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Abstract: We present measurements of relativistic scaling relations in (2+1)-dimensional

conformal fluid turbulence from direct numerical simulations, in the weakly compressible

regime. These relations were analytically derived previously in [1] for a relativistic fluid;

this work is a continuation of that study, providing further analytical insights together

with numerical experiments to test the scaling relations and extract other important fea-

tures characterizing the turbulent behavior. We first explicitly demonstrate that the non-

relativistic limit of these scaling relations reduce to known results from the statistical

theory of incompressible Navier-Stokes turbulence. In simulations of the inverse-cascade

range, we find the relevant relativistic scaling relation is satisfied to a high degree of ac-

curacy. We observe that the non-relativistic versions of this scaling relation underperform

the relativistic one in both an absolute and relative sense, with a progressive degradation

as the rms Mach number increases from 0.14 to 0.19. In the direct-cascade range, the

two relevant relativistic scaling relations are satisfied with a lower degree of accuracy in

a simulation with rms Mach number 0.11. We elucidate the poorer agreement with fur-

ther simulations of an incompressible Navier-Stokes fluid. Finally, as has been observed in

the incompressible Navier-Stokes case, we show that the energy spectrum in the inverse-

cascade of the conformal fluid exhibits k−2 scaling rather than the Kolmogorov/Kraichnan

expectation of k−5/3, and that it is not necessarily associated with compressive effects. We

comment on the implications for a recent calculation of the fractal dimension of a turbulent

(3 + 1)-dimensional AdS black brane.
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1 Introduction

Relativistic hydrodynamics has become a subject of increased interest in recent years. Be-

yond its relevance in astrophysical scenarios (e.g. [2–7]), it has become relevant to the de-

scription of quark-gluon plasmas (e.g. [8, 9]) and, through the fluid-gravity correspondence,

it has found its way into the realm of fundamental gravity research [10, 11]. Intriguingly,

this correspondence has revealed that gravity can exhibit turbulent behavior, and studies

of its possible consequences are gaining interesting momentum [12–16]. The understanding

of turbulence in any regime is a difficult task given its intrinsic complexity, and despite

a long history of efforts in the subject, our knowledge of this rich phenomenon is still

incomplete. Important headways into this subject have been made thanks to statistical
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analysis complemented with numerical simulations (e.g. [17–21]). Of particular interest is

to understand the possible onset of turbulence, and especially to derive scaling relations in

fully-developed scenarios, since those cases are amenable to a statistical description from

which generic statements can be drawn and then tested numerically and observationally.

To date however, only limited attention has been placed on the relativistic turbu-

lent regime, and most of what is known restricts to the behavior of turbulent, incom-

pressible flows in the non-relativistic regime. There has been some work on the ana-

lytical front [1, 22, 23] and several numerical investigations [1, 13, 24–31]. Because cor-

relation functions can indeed be measured in relevant scenarios — perhaps even in QG

plasma [8, 9, 32–34] — and interesting implications for the gravitational field follow from

holography, it is of interest to further investigate relativistic turbulence.

In the current work we measure scaling relations in (2 + 1)-dimensional relativistic

conformal fluids in the weakly-compressible turbulent regime and compare them to the

predictions in [1] and various limits thereof. The (2 + 1)-dimensional case is especially

relevant to draw intuition for related phenomena in (3 + 1)-dimensional gravity with the

help of the fluid-gravity correspondence (e.g. [12, 16, 25]). This work is largely a continu-

ation and completion of [1], which contained a numerical study which was inconclusive at

the time.

This work is organized as follows. Section 2 provides some background material, dis-

cussing both the inverse- and direct-cascade ranges that could ensue in fully-developed

turbulence and, in particular, relevant scaling relations which we have measured. In sec-

tion 3 we provide details of our numerical implementations. This includes the use of a

random external force to generate the turbulent flow, as well as considerations specific to

simulating either a conformal fluid or an incompressible Navier-Stokes fluid. The equiva-

lence between previously known results and the incompressible limit of the scaling relations

derived in [1] is explicitly demonstrated. We give our results in section 4, where our nu-

merical measurements of the scaling relations derived in [1] are presented. In section 5, we

provide additional discussion and ancillary numerical results, including the demonstration

of a k−2 energy spectrum in the inverse-cascade of a turbulent conformal fluid which is not

due to compressive effects.

Throughout this work, angle brackets 〈.〉 will refer to ensemble averages. Letters at

the beginning of the alphabet (a, b, c, . . .) will represent spacetime indices (0, 1, 2), while

letters in the middle of the alphabet (i, j, k, . . .) will represent spatial indices (1, 2). We

follow Einstein summation convention. In the context of correlation functions, which often

depend on two points r2 and r1, we define r = r2 − r1. To avoid cumbersome notation,

we denote quantities evaluated at r2 with a prime (eg. T ′ij) and quantities evaluated at r1
without one (eg. Tij). The metric signature is (−,+,+) for our (2 + 1)-dimensional setup.

2 Background

We will make extensive connections with the work presented in [1], where specific scaling

relations were derived analytically for (2+1)-dimensional relativistic hydrodynamic turbu-

lence. We will compare these relations with suitable limits in order to make contact with
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previously known results, as well as to gauge the importance of relativistic vs compressible

contributions in our simulations of the specific case of a conformal fluid.

2.1 Incompressible non-relativistic limit of the scaling relations

In this section we explicitly demonstrate that the incompressible Navier-Stokes limit of the

relativistic scaling relations presented in [1] can be written in terms of known results. We

will use the particular form of a barotropic perfect fluid stress-energy tensor with equation

of state P = ρ/w, where P is the pressure, ρ is the energy density, and w is the equation

of state parameter. In doing so, we obtain incompressible counterparts to the relativistic

scaling relations we measure in simulations, which act as a point of reference against which

to gauge the relative performance of the relations derived in [1].

2.1.1 Inverse-cascade range

The first scaling relation, which is valid in the inverse-cascade range, reads [1]

〈
T ′0iT

i
j

〉
=

1

2
εrj , (2.1)

where ε = ∂0
〈
T0iT

i
0/2
〉
. For a P = ρ/w perfect fluid, where T ab = ((1 + w)/w)ρuaub +

(ρ/w)ηab, the scaling relation expands to〈
1 + w

w
ρ′γ′2v′i

(
1 + w

w
ργ2vivj +

ρ

w
δij

)〉
=

1

2
∂0

〈(
1 + w

w

)2

ρ2γ4
viv

i

2

〉
rj , (2.2)

where γ is the Lorentz factor and vi is the spatial velocity (ua = (−1, vi)). In the extreme

incompressible non-relativistic limit, ρ → constant and γ → 1. Thus ρ′ = ρ, and eq. (2.2)

becomes (
1 + w

w

)2

ρ2
〈
v′iv

ivj
〉

+
ρ2

w

〈
v′iδ

i
j

〉
=

(
1 + w

w

)2

ρ2
1

2
εNSrj , (2.3)

where we have defined εNS ≡ ∂0
〈
viv

i
〉
/2 as the incompressible Navier-Stokes version of

ε. Note that the second term on the left-hand side vanishes due to statistical isotropy,

yielding the final result

〈
v′iv

ivj
〉

=
1

2
εNSrj . (2.4)

Since eq. (2.4) is the incompressible Navier-Stokes limit of the relativistic scaling relation in

eq. (2.1), they can be compared in the inverse-cascade range of relativistic or compressible

turbulence in order to gauge their relative performance.

Notice one can also arrive at eq. (2.4) using known results in the theory of (2 + 1)-

dimensional incompressible Navier-Stokes turbulence. In the derivations presented in [35],

an intermediate result is displayed as〈
δvjδviδv

i
〉

= 2εNSrj , (2.5)
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valid in the inverse-cascade range. Here, δ denotes a difference, i.e. δvj = v′j−vj . Expanding

out the left-hand side of eq. (2.5) and using statistical homogeneity yields〈
δvjδviδv

i
〉

= 4
〈
v′iv

ivj
〉

+ 2
〈
v′jv

ivi
〉
. (2.6)

By incompressibility, the second term on the right-hand side is divergence-free. Thus,

assuming isotropy and regularity at r = 0, it must vanish [36] (this argument will be used

repeatedly in section 2.1.2). Therefore, eq. (2.5) becomes〈
v′iv

ivj
〉

=
1

2
εNSrj , (2.7)

which is the incompressible non-relativistic limit we obtained in eq. (2.4).

2.1.2 Direct-cascade range

The second relativistic scaling relation that we consider, which is valid instead in the

direct-cascade range, reads [1] 〈
ω′ω̄j

〉
= −1

2
εrj , (2.8)

where ω ≡ εik∂iT0k, ω̄j = εik∂iTjk, and ε ≡ 〈Fω〉 ≡
〈
(εik∂ifk)ω

〉
. Note that fk is a random

external force. In the incompressible non-relativistic limit, ε becomes proportional to the

enstrophy dissipation rate εω [35], namely ε→ ((1 +w)/w)2ρ2εω. Expanding the left-hand

side of eq. (2.8) and setting ρ = constant and γ = 1 as before, we obtain〈
ω′ω̄j

〉
=
〈
εik∂iTkjε

mn∂′mT
′
0n

〉
=

〈
εik∂i

(
1 + w

w
ργ2vkvj +

1

w
ρδkj

)
εmn∂′m

(
1 + w

w
ρ′γ′2v′n

)〉
=

(
1 + w

w
ρ

)2 〈
εik∂i (vkvj) ε

mn∂′mv
′
n

〉
+ (1 + w)

( ρ
w

)2 〈
δkjε

mn∂′mv
′
n

〉
. (2.9)

The second term on the right-hand side is proportional to the average vorticity, which

vanishes by parity invariance. Thus eq. (2.8) becomes〈
εik∂i (vkvj) ε

mn∂′mv
′
n

〉
= −1

2
εωrj , (2.10)

where the non-relativistic vorticity is εmn∂mvn ≡ ωNR. The left-hand side needs to be

manipulated further in order to compare with standard results (e.g. [35]). First, notice

that the ensemble average on the left-hand side expands under the product rule to〈
εik∂i (vkvj) ε

mn∂′mv
′
n

〉
=
〈
ω′NRωNRvj

〉
+
〈
εikvk∂ivjε

mn∂′mv
′
n

〉
. (2.11)

We can show that the second term on the right-hand side is zero as follows:〈
εikvk∂ivjε

mn∂′mv
′
n

〉
=
(
δimδkn − δinδkm

) 〈
vk∂ivj∂

′
mv
′
n

〉
=
〈
vk∂ivj

(
∂′iv′k − ∂′kv′i

)〉
=
〈
(vy∂x − vx∂y) vj

(
∂′xv′y − ∂′yv′x

)〉
= −

〈
ω′NR (v ×∇) vj

〉
= −

〈
ω′NRε

ikvi∂kvj

〉
, (2.12)

– 4 –



J
H
E
P
0
8
(
2
0
1
7
)
0
2
7

where we used the identity εikεmn = δimδkn − δinδkm in the first line. Again, isotropy and

regularity at the origin will imply this vanishes, provided it is divergence-free [36]. Thus,

we can compute its divergence and show that it vanishes:

−∂′j
〈
ω′NRε

ikvi∂kvj

〉
= ∂j

〈
ω′NRε

ikvi∂kvj

〉
=
〈
ω′NRε

ik∂jvi∂kvj

〉
=
〈
ω′NR (∂xvx∂yvx − ∂xvy∂xvx + ∂yvx∂yvy − ∂yvy∂xvy)

〉
=
〈
ω′NR (∂yvx − ∂xvy) ∂iv

i
〉

= 0, (2.13)

where we used incompressibility in the second and last lines. The relativistic scaling relation

eq. (2.8) thus reduces in the incompressible Navier-Stokes limit to〈
ω′NRωNRvj

〉
= −1

2
εωrj . (2.14)

As before, this relation is equivalent to an intermediate standard result from [35], namely〈
δvj (δω)2

〉
= −2εωrj . (2.15)

To see this, expand the left-hand side and use statistical symmetries to obtain〈
δvj (δω)2

〉
= 4

〈
ω′NRωNRvj

〉
+ 2

〈
v′jω

2
NR

〉
, (2.16)

and then note that the second term on the right-hand side vanishes by incompressibility,

isotropy, and regularity at r = 0 [36]. Thus eq. (2.15) is the same as eq. (2.14). Since

eq. (2.14) is the incompressible Navier-Stokes limit of eq. (2.8), it can be compared in

the direct-cascade range of relativistic or compressible turbulence in order to gauge their

relative performance.

Finally, we demonstrate that the relativistic correlation derived in [1], which reads〈
T ′0TTLT

〉
=

ε

24
r3, (2.17)

also reduces to a known result in the incompressible non-relativistic limit. Note that the

subscripts (L, T ) refer to the longitudinal (‖ r) and transverse (⊥ r) directions, respectively.

Once again, setting ρ = constant and γ = 1 yields〈
v′T vLvT

〉
=
εω
24
r3. (2.18)

Since eq. (2.18) is the incompressible Navier-Stokes limit of eq. (2.17), they can also be

compared in the direct-cascade of relativistic or compressible turbulence in order to gauge

their relative performance.

Again, eq. (2.18) can be obtained from standard results in [35]. The first intermediate

result for the direct-cascade range that we use reads〈
δvjδviδv

i
〉

=
1

4
εωxjr

2. (2.19)
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Using statistical symmetries, the left-hand side expands to 4
〈
v′iv

ivj
〉

+ 2
〈
v′jv

ivi

〉
, and the

second term vanishes due to incompressibility, isotropy, and regularity at the origin [36].

Thus, setting j = L in eq. (2.19), we obtain

〈
v′LvLvL

〉
+
〈
v′T vLvT

〉
=

1

16
εωr

3. (2.20)

We can eliminate the first term on the left-hand side using the well-known 1/8-law, also

derived in [35] and valid in the direct-cascade range,
〈
(δvL)3

〉
= 6 〈v′LvLvL〉 = (1/8)εωr

3.

This substitution finally yields eq. (2.18).

3 Implementation

As stated, our goal is to explore scaling relations in conformal fluid turbulence. To ensure

a clean inertial regime is established to compute the appropriate quantities, we include a

driving source. Additionally, we ensure the numerical methods employed are consistent

with the statistical properties of the flow we want to study. In this section we describe

key aspects of our numerical implementation, beginning with general considerations in

section 3.1. Following this, we present specific considerations for the incompressible and

relativistic cases in sections 3.2 and 3.3, respectively.

3.1 General considerations

3.1.1 Stochastic Runge-Kutta

In order to implement a random white noise force in a simulation, a special integration

algorithm must be used. Based on the work of Honeycutt [37], we use a second-order

Stochastic Runge-Kutta algorithm (SRKII). The Gaussian random force we use, defined

later in eq. (3.2), is homogeneous, which means the average and variance of the force at

every point in space is the same. Thus the prescription described in [37] is applied to each

real space point, producing control over the injection rates in an aggregate sense.

3.1.2 Pseudorandom number generation

The random force we employ requires pseudorandom number generation at every time step.

For this purpose, we implement the Intel MKL Vector Statistical Library. In particular, we

use the Mersenne Twister1 [38] and block-splitting for parallel applications [39]. We have

checked that the energy spectrum E(k) in steady-state is unaffected by the choice of random

number generator by comparing the Mersenne Twister (VSL BRNG MT19937) and the 59-

bit multiplicative congruential generator (VSL BRNG MCG59). We also checked that the

output of our code is system-independent [39] by running it on two independent clusters.

3.1.3 Defining an injection length scale

In studies of turbulence, the energy/enstrophy injection and scale play a crucial role in

establishing and identifying particularly relevant dynamical ranges. One can define an

1With BRNG parameter VSL BRNG MT19937.
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injection length scale associated with the external force in terms of the injection rates of

energy and enstrophy as follows. Given Kraichnan-Batchelor [40] scaling of the energy

spectrum in the inverse and direct cascades, E(k) ∼ ε
2/3
0 k−5/3, η

2/3
0 k−3, respectively, one

can take the injection scale to be the wavenumber at which E(k) transitions between these

two scalings. Thus, set ε
2/3
0 k

−5/3
f = η

2/3
0 k−3f and solve to find kf =

√
η0/ε0. This definition

will accurately represent the injection scale up to a numerical factor of order ∼ 1, so

long as the energy spectrum transitions between these two behaviours over a short range

of wavenumbers.

3.2 Incompressible case

3.2.1 Formulation

In the incompressible Navier-Stokes case in 2D, the entire dynamics is determined by a

single pseudo-scalar quantity, the vorticity ω = ∇ × v. Thus, it is computationally more

efficient to evolve the vorticity equation directly, rather than the components of the velocity.

We write the vorticity equation in “flux-conservative form”,

∂tω + ∂i(v
iω) = fω − ν4∂4ω, (3.1)

where fω is the random force defined in the next section, and the dissipative term −ν4∂4ω ≡
−ν4∇4ω on the right-hand side is often referred in the turbulence literature as “hypervis-

cosity of order 4”. Hyperviscosity is frequently used in simulations of an incompressible

Navier-Stokes fluid [20], since it limits the range of scales over which dissipation is active

(yielding wider inertial ranges for a given grid resolution).

3.2.2 Random force and injection rates

The external force appears as fω ≡ ∇ × f , and we wish to construct fω directly with

the appropriate statistical properties. Given a Gaussian random force with a two-point

correlation in real space given by〈
fω(t, 0)fω(t′, r)

〉
= g(r)δ(t− t′), (3.2)

for some function g(r), the injection rate of enstrophy will be given by g(0)/2 ≡ η0 [41],

owing to the delta function (i.e. white noise) and to the choice of Gaussian randomness.

Ignoring the temporal part of the correlation, we have in Fourier space〈
f̂ω(k)f̂∗ω(k)

〉
= ĝ(k), (3.3)

where reality of the force in real space requires fω(−k) = f∗ω(k).

In order to specify the enstrophy injection rate η0, we use a rescaling strategy as follows.

First, define two random scalar fields A(k), B(k), with zero average 〈A〉 = 〈B〉 = 0 and

unit variance
〈
A2
〉

=
〈
B2
〉

= 1 at all wavenumbers, and set f̂ω(k) = A(k) + iB(k). We

first seek an isotropic rescaling f̂ω → g̃(k)f̂ω that gives the profile of eq. (3.3) up to a

constant factor. Under this rescaling, A,B → g̃A, g̃B, so the zero average is unchanged

– 7 –
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but the variance transforms to
〈
A2
〉
,
〈
B2
〉
→ g̃2

〈
A2
〉
, g̃2
〈
B2
〉

= g̃2. Thus,〈
f̂ω(k)f̂∗ω(k)

〉
= (A+ iB)(A− iB) ,

= A2 +B2 ,

→ g̃2(A2 +B2) ,

= 2g̃2(k) . (3.4)

Thus choosing g̃ ∝
√
ĝ/2 gives the desired spatial profile up to a constant factor. To fix the

enstrophy injection rate (as η0 = g(0)/2), we seek a second rescaling f̂ω → Rf̂ω with R =

constant determined as follows. As it stands, eq. (3.4) will produce an enstrophy injection

rate given by half of its inverse Fourier transform evaluated at r = 0,

η̃0 ≡
1

2
FT−1(2g̃2(k))|r=0. (3.5)

Under the second rescaling, eq. (3.4) becomes 2R2g̃2(k). Thus the appropriate rescaling is

R =
√
η0/η̃0. (3.6)

If one wishes instead to specify the energy injection rate, simply note that for a solenoidal

force ∇ · f = 0, we have the spatial part of eq. (3.2) given by

〈fω(0)fω(r)〉 ≡
〈
fωf

′
ω

〉
=
〈
εij∂ifjε

mn∂′mf
′
n

〉
= εijεmn∂i∂

′
m

〈
fjf
′
n

〉
= (δimδjn − δinδjm)∂i∂

′
m

〈
fjf
′
n

〉
= ∂i∂′i

〈
f jf ′j

〉
= −∂i∂i

〈
f jf ′j

〉
= −∇2

〈
f · f ′

〉
. (3.7)

So by solving the Poisson equation ∇2 〈f(0) · f(r)〉 = −g(r) one finds the energy injection

rate ε0 from the relation 〈f(0) · f(r)〉 |r=0 = 2ε0. The rescaling factor R can be chosen

appropriately in this case. Extracting these a priori injection rates of energy and enstrophy

allows one to define an injection length scale as per section 3.1.3.

For our incompressible simulations of the direct-cascade we use a ‘rectangular’ profile,

namely ĝ(k) = 1 in a narrow range of wavenumbers around kf , zero otherwise.

3.2.3 Dealiasing

The Navier-Stokes equation has a quadratic nonlinearity. Thus, two wavenumbers k1, k2
can interact to populate a third wavenumber k3 = k1 + k2. Since we have a finite range

of scales resolved in any simulation, k3 could exceed the largest resolved wavenumber,

and thus would become represented on the grid as a lower wavenumber N − k3 (where

N is the grid resolution). In this case, we say k3 has been aliased. Prescriptions exist to

avoid such aliasing errors. For a quadratically nonlinear term F × G, if we filter out all

– 8 –
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wavenumber modes with k > N/3 in F and G prior to multiplication, then filter F × G
in the same manner, we will eliminate all aliasing errors. Such a prescription is known as

the 2/3-dealiasing rule, since one retains 2/3 of the domain in Fourier space. Analogous

dealiasing rules exist for higher-order nonlinearities, with less and less of the domain being

retained as the order increases. Thus, full dealiasing becomes computationally prohibitive

for higher-order nonlinearities, such as for a relativistic fluid flow.

3.3 Relativistic conformal fluid case

3.3.1 Formulation

The system of equations is given by ∇aT
ab = f b and the conformal perfect fluid stress-

energy tensor T ab = (3/2)ρuaub + (1/2)ρηab, which uses the conformal equation of state

P = ρ/2 in (2 + 1) dimensions. Defining the conservative variables as (D,Si) = (T 00, T 0i),

they appear in terms of the primitive variables as

(D,Si) =

(
3

2
ργ2 − 1

2
ρ,

3

2
ργ2vi

)
, (3.8)

where vi is the spatial velocity and γ is the Lorentz factor. In terms of these variables, the

equations of motion appear in flux-conservative form as

∂tD + ∂iS
i = 0 (3.9)

∂tS
i + ∂j(S

jvi +
1

2
ρδij) = f i. (3.10)

We use finite differences to discretize the derivatives, with RK4 in space and SRKII (see

section 3.1.1) in time. The system is damped at short wavelengths using a 4th-order

dissipation scheme discussed in section 3.3.3.

3.3.2 Random force and injection rates

We choose the Gaussian white-noise force f i to be divergence-free by deriving it from a

stream function ψ, (fx, fy) = (∂yψ,−∂xψ). Thus, numerically we build ψ directly in the

manner described in section 3.2.2. For simulations of the inverse-cascade, we choose〈
ψ′ψ

〉
= εl2f exp (−r2/2l2f )δ(t− t′), (3.11)

where lf is the characteristic length scale of the correlation, and ε =
〈
T 0ifi

〉
[1] is a

constant. One can verify the equality ε =
〈
T 0ifi

〉
by applying the 2-dimensional Laplacian

to eq. (3.11), then noting that the spatial part of
〈
fi(r)f i(0)

〉
, written as F i

i ≡ trF , is given

by trF = −∇2 〈ψ(r)ψ(0)〉 and trF = 2
〈
T 0ifi

〉
[1]. In the weakly compressible regime, ε is

approximately the injection rate of (1/2)
〈
T 0iT 0

i

〉
, whereas in the incompressible regime it

fixes the Newtonian kinetic energy injection rate.

For simulations of the direct-cascade, we instead choose

〈
ψ̂ψ̂∗

〉
∝

{
1 k ∼ kf ,
0 otherwise .

(3.12)
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3.3.3 Dealiasing

As alluded to in section 3.2.3, in the relativistic case a full dealiasing is computationally

prohibitive. Since the computation of the velocity from the conservative hydrodynamic

variables, followed by the computation of the flux, amounts to forming a product of up to

5 fields, there is a quintic nonlinearity. In the weakly-compressible regime, however, a 2/3-

dealiasing rule would likely eliminate a satisfactory amount of aliasing, since the density and

Lorentz factor have a small amount of power at all wavenumbers k 6= 0. However, in a future

study we wish to explore the strongly compressible and ultrarelativistic regimes where a

2/3-rule would be inadequate. Thus we opt instead to use a 4th-order numerical dissipation

scheme to suppress large wavenumber modes (since we want to explore the suitability

of alternative dealiasing strategies for that future study) and employ a sufficiently high

resolution (so that possibly spurious effects stay mainly confined at very high frequencies).

For a variable U , this scheme amounts to including a term −νnum(∂4x + ∂4y)U on the right-

hand side of its evolution equation, where νnum > 0 is the strength of the dissipation.

It is numerically convenient to write this term as −κ(dx3∂4x + dy3∂4y)U and control the

dissipation strength κ, as its magnitude will be closer to 1 and the dissipation length scale

will move with the resolution [42].

4 Results

In all simulations we use periodic boundary conditions with a box size of L = 2π and

resolution of N 2 = 20482, with a variable step size determined by a CFL condition. This

resolution has proven quite adequate for studying correlation functions in both the inverse-

cascade (eg. [43]) and direct-cascade (eg. [44, 45]) in incompressible fluid turbulence. We

find it is also adequate for the weakly compressible regime studied here.

The time scale over which a turbulent flow is presumed to erase knowledge of its

initial conditions is the large-eddy turnover time, which has various interpretations in the

literature. Borue [46] estimates it as T = 2π/ωrms, where ωrms is the root-mean-squared

vorticity. More generally, we have T = L/U where L is the scale of the largest eddies and

U is a characteristic speed at that scale. L is estimated as 2π/ki, where ki is the infrared

“cutoff” (∼ largest energy-containing scale), and we estimate U as the root-mean-square

of the velocity. In our simulations, these time scales will be quoted for reference.

Averages will be computed over time, or over independent simulations, or both. The

adequacy of the sample sizes is gauged via comparison of the average with the statistical

error σ/
√
N , where σ is the sample standard deviation and N is the sample size. For

example, a correlation function f(r) will have an ensemble of values for each r, and σ(r)

is computed as the standard deviation of that collection of values.

4.1 Inverse-cascade simulations

We simulate the inverse-cascade of a (2 + 1)-dimensional conformal fluid with an external

force described by eq. (3.11), and an injection scale kf ≡ 2π/Lf ∼ 203 defined by kf =√
η0/ε0, as in section 3.1.3. We consider three cases with the numerical dissipation strength

given by κ = (0.05, 0.03, 0.02) (so as to compare results among them) and when quoting
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Figure 1. Probability distribution functions for the inverse-cascade simulations. The pdfs of the

energy density ρ (left) and the Mach number v/cs (right) are displayed, where cs = c/
√

2, plotted

on a semi-log scale. All dissipation cases are overlaid for ease of comparison. The density ρ and

velocity field (vx, vy) are high-pass filtered (k > 10) for a more sensible comparison in this quasi-

steady regime (i.e. no large-scale dissipation). The cutoff k = 10 is chosen based on the maxima

of the spectra in figure 2 occurring at k < 10. For comparison, purely Gaussian distributions are

plotted (black, solid, thinner lines) with its average and standard deviation matched to data from the

dissipation case κ = 0.02. In the order of increasing energy growth rate, the standard deviations of

pdf(ρ) and pdf(v/cs) in each case are (0.0286, 0.0395, 0.0438) and (0.122, 0.147, 0.167), respectively.

In the same order, the rms Mach numbers are (0.1386, 0.1674, 0.1893). These properties indicate a

weakly compressible flow.

properties of each case we will present them in this order. Since the force is somewhat

broadband, it has power in the dissipation range of scales. Thus, decreasing the dissipation

strength is enough to increase the energy growth rate, and thus the rms Mach number of

the flow, vrms/cs, where cs is the sound speed (1/
√

2 of the speed of light, in our case).

Statistical quantities are averaged over ensembles of independent simulations, as well as

averaged over an interval of time after the energy passes k = 10 and before it reaches the

box size. Table 1 contains various parameters of the flows, as well as the sample sizes for

the joint average over an ensemble and over time.

In figure 1 we characterize the flows by presenting the probability distributions func-

tions (pdfs) of the energy density and Mach number. The pdfs are observed to widen as the

energy growth rate increases, as one would expect. For comparison, in both cases we also

plot Gaussian distributions (black, dashed) with average and standard deviation matched

to the data from the κ = 0.02 case. The Gaussian provides a good fit to the Mach number

pdf (although with a slight hint of non-Gaussianity in the tail), whereas the energy density

pdf exhibits a stronger, exponential tail towards smaller values.

In figure 2 (left) we display the angle-averaged Newtonian kinetic energy spectra

E(k) ≡ π
〈
v̂2(k)

〉
(both the full spectrum and the potential part, obtained by project-

ing the velocity onto k̂ in Fourier space). We observe a steepening of the inertial range
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scaling towards E(k) ∼ k−2, which we note is steeper than the Kolmogorov/Kraichnan

power law of k−5/3. The spectra are not changed significantly (< 1%) by instead using

density-weighted velocities ρ1/3v or ρv, the former having been suggested in the (3 + 1)-

dimensional context in [47] to restore Kolmogorov/Kraichnan scaling from the observed

spectral exponent of k−2. The spectrum of the potential component of the velocity ex-

hibits a bump beginning at k ∼ 30, with scaling of k−2.2 and k0.78 on either side. Such a

bump towards large k is commonly observed in spectra in simulated compressible flows in

(3 + 1) dimensions, eg. [19, 24, 47, 48], and is attributed in those cases to an artefact of

high-order numerical dissipation known as the bottleneck effect [49]. This effect has also

been observed in simulated compressible 2D flows which exhibit transfer of energy to small

scales [50]. The bump we observe in figure 2 is likely due to the same effect, although we

cannot make a conclusive statement since we have not performed the specific resolution

studies necessary to do so, nor have we used dissipation of a different order. The late-time

spectra obtained from our simulations of the direct-cascade (not shown) also exhibit such

a bump, and in that case we note that reducing the time step by half does not change the

bump perceptibly.

With regard to the full inverse-cascade spectra in figure 2 (left), it is worth noting

that there is no large-scale friction. In [51], it was shown that the presence of large-scale

friction can affect the inertial range spectrum in the incompressible Navier-Stokes case.

In the same study it was also shown that measurements of the inertial range spectrum

are not reliable without a sufficiently resolved enstrophy cascade (kmax/kf ∼ 16, where

kmax is defined as N/3). We do not have the direct-cascade range resolved to this degree

in figure 2 (kmax/kf ∼ 3.4). The approach of the full spectrum towards k−2 is generally

expected for compressible turbulence in both (3 + 1) dimensions (see eg. [48]) and (2 + 1)

dimensions (see eg. [52]), although usually for much larger Mach numbers than our current

simulations. With that said, (2 + 1)-dimensional conformal fluids are special (eg. having

a very large sound speed and no mass density), and its turbulent regime is seldom studied

(see eg. [13, 25]), so one may not expect the same energy spectra a priori. We elaborate

more on this in section 5, where we demonstrate that the k−2 spectrum is not necessarily

associated with compressive effects.

In figure 3 we plot the relativistic correlation function appearing in eq. (2.1),
〈
T ′0iT

i
L

〉
,

compensated for the expected scaling r−1, with a linear vertical scale to help distinguish

different power laws. We also plot the incompressible limit of that correlation function,

obtained by setting ρ = γ = 1 (herein “the incompressible correlation”), as well as a

non-relativistic but compressible version obtained by setting γ = 1 only (herein “the com-

pressible correlation”). The former is equivalent to known results from incompressible

Navier-Stokes turbulence (see section 2.1.1), while the latter can be obtained from the

left-hand side of eq. (2.1) using the non-relativistic perfect fluid energy-momentum tensor,

which is just the relativistic one with γ = 1. We use these comparisons to separately

gauge the degree to which compressive and relativistic effects are important. In addition,

we also include the predictions for each case, in matching colour, obtained from eq. (2.1)

and evaluations at γ = 1 and γ = ρ = 1 thereof. Error bars correspond to the statistical

uncertainty σ/
√
N .
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Figure 2. (Left): Newtonian energy spectra of the inverse-cascade simulations plotted on a log-log

scale. The spectra corresponding to the full velocity field (thicker lines) and the curl-free potential

part (thinner lines) are displayed. All energy growth rate cases are displayed, with the same colour

coding and line styles as in figure 1. The best-fit power laws for the full spectra over the range

k = 20 − 80 in order of decreasing dissipation strength are (−1.80,−1.89,−1.96). (Right): power

spectra of the energy density ρ for all energy growth rates, plotted on a log-log scale.
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r−1
〈
T ′0iT

i
L

〉
|γ=ρ=1

r−1
〈
T ′0iT

i
L

〉
|γ=1

r−1
〈
T ′0iT

i
L

〉

Figure 3. The relativistic correlation function
〈
T ′0iT

i
L

〉
(solid blue) and its non-relativistic com-

pressible and incompressible counterparts,
〈
T ′0iT

i
L

〉
|γ=1 (dashed green) and

〈
T ′0iT

i
L

〉
|γ=ρ=1 (dot-

ted red), respectively, compensated by r−1. From left to right: cases with dissipation strength

κ = 0.02, 0.03, 0.05, respectively. Each prediction for the inverse-cascade range r/Lf ∼ (100, 101)

is plotted as a horizontal line with matching line style. The predictions follow from eq. (2.1) and

evaluations at γ = 1 or γ = ρ = 1 thereof. Note that the centre and right plots have a nearly indis-

tinguishable prediction for the relativistic and incompressible correlation functions (solid blue and

red dotted lines, respectively). Error bars correspond to the statistical uncertainty σ/
√
N for each

value of r/Lf , where N is the sample size and σ is the sample standard deviation. The shaded grey

area indicates the range of r/Lf over which we fit a power-law, and we use the same range across

all cases to ensure a fair comparison. Note the linear vertical scale, which accentuates deviations

from the expected power law.
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κ ε× 104 vrms/cs Nt Nens 2π/ωrms L/vrms δT T1 T2

0.05 3.3 0.1386 7 20 1.15 6.411 5 80 110

0.03 5.3 0.1674 5 60 0.99 5.308 5 60 80

0.02 7.0 0.1893 4 20 0.90 4.694 5 40 55

Table 1. Parameters of inverse-cascade simulations: κ is the dissipation parameter described in

section 3.3.3; ε is the growth rate of (1/2)
〈
T0iT

i
0

〉
; vrms/cs is the rms Mach number; Nt is the

number of snapshots averaged over time; Nens is the number of independent runs (ensemble size);

2π/ωrms is the eddy turnover time defined by the rms vorticity; L/vrms is the eddy turnover time

defined by vrms and L = 2π/10; δT is the time interval between snapshots of the flow that are

averaged over; T1 and T2 are respectively the first the last times over which the temporal average

is computed. For comparison, note that the light-crossing time is 2π.

For ease of comparison across cases, each plot has the same vertical axis range. As

it is clear from the figure, we observe a progressive degradation of the scaling of the in-

compressible and compressible correlation functions as dissipation is weakened (and thus

Mach number grows), while the relativistic one predicted in [1] outperforms. This is shown

quantitatively in figure 4, where we display power law fits performed over the shaded in-

terval of figure 3. The shaded interval is the same across all cases in order to make a fair

comparison, and is chosen to capture the power law observed in the κ = 0.02 case (which

has the narrowest scaling range). As dissipation is weakened, a monotonic shallowing of

the best-fit power law is observed for both the incompressible and compressible correlation

functions. This trend is more significant for the incompressible correlation function. The

absolute performance of the relativistic correlation function is superior to the compress-

ible and incompressible correlation functions across all cases, and its relative performance

improves as dissipation is decreased (i.e. differences in best-fit power law become larger).

The relativistic correlation function, although exhibiting power-law scaling ∼ r in all

cases, nonetheless exhibits an increasing disagreement with the magnitude of the prediction

in eq. (2.1) (see figure 3). In the most extreme case (κ = 0.02, vrms/cs = 0.19), the overall

magnitude is less than the prediction by ∼ 4%. Our numerical ensemble of flows may be

biased towards lower magnitudes, since runs with sufficiently large fluctuations from the

random force can become numerically unstable and fail. As dissipation is weakened, this

occurs more often. Thus, it is possible that the increasing disagreement of the magni-

tude of
〈
T ′0iT

i
L

〉
and (1/2)εr is an artefact of this bias. A high-resolution shock-capturing

implementation could determine whether this increasing disagreement is a real effect.

4.2 Direct-cascade simulation

To simulate the direct-cascade of a (2 + 1)-dimensional conformal fluid, we instead use

an external force with support only around kf = 7, as described by eq. (3.12). As in

our inverse-cascade simulations, we use 4th-order numerical dissipation as in section 3.2.3,

with the choice κ = 0.01. However, in contrast to our inverse-cascade simulations, here

we use a large-scale dissipation mechanism known as 4th-order hypofriction, which takes

the form of a term −µ∇−4Si on the right-hand side of eq. (3.10). We compute the inverse
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Figure 4. Least-squares power law fits for the relativistic correlation function
〈
T ′0iT

i
L

〉
(circles)

and its non-relativistic compressible and incompressible counterparts,
〈
T ′0iT

i
L

〉
|γ=1 (triangles) and〈

T ′0iT
i
L

〉
|γ=ρ=1 (squares), respectively. All three dissipation cases are displayed. Error bars corre-

spond to the standard deviation of the fitted power law scaling, obtained via random resampling

with replacement (103 trials). The relativistic correlation function outperforms its compressible

and incompressible counterparts across all cases, with a monotonic degradation observed for the

latter two as the dissipation strength is decreased (and correspondingly, as the rms Mach number

is increased).

Laplacians spectrally, setting constant modes to zero. Such a term has power restricted

to large scales, and terminates the brief inverse cascade from k = 7 towards k = 0. We

find the value µ = 0.15 to be adequate for preventing a build-up of energy (and eventual

condensation) at large scales. An energy condensate would be characterized by continued

energy growth and the emergence of two dominant vorticies of opposing parity superposed

on a noisy flow (see eg. [53]). Statistical quantities are averaged over the shaded interval

of time indicated in figure 5 (left), which consists of N = 10 snapshots separated by

δT ∼ 0.68. The interval is chosen to maximize the number of snapshots available (to

minimize statistical fluctuations), while remaining in a regime that roughly resembles a

steady-state. Note that the measured correlations are not significantly affected if the

temporal average begins slightly earlier or later. The average time step over this interval

is 10−3teddy, where teddy = 2π/ωrms ∼ 0.5 is also averaged over the shaded interval. The

injection rate of (1/2)
〈
T0iT

i
0

〉
is measured initially to be ε = 2 × 10−4. For reference, the

characteristic time as per vrms is L/vrms ∼ 26, where we take L = 2π/3 since the maximum

of the energy spectrum occurs at k = 3. The rms Mach number over the shaded interval

is ∼ 0.11, once again indicating the weakly compressible regime.

In figure 5 (left), we display the average Newtonian specific kinetic energy of the fluid

as a function of time. As mentioned, we average various quantities over the shaded interval

of time. The energy is beginning to plateau over this interval, however it continues to grow

slowly. If evolved longer, the compressive component of the velocity begins to dominate

over the curl-free part. To study such a regime more accurately, a Riemann solver would

be desirable in order to more faithfully capture the dominant shockwave phenomena. Since

we are instead using artificial high-order numerical dissipation, we choose to restrict our
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Figure 5. (Left): average Newtonian specific kinetic energy plotted as a function of dimensionless

time for the direct-cascade simulation. The eddy turnover time is defined as teddy = 2π/ωrms. The

shaded region indicates the interval of time over which all other quantities are averaged. (Centre and

right): probability distribution functions for the energy density ρ (centre, blue, solid) and the Mach

number v/cs (right, blue, solid), where cs = c/
√

2, plotted on a semi-log scale. For comparison,

purely Gaussian distributions are plotted (black, dashed) with the average and standard deviation

matched to the data. The standard deviation of the ρ and v/cs distributions are (0.0336, 0.0758),

respectively. The rms Mach number is 0.11. These properties indicate a weakly compressible flow.

analysis to earlier times, when the compressive component of the velocity field is still

subdominant (∼ 10% of the total energy at a given scale k — see figure 6 (left)). Our high-

order dissipation also results in large bottleneck effects at later times, which contaminate

a rather large portion of the inertial range.

In figure 5 (centre and right), we display the probability distributions of the energy

density (centre, blue, solid) and Mach number (right, blue, solid). For comparison, in

both cases we also plot Gaussian distributions (black, dashed) with average and standard

deviation matched to the data. Similar to the inverse-cascade simulations, the Gaussian

provides a good fit to the Mach number pdf (although with weaker hints of a non-Gaussian

tail in this case), whereas the energy density pdf exhibits a stronger, exponential tail

towards smaller values.

In figure 6 we display the power spectra of the velocity (left) and energy density (right).

The full energy spectrum of the flow (blue, solid), together with the energy spectrum of

the compressive, curl-free, potential part of the velocity (cyan, dashed). The latter is

seen to be subdominant by a factor of ∼ 10 over the range k ∈ [10, 100], which qualita-

tively corresponds to the direct-cascade interial range. The potential spectrum is fit by a

power law k−3.13 over this range, while for the full spectrum we observe k−3 scaling with

the multiplicative logarithmic correction ln(k/kf )−1/3. The inset shows the full spectrum

compensated by k3 with and without the logarithmic correction, with the presence of the

logarithmic correction being favoured (flatter curve). In the literature, the presence of this

correction seems to depend on several factors, including the length of time over which the

average is taken, and the presence of large-scale dissipation [44, 45, 54, 55].

In figure 7, we display the two measured correlation functions for which we have predic-

tions in the direct cascade (eqs. (2.8) and (2.17)). Errors again correspond to the statistical
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Figure 6. (Left): Newtonian energy spectra of the inverse-cascade simulations plotted on a log-log

scale. The spectra corresponding to the full velocity field (solid, blue) and the curl-free potential

part (dashed, cyan) are displayed. A least-squares best fit power law of the potential part ∼ k−3.13
over the range k ∈ [17, 70] is displayed. The inset displays the full spectrum compensated by

k3 ln (k/kf )
1/3

(solid, green) or k3 only (dashed, red), showing that the logarithmic correction

provides a better fit than the pure power law. (Right): the power spectrum of the energy density

ρ, with the best fit power law of k−3.16 over the range k ∈ [17, 70] displayed.

uncertainty σ/
√
N . We find reasonable agreement in the case of eq. (2.8) (left), and less

so in the case of eq. (2.17) (right). The measured power laws are r0.84 (left) and r2.4, as

compared to the predictions of r and r3, respectively. However, we note that the non-trivial

factors of 1/2 (left) and 1/24 (right) yield marked agreement in magnitude. We suspect

that by decreasing contamination from our modified large- and small-scale dissipation

mechanisms, agreement with our predictions would improve, since in our inverse-cascade

simulations we found that removing large-scale dissipation altogether improved agreement

with our predictions significantly. We also note that the statistical uncertainty at short

length scales is large enough that the sign of the correlation functions is uncertain there.

We estimate the quantity ε by its incompressible limit ((1+w)/w)2ρ2εω, with a further sub-

stitution of
〈
ρ2
〉

= 0.96 in place of ρ2 (which improves agreement slightly). This estimate

is justified by the fact that the correlation functions we measure do not differ significantly

from their incompressible counterparts (i.e. setting ρ = γ = 1) in this regime.

5 Discussion

As mentioned in section 4.1, we observed that our energy spectra approach a k−2 scaling in

the inverse-cascade range. We point out that it was observed in [51] that the incompressible

case exhibits the same scaling provided large-scale friction is absent and the direct cascade

is sufficiently resolved (kmax/kf ≥ 16, where we define kmax = N/3). It thus becomes a

prescient question whether a sufficiently resolved direct cascade in the conformal fluid case

will yield the same result. To answer this, we perform an ensemble of 20 simulations with
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Figure 7. (Left): the relativistic correlation function −〈ω′ω̄L〉 (blue, solid) plotted with its pre-

diction in the direct-cascade range, (1/2)εr (red, dashed), as per eq. (2.8). The correlation function

−〈ω′ω̄L〉 is fit by ∼ r2.24 at shorter distances and ∼ r0.840 at larger distances, with the transition

occurring near r/Lf ∼ 2×10−2. (Right): the relativistic correlation function
〈
T ′0TT

T
L

〉
(blue, solid)

plotted with its prediction in the direct-cascade range, (1/24)εr3 (red, dashed), as per eq. (2.17).

The correlation function
〈
T ′0TT

T
L

〉
is fit by ∼ r1.05 at shorter distances and ∼ r2.40 at longer dis-

tances, with the transition occurring near r/Lf ∼ 10−1. Error bars correspond to the statistical

uncertainty σ/
√
N for each value of r/Lf , where N is the sample size and σ is the sample standard

deviation. Note that the statistical uncertainty at short distances is sufficiently large that the sign

of the correlation functions is uncertain there. The corresponding compressible and incompressible

limits of these correlation functions (obtained by setting γ = 1 or γ = ρ = 1, as in section 4.1)

do not behave significantly differently. This allows us to approximate ε by its incompressible limit

((1 +w)/w)2ρ2εω as in section 2.1.2, and we take εω to be the initial enstrophy growth rate (before

dissipation mechanisms become important). However, we substitute
〈
ρ2
〉
∼ 0.96 in place of ρ2,

which slightly improves agreement with the predictions.

N = 2048 and kmax/kf = 16, with a forcing profile given by eq. (3.12). The resulting energy

spectrum is displayed in figure 8, with the inset displaying the same spectrum compensated

by either k2 or k5/3. After filtering out the modes k ∈ [0, 5] (i.e. all modes less than the

maximum of the spectrum), the rms Mach number for this flow is ∼ 0.11. We perform this

filtering so as to have a more fair comparison of rms Mach number with our inverse-cascade

simulations in section 4.1, which we remind were ∼ 0.14, 0.17, and 0.19. As evident from

figure 8, the spectrum clearly favours a k−2 description in the inverse-cascade range, and

not the Kolmogorov/Kraichnan k−5/3 description. The best-fit power law over the range

k ∈ [5, 40] yields k−2.047.

Interestingly, we note in passing that this k−2 scaling of the energy spectrum would

change the result of the purported calculation of the fractal dimension of a turbulent (3+1)-

dimensional AdS-black brane presented in [56] to D = 3 (rather than D = 3 + 1/3). An

analysis of this will be reported elsewhere [57].

We also point out that, despite the narrow inverse-cascade range, we nonetheless ob-

serve a similarly narrow ∼ r0.95 power law scaling in the same correlation functions analyzed

in section 4.1 (not shown). This suggests that the scaling relation eq. (2.1) continues to

hold with a more resolved direct-cascade range.
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Figure 8. Energy spectrum E(k) (blue, solid) with forcing active at kf = 42, such that kmax/kf =

16, where kmax = N/3 and N = 2048. Power laws k−2 and k−5/3 (black, solid) are shown for

comparison. The inset displays compensated spectra E(k)k2 (green, solid) and E(k)k5/3 (red,

dashed). The spectrum is well-represented by k−2, rather than k−5/3, consistent with [51] (albeit

for a conformal fluid in our case). The best fit power-law slope over the range k ∈ [5, 40] is −2.047.

In section 4.2, we observed hints of the predicted scaling of the correlation functions

displayed in figure 7. By instead simulating an incompressible fluid (as per section 3.2),

for which shockwave phenomena are not present, we can measure the incompressible limits

of eqs. (2.14) and (2.18) with greater statistical significance. Conformal fluids have been

shown to possess a scaling limit to an incompressible Navier-Stokes fluid [58, 59]. We

present the results of our simulation in figure 9 (right). The enstrophy injection rate is set

a priori to εω = 28. We use 4th-order hypofriction −λ∇−4ω and hyperviscosity −ν4∇4ω,

with λ = 0.15 and ν4 = 10−10. The forcing profile is given by

〈
fωf

′
ω

〉
∝

{
1 k ∼ kf
0 otherwise

, (5.1)

and the injection scale is set to kf = 7. The average specific kinetic energy is plotted as

a function of time in figure 9 (left), with the averaging interval shaded gray. The energy

spectrum compensated by k3 and k3 ln (k/kf )1/3 is displayed in figure 9 (centre), with the

shaded envelopes indicating 5× the statistical uncertainty σ/
√
N . The logarithmic correc-

tion is clearly favoured. In figure 9 (right), we plot the correlation functions 〈v′T vLvT 〉 and

−〈ω′NRωNRvL〉, together with their respective predictions in the direct cascade (1/24)εωr
3

and (1/2)εωr. The agreement is very much improved over figure 7, which suggests that

despite the low Mach number in our direct cascade simulation of the conformal fluid, that

situation is nonetheless quite different from the incompressible case (at least insofar as the

numerical challenges are greater in the former case, eg. small scales being contaminated

by bottleneck effects).

Finally, in figure 10 we display snapshots of the vorticity from several of our simulations.

By doing so, we intend to provide intuition as to how the inverse and direct cascades appear
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Figure 9. Data from our simulation of an incompressible Navier-Stokes fluid. (Left): the average

specific Newtonian kinetic energy plotted as a function of time. The shaded interval corresponds

to the interval over which we compute statistical averages. (Centre): the energy spectrum E(k)

compensated by either k3 ln k/kf
1/3

or k3. The shaded envelopes correspond to 5× the statistical

error σ/
√
N . The logarithmic correction is evidently favoured. (Right): the correlation functions

(solid) and their predictions (dashed) corresponding to the incompressible counterparts of eqs. (2.8)

and (2.17).

in real space. In particular, the stretching and mixing of vorticity isolines characteristic of

the direct-cascade range are readily identified as ‘turbulence’ qualitatively, where coherent

features are seen over a variety of scales (see figure 10 (bottom left) and (bottom right)). By

contrast, the inverse-cascade range has a much noisier appearance, as in figure 10 (top left).

We have not observed an explicit acknowledgement of this qualitative fact in the literature,

since numerical studies of the inverse-cascade range seldom include plots of the vorticity

(eg. [43]). Unless the direct-cascade range is resolved, the turbulent flow qualitatively

appears as random noise — but even if it is resolved, a clear hierarchy of scales is not

apparent in the inverse-cascade range. In figure 10 (top right) we show a mixed case with

the forcing acting at an intermediate scale kf = 42. This case is a simulation targeting the

inverse-cascade range, but the direct-cascade range is just beginning to be resolved as well.

Consequently, vorticity isoline mixing is beginning to be apparent, superposed on top of a

more noisy structure.
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Figure 10. Snapshots of vorticity. (Top left): conformal fluid inverse-cascade with kf = 203

(κ = 0.02 case). (Top right): conformal fluid inverse cascade with kf = 42. (Bottom left):

conformal fluid direct cascade with kf = 7. (Bottom right): incompressible fluid direct cascade

with kf = 7.
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