may be two distinct orbifolds of a single SO(N) gauge

theory [2]. The states of distinct orbifold theories are obtained by distinct choices of pro-

jection in the twisted and untwisted sectors of the theories. These choices, in the genus

one partition function, are realized by assigning different weights when summing over Z2-

twisted partition functions, i.e., partition functions with non-trivial Z2 holonomies turned

on along the cycles of the torus. Given the choice of weights for the genus-one correlator,

the prescription for weighing any Z2-twisted partition function is determined, and thus the

correlator on any genus-g Riemann surface may be obtained, once the partition functions

with non-trivial Z2 holonomies are computed. These partition functions, as well as their

weighted sums, are computed in sections 5 and 6.

This note is organized as follows. In section 2, we summarize some facts about the

Coulomb branch of N = (2, 2) theories, we discuss the formula (1.6) and its relation to

the JK residue formula, and we explain how to prove (1.7). In the following sections, we

study the dualities (1.1) and we prove (1.7) in all cases. The U(Nc) theories are discussed

in section 3; the USp(2Nc) theories are discussed in section 4; the SO(N) and O−(N)

theories are discussed in sections 5 and 6, respectively.

2 Coulomb branch correlators on Σg

Consider a two-dimensional N = (2, 2) supersymmetric gauge theory, also known as gauged

linear sigma model (GLSM), with gauge group G. Let us denote g = Lie(G). The theory

consists of a g-valued vector multiplet

V = (aµ , σ , σ̃ , λ , λ̃ , D) , (2.1)

and of chiral multiplets Φi in representations Ri of g, with standard kinetic terms. The

theory may also have a superpotential W (Φ) of R-charge 2, which must preserve the vector-

like R-symmetry U(1)R. We also have a linear twisted superpotential:

W0 =
∑
I

τ IσI +
∑
F

τFmF . (2.2)

We require that the GLSM preserve the axial-like R-symmetry U(1)ax, under which σ and

mF have charge 2, at the classical level. This fixes the form of the twisted superpoten-

tial (2.2). Here we denote by ∏
I

U(1)I ⊂ G (2.3)

the free part of the center of G. We define σI to be the projection of σ onto a particular

U(1)I factor, and

τ I =
θI

2π
+ iξI (2.4)
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the complexified Fayet-Iliopoulos term for that U(1)I factor. We also define:

qI ≡ e2πiτI . (2.5)

We couple the background vector multiplets to the flavor currents in the most general

way possible, including the “flavor” FI terms τF in (2.2) (for the abelian part of the

flavor group), which lead to contact terms in one-point functions of the conserved current

multiplet.1 The constant value for σF in the background vector multiplet VF , denoted mF ,

is a familiar “twisted mass”.

The axial R-symmetry can be anomalous in the presence of abelian gauge groups. The

U(1)ax−U(1)I anomaly coefficients are:

bI0 =
∑
i

TrRi(tI) , (2.6)

with tI ∈ ig the U(1)I generator. If bI0 = 0 for all U(1)I , the axial R-symmetry is pre-

served quantum-mechanically and the GLSM is expected to flow to a superconformal theory

(SCFT) in the infrared. The coefficient (2.6) is also the one-loop β-function coefficient for

the classically-marginal FI parameter τ I , with µ∂µτ
I = − bI0

2πi .

For any U(1)F abelian flavor symmetry, we also have the U(1)ax−U(1)F ‘t Hooft

anomaly coefficients:

bF0 =
∑
i

QFi dim(Ri) , (2.7)

with QFi the U(1)F charge of the chiral multiplet Φi.

2.1 Coulomb branch, twisted superpotential and Bethe vacua

Consider the classical Coulomb branch of the GLSM, which consists of the constant values:

σ = diag(σa) , a = 1, · · · , Nc = rk(G) , (2.8)

for the complex adjoint scalar σ, breaking the gauge group to its Cartan subgroup H =∏
a U(1)a modulo the Weyl group WG. Let us denote by M̃ ∼= Crk(G) the covering space of

the Coulomb branch M = M̃/WG. At a generic point on M̃ (and for generic values of the

twisted masses), the only light fields are the abelian vector multiplets for H. Integrating

out all the massive fields, one obtains the effective twisted superpotential [13, 14, 35]:

W =W0 −
1

2πi

∑
i

∑
ρi∈Ri

(ρi(σ) +mi)
(

log(ρi(σ) +mi)− 1
)
− 1

2

∑
α∈g+

α(σ) , (2.9)

where the sums are over the weights of the representations Ri and the positive roots of g,

respectively. Here we defined mi = QFi mF , where the index F runs over the whole flavor

group. Under an axial R-symmetry rotation, σ → e2iασ and mF → e2iαmF , the twisted

superpotential (2.9) reproduces the anomalous shifts

θI → θI − 2αbI0 , θF → θF − 2αbF0 , (2.10)

1It is important to keep track of these contact terms if one is interested in gauging the flavor symmetries.

They will also appear in our study of dualities.
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of the θ-angles, with the anomaly coefficients given in (2.6)–(2.7).

The so-called Bethe vacua are the solutions to the Bethe equations:

exp

(
2πi

∂W
∂σa

)
= 1 , w · σ 6= σ , ∀w ∈WG , (2.11)

for a = 1 , · · · , Nc running over the Cartan subgroup, modulo the Weyl group action. Here

w · σ, for w ∈ WG, denotes the action of the Weyl group on σ. The terminology comes

from the Bethe/gauge correspondence [35]. The second condition in (2.11) states that an

acceptable solution cannot lie on a ‘Weyl chamber wall’ (a locus fixed by the action of WG)

in M̃, where part of the non-abelian gauge symmetry is restored classically. It is clear that

the approximation that leads to (2.9) is not valid if w ·σ = σ, but it is less clear that there

cannot exist additional strongly-coupled “non-abelian” vacua at such locations. Following

earlier works — in particular the analysis of [1] — we will assume this to be true in general:

the Bethe vacua give the full set of Coulomb branch vacua.2

Note that the Bethe equations are always rational equations in the Coulomb branch

coordinates σa:∏
i

∏
ρi∈Ri

(ρ(σ) +mF
i )ρ

a
i = (−1)

∑
α>0 α

a
qa , w · σ 6= σ . (2.12)

Here qa denotes the projection of the FI parameters onto U(1)a. In theories with only

(anti)fundamental flavors, the Bethe equations can be written in terms of a single “Bethe

polynomial”. This is the case for the theories considered in this note. For future reference,

let us also define the Hessian determinant of W:

H(σ) = det
ab

(
−2πi ∂σa∂σbŴ

)
= det

ab

∑
i

∑
ρi∈Ri

ρai ρ
b
i

ρ(σ) +mF
i

 , (2.13)

which is also a rational function of σ.

2.2 Coupling to background fields

The coupling to geometric backgrounds of any N = (2, 2) field theory with a vector R-

symmetry U(1)R was studied systematically in [23, 30], by considering the coupling of

the supercurrent to background supegravity [39]. We can preserve two supercharges on

any closed oriented Riemann surface Σg (with g the genus) by the so-called topological

A-twist [29]. In addition to the metric, the curved background includes an R-symmetry

gauge field A
(R)
µ with field strength:

2iF11̄ =
1

4
R , (2.14)

where R is the Ricci curvature.3 We therefore have the flux (1.3) and the R-charge quan-

tization condition (1.4). In the following, we will consider theories with integer R-charges

(denoted by r ∈ Z), which can be coupled to any Σg.

2We have some good circumstantial evidence from localization results for genus zero correlators [11].

At higher genus, this assumption was made in [33], while [32] argued for it by using a non-gauge-invariant

regulator. See also [38].
3We follow the conventions of [30] except that our definition of R differs by an overall sign.
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In addition, flavor symmetry currents are naturally coupled to background vector mul-

tiplets VF , which include background gauge fields A
(F )
µ and background scalars σF . We

consider the simplest supersymmetric backgrounds with:

1

2π

∫
Σg

dA(F ) = nF , σF = mF , (2.15)

with nF a GNO-quantized flux (in particular, nF ∈ Z for a U(1)F flavor symmetry) and

mF ∈ C a constant, the “twisted mass”.

Note that, on Σg, a mixing of the R-symmetry current with a U(1)F symmetry,

j(R)
µ → j(R)

µ + tj(t)
µ (2.16)

is only allowed for t(g − 1) ∈ Z, in order to preserve the Dirac quantization of charges.

This shift is equivalent to a shift of the supersymmetric background flux (2.15) by:

nF → nF + t(g − 1) , (2.17)

with everything else kept constant. The shift (2.17) can be understood as a shift of the

background vector multiplet:

VF → VF + tVR , (2.18)

where VR is an “R-symmetry vector multiplet” constructed out of the full supergravity

multiplet.4

The coupling of the GLSM to curved space is conveniently encoded in the “effective

dilaton” Ω = Ω(σ), which is the bottom component of a twisted chiral multiplet. The

supersymmetric couplings are encoded in the “improvement Lagrangian” of [30] for Ω,

which gives:

LΩ =
i

2
Ω R , (2.19)

when evaluated on the A-twist background. Classically, we may introduce a constant term:

Ω0 = τR , τR ≡
θR
2π

+ iξR , (2.20)

which acts as a “complexified FI parameter” for U(1)R. In particular, we have:

e−
∫
d2x
√
gLΩ = e2πi(g−1)τR ≡ (qR)g−1 . (2.21)

At one-loop on the Coulomb branch, the effective dilaton takes the form [14, 31]:

Ω = τR −
1

2πi

∑
i

∑
ρi∈Ri

(ri − 1) log(ρi(σ) +mi)−
1

2πi

∑
α∈g

logα(σ) (2.22)

with ri the R-charge of the chiral multiplet Φi. The last term is the contribution from the

W -bosons. We therefore have:

e2πiΩ = qR

∏
i

∏
ρi∈Ri

(ρ(σ) +mi)
ri−1

∏
α∈g

α(σ)

−1

. (2.23)

4See [40] for a related discussion in higher dimensions.
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2.3 Handle-gluing operator and flux operator

The A-twisted theory is a topological field theory [29], whose local observables are fully

determined by the topological action:

STFT =

∫
Σg

d2x
√
g

(
−2f11̄a

∂W
∂σa

+ Λ̃a1̄Λb1
∂2W
∂σa∂σb

− 2F11̄
(F ) ∂W

∂mF
+
i

2
ΩR

)
, (2.24)

which is given in terms of W and Ω. Here fa = daa and F (F ) = dA(F ). We refer to [34]

for a more thorough discussion.

As in any topological field theory, there exists a local operator H, the handle-gluing

operator, whose insertion corresponds to “adding a handle” to the Riemann surface:

〈OH〉g = 〈O〉g+1 . (2.25)

For A-twisted N = (2, 2) gauge theories, H was first computed explicitly in [31] — see

also [17, 32, 33]. It is given by:

H(σ) = exp (2πiΩ(σ)) H(σ) , (2.26)

where Ω is the effective dilaton (2.22) and H is the Hessian determinant (2.13). This latter

contribution comes from the gaugino zero-modes in the twisted theory, which couple to W
as indicated in the second term in (2.24). It is clear from (2.24) that H corresponds to a

local operator insertion one obtains by concentrating the curvature of a single handle at a

point, with a δ-function singularity.

Similarly, there exists local operators whose insertion changes the background fluxes

for the flavor symmetries. These so-called “flux operators” [34] are simply given by:

ΠF = exp

(
2πi

∂W
∂mF

)
, (2.27)

in term of the effective twisted superpotential W =W(σ,mF ).

We should also note that the coupling of the GLSM to curved space introduces a

“gravitational” anomaly for the axial R-symmetry U(1)ax [14, 15], with coefficient:

ĉgrav = −dim(g)−
∑
i

(ri − 1)dim(Ri) . (2.28)

This corresponds to the U(1)ax−U(1)R ‘t Hooft anomaly:

bR0 = −ĉgrav . (2.29)

This anomaly is reproduced by the handle-gluing operator, since

H → e−2iαbR0 H (2.30)

under a U(1)ax rotation, corresponding to an anomalous shift of θR. When bI0 = 0 and if

the theory flows to a conformal fixed point, c = 3 ĉgrav is the central charge of the infrared

SCFT [1].
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2.4 Correlation functions as sums over Bethe vacua

Let O = O(σ) be a gauge-invariant polynomial in σ. On the Coulomb branch, this corre-

sponds to a Weyl-invariant polynomial,

O(σ) ∈ C[σa]
WG . (2.31)

The correlation functions of these Coulomb branch operators on Σg (with background flux

nF ) are given explicitly by the formula [17, 31–33]:

〈O(σ)〉g; nF =
∑
σ̂∈SBE

O(σ̂)H(σ̂)g−1
∏
F

ΠF (σ̂)nF . (2.32)

The sum is over all the distinct solutions (σa) = (σ̂a) to the Bethe equations (2.12). Let

us note a few simple properties of (2.32):

• It makes the quantum ring relations manifest. The twisted chiral ring relations are

the relations f(σ̂) = 0 satisfied by any solution to the Bethe equations, and therefore

the insertion of any such relation in the correlation function gives a vanishing result:

〈f(σ)O(σ)〉g; nF = 0 . (2.33)

• We easily check that the mixing (2.16) of the U(1)R symmetry with a flavor symmetry

corresponds to (2.17), as expected. This amounts to a shift of the dilaton effective

action by:

Ω→ Ω + t
∂W
∂mF

. (2.34)

• Similarly, the mixing of the R-symmetry with a gauge symmetry U(1)I does not

change the answer, as expected from gauge invariance. A mixing with the gauge

symmetry corresponds to:

Ω→ Ω + t
∂W
∂σI

, (2.35)

but this does not affect H(σ̂), the handle-gluing operator evaluated on any Bethe vac-

cum.

2.5 Correlation functions as sums over instantons

It is often interesting to write down the correlation functions in terms of an infinite sum

over instanton contributions [15] — two-dimensional vortices — in the GLSM:

〈O(σ)〉g; nF =
1

|WG|
∑

m∈ΓG∨

qmZg,nF ,m(O) . (2.36)

Here the weight factor qm are the FI parameters (2.5), the sum is over all GNO-quantized

fluxes for G, and |WG| is the order of the Weyl group. If the free center of G (2.3) is non-

trivial, the sum (2.36) typically converges for some values of qI , and can be defined more

generally by analytic continuation. However, even if G does not contain any U(1) factor,
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we can still make sense of (2.36) as a formal sum, which reproduces the prescription (2.32)

after summing over gauge fluxes. Part of the original motivation for this note was to check

this claim explicitly, for USp(2Nc) and SO(k) gauge groups.

Recent advances in localization techniques have allowed us to perform that “micro-

scopic” computation in general GLSMs [10, 11, 32, 33] — see also [41]. The “instanton

factors” are given explicitly in terms of Jeffrey-Kirwan (JK) residues on the Coulomb

branch covering space M̃:

Zg,nF ,m(O) =

∮
JK(η)

∏
a

[
dσa
2πi

qmaa

]
Z1-loop
g,nF ,m

(σ)H(σ)g O(σ) , (2.37)

with H(σ) given in (2.13), and the one-loop determinant:

Z1-loop
g,nF ,m

(σ) = (−1)
∑
α>0α(m)

∏
α∈g

α(σ)1−g
∏
i

∏
ρi∈Ri

(
1

ρ(σ)+mi

)ρi(m)+ni+(g−1)(ri−1)

. (2.38)

Here mi and ni are the twisted mass and the background flux seen by the chiral multiplet

Φi, and ri is its R-charge. The integration contour in (2.37) is determined by the Jeffrey-

Kirwan prescription with η = ξUV
eff for all projective singularities σ∗ such that α(σ∗) 6= 0.

Here ξUV
eff ∈ ih∗ is the effective FI term at infinity on M̃ ∼= CNc . We refer to [11] for more

details on the JK residue prescription.

Summing over the fluxes, one can show that (2.36) reproduces the Bethe-vacua for-

mula (2.32). We will see this in some explicit examples below. We will also see that the

result of [10, 11] have to be amended in the case of the O(N) gauge group to account for

Z2 twisted sectors, with Z2
∼= O(N)/SO(N).

2.6 Matching correlation functions across dualities

Consider two theories T and TD related by a duality,

T ←→ TD . (2.39)

There must be a one-to-one correspondence between Bethe vacua in the dual theories,

which means a one-to-one correspondence between solutions σ̂ of the Bethe equations in

T and solutions σ̂D of the Bethe equations in TD. By definition, two Coulomb-branch

operators O and OD are dual,

O(σ) ∈ T ←→ OD(σD) ∈ TD (2.40)

if and only if:

O(σ̂) = OD(σ̂D) , (2.41)

for any pair of dual Bethe vacua σ̂ and σ̂D. To prove the equality (1.7) for dual correlators,

on any Σg and with any background flux nF , we simply need to prove the duality relations:

H(σ̂) = HD(σ̂D) , ΠF (σ̂) = ΠF,D(σ̂D) , (2.42)

for the handle-gluing and flux operators across the duality. For the two-dimensional

Seiberg-like dualities that we study in this note, we will see that the equalities (2.42) reduce

to simple algebraic identities. Three-dimensional dualities have recently been studied with

the same methods in [33, 34].
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U(Nc) SU(Nf ) SU(Na) U(1)A U(1)R

Qi Nc Nf 1 1 r

Q̃j Nc 1 Na 1 r̃

Table 1. The U(Nc) GLSM gauge, flavor and R-charges.

3 U(Nc) dualities

Let us consider the G = U(Nc) GLSM with Nf chiral multiplets Φi (i = 1, · · · , Nf ) and

Na chiral multiplets Φ̃j (j = 1, · · · , Na) in the fundamental and antifundamental represen-

tations of U(Nc), respectively. We choose the vector-like R symmetry U(1)R such that:

R[Φi] = r , R[Φ̃j ] = r̃ , r, r̃ ∈ Z . (3.1)

Note that we could set r = r̃ in flat space by mixing the R-symmetry with the gauge sym-

metry. However, this is not always possible in curved space due to the Dirac quantization

condition on the R-charge. We choose the R-charges to be integers so that we can consider

the theory on a Riemann surface of any genus.5

This GLSM enjoys a SU(Nf ) × SU(Na) × U(1)A flavor symmetry — see table 1. We

may turn on generic twisted masses mi, m̃j for the flavor symmetry, with

Nf∑
i=1

mi = −NfmA ,

Na∑
j=1

m̃j = NamA . (3.2)

We also consider background flavor fluxes ni, ñj on Σg, with
∑

i ni = −NfnA and
∑

j nj =

NanA.

Global anomalies. The theory admits a single complexified FI parameter τ = τ
2π + iξ

for U(1) ⊂ U(Nc). It has β-function coefficient (2.6) given by:

b0 = Nf −Na , (3.3)

which is also the U(1)ax gauge anomaly. When Nf = Na, the axial R-symmetry survives

quantum mechanically and the gauge theory is expected to have a non-trivial infrared fixed

point. Let us also note the value of the ‘t Hooft anomaly (2.7) for U(1)A:

bA0 = Nc(Nf +Na) . (3.4)

The U(1)ax “gravitational” anomaly (2.28) is given by:

ĉgrav = (Nf (1− r) +Na(1− r̃)−Nc)Nc . (3.5)

5Note that we could choose more general R-charge ri, r̃j ∈ Z, breaking the flavor group explicitly to its

Cartan subgroup. We fix (3.1) for simplicity, and to avoid clutter. The general case can be obtained by

mixing the R-symmetry with the abelianized flavor symmetry through (2.17).
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U(Nf −Nc) SU(Nf ) SU(Na) U(1)A U(1)R

q̃j Nf −Nc 1 Na −1 r̃D

qi Nf −Nc Nf 1 −1 rD

M j
i 1 Nf Na 2 r + r̃

Table 2. Charges in the U(Nf −Nc) dual GLSM.

Dual theory. This U(Nc) GLSM has an infrared dual description in terms of an U(Nf −
Nc) GLSM consisting of Na fundamental chiral multiplets q̃j and Nf antifundamental chiral

multiplets qi. The dual theory also contains NfNa gauge singlets M j
i coupled through a

superpotential W = q̃jM
j
i q
i. The singlets M i

j are identified with the gauge-invariant

mesons QiQ̃j in the original theory. The flavor and U(1)R charges are summarized in

table 2. The superpotential implies the relation:

r + r̃ + rD + r̃D = 2 (3.6)

between the R-charges of the dual theories. The dual theory has a U(1)ax gauge anomaly

bD0 = −b0. We also have the ‘t Hooft anomalies:

bA,D0 = −(Nf −Nc)(Nf +Na) + 2NfNa ,

ĉDgrav = (Nf (1− rD) +Na(1− r̃D)−Nf +Nc) (Nf −Nc)

+NfNa(1− r − r̃) .
(3.7)

For Nf = Na, the axial R-symmetry is an actual symmetry and these anomaly coefficient

match:

bA0 = bA,D0 , ĉgrav = ĉDgrav , if Nf = Na , (3.8)

as needed for consistency. For Nf > Na, we find:

bA,D0 = bA0 −Nfb0 , ĉDgrav = ĉgrav − (rDNf − (r + rD)Nc) b0 . (3.9)

As we will see below, these relations correspond to a non-trivial map of certain contact

terms under the duality.

3.1 Twisted chiral ring and duality map

We are interested in the ring of twisted chiral operators generated by the gauge-invariant

polynomials Tr(σp), p = 0, · · · , Nc, with σ the complex scalar in the U(Nc) vector mul-

tiplet. The structure of the twisted chiral ring can be understood by going onto the

Coulomb branch:

σ = diag (σ1 , · · · , σNc) = (σa) , (3.10)

with a = 1, · · · , Nc. A convenient basis of twisted chiral operators is given by the elemen-

tary symmetric polynomials in σa:

s
(Nc)
l (σ) =

∑
1≤a1<···<al≤Nc

σa1σa2 · · ·σal , l = 0, · · · , Nc . (3.11)
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Let us define the generating function:

Q(z) =

Nc∏
a=1

(z − σa) =

Nc∑
l=0

(−1)lzNc−l s
(Nc)
l (σ)

= zNc − zNc−1 + zNc−2 − · · ·+ (−1)Ncσ1 · · ·σNc ,

(3.12)

where we identified the symmetric polynomials in σa with the corresponding Young

tableaux. The twisted chiral ring relations satisfied by the generators (3.11) are encoded

in the effective twisted superpotential W(σ) of the theory [1]. We have:

∂σaW = τa − 1

2
(Nc − 1)− 1

2πi

 Nf∑
i=1

log(σa −mi)−
Na∑
j=1

log(−σa −+m̃j)

 , (3.13)

modulo an integer. The Bethe equations are given by:

P (σa) = 0 , a = 1, · · ·Nc , σa 6= σb if a 6= b , (3.14)

in terms of the polynomial:

P (z) =

Nf∏
i

(z −mi) + (−1)Ncq

Na∏
j

(−z + m̃i) . (3.15)

The twisted chiral ring relations can be conveniently written as [14, 20, 42]:

P (z) = C(q)QD(z)Q(z) , C(q) ≡

{
1 if Nf > Na ,

1 + (−1)Nf−Ncq if Nf = Na ,
(3.16)

where QD(z) is an auxiliary monic polynomial of degree Nf −Nc. The Bethe equations of

the dual theory are given by:

P (σDā ) = 0 , ā = 1, · · ·Nf −Nc , σDā 6= σDb̄ if ā 6= b̄ , (3.17)

in terms of the same polynomial (3.15), where the dual FI parameters are related by:

qD = (−1)Naq−1 . (3.18)

Here we denote by σD = (σDā ) the complex scalar of the U(Nf − Nc) vector multiplet on

its Coulomb branch. Consequently, the polynomial QD(z) in (3.16) should be interpreted

as the generating function of the dual twisted chiral ring operators:

QD(z) =

Nf−Nc∏
ā=1

(z − σDā ) =

Nf−Nc∑
p=0

(−1)pzNf−Nc−p s
(Nf−Nc)
p (σD) . (3.19)

The solutions to the Bethe equations (3.14) corresponds to subset of Nc distinct roots

of the degree-Nf polynomial P (z). Similarly, the solutions to the dual Bethe equations

corresponds to subsets of Nc −Nf distinct roots. Therefore, for any vacua in the original
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theory, corresponding to a solution {σ̂a}, there exists a dual vacua corresponding to the

complement {σ̂Dā } in the set of Nf roots of P . Dual operators O(σ) and OD(σD) are such

that O(σ̂) = OD(σ̂D) on any pair of dual vacua.

The relations (3.16) encode the duality relations between the elementary twisted chiral

operators s
(Nc)
p and s

(Nf−Nc)
p′ in the dual theories. Expanding out (3.16), we have Nf equa-

tions:

s
(Nf )
l (m) + (−1)(Nc+Na)q s

(Na)
l−Nf+Na

(m̃) = C(q)
l∑

n=0

s
(Nc)
l−n (σ) s

(Nf−Nc)
n (σD) , (3.20)

for l = 1, · · · , Nf , where the symmetric polynomials in the twisted masses m, m̃ are

defined like in (3.11), with the understanding that s
(Na)
l = 0 for l < 0. Upon solving for

the operators s
(Nf−Nc)
p′ (σD) in terms of the operators s

(Nc)
p (σ), we are left with the twisted

chiral ring relations of the U(Nc) theory, and vice versa.

Useful identities. For future reference, let us define:

F (z) ≡
Nf∏
i=1

(z −mi) =

Nf∑
l=0

(−1)lzNf−ls
(Nf )
l (m) ,

F̃ (z) ≡
Na∏
j=1

(z − m̃j) =

Na∑
l=0

(−1)lzNa−ls
(Na)
l (m̃) .

(3.21)

The polynomial (3.15) reads:

P (z) = F (z) + (−1)Na+Ncq F̃ (z) = C(q)

Nf∏
α=1

(z − ẑα) , (3.22)

where we denote by ẑα (α = 1, · · · , Nf ) its Nf roots. We have the useful identities:

Nf∏
α=1

(ẑα −mi) =
(−1)Nf−Ncq

C(q)

Na∏
j=1

(m̃j −mi) ,

Nf∏
α=1

(ẑα − m̃j) =
(−1)Nf

C(q)

Nf∏
i=1

(m̃j −mi) .

(3.23)

Another useful lemma is that, for any partition of the roots {ẑα} = {σ̂a} ∪ {σ̂Dā }, we have:∏Nc
a=1 P

′(σ̂a)∏Nc
a,b=1
a 6=b

(σ̂a − σ̂b)
= (−1)Nc(Nf−Nc)C(q)2Nc−Nf

∏Nf−Nc
ā=1 P ′(σ̂Dā )∏Nf−Nc

ā,b̄=1
ā 6=b̄

(σ̂Dā − σ̂Db̄ )
(3.24)

where P ′(z) = ∂zP (z).

3.2 Equality of correlation functions

Let us prove the equality of twisted chiral ring correlation functions across the dual-

ity, following the strategy of section 2.6. This proof closely follows similar discussions

in [6, 20, 33].
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Matching the flux operators. Consider first the flux operators defined by (2.27), for

the SU(Nf )×SU(Na)×U(1)A flavor symmetry. It is sometimes convenient to consider the

decomposition:

mi = µi −mA , m̃j = µj +mA , (3.25)

for the twisted masses, with mA the U(1)A twisted mass and
∑

i µi = 0,
∑

j = µ̃j = 0 for

SU(Nf ) × SU(Na). We similarly decompose the background fluxes as ni = pi − nA and

ñj = p̃j + nA. In the electric theory, the contribution from the flux operators,

Πflux(σ) = ΠA(σ)nA
Nf∏
i=1

Πi(σ)pi
Na∏
j=1

Πj(σ)p̃j , (3.26)

take the simple form:

Πflux(σ) = qnAA (−1)NcNanA
Nc∏
a=1

Nf∏
i=1

(σa −mi)
ni

Na∏
j=1

(σa − m̃j)
−ñj

 . (3.27)

In the dual theory, we find instead:

Πflux,D(σ) = qnAA,D(−1)(Nf−Nc)NfnA
Nf−Nc∏
ā=1

Nf∏
i=1

(σDā −mi)
−ni

Na∏
j=1

(σDā − m̃j)
ñj


×

Nf∏
i=1

Na∏
j=1

(m̃j −mi)
ni−ñj ,

(3.28)

where the last factor is the contribution from the mesons M i
j . For any pair of dual vacua

{σ̂a} and {σ̂Dā }, it is easy to see that:

Πflux(σ̂) = Πflux,D(σ̂D) (3.29)

follows from the identities (3.23), with the non-trivial relation:

qA,D = (−1)(Nf−Nc)Naq−Nf C(q)Nf+Na qA (3.30)

between the U(1)A flavor contact terms τA and τA,D in the dual theories. Such non-

trivial mapping of “flavor” FI parameters are related to cluster algebra transformations

for two-dimensional supersymmetric quivers [20]. For Nf > Na, equation (3.30) implies

the relation:

ξA,D = ξA −Nfξ (3.31)

between flavor FI parameters. This is consistent with the relation (3.9) between their

one-loop β-function coefficients, with bA0 and bA,D0 given in (3.4) and (3.7), respectively.

– 15 –



J
H
E
P
0
8
(
2
0
1
7
)
1
0
1

Matching H. Let us consider the handle gluing operator (2.26) in the electric theory.

The Hessian determinant of W is given by:

H(σ) =

Na∏
a=1

Ĥ(σa) , Ĥ(z) ≡
Nf∑
i=1

1

z −mi
−

Na∑
j=1

1

z − m̃j
, (3.32)

and the handle-gluing operator reads:

H(σ) = qR

Na∏
a=1

[
(−1)(r̃−1)NaĤ(σa)

F (σa)r−1F̃ (σa)r̃−1

]
Nc∏
a,b=1
a 6=b

1

σa − σb
, (3.33)

in terms if the functions defined in (3.21). In the dual theory, we have:

HD = hMHgauge
D , hM =

Nf∏
i=1

Na∏
j=1

(
1

m̃j −mi

)r+r̃−1

, (3.34)

where hM is the contribution from the dual mesons, and:

Hgauge
D (σD) = qR,D

Nf−Nc∏
ā=1

[
(−1)(rD−1)Nf+1Ĥ(σDā )

F (σDā )rD−1F̃ (σDā )r̃D−1

] Nf−Nc∏
ā,b̄=1
ā 6=b̄

1

σDā − σDb̄
, (3.35)

is the contribution from all the fields charged under the U(Nf − Nc) gauge group. Using

the fact that

∂zP (ẑα) = Ĥ(ẑα)F (ẑα) , F (ẑα) = (−1)Nc+Na−1qF̃ (ẑα) , (3.36)

for any root ẑα, together with the identities (3.23) and (3.24), one can prove that:

H(σ̂) = HD(σ̂D) , (3.37)

for any dual vacua, with the relation

qR,D = (−1)(r+r̃+rD−1)NaqrDNf−(r+rD)Nc C(q)2(Nc−Nf )+(r+r̃)Nf qR (3.38)

between the gravitational contact terms. This is in perfect agreement with the relation (3.9)

between the gravitational anomalies. This complete the proof of the equality of dual

correlation functions for all the U(Nc) dualities.

3.3 Instanton sums and duality relations

As reviewed in section 2.5, the correlation functions can also be written in terms of a sum

over instanton contributions. The duality relations imply interesting identities between

different JK residues.
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Electric theory. The correlation functions of the U(Nc) gauge theory twisted chiral ring

operators O(σ) on Σg in the are given by:

〈O〉 = qnAA qg−1
R

∑
m∈ZNc

q
∑

ma Z [Nc,Nf ,Na]
g,m (O) . (3.39)

The instanton factor is given by the residue integral:

Z [Nc,Nf ,Na]
g,m (O) =

(−1)(Nc−1)
∑
a ma

Nc!

∮ Nc∏
a=1

dσa
2πi
Z1-loop
g,m (σ)H(σ)g O(σ) , (3.40)

with

Z1-loop
g,m =

Nc∏
a=1

[∏Na
j=1(−σa + m̃j)

ma−ñj−(g−1)(r̃−1)∏Nf
i=1(σa −mi)ma−ni+(g−1)(r−1)

]
Nc∏
a,b=1
a 6=b

(σa − σb)1−g , (3.41)

and H(σ) given by (3.32). The sum in (3.39) is over the U(Nc) fluxes (ma) ∈ ZNc . The

contour integral is an iterated residue at all the codimension-Nc singularities of the form:6

σa = m
(a)
i , (3.42)

with {m(a)
i }

Nc
a=1 a choice of Nc distinct twisted masses among {mi}

Nf
i=1, and we are assuming

that the twisted masses are generic. The formula (3.39) follows from (2.36)–(2.37) with

η = (1, · · · , 1).7 The singularities (3.42) contribute for ma ≥ M with M some small-

enough integer that depends on the background fluxes ni, ñj and on the R-charges, and the

sum (3.39) converges for |q| < 1.

Magnetic theory. Similarly, the correlation functions of the U(Nf − Nc) dual theory

read:

〈OD〉dual = qnAA,D q
g−1
R,D ZM

∑
m∈ZNf−Nc

q
∑
ā mā

D Z̃ [Nc,Nf ,Na]
g,m (OD) , (3.43)

where qD is related to q by (3.18), the R-charges are related by (3.6), and the contact terms

are related by (3.30) and (3.38). The factor ZM in (3.43) is the contribution of the mesons:

ZM =

Nf∏
i=1

Na∏
j=1

(
1

−mi + m̃j

)−ni+ñj+(g−1)(r+r̃−1)

, (3.44)

and the instanton contribution reads:

Z̃ [Nc,Nf ,Na]
g,m (OD) =

(−1)(Nf−Nc−1)
∑
ā mā

(Nf −Nc)!

∮ Nf−Nc∏
ā=1

dσDā
2πi

Z̃1-loop
g,m (σD)HD(σD)g OD(σD) ,

(3.45)

6Note that the sum over fluxes can be taken as ma ≥ M , with M some integer that depend on the

background fluxes ni and the R-charge r.
7Here we assumed that Nf ≥ Na. If Nf > Na, this choice of η is necessary in order to cancel the

contribution from infinity on the Coulomb branch [11].
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with:

Z̃1-loop
g,m =

Nf−Nc∏
ā=1

[∏Nf
i=1(−σDā +mi)

mā−ni−(g−1)(rD−1)∏Na
j=1(σDā − m̃j)mā−ñj+(g−1)(r̃D−1)

] Nf−Nc∏
ā,b̄=1
ā 6=b̄

(σDā − σDb̄ )1−g ,

HD(σD) = (−1)Nf−Nc
Nf−Nc∏
a=1

Ĥ(σDā ) ,

(3.46)

with the function Ĥ(z) defined in (3.32). The contour integral (3.45) picks the residues at:

σDā = m
(ā)
i , (3.47)

corresponding to a JK residue with η = (−1, · · · ,−1) in (2.37).

3.3.1 Integral identities for Nf > Na

We proved the duality relations:

〈O〉 = 〈OD〉dual . (3.48)

For Nf > Na, a given correlation function receives contribution from a finite number of

topological sectors due to the U(1)ax selection rule. Expanding the duality relation (3.48)

in q, we find the relations:∑
ma|

∑
a ma=m0

Z [Nc,Nf ,Na]
g,m (O)

= (−1)(Nf−Nc)NanA+(r+r̃+rD−1)Na(g−1) ZM
∑

mā|
∑
ā mā=m′0

Z̃ [Nc,Nf ,Na]
g,m (OD) ,

(3.49)

with m0,m
′
0 ∈ Z and

m′0 = m0 +NfnA + (g − 1) ((r + rD)Nc − rDNf ) . (3.50)

The sums in (3.49) are over fluxes that sum to m0 and m′0, respectively. For small values of

the parameters, these relations are easily checked on a computer. We discuss some explicit

expressions in appendix B.

4 USp(2Nc) dualities

Consider an N = (2, 2) gauge theory with a gauge group USp(2Nc) and Nf = 2k + 1

flavors. The field content consists of an USp(2Nc) vector multiplet coupled to Nf chiral

multiplets Φi (i = 1, · · · , Nf ) in the fundamental representation, of R-charge ri ∈ Z. Note

that Nf must be odd for the theory to be regular [2]. We turn on the twisted masses and

fluxes, mi and ni, of the U(1)Nf maximal torus of the flavor symmetry group U(Nf ). We

take the conventions that the chiral multiplet Φi has charge −1 in U(1)i ⊂ U(Nf ). The

proposed dual theory [2] is a USp(2ND
c ) theory with rank:

ND
c = k −Nc . (4.1)
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The dual theory has Nf fundamental chiral fields ΦD
i of R-charges:

rD,i = 1− ri , (4.2)

and inverted flavor charges. It also contains anti-symmetric mesons Mij and a superpoten-

tial:

W = Mij [Φ
D
i ΦD

j ] , (4.3)

where the bracket denotes the contraction of the gauge indices with the USp(2ND
c ) invariant

two-form. It follows that the scalar Mij carries R-charge ri+rj . The fields Mij are identified

with the gauge-invariant operators Q̃iQj of the original theory.

The USp(2Nc) theory has a U(1)A−U(1)ax mixed anomaly, where U(1)A is the diagonal

U(1) in U(Nf ), with coefficient:

bA0 = −2NfNc . (4.4)

The “gravitational” anomaly reads:

ĉgrav = −2Nc

Nf∑
i=1

(ri − 1)−Nc(2Nc + 1) , (4.5)

with c = 3ĉgrav the central charge of the conjectured infrared CFT. One easily checks that

those ’t Hooft anomalies are reproduced by the Hori-dual description.

4.1 Twisted chiral ring and duality map

The twisted chiral ring of the USp(2Nc) theory can be summarized by a polynomial identity.

Just as with the U(N) duality, it is helpful to consider the two dual theories at once. We

introduce the Q- and QD-polynomials, whose coefficients are the gauge-invariant Coulomb

branch operators of the USp(2Nc) and USp(2ND
c ) theories, respectively:

Q(z) = det(z · 1− σ) , QD(z) = det(z · 1− σD) . (4.6)

The Weyl group of USp(2Nc) is SNc × ZNc2 , which acts on the Cartan coordinates σa as

permutations and sign inversions. Thus, the gauge-invariant twisted chiral operators of

USp(2Nc) are given by symmetric polynomials in σ2
a:

Q(z) = det(z · 1− σ) =
∏
a

(z2 − σ2
a) . (4.7)

The generators of the classical ring of gauge-invariant twisted chiral operators are given

by the coefficients of the Q-polynomial. The quantum ring, however, is given by imposing

the relations:

P (z) = 2zQD(z)Q(z) (4.8)

where

P (z) ≡
Nf∏
i=1

(z −mi)−
Nf∏
i=1

(−z −mi) = 2z

k∏
α=1

(z2 − ẑ2
α) , (4.9)
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for a set of complex numbers ẑ1, · · · , ẑk defined by the last equation in (4.9). The quantum

relations can be extracted from this equation in an equivalent manner to that explained

for the U(Nc) theory. In particular, the operator map can be obtained by expanding the

identity (4.8) and identifying the coefficients order-by-order in z.

By a standard argument, the Bethe vacua of the USp(2Nc) theory, represented by the

vacuum expectation value of the Cartan coordinates σ̂a, are given by Nc-tuples of roots of

P (z) that satisfy

σ̂a 6= ±mi for any a, i , σ̂a 6= 0 for any a , σ̂a 6= ±σ̂b for a 6= b , (4.10)

up to identifications made under the Weyl group. Note that the fact that the root z = 0

of P (z) must be ignored, due to these constraints, is encoded in the extra factor of z on

the right-hand side of equation (4.8). Thus each vacuum can be represented by a Nc-tuple

(ẑα1 , · · · , ẑαNc ) , α1 < · · · < αNc , αa ∈ [k] , (4.11)

or, more conveniently, by an ascending length-Nc vector of integers:

α = (α1, · · · , αNc) , α1 < · · · < αNc , αa ∈ [k] . (4.12)

Meanwhile, each vacuum in the dual theory can also be represented by a length-ND
c vector

αD. The duality (4.8) then implies that the vacuum represented by the vector α in the

USp(Nc) theory is mapped to that represented by αc in the USp(ND
c ) dual theory, where

αc denotes the complement of α within [k]:

αD = αc = [k] \ α . (4.13)

4.2 A-twisted correlation functions

In this section, we compute the expectation value of operators dual to each other in the

mutually dual theories on a genus-g Riemann surface. The expectation value of dual

operators match precisely, once we fix a subtle contact term (which corresponds to the

relative value of the U(1)R “FI parameter” τR in the dual theories).

To compute the correlator, let us denote the set of vectors α defined in equation (4.12)

as S(N, k), i.e.,

S(N, k) = {(α1, · · · , αN ) : α1 < · · · < αN , αa ∈ [k]} . (4.14)

Then we can express the genus-g partition function of the USp(2Nc) theory as:

〈O(σ)〉g; nF =
∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1 Π(ẑα) . (4.15)

We similarly have:〈
OD(σD)

〉
g; nF

= ZM
∑

αc∈S(ND
c ,k)

OD(ẑαc)HD(ẑαc)
g−1 ΠD(ẑαc) , (4.16)
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in the dual theory, where we factored out the contribution of the gauge-singlet multiplets

Mij , which reads:

ZM =
∏

1≤i<j≤Nf

(−mi −mj)
ni+nj+(1−ri−rj)(g−1) . (4.17)

We can easily compute the ratio:

O(ẑα)H(ẑα)g−1 Π(ẑα)

OD(ẑαc)HD(ẑαc)g−1 ΠD(ẑαc) ,
(4.18)

for any α ∈ S. It is useful to note that the Hessian determinant

H(σ) =
∏
a

∑
i

(
1

σa −mi
− 1

σa +mi

)
(4.19)

can be simplified using the fact that, for a root ẑα of P (z), one has:∑
i

(
1

ẑα −mi
− 1

ẑα +mi

)
=

P ′(ẑα)∏
i(ẑα −mi)

=
4ẑ2
α

∏
β 6=α(ẑ2

α − ẑ2
β)∏

i(ẑα −mi)
. (4.20)

We arrive at the expressions:

Π(ẑα) =
∏
i

[
qA
∏
a

(m2
i − ẑ2

αa)

]ni

H(ẑα) = qR

∏
a,ā(ẑ

2
αa − ẑ

2
αcā

)∏
i,a(m

2
i − ẑ2

αa)ri−1
∏
i,a(ẑαa −mi)

.

(4.21)

It follows that:

Π(ẑα)

ΠD(ẑαc)
=
∏
i

[
qAq

−1
A,D

∏
α

(m2
i − ẑ2

α)

]ni
= (qAq

−1
A,D)

∑
i ni
∏
i<j

(−mi −mj)
ni+nj (4.22)

and

H(ẑα)

HD(ẑαc)
= qRq

−1
R,D

∏
a,ā(ẑ

2
αa − ẑ

2
αcā

)
∏
i,ā(m

2
i − ẑ2

αcā
)−ri

∏
i,ā(ẑαcā +mi)∏

a,ā(ẑ
2
αcā
− ẑ2

αa)
∏
i,a(m

2
i − ẑ2

αa)ri−1
∏
i,a(ẑαa −mi)

= qRq
−1
R,D e

iπ(NcND
c +ND

c +ν)
∏
i<j

(−mi −mj)
1−ri−rj .

(4.23)

In appendix A, we show that:∏
i,α

(mi − ẑα) =
∏
i,α

(mi + ẑα) = eiπν
∏
i<j

(mi +mj) , (4.24)

for an integer ν, uniquely determined by the choice of the masses (m1, · · · ,mNf ).8 Finally,

the chiral ring operators map as:

O(ẑα) = OD(ẑαc) , (4.25)

8It is worth noting that, while ν is independent of the choice of (ẑα), it shifts by 1 with respect to taking

mi → −mi for all i when k is odd. Note that the polynomial P (z) is invariant under this action.
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by definition. The identity of the correlation functions (4.15) and (4.16) directly follows,

with the identifications:

qA,D = qA , qR,D = qR e
iπ(NcND

c +ND
c +ν) , (4.26)

between contact terms.

5 SO(N)/O+(N) dualities

In this section, we consider theories with SO(N) gauge groups and Nf flavors in the vec-

tor representation, and orbifolds thereof. There is a Z2 action that acts on the SO(N)

group that can be viewed as a global symmetry of the theory, which can be “gauged,” or

“orbifolded” [36, 37]. This being a discrete symmetry, there are multiple theories that can

be obtained by different ways of orbifolding this symmetry. In this section, we consider a

particular class of orbifold theories, denoted O+, that are dual to SO(N) theories [2].

The matter content of the SO(N) theory is given by Nf chiral multiplets Φi (i =

1, · · · , Nf ) in the vector representation of SO(N), of R-charge ri ∈ Z. We consider the

twisted masses mi and background fluxes ni for the U(Nf ) flavor symmetry. The chiral

multiplet Φi is taken to have charge −1 under U(1)i ⊂ U(Nf ). Finally, note that the

SO(N) gauge group admits a Z2-valued θ angle, θ ∈ {0, π}. In order for the theory to be

regular, we need to set θ = 0 if Nf −N is odd, and θ = π is Nf −N is even [2].

This SO(N) theory is dual to a O+(ND) theory with:

ND = Nf −N + 1 , (5.1)

and Nf chiral fields ΦD
i in the vector representation, with R-charges

rD,i = 1− ri (5.2)

and inverted flavor charges. The O+(ND) theory also contains the symmetric gauge-

singlet chiral multiplets Mij , which are coupled to the charged chiral multiplets by the

superpotential:

W = (ΦD
i )tMijΦ

D
j . (5.3)

As a simple check, note that the SO(N) theory has ’t Hooft anomalies:

bA0 = −NNf , ĉgrav = −N
Nf∑
i=1

(ri − 1)− 1

2
N(N − 1) , (5.4)

which are precisely matched by the dual description.

The qualitative description of the duality between SO(N) and O+(ND
c ) theories differs

depending on the parity of N and Nf . We shall describe the duality map and the A-

twisted correlation functions for each case separately. Before doing so, we first describe the

computation of twisted genus-g correlators.
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5.1 Twisted genus-g correlation functions

In order to compute correlators in an orbifold theory, we must be able to compute cor-

relators with twisted boundary conditions under the orbifold group. In this section, we

compute these twisted correlation functions for Z2 orbifold theories of SO gauge theories.

Since, in the context of this section, the orbifold theories are dual theories of vanilla SO

gauge theories, we use notation (superscripts and subscripts on variables and parameters)

convenient for this duality.

We first compute the one-loop determinant Zt(Φ) of a chiral field Φ coupled to the

A-twisted background and to a background vector multiplet giving rise to an effective

twisted mass m and a background flux n, with twisted boundary conditions around certain

non-trivial cycles on the Riemann surface, i.e.,

Φ→ −Φ around cycles C1, · · · , Ck (k > 0) of Σg. (5.5)

We find that:

Zt(Φ) = m−n−(r−1)(g−1) , (5.6)

exactly like for a chiral multiplet in the untwisted sector.

This can be argued as follows. Let us introduce another chiral multiplet Φ′ with the

exact same charges, and coupled to the exact same background. We assume, however, that

Φ′ is single-valued on Σg. We know the one-loop determinant of Φ′:

Z(Φ′) = m−n−(r−1)(g−1) . (5.7)

Now we may make the following redefinition of superfields:

Φ1 =
1√
2

(Φ′ + Φ) , Φ2 =
1√
2

(Φ′ − Φ) . (5.8)

Notice that

Φ1 ↔ Φ2 around cycles C1, · · · , Ck of Σg . (5.9)

Thus the two chiral multiplets can be viewed as a single chiral multiplet living on a double-

cover Σ′g′ of Σg. For this single chiral multiplet, the background flux is given by 2n, while

the genus g′ is given by g′ = 2g−1 — this is because the integral of the Riemann curvature

of Σ′g′ is double that of Σg, thus 2− 2g′ = 2(2− 2g). Meanwhile, the effective twisted mass

and the R-charge remain the same. Thus, the one-loop determinant of this single chiral

multiplet living on Σ′g′ is given by m−2n−2(r−1)(g−1) = Zt(Φ)Z(Φ′). This implies (5.6).

5.1.1 Orbifold of SO(2ND
c + 1) theory

For the SO(2ND
c + 1) gauge theory, we can fix the gauge such that the orbifolding action,

i.e., the generator of the Z2 action, acts on the W-bosons Ti(2ND+1), whose matrix elements

are given by

(Tij)kl = δikδjl − δilδkj , (5.10)

by an inversion of sign. It also acts on the (2ND
c + 1)th component of the fundamental

chiral. None of these fields, however, take on vacuum expectation values at the localization
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locus. Also, as pointed out at the beginning of the section, the one-loop determinants are

not affected by twisted boundary conditions. Thus all the twisted sector partition functions

agree with the untwisted partition function:

〈OD〉twisted = 〈OD〉untwisted . (5.11)

5.1.2 Orbifold of SO(2ND) theory

In this case, we can fix the gauge such that the orbifolding action acts on the W-bosons

Ti,2Nc by an inversion of sign. It thus acts on the Nc-th Cartan element by an inversion.

Recall the localization locus, is given by a constant flux and vacuum expectation value

for the sigma fields. Since Nth sigma field and background gauge field must undergo

monodromies around cycles of the Riemann surface, it must be that their value is fixed

to zero:

σDND
c

= 0 , mD
ND
c

= 0 . (5.12)

The generator of Z2 also acts on 2ND
c -th component of the fundamental chiral, but we

know that the one loop determinant of these elements are not modified. The same goes for

the W-boson multiplets.

The only remaining problem is to compute the contribution from the light gauginos

(or gaugino “zero modes”). Fortunately, the light gaugino “mass matrix” does not mix

for the SO theory, i.e., ∂a∂bŴ is diagonal. Thus we find that the one-loop determinant

for the Cartan elements with indices a = 1, · · · , Nc − 1 remain the same. We just need

to understand what happens for the Nc-th Cartan element. Let us denote the one-loop

contribution from this element by Ztw.

The light “vector” gauginos, in an untwisted partition function on a Riemann sur-

face, lie within a multiplet (aµ,Λz, Λ̄z̄), with aµdx
µ = λ + λ̄, Λz = λz, Λ̄z̄ = λ̄z̄, for the

holomorphic one-form λ — we follow the notation of [11, 33]. There are g such one-forms

on Σg.

To find the twisted-sector contribution, we again consider the double-cover Σ2g−1 of

the Riemann surface Σg defined by the twist. Then there are 2g−1 holomorphic one-forms,

as the cover has genus 2g − 1. Now consider the involution ι that takes a one-form and

maps it to a one-form by moving to the alternate cover. Then, by definition, ι2 = id. Thus

the vector space of holomorphic one-forms decompose into two subspaces, under which ι

acts with eigenvalues 1 and −1, respectively. The one-forms that are invariant under ι are

well-defined on the initial Riemann surface of genus g, and are thus holomorphic one forms

on Σg. There are g of them, which we call “+ modes.” The number of locally-holomorphic

one-forms that satisfy the twisted boundary conditions is given by (2g − 1)− g = (g − 1).

We call them the “− modes”. Note that, at a generic value σD on the classical Coulomb

branch, these modes do not mix, since the mass matrix is invariant under ι. Thus, denoting

the one-loop determinant of the ± modes by Z±, we have:

Z+Z− = Zone-loop
Σ2g−1

(σD) . (5.13)

Then, by definition,

Ztw = Z−|σD
NDc

=0 . (5.14)
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Having turned on a generic vev for all of the sigma fields σDā , let us compute the

one-loop determinant contribution Zone-loop
Σ2g−1

(σD) of all the light modes on Σ2g−1. This is

given by

Zone-loop
Σ2g−1

(σ) = Z(σDND
c

)2g−1 := (−2πi∂ND
c
∂ND

c
Ŵ )2g−1 . (5.15)

This one-loop determinant happens to be a function of σD
ND only:9

Z(σDND
c

) =
∑
i

(
1

σD
ND
c

+mi
− 1

σD
ND
c
−mi

)
. (5.16)

Meanwhile, we know the one-loop determinant of the + modes. It is given by

Z+ = Z(σDND
c

)g . (5.17)

We thus find:

Ztw = Z−|σD
NDc

=0 = Z(0)g−1 =

(∑
i

2

mi

)g−1

. (5.18)

We then arrive at the twisted-sector partition function of the O(2ND
c ) gauge theory:

1

2ND−1(ND − 1)!

∑
nDā

∮ ∏
ā

dσDā
2πi

∏
ā 6=b̄

((σDā )2 − (σDb̄ )2)1−g
∏
a

eiθn
D
ā

·
∏
ā

[∑
i

(
1

σDā +mi
− 1

σDā −mi

)]g−1

·
∏
i

(
(σā +mi)

−nDā −ni−(g−1)(rD,i−1)(−σDā +mi)
nDā −ni−(g−1)(rD,i−1)

)

·

(∑
i

2

mi

)g−1∏
ā

(−(σDā )4)1−g
∏
i

(−mi)
2(−ni−(g−1)(rD,i−1)) ,

(5.19)

where the indices ā ∈ [ND − 1], not [ND]. Here θ ∈ {0, π} denotes the SO(N) Z2-valued

θ-angle [2]. Note that the factor in front of the integral is not equivalent to |W |−1, since

we have used some of the Weyl symmetry to fix the Cartan element acted on by the Z2

action to be the ND
c -th element.

We can pick the residues of this integrand and arrive at:

〈OD〉twisted =
∑

αD∈S(ND−1,k)

ΠD,t(ẑαD)HD,t(ẑαD)g−1OD(ẑαD) , (5.20)

9Here we take the convention that Φi has charge 1 under U(1)i ⊂ U(Nf ). In the conventions of this

section, these are the charges of the chiral fields in the dual orbifold theory of the SO theories.
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for any twisted sector, where we defined:

ΠD,t(ẑαD) =
∏
i

[m2
i

∏
ā

(m2
i − ẑ2

αDā
)]−ni

HD,t(ẑαD) =
∏
ā

(−ẑ−2
αDā

) ·

(∑
i

1

2mi

)

·

∏
i[m

2
i

∏
ā(m

2
i − ẑ2

αDā
)]1−rD,i∏

ā,i(ẑαDā +mi)
·

∏
ā P
′(ẑαDā )∏

ā ẑ
2
αDā

∏
ā 6=b̄(ẑ

2
αDā
− ẑ2

αD
b̄

)
.

(5.21)

The polynomial P (z) will be defined in section 5.3. Here, αD is a vector of length ND
c − 1

with

αD = (αD1 , · · · , αDND
c −1) , αD1 < · · · < αDND

c −1 , αDā ∈ [k] , (5.22)

i.e., elements of S(ND
c − 1, k). k is defined so that the number of non-zero roots of P (z) is

2k. ẑα are the non-zero roots of P (z):

P (z) =

{
2z
∏k
α=1(z2 − ẑ2

α) when Nf = 2k + 1

2
∏k
α=1(z2 − ẑ2

α) when Nf = 2k .
(5.23)

When Nf = 2k + 1, it is useful to note that a pole (σDā ) = (±ẑαD1 , · · · ,±ẑαDNDc −1

) of the

integrand corresponds to a vacuum represented by the set of roots (ẑαD1
, · · · , ẑαD

NDc −1

, 0) in

the O(2ND
c ) theory, while there is no such interpretation when Nf is even.

5.2 Summing over the twisted sectors

In order to obtain an A-twisted correlator on Σg of an orbifold theory, we must sum over

the correlators computed in the twisted sectors. In order to label the twisted sectors, let

us denote the g A-cycles and g B-cycles of the Riemann surface by AI and BI such that

AI ·AJ = BI ·BJ = 0 , AI ·BJ = δIJ . (5.24)

Restricting the orbifold group to be Z2, a twisted sector is labeled by the cycles the Z2

twist is applied on:

{AI1 , AI2 , · · · , BJ1 , BJ2 , · · · } . (5.25)

A consistent prescription of adding the partition functions to compute a vacuum expecta-

tion value is to weigh each twisted partition function by vg−N(T )wN(T ), where

N(T ) = (number of indices I such that either AI ∈ T or BI ∈ T ) , (5.26)

for some constant w. This prescription lead to invariance under BI → BI + AI , BI → AI
and (AI , BI) ↔ (AJ , BJ) for I 6= J . The values of v and w depend on the choice of the

orbifold projection we take.

A simple way of understanding these weights is by considering the genus-one partition

function. There, the choice of orbifold projection leads to a prescription of v and w for each
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partition function with holonomies of the orbifold action Γ, as discussed in [2]. For example,

in the case that the orbifold projection is such that the untwisted sector is projected down

to the Γ, v and w are taken to be 1 [36, 37].10 Once these weights are determined, they can

be used to sum over higher-genus partition functions. A heuristic way of understanding

this prescription is to recall that the genus-g correlators can be viewed as correlators on

the sphere with g insertions of handle operators. Each handle operator is realized by

introducing the handle, and summing over all possible holonomies on each cycle of the

handle with a prescribed weight. From this point of view, it is trivial that these prescribed

weights should be identified with the weights with which the genus-one partition functions

are summed.

Now in the previous subsection, we have shown that the vacuum expectation value of

an operator only depends on whether there exists a cycle with a non-trivial Z2 twist or

not. That is, for any nonempty T ,

〈OD〉T = 〈OD〉twisted . (5.27)

Thus the A-twisted expectation value is given by

〈OD〉 =
1

|Z2|
∑
T

vg−N(T )wN(T )〈OD〉T

=
1

2
vg〈OD〉untwisted +

1

2

 g∑
N(T )=1

(
g

N(T )

)
3N(T )vg−N(T )wN(T )

 〈OD〉twisted

=
1

2
vg〈OD〉untwisted +

1

2

(
(v + 3w)g − vg

)
〈OD〉twisted .

(5.28)

5.3 Twisted chiral ring and dualities

The elements of the twisted chiral ring of the SO(N) theory can be represented by the

Weyl-invariant polynomials of the sigma-fields σa. When N is odd, these are just symmetric

polynomials of σ2
a, the generators thus being the elementary symmetric polynomials of σ2

a,

whose generating function is given by

Q(z) = det(z · 1− σ) . (5.29)

Meanwhile, when N is even, there is an additional generator of the twisted chiral ring,

being the Pfaffian of σ:

Pf(σ) =
∏
a

σa . (5.30)

This is because, for SO(2N), the Weyl group consists of permutations of σa and sign

inversions εa on σa which satisfies
∏
a εa = 1. In the orbifold theory, whichever orbifold one

chooses to take, the gauge invariant local operators are given by symmetric polynomials

of (σDā )2. The generating function for the elementary symmetric polynomials, again, is

given by

QD(z) = det(z · 1− σD) . (5.31)

10Such orbifolds, and their genus-one partition functions have been reviewed in [9].
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Depending on the orbifold projection, however, there may be a twist field τ in the twisted

chiral ring.

The quantum twisted chiral ring of the SO(N) theory is then summarized by

zP (z) = 2QD(z)Q(z) , (5.32)

where the polynomial P (z) is defined to be

P (z) =

Nf∏
i=1

(z −mi) +

Nf∏
i=1

(z +mi) . (5.33)

These twisted chiral ring relations directly follow from the twisted superpotential of the

SO(N) theory, with the Z2 θ-angle taken to be trivial if N −Nf is odd, and with θ = π if

N −Nf is even [2].

When N is even, there is an additional (trivial) relation one needs to take in to account:

Pf(σ)2 =
∏
a

σ2
a . (5.34)

Thus, when N is even, in the dual O+(ND) theory, there is a twist operator τ corresponding

to the Pfaffian operator in the twisted chiral ring. Note that the dual operator of
∏
a σ

2
a is

a symmetric polynomial of (σDā )2 of degree Nc. We denote this symmetric polynomial by

(
∏
a σ

2
a)
D. Then the twist operator satisfies the relation:

τ2 =

(∏
a

σ2
a

)D
. (5.35)

The description of the twisted chiral vacua, and the evaluation of the correlation functions,

vary qualitatively depending on the parity of N and ND. We now proceed to describe

these features in each case.

5.3.1 SO(2Nc)↔ O+(2ND
c + 1), Nf = 2k, ND

c = k −Nc

Map of vacua. The number of flavors being even, P (z) can be written as

P (z) = 2
k∏

α=1

(z2 − ẑ2
α) (5.36)

The Coulomb branch vacua of the SO(2Nc) theory, represented by the vacuum expectation

value of the Cartan coordinates σ̂a, are given by Nc-tuples of roots of P (z) that satisfy

certain constraints.

σ̂a 6= ±mi for any a, i , σ̂a 6= ±σ̂b for a 6= b , (5.37)

up to identifications made under the Weyl group. There are then two sets of vacua:

(ẑα1 , · · · , ẑαNc ) , α1 < · · · < αNc , αa ∈ [k] ,

(ẑα1 , · · · , ẑαNc−1 ,−ẑαNc ) , α1 < · · · < αNc , αa ∈ [k] .
(5.38)
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That is, for each α ∈ S(Nc, k), an ascending length-Nc vector:

α = (α1, · · · , αNc) , α1 < · · · < αNc , αa ∈ [k] , (5.39)

there are two associated vacua.

Likewise, in the dual theory, two vacua can be associated to an ascending length-

ND
c = (k−Nd) vector αD. In this case, there is only one representative ND

c -tuple of roots:

(ẑαD1
, · · · , ẑαD

ND
) , αD1 < · · · < αDND , αDā ∈ [k] , (5.40)

corresponding to αD. However, viewed as the vacuum expectation value of σD, this is a

fixed point of the Z2 orbifold action. The O+(2ND
c + 1) theory is defined so that both the

twisted and untwisted states corresponding to this vacuum expectation value are included

in the twisted-chiral spectrum. The two vacua represented by the vector α in the SO(2Nc)

theory are mapped to those corresponding to αD = αc in the O+(2ND
c + 1) dual theory,

where αc denotes the complement of α within [k].

A-twisted correlation functions. The A-twisted correlation function of the SO(2Nc)

theory is given by:

〈O0 + Pf(σ) · O1〉g;nF = 2
∑

α∈S(Nc,k)

O0(ẑα)H(ẑα)g−1Π(ẑα) (5.41)

where we have decomposed an arbitrary operator O into

O = O0 + Pf(σ) · O1 , (5.42)

where O0 and O1 are polynomials of σ2
a. We have:

Π(σ̂a) = q
∑
i ni

A

∏
i,a

(m2
i − σ̂2

a)
ni

H(σ̂a) = qR

∏
i,a(m

2
i − σ̂2

a)
1−ri∏

i,a(σ̂a −mi)
·

∏
a P
′(σ̂a)∏

a 6=b(σ̂
2
a − σ̂2

b )
,

(5.43)

when σ̂a are roots of P (z).

The sum over S(Nc, k) and the projection of the operator to O0 should be commented

on. Recall that there are two vacua of the SO(2Nc) theory corresponding to each element

of S(Nc, k). By picking up the poles of the summed integrand as before, we find that the

vacuum expectation value of an arbitrary operator O can be written as:

〈O〉g;nF =
∑

α∈S(Nc,k)

O(ẑα1 , · · · , ẑαN )H(ẑα1 , · · · , ẑαN )g−1Π(ẑα1 , · · · , ẑαN )

+
∑

α∈S(Nc,k)

O0(ẑα1 , · · · ,−ẑαN )H(ẑα1 , · · · ,−ẑαN )g−1Π(ẑα1 , · · · ,−ẑαN ) .
(5.44)

Now using the identities of appendix A, we find that

Π(ẑα1 , · · · , ẑαN ) = Π(ẑα1 , · · · ,−ẑαN ) , H(ẑα1 , · · · , ẑαN ) = H(ẑα1 , · · · ,−ẑαN ) , (5.45)
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while, by definition,

O0 → O0 , O1 → O1 , Pf(σ̂a)→ −Pf(σ̂a) , (5.46)

under ẑαN → −ẑαN . Thus the expectation value (5.44) is given by equation (5.41).

Meanwhile, in the dual theory, we find that

〈O0,D + τ · O1,D〉g:nF = 〈O0,D〉g:nF , (5.47)

since a single twist operator introduces a single branch cut, thus its expectation value must

vanish. Let us also note that, for an orbifold of the SO(2ND
c +1) theory, the twisted sector

expectation value coincides with the untwisted expectation value, leading to:

〈O0,D〉g:nF =
1

2
(v + 3w)g〈O0,D〉g:nF ,untwisted , (5.48)

for parameters v and w, which depend on the orbifold projection. We finally arrive at

〈O0,D + τ · O1,D〉g:nF =
(v + 3w)g

2
ZM

∑
αD∈S(ND

c ,k)

O0,D(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) , (5.49)

with

ΠD(σ̂Dā ) = q
∑
i ni

A,D

∏
i

(
mi

∏
ā

(m2
i − (σ̂Dā )2)

)−ni

HD(σ̂Dā ) = qR,D

∏
i

(
mi
∏
ā(m

2
i − (σ̂Dā )2)

)1−rD,i∏
i,ā(σ̂

D
ā +mi)

·
∏
ā P
′(σ̂Dā )∏

ā σ̂
2
ā

∏
ā 6=b̄((σ̂

D
ā )2 − (σ̂D

b̄
)2)

(5.50)

the contribution from the dual gauge theory, where σ̂ā are roots of P (z), and

ZM =
∏
i≤j

(−mi −mj)
ni+nj+(1−ri−rj)(g−1) (5.51)

the contribution from the meson singlets. Using the identities listed in appendix A, we

then find that

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏
i≤j

(−mi −mj)
ni+nj

H(ẑα)

HD(ẑαc)
= qRq

−1
R,D 2−4ND

c +2
∑
i rieiπ(NcND

c +ν+
∑
i ri)
∏
i≤j

(−mi −mj)
1−ri−rj .

(5.52)

Also, by the operator map (5.32),

O0(ẑα) = O0,D(ẑαc) , (5.53)

O0 being symmetric polynomials of the square σ2
a of the Cartan coordinates of σ. We thus

find that

〈O0 + Pf(σ)O1〉g;nF = 4(v + 3w)−g(qAq
−1
A,D)

∑
i ni(qRq

−1
R,D)g−1

· e−(2 ln 2+iπ)
∑
i nie[−(4 ln 2)ND

c +iπ(NcND
c +ν)+(2 ln 2+iπ)

∑
i ri](g−1)〈O0,D + τO1,D〉g;nF .

(5.54)
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With the prescription v = w = 1 — that is, adding up all the twisted sectors with weight

1 — we arrive at

〈O0 + Pf(σ)O1〉g;nF = 〈O0,D + τO1,D〉g;nF , (5.55)

with the identifications:

qA,D = e−(2 ln 2+iπ) qA , qR,D = e[−(2 ln 2)(2ND
c +1)+iπ(NcND

c +ν)+(2 ln 2+iπ)
∑
i ri] qR , (5.56)

amongst the contact terms.

5.3.2 SO(2Nc)↔ O+(2ND
c ), Nf = 2k + 1, ND

c = k −Nc + 1

Map of vacua. P (z) is given by

P (z) = 2z

k∏
α=1

(z2 − ẑ2
α) . (5.57)

There are three types of vacua in the SO(2Nc) theory. First, we have the two sets of vacua

that can be represented by Nc-tuples like in (5.38). That is:

(ẑα1 , · · · , ẑαNc ) , α1 < · · · < αNc , αa ∈ [k] ,

(ẑα1 , · · · , ẑαNc−1 ,−ẑαNc ) , α1 < · · · < αNc , αa ∈ [k] .
(5.58)

This gives two vacua associated to each element of S(Nc, k). In addition, there are vacua

represented by a (Nc − 1)-tuples:

(ẑα1 , · · · , ẑαNc−1 , 0) , α1 < · · · < αNc−1 , αa ∈ [k] . (5.59)

These vacua are in one-to-one correspondence with elements α ∈ S(Nc − 1, k).

In the dual theory, two vacua can be associated to an ascending length-(ND
c − 1) =

(k −Nc) vector αD ∈ S(ND
c − 1, k). The representative tuples of roots are given by:

(ẑαD1
, · · · , ẑαD

NDc −1

, 0) , αD1 < · · · < αDND
c −1 , αDā ∈ [k] , (5.60)

corresponding to αD. This vacuum expectation value of σD, being a fixed point of the

orbifold action, has two vacua associated to it, according to the definition of O+(2ND
c ).

Meanwhile, there is a single vacuum for each tuple of roots

(ẑαD1
, · · · , ẑαD

NDc −1

, 0) , αD1 < · · · < αDND
c −1 , αDā ∈ [k] , (5.61)

such a tuple not being a fixed point of the orbifold action. There vacua are in one-to-one

correspondence with elements αD ∈ S(ND, k).

The duality map of the twisted ground states, as before, is given by taking complement

of a vector α representing vacua of the SO(2Nc) theory with respect to [k]. One finds that:

α ∈ S(Nc, k) ⇔ αc ∈ S(ND
c − 1, k) ,

α ∈ S(Nc − 1, k) ⇔ αc ∈ S(ND
c , k) .

(5.62)

There are two vacua per vector in the first line, while there is one vacuum per vector in

the second line.
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A-twisted correlation functions. The A-twisted correlation function of the SO(2Nc)

theory is given by

〈O0 + Pf(σ) · O1〉g;nF = 2
∑

α∈S(Nc,k)

O0(ẑα)H(ẑα)g−1Π(ẑα)

+
∑

α∈S(Nc−1,k)

O0(ẑα, 0)H(ẑα, 0)g−1Π(ẑα, 0)
(5.63)

where, as before, an arbitrary operator O has been decomposed in to

O = O0 + Pf(σ) · O1 , (5.64)

with O0 and O1 being polynomials of σ2
a. The notation is such that

Π(ẑα) = π(ẑα1 , · · · , ẑαNc ) , Π(ẑα, 0) = π(ẑα1 , · · · , ẑαNc−1 , 0) , (5.65)

and similarly for H and O. The operators Π and H are given by equation (5.43). The factor

of 2 in the first term of equation (5.63) and the projection to O0 for the vacua represented

by α ∈ S(Nc, k) has been commented on previously. Note that for α ∈ S(Nc − 1, k), we

have Pf(ẑα, 0) = 0.

In the dual theory, as before,

〈O0,D + τ · O1,D〉g;nF = 〈O0,D〉g;nF . (5.66)

The untwisted partition function is then given by

〈O0,D〉g;nF ,untwisted

ZM
=

∑
αD∈S(ND

c −1,k)

O0,D(ẑαD , 0)HD(ẑαD , 0)g−1ΠD(ẑαD , 0)

+ 2
∑

αD∈S(ND
c ,k)

O0,D(ẑαD)HD(ẑαD)g−1ΠD(ẑαD)
(5.67)

for

ΠD(σ̂Dā ) = q
∑
i ni

A,D

∏
i,ā

(m2
i − (σ̂Dā )2)−ni

HD(σ̂Dā ) = qR,D

∏
i,ā(m

2
i − (σ̂Dā )2)1−rD,i∏
i,ā(σ̂ā +mi)

·
∏
ā P
′(σ̂Dā )∏

ā 6=b̄((̂σ
D
ā )2 − (σ̂D

b̄
)2)

.

(5.68)

Note that we have factored out the meson determinant ZM . We also find that the vacuum

expectation value in the twisted sectors:

〈O0,D〉g;nF ,twisted

ZM
=

∑
αD∈S(ND

c −1,k)

O0,D(ẑαD)HD,t(ẑαD)g−1ΠD,t(ẑαD) (5.69)

for ΠD,t and HD,t defined in equation (5.21). Quite non-trivially, we find that:

HD,t(ẑαD) = HD(ẑαD , 0) , ΠD,t(ẑαD) = ΠD(ẑαD , 0) . (5.70)
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We can then sum all the twisted sectors to arrive at

〈O0,D + τ · O1,D〉g;nF
ZM

=
(v + 3w)g

2

∑
αD∈S(ND

c −1,k)

O0,D(ẑαD , 0)HD(ẑαD , 0)g−1ΠD(ẑαD , 0)

+ vg
∑

αD∈S(ND
c ,k)

O0,D(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) . (5.71)

Using the identities of appendix A, we find:

Π(ẑα)

ΠD(ẑαc , 0)
=

Π(ẑα, 0)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i ni
∏
i≤j

(−mi −mj)
ni+nj , (5.72)

H(ẑα)

4HD(ẑαc , 0)
=
H(ẑα, 0)

HD(ẑαc)
= qRq

−1
R,D 2−4ND

c +2
∑
i rieiπ(NcND

c +ν)
∏
i≤j

(−mi −mj)
1−ri−rj .

The operator map (5.32) implies that

O0(ẑα) = O0,D(ẑαc , 0) , O0(ẑα, 0) = O0,D(ẑαc) , (5.73)

O0 being symmetric polynomials of the square σ2
a of the Cartan coordinates of σ. We then

arrive at:

(qAq
−1
A,D)

∑
i ni(qRq

−1
R,D)g−1e−2 ln 2

∑
i nie−((4 ln 2)ND

c −2 ln 2
∑
i ri+iπ(NcND

c +ν))(g−1)

·〈O0,D + τ · O1,D〉g;nF =

(
v + 3w

4

)g
2

∑
α∈S(Nc,k)

O0(ẑα)H(ẑα)g−1Π(ẑα)

+ vg
∑

α∈S(Nc−1,k)

O0(ẑα, 0)H(ẑα, 0)g−1Π(ẑα, 0) .

(5.74)

If we again take v = w = 1, we find that the right-hand-side of this equation agrees with

equation (5.63). Thus

〈O0 + Pf(σ) · O1〉g;nF = 〈O0,D + τ · O1,D〉g;nF , (5.75)

with

qA,D = e−2 log 2 qA , qR,D = e−((4 ln 2)ND
c −2 ln 2

∑
i ri+iπ(NcND

c +ν)) qR , (5.76)

the relations between contact terms.

5.3.3 SO(2Nc + 1)↔ O+(2ND
c ), Nf = 2k, ND

c = k −Nc

Map of vacua. P (z) is given by

P (z) = 2

k∏
α=1

(z2 − ẑ2
α) (5.77)

The Coulomb branch vacua of the SO(2Nc + 1) theory, represented by the vacuum expec-

tation value of the Cartan coordinates σ̂a, are given by Nc-tuples of roots of P (z) that

satisfy the following constraints:

σ̂a 6= ±mi for any a, i , σ̂a 6= 0 for any a , σ̂a 6= ±σ̂b for a 6= b , (5.78)
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up to identifications made under the Weyl group. Then, each vacuum is represented by a

tuple of roots:

(ẑα1 , · · · , ẑαNc ) , α ∈ S(Nc, k) . (5.79)

In the dual theory, each vacuum is also represented by a tuple of roots:

(ẑαD1
, · · · , ẑαD

NDc

) , αDā ∈ S(ND
c , k) (5.80)

corresponding to αD. Note that these vacuum expectation values of σD are not fixed points

of the orbifold action, thus having only a single vacuum associated to each expectation

value. The duality map is then extremely simple, given by taking complement of a vector

α representing vacua of the SO(2Nc + 1) theory with respect to [k].

A-twisted correlation functions. The expectation value of an operator in the

SO(2Nc + 1) theory is given by

〈O〉g;nF =
∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (5.81)

with

Π(σ̂a) =
∏
i

[
qA(−mi)

∏
a

(m2
i − σ̂2

a)

]ni

H(σ̂a) = qR

∏
i

(
(−mi)

∏
a(m

2
i − σ̂2

a)
)1−ri∏

i,a(σ̂a −mi)
·

∏
a P
′(σ̂a)∏

a σ̂
2
a

∏
a 6=b(σ̂

2
a − σ̂2

b )
.

(5.82)

Meanwhile, the O+(2ND) correlator is obtained by restricting to the untwisted sector only

— that is, by setting v = 1, w = 0:

〈OD〉g;nF =
1

2
〈OD〉g;nF ,untwisted = ZM ·

∑
αD∈S(ND

c ,k)

OD(ẑαD)HD(ẑαD)ΠD(ẑαD) . (5.83)

The reason for this particular orbifold prescription should be understood better; we just

note that it appears to be necessary to match the correlation functions. We find that:

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i ni
∏
i≤j

(−mi −mj)
ni+nj

H(ẑα)

HD(ẑαc)
= qRq

−1
R,D 2−4ND+2

∑
i rieiπ(NND+ν+k)

∏
i≤j

(−mi −mj)
1−ri−rj ,

(5.84)

for ΠD and HD given by equation (5.68). By the duality map of operators, we have

O(ẑα) = OD(ẑαc). We thus arrive at the duality relations:

〈O〉g;nF = 〈OD〉g;nF , (5.85)

with the identifications:

qA,D = e−2 ln 2 qA , qR,D = e−((4 ln 2)ND
c −2 ln 2

∑
i ri+iπ(NcND

c +ν+k)) qR , (5.86)

between contact terms.
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5.3.4 SO(2Nc + 1)↔ O+(2ND
c + 1), Nf = 2k + 1, ND

c = k −Nc

Map of vacua. P (z) is given by

P (z) = 2z

k∏
α=1

(z2 − ẑ2
α) (5.87)

Every vacuum of the SO(2Nc + 1) theory is represented by a tuple of roots:

(ẑα1 , · · · , ẑαNc ) , α ∈ S(Nc, k) . (5.88)

In the dual theory, each vacuum is also represented by a tuple of roots:

(ẑαD1
, · · · , ẑαD

NDc

) , αDā ∈ S(ND
c , k) . (5.89)

While these vacuum expectation values of σD are fixed points of the orbifold action, the

orbifold projection in the O+(2ND + 1) theory is defined so that there is only a single

vacuum associated to each expectation value [2]. The duality map, as before, is given by

taking complement of a vector α representing vacua of the SO(2Nc+1) theory with respect

to [k].

A-twisted correlation functions. The expectation value of an operator in the

SO(2Nc + 1) theory is

〈O〉g;nF =
∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (5.90)

for Π and H defined in (5.82). Meanwhile, the O+(2ND
c + 1) correlator is given by

〈O0,D〉g:nF =
1

2
(v + 3w)g〈O0,D〉g:nF ,untwisted , (5.91)

for parameters v and w, which depend on the orbifold projection, since the correlation

functions in the twisted and untwisted sectors agree. We thus arrive at:

〈OD〉g;nF =
1

2
(v + 3w)g · ZM ·

∑
αD∈S(ND

c ,k)

OD(ẑαD)HD(ẑαD)ΠD(ẑαD) , (5.92)

with ΠD and HD given by equation (5.50). We find that

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏
i≤j

(−mi −mj)
ni+nj

H(ẑα)

HD(ẑαc)
= qRq

−1
R,D 2−4ND−1+2

∑
i rieiπ(NND+ND+ν+

∑
i ri)
∏
i≤j

(−mi −mj)
1−ri−rj .

(5.93)

As always, we have the duality map O(ẑα) = OD(ẑαc) for the operators. We thus arrive at

the equality:

〈O〉g;nF
〈OD〉g;nF

=

(
v + 3w

2

)g
(qAq

−1
A,D)

∑
i ni(qRq

−1
R,D)g−1

· e−(2 ln 2+iπ)
∑
i nie−((4 ln 2)ND−(2 ln 2+iπ)

∑
i ri+iπ(NND+ND+ν))(g−1) .

(5.94)
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Setting v = −1 and w = 1, we obtain:

〈O〉g;nF = 〈OD〉g;nF , (5.95)

with the relations

qA,D = e−(2 ln 2+iπ) qA , qR,D = e−((4 ln 2)ND−(2 ln 2+iπ)
∑
i ri+iπ(NND+ND+ν)) qR , (5.96)

between contact terms. As before, this particular orbifold prescription is chosen so that

the duality relations hold. It would be interesting to understand whether there is a simpler

way to fix v, w in each case.

6 O−(N) dualities

Let us now consider the O− orbifold of theories with SO(N) gauge groups and Nf flavors

in the vector representation [2]. In this particular orbifold projection, the duality maps an

O−(N) theory to an O−(ND) theory with

ND = Nf −N + 1 . (6.1)

As before, the matter content of the O−(N) theory is given by Nf chiral multiplets Φi

(i = 1, · · · , Nf ) in the vector representation, of R-charge ri ∈ Z, and we turn on twisted

masses and fluxes for the U(Nf ) flavor symmetry. The dual O−(ND) theory has Nf chiral

fields ΦD
i in the vector representation with R-charges

rD,i = 1− ri (6.2)

and inverted flavor charges. There are also symmetric mesons Mij in the dual theory and

a superpotential

W = (ΦD
i )tMijΦ

D
j . (6.3)

The ’t Hooft anomalies are again given by (5.4).

In the O− theories, we only concern ourselves with the twisted chiral operators invariant

under the Weyl group of the SO group, along with the Z2 orbifold group. These are

generated by the elementary symmetric polynomials of the Cartan coordinates σa and σDā .

The twisted chiral ring of the dual theories are still summarized by the equation

zP (z) = 2QD(z)Q(z) (6.4)

where, as before,

P (z) =

Nf∏
i

(z −mi) +

Nf∏
i

(z +mi) (6.5)

and

Q(z) = det(z · 1− σ) , QD(z) = det(z · 1− σD) . (6.6)

There may be twist operators in the twisted chiral spectrum, depending on the orbifold

projection. In such cases, the twist operators map into each other:

τ ↔ τD . (6.7)
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Let us now examine the dualities and confirm the matching of correlation functions, de-

pending on the parity of N and Nf , as in the previous section. Having examined the

SO/O+ dualities in detail in the previous section, we will be more concise here.

6.1 O−(2Nc)↔ O−(2ND
c + 1), Nf = 2k, ND

c = k −Nc

Map of vacua. P (z) is given by

P (z) = 2

k∏
α=1

(z2 − ẑ2
α) . (6.8)

The vacua of the O−(2Nc) theory are represented by the tuples

(ẑα1 , · · · , ẑαNc ) , α ∈ S(Nc, k) . (6.9)

These are not fixed points of the orbifold action, and thus only a single vacuum exists for

each expectation value. The vacua of the O−(2ND
c + 1) theory are also represented by

the tuples

(ẑD
αD1
, · · · , ẑαD

NDc

) , αD ∈ S(ND
c , k) . (6.10)

In this case, these vacuum expectation values represent fixed points of the orbifold action.

The O− theory is defined such that only a single vacuum survives the orbifold projection

for each of the vacuum expectation values. The map between vacua is summarized by

α↔ αc, as before.

A-twisted correlation functions. The A-twisted correlation function of the O−(2Nc)

theory is given by the untwisted correlation function:

〈O〉g;nF =
1

2
〈O〉g;nF ,untwisted =

∑
α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (6.11)

where Π and H are given by (5.43), and the meson contribution ZM given by (5.51). In

the dual theory, we have:

〈OD〉g;nF =
(v + 3w)g

2
〈O〉g;nF ,untwisted

= 2g−1 · ZM ·
∑

αD∈S(ND
c ,k)

OD(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) ,
(6.12)

with ΠD and HD given by (5.50). Here we have set v = −1 and w = 1. We find that:

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏
i≤j

(−mi −mj)
ni+nj ,

H(ẑα)

HD(ẑαc)
= qRq

−1
R,D 2−4ND

c +2
∑
i rieiπ(NcND

c +ν+
∑
i ri)
∏
i≤j

(−mi −mj)
1−ri−rj ,

(6.13)

and therefore:

〈O〉g;nF = 〈OD〉g;nF , (6.14)

with

qA,D = e−(2 ln 2+iπ) qA , qR,D = e(−(ln 2)(4ND
c +1)+iπ(NcND

c +ν)+(2 ln 2+iπ)
∑
i ri) qR . (6.15)
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6.2 O−(2Nc)↔ O−(2ND
c ), Nf = 2k + 1, ND

c = k −Nc + 1

Map of vacua. P (z) is given by

P (z) = 2z

k∏
α=1

(z2 − ẑ2
α) . (6.16)

There are two types of vacua in the O−(2Nc) theory. The vacua of the first type are

represented by the tuples:

(ẑα1 , · · · , ẑαNc ) , α ∈ S(Nc, k) . (6.17)

These are not fixed points of the orbifold action, and there is a single vacuum for each

expectation value. The vacua of the second type are represented by the tuples:

(ẑα1 , · · · , ẑαNc−1 , 0) , α ∈ S(Nc − 1, k) . (6.18)

While these are fixed points of the orbifold action, the orbifold projection leaves a single

vacuum for each expectation value.

The vacua of the O−(2ND
c ) dual theory also come in two varieties. The first are

represented by the tuples:(
ẑD
αD1
, · · · , ẑαD

NDc −1

, 0

)
, αD ∈ S

(
ND
c − 1, k

)
. (6.19)

The orbifold projection only leaves a single vacuum for each tuple. The vacua of the second

type are represented by the tuples:(
ẑD
αD1
, · · · , ẑαD

NDc

)
, αD ∈ S

(
ND
c , k

)
. (6.20)

As always, the duality map is obtained by taking the complement of α, mapping

α ∈ S(Nc, k) ⇔ αc ∈ S(ND
c − 1, k) ,

α ∈ S(Nc − 1, k) ⇔ αc ∈ S(ND
c , k) .

(6.21)

In contrast to (5.62) for the SO/O+ duality, each vector in (6.21) corresponds to a single

vacuum for the O− duality.

A-twisted correlation functions. The correlation functions can be straightforwardly

computed in every twisted sector, with given v and w. For the O−(2Nc) theory, we find:

〈O〉g;nF = vg
∑

α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα)

+
(v + 3w)g

2

∑
α∈S(Nc−1,k)

O(ẑα, 0)H(ẑα, 0)g−1Π(ẑα, 0) ,
(6.22)
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with Π and H are given by (5.43). For the O−(2ND
c ) theory, we obtain:

〈OD〉g;nF
ZM

=
(v + 3w)g

2

∑
αD∈S(ND

c −1,k)

OD(ẑαD , 0)HD(ẑαD , 0)g−1ΠD(ẑαD , 0)

+ vg
∑

αD∈S(ND
c ,k)

OD(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) ,
(6.23)

where ΠD and HD are given by (5.68). We have:

Π(ẑα)

ΠD(ẑαc , 0)
=

Π(ẑα, 0)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i ni
∏
i≤j

(−mi −mj)
ni+nj (6.24)

H(ẑα)

4HD(ẑαc , 0)
=
H(ẑα, 0)

HD(ẑαc)
= qRq

−1
R,D 2−4ND

c +2
∑
i rieiπ(NcND

c +ν)
∏
i≤j

(−mi −mj)
1−ri−rj .

Taking v = 1, w = −1 we find that11

〈O〉g;nF = −〈OD〉g;nF , (6.25)

with

qA,D = e−2 ln 2 qA , qR,D = e(−(ln 2)(4ND
c −1)+2 ln 2

∑
i ri+iπ(NcND

c +ν+1)) qR . (6.26)

6.3 O−(2Nc + 1)↔ O−(2ND
c + 1), Nf = 2k + 1, ND

c = k −Nc

Map of vacua. P (z) is given by

P (z) = 2

k∏
α=1

(z2 − ẑ2
α) . (6.27)

The vacua of the O−(2Nc + 1) theory come in pairs that are represented by the tuples:

(ẑα1 , · · · , ẑαNc ) , α ∈ S(Nc, k) . (6.28)

These are fixed points of the orbifold action, and the orbifold projection keeps two vacua

for each expectation value. The vacua of the O−(2ND
c + 1) theory also come in pairs

represented by the tuples:(
ẑD
αD1
, · · · , ẑαD

NDc

)
, αD ∈ S(ND

c , k) . (6.29)

The two vacua of the O−(2Nc + 1) theory represented by α ∈ S(N, k) are mapped to the

two vacua in the dual O−(2ND
c + 1) theory.

11It would be interesting to understand better this minus sign in the duality relation.
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A-twisted correlation functions. The correlation function of the O−(2Nc + 1) theory

is given by

〈O〉g;nF =
1

2
(v + 3w)g

∑
α∈S(Nc,k)

O(ẑα)H(ẑα)g−1Π(ẑα) (6.30)

with Π and H are given by (5.82). The O+(2ND
c + 1) correlator is given by:

〈OD〉g;nF =
1

2
(v + 3w)g · ZM ·

∑
αD∈S(ND

c ,k)

OD(ẑαD)HD(ẑαD)g−1ΠD(ẑαD) , (6.31)

with ΠD and HD given by equation (5.50). We find that

Π(ẑα)

ΠD(ẑαc)
= (qAq

−1
A,D)

∑
i ni 2−2

∑
i nieiπ

∑
i ni
∏
i≤j

(−mi −mj)
ni+nj

H(ẑα)

HD(ẑαc)
= qRq

−1
R,D 2−4ND

c −1+2
∑
i rieiπ(NcND

c +ND
c +ν+

∑
i ri)
∏
i≤j

(−mi −mj)
1−ri−rj .

(6.32)

Setting v = w = 1, that is, summing over the twisted sectors with equal weight, we

find that:

〈O〉g;nF = 〈OD〉g;nF , (6.33)

with the relation:

qA,D = e−(2 ln 2+iπ) qA , qR,D = e(−(ln 2)(4ND+1)+(2 ln 2+iπ)
∑
i ri+iπ(NND+ND+ν)) qR ,

(6.34)

between contact terms. This completes the proof of the equality of partition functions of

Coulomb branch operators across Hori duality.
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A Some algebraic identities

Let us collect some useful identities, which are used extensively in the main text. Consider:

P (z) =

Nf∏
i=1

(z −mi) +

Nf∏
i=1

(z +mi) . (A.1)
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It is clear that, for any root ẑ of P (z),∏
i

(ẑ −mi) = −
∏
i

(ẑ +mi) . (A.2)

Let us list some basic identities concerning the roots of P (z).

1. Nf = 2k, P (z) = 2
∏k
α=1(z2 − ẑ2

α).

• P ′(ẑβ) = 4ẑβ
∏
α 6=β(ẑ2

β − ẑ2
α).

•
∏
α(m2

i − ẑ2
α) = 1

2

∏
j(mi +mj)

•
∏
i,α(m2

i − ẑ2
α) = 2−2k

∏
i,j(mi +mj)

•
∏
i,α(mi − ẑα) = (−1)k

∏
i,α(mi + ẑα) = ((−1)k2−2k

∏
i,j(m,i +mj))

1/2

•
∏
α ẑα = ((−1)`

∏
imi)

1/2

•
∏
i,α(mi − ẑα)/

∏
α ẑα = eiνπ

∏
i<j(mi +mj) for an integer ν.

•
∏
α ẑα ·

∏
i,α(mi − ẑα) = ei(k+ν)π2−2k

∏
i≤j(mi +mj)

2. Nf = 2k + 1, P (z) = 2z
∏k
α=1(z2 − ẑ2

α).

• P ′(ẑβ) = 4ẑ2
β

∏
α 6=β(ẑ2

β − ẑ2
α).

• P ′(0) = 2(−1)k
∏
α ẑ

2
α

•
∏
α(m2

i − ẑ2
α) =

∏
j 6=i(mi +mj)

•
∏
i,α(m2

i − ẑ2
α) =

∏
i 6=j(mi +mj)

•
∏
i,α(mi − ẑα) =

∏
i,α(mi + ẑα) = eiνπ

∏
i<j(mi +mj) for an integer ν.

Note that we have introduced an integer ν, defined modulo 2, that determines the phase

of certain products. This phase does not depend on the choice of ẑα — taking ẑα0 → −ẑα0

for a given index α0 does not alter ν — since∏
i(mi − ẑα)

ẑα
=

∏
i(mi + ẑα)

−ẑα
(A.3)

for Nf = 2k while ∏
i

(mi − ẑα) =
∏
i

(mi + ẑα) (A.4)

for Nf = 2k + 1 for any α.

B U(Nc) gauge group and Grassmanian duality

In this appendix, we present some explicit expressions for the instanton factors of U(Nc)

theories. We consider powers of the twisted chiral ring operator:

uk(σ) := tr(σk) . (B.1)

These expressions have interesting relations to invariant quantities on the Grassmanian

manifold and some generalisations thereof. Indeed, for Na = 0, the U(Nc) theory with
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Nf fundamentals flows to the N = (2, 2) supersymmetric NLSM onto the Grassmanian

manifold G(Nc, Nf ), and the gauge duality reproduces the geometric equivalence:

G(Nc, Nf ) ∼= G(Nf −Nc, Nf ) , (B.2)

which exchanges an hyperplane and its complement. This geometric interpretation can be

generalized to Na > 0 [19]. More precisely, this interpretation holds only if we take the

R-charges r = 0 for the Nf chiral multiplets, r̃ = 1 for the Na chiral multiplets, and set to

zero the background fluxes, ni = 0. We will restrict to this setup in the following. We also

fix the genus g = 0.

In the limit of vanishing twisted masses, the instanton factors give us numbers with

an interesting geometric interpretation. For instance, the instanton factors for the Na = 0

theory are the Gromov-Witten invariants of the Grassmanian.

B.1 Instanton level k = 0

We start by considering the instanton factor Z [Nc,Nf ,Na]
g=0,m=0 in (3.40), with only u1(σ) inserted.

It admits a simple expression:

Z [Nc,Nf ,Na]
g=0,m=0 (up1(σ)) =

∑
λ

[
dimVλ+((Nf−Nc)Nc )

]
Sλ(m1, . . . ,mNf ) . (B.3)

This is a polynomial function of m = (m1, . . . ,mNf ) with

m1 + . . .+mNf = 0 , (B.4)

and is independent of Na. The notations in the above formula are as follows.

• The summation in (B.3) runs over the partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λNc ≥ 0) of

p− (Nf −Nc)Nc into at most Nc parts:

λ1 + λ2 + . . .+ λNc = p− (Nf −Nc)Nc . (B.5)

• The Schur polynomial associated with the partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0) of

an integer into at most k parts is defined as

Sλ(m1, . . . ,mk) =
|mλi+k−i|
|mk−i

j |
=

|mλi+k−i|∏
i<j(mi −mj)

, (B.6)

• For a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µ` ≥ 0) of n, Vµ denotes a representation of the

permutation group Sn of n objects. The dimension of this representation is given by

dimVµ =
n!

d1! · · · d`!
∏
i<j

(di − dj) , (B.7)

where

n =
∑
i

µi, di = λi + `− i . (B.8)
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• The notation (km) denotes (k, k, . . . , k︸ ︷︷ ︸
m times

).

Upon setting m = 0, the Schur polynomial becomes

Sλ(m = 0) =

{
0 for λ 6= 0

1 for λ = 0 .
(B.9)

Hence it follows from (B.3) that

Z [Nc,Nf ,Na]
g=0,m=0 (up1(σ))

∣∣∣
m=0

=
[
dimV((Nf−Nc)Nc )

]
δp,(Nf−Nc)Nc

=

[
(Nc(Nf −Nc))!

Nc−1∏
m=0

m!

(Nf −Nc +m)!

]
δp,(Nf−Nc)Nc

= [degG(Nf −Nc, Nf )] δp,(Nf−Nc)Nc ,

(B.10)

where the quantities in the square brackets are in fact equal to the degree of the Grass-

mannian G(Nf −Nc, Nf ) ∼= G(Nc, Nf ).

Relation to Schubert calculus. The quantity degG(Nf −Nc, Nf ) in (B.10) has a nice

geometric interpretation in the context of the Schubert calculus of the Grassmanian. It is

precisely the answer of the following question: given p = Nc(Nf−Nc) general (Nf−Nc−1)-

planes L1, . . . , Lp in PNf−1, how many (Nc− 1)-planes meet all of these Li? The answer to

this question is also equal to the p-fold self-intersection number of the Schubert cycle σ1 of

codimension-one in G(Nc, Nf ). See also [43] for a similar exposition.

The operator un(σ)p. The instanton factor for the operator un(σ)p can also be com-

puted in a similar way. The explicit expression for this is as follows:

Z [Nc,Nf ,Na=0]
g=0,m=0 (un(σ)p)

∣∣∣
m=0

=

0 if n -Nc and n -Nf−Nc

s(Nc,Nf ,n)
[(

Nc(Nf−Nc)
n

)
!
∏Nc−1

m=0
bm/nc!

b(Nf−Nc+m)/n)c!

]
δp,(Nf−Nc)Nc/n if n|Nc or n|(Nf−Nc) ,

where bxc denotes the largest integer that is not greater than x and

s(Nc, Nf , n) =

{
1 if Nc is odd and (n|Nc or n|(Nf −Nc))

(−1)Nc(Nf−Nc)/n if Nc is even and (n|Nc or n|(Nf −Nc)) .
(B.11)

Note that for n = 1, s(Nc, Nf , 1) = 1 and we reduce to the previous case.

B.2 Instanton level k

We now focus on the instanton factor Z [Nc,Nf ,Na]
g=0,m (up1(σ))

∣∣∣
m=0

, with vanishing twisted

masses, such that: ∑
a

ma = k . (B.12)
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The case of Na = 0

The operator u1(σ)p. The formula for the partition function in question is

Z [Nc,Nf ,Na=0]
g=0,k (u1(σ)p)

∣∣∣
m=0

=
[
deg Kk

Nf−Nc,Nc

]
δp,(Nf−Nc)Nc+kNf (B.13)

where Kk
Nf−Nc,Nc is the space of rational curves of degree k on the Grassmanian variety

G(Nc, Nf ) ∼= G(Nf −Nc, Nf ). There is an isomorphism

Kk
Nf−Nc,Nc

∼= Kk
Nc,Nf−Nc (B.14)

Note that for k = 0, this space can be identified with the Grassmannian itself:

K0
Nf−Nc,Nc

∼= G(Nc, Nf ) . (B.15)

The degree of this space was computed in [44]:

deg Kk
Nf−Nc,Nc

= (−1)k(Nf−Nc+1) [(Nf −Nc)Nc + kNf ]!×∑
n1+...+nNf−Nc=k

∏
1≤k<j≤Nf−Nc [(j − k) + (nj − nk)Nf ]∏Nf−Nc

j=1 (Nc + j + njNf − 1)!

= (−1)k(Nc+1) [(Nf −Nc)Nc + kNf ]!×∑
n1+...+nNc=k

∏
1≤k<j≤Nc [(j − k) + (nj − nk)Nf ]∏Nc
j=1(Nf −Nc + j + njNf − 1)!

= (−1)k(Nc+1)(−1)Nc(Nc−1)/2(Nc(Nf −Nc) + kNf )!×∑
n1+...+nNc=k

∑
σ∈SNc

Nc∏
j=1

1

(Nf − 2Nc − 1 + j + σ(j) + njNf )!
.

Due to the duality (B.14), it follows that

Z [Nc,Nf ,Na=0]
g=0,k (u1(σ)p)

∣∣∣
m=0

= Z [Nc,Nf−Nc,Na=0]
g=0,k (u1(σ)p)

∣∣∣
m=0

. (B.16)

This equality is in agreement with the GLSM duality.

The special case of (Nc, Nf , Na) = (2, 5, 0). In the special case of Nc = 2 and

Nf = 5, it is interesting to point out that the degree of Kk
3,2 is a Fibonacci sequence

degKk
3,2 = F (5k + 5) , (B.17)

where

F (m) =
1√
5

[(
1 +
√

5

2

)m
−

(
1−
√

5

2

)m]
. (B.18)
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This model was also studied in detail in [45] (see also eq. (26) of [43]). The instanton

factor is given by:

ZNc=2,Nf=5,Na=0
g=0,k (un(σ)p)

∣∣∣
m=0

=

{
0 if n - (6 + 5k)

s(n,k) F
(

6+5k
n + a(n)

)
δp,(6+5k)/n if n|(6 + 5k) ,

where F (m) denotes the Fibonacci number

F (m) =
1√
5

[(
1 +
√

5

2

)m
−

(
1−
√

5

2

)m]
, (B.19)

the function a(n) is given by

a(n) =


−1 if n ≡ ±1 (mod 5)

1 if n ≡ ±2 (mod 5)

0 if n ≡ 0 (mod 5)

, (B.20)

and the function s(n,k) is given by

s(n,k) =


1 if n is odd, n|(6 + 5k) and n - 6

(−1)6/n if n is odd, n|(6 + 5k) and n|6
(−1)(6+5k)/n if n is even and n|(6 + 5k)

(B.21)

General value of Na

The function Z [Nc,Nf ,Na]
g=0,k (u1(σ)p) can be written as

Z [Nc,Nf ,Na]
g=0,k (u1(σ)p)

∣∣∣
m=0,m̃=0

=
[
degMk

Nc,Nf ,Na

]
δp,(Nf−Nc)Nc+k(Nf−Na) (B.22)

where
degMk

Nc,Nf ,Na

= (−1)k(Nc+Na+1)(−1)Nc(Nc−1)/2(Nc(Nf −Nc) + k(Nf −Na))!×∑
n1+...+nNc=k

∑
σ∈SNc

Nc∏
j=1

1

[Nf − 2Nc − 1 + j + σ(j) + nj(Nf −Na)]!
.

The special case of Nf = Na + 1. In this case, formula (B.22) reduces to

Z [Nc,Nf ,Nf−1]
k (u1(σ)p)

∣∣∣
m=0,m̃=0

= (−1)k(Nf−Nc)
[
dim V(k+(Nf−Nc), (Nf−Nc)Nc−1)

]
δp,Nc(Nf−Nc)+k ,

where
dim V(k+(Nf−Nc), (Nf−Nc)Nc−1)

=
(k +Nc(Nf −Nc))!

(k +Nf − 1)!

Nc−1∏
m=0

(m− 1)!(m+ k)

(Nf −Nc +m− 1)!
.

– 45 –



J
H
E
P
0
8
(
2
0
1
7
)
1
0
1

B.3 The case Nf = Na

We find that the resummed expectation value of up1 can be written as follows:

〈up1〉
∣∣∣
m=m̃=0

=
∞∑
k=0

Z [Nc,Nf=Na]
g=0,k (up1)qk

=


deg G(Nf−Nc,Nc)[
1+(−1)

Nf−Ncq
]Nc if p = Nc(Nf −Nc)

0 otherwise ,

where deg G(Nf −Nc, Nc) is the degree of Grassmannian G(Nf −Nc, Nc), whose explicit

expression is given above. Similarly, the (resummed) expectation value of upn is given by

〈un(σ)p〉
∣∣∣
m=m̃=0

=
∞∑
k=0

Z(Nc,Nf=Na)
g=0,k (up1)qk

=


0 if n - Nc and n - Nf −Nc

s(Nc, Nf , n)
[(

Nc(Nf−Nc)
n

)
!
∏Nc−1
m=0

bm/nc!
b(Nf−Nc+m)/n)c!

]
×[

1 + (−1)Nf−Ncq
]−Nc δp,Nc(Nf−Nc)−(n−1)N ′ if n|Nc or n|Nf −Nc .

where s(Nc, Nf , n) is given by (B.11) and

N ′ =

{
Nf −Nc if n|Nc

Nc if n|(Nf −Nc)
. (B.23)

Duality

We find that[ ∞∑
k=0

Z [Nc,Nf=Na]
g=0,k (un(σ)p)qk

]
= f(q)

[ ∞∑
k=0

ZD,[Nf−Nc,Na=Nf ]
g=0,−k (−un(σ)p)qkD

]
, (B.24)

where

f(q) =
(
1 + (−1)Nf−Ncq

)Nf−2Nc
, qD = (−1)Nf q−1 . (B.25)

Note that both sides of the equality are non-zero if and only if

p = Nc(Nf −Nc)− (n− 1)N ′ . (B.26)
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