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1 Introduction

It has long been speculated that string theory in the high energy limit E
√
α′ → ∞ un-

dergoes drastic reduction of degrees of freedom due presumably to enhanced symmetries

associated with an infinite number of massless fields which appear in this limit [1–3]. This

is the extremity of stringy regime and may reveal what string theory truly is. The infinite

number of massless fields are higher spin fields, and the high energy limit of string the-

ory may thus yield higher spin (HS) theory. String theory might then be realized as the

symmetry broken phase of HS theory where the mass scale 1/
√
α′ is dynamically generated.

Higher spin theory has generated a great deal of interest recently. This goes back

to the old work of Vasiliev [4–8] who constructed interacting theories of massless higher

spin fields that successfully included gravity, i.e., a spin-2 field. The crucial idea was to

consider HS theories on de Sitter (dS) or anti-de Sitter (AdS) space, instead of Minkowski

space, in order to evade no-go theorems concerning massless higher spin fields [9–13]. Years

later, Klebanov and Polyakov [14] made the important conjecture that the HS theory on

AdS4 space is dual to the O(N) vector model (VM) at critical points. Substantial and

highly nontrivial evidence for the HS/VM duality was later provided by Giombi and Yin

who demonstrated that 3-point functions of conserved higher spin currents agree on both

sides [15, 16]. This conjecture and its generalizations were further tested successfully at
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one loop of the HS theory for the vector models at both UV and IR fixed points [17–20].

Meanwhile, the collective field method was applied to the vector models, elucidating how

the HS theory can be directly reconstructed from the VM as well as providing a new

perspective on the origin of the duality as a gauge phenomenon [21–26]. It should also be

noted that, pioneered by Gaberdiel and Gopakumar, tremendous progress has been made

in the study of the duality between HS theories on AdS3 and minimal CFT2’s due to the

relative simplicity in lower dimensionality [27–51].

String theory on AdS space in the limit
√
α′/RAdS → ∞ may provide a concrete

example in which one can probe the symmetric phase of string theory in the high energy

limit and study its connection to HS theory.1 Via the AdS/CFT correspondence, the

limit may also give us the vector model dual to the HS theory. Indeed, such an example

was suggested by Chang, Minwalla, Sharma, and Yin (CMSY) [54] who proposed the

HS limit of AdS4/CFT3 with N = 6 supersymmetries (SUSY), the version conjectured

by Aharony, Bergman, and Jafferis (ABJ) [55] that generalized their earlier work with

Maldacena (ABJM) [56]. The gravity theory is M-theory on AdS4×S7/Zk with the 3-form

field turned on, C3 ∝ M , and the dual field theory is the N = 6 U(N)k × U(N + M)−k
Chern-Simons-matter (CSM) theory, called the ABJ theory, where k and −k are the Chern-

Simons levels for the two gauge groups. At large k, the M-theory circle of radius R11 = 1/k

shrinks and M-theory reduces to type IIA string theory on AdS4 × CP3 with the NSNS

2-form turned on, B2 ∝ M
k −

1
2 [55, 57, 58]. The ingredient crucial to the HS/VM duality is

the presence of the B2 that, in particular, provides U(M) vectors in the dual field theory.

The HS limit proposed by CMSY is

M, |k| −→ ∞ with t ≡ M

|k|
and N finite (1.1)

which is conjectured to be the N = 6 U(N) Vasiliev theory, constructed by CMSY and

Sezgin-Sundell [59, 60], where the Newton constant GHS of the HS theory is proportional

to 1/M ,2 and the parity-violating (PV) phase θ0 = πt/2. This is, in fact, the high energy

limit of type IIA string theory, since the string length is large,
√
α′/RAdS ∼ (k/N)1/4 →∞.

As a comparison, let us consider type IIB string theory on AdS5 × S5. If we take the√
α′/RIIB

AdS →∞ limit, the ’t Hooft coupling λ→ 0 and the dual field theory, N = 4 super

Yang-Mills (SYM) theory, becomes free.3 This is in contrast with the ABJ theory which

remains nontrivial in the high energy limit (1.1).

Therefore, the ABJ theory in the HS limit is an ideal setup to study the high energy

regime of string theory and elucidate its non-trivial dynamics. In this paper we study the

HS limit of CMSY by (1) developing the systematic 1/M expansion of the free energy of

the ABJ theory, (2) calculating the one-loop free energy of the N = 6 HS theory, and (3)

subjecting the results to a one-loop test.

1In the case of the HS theory on AdS3 with N = 4 supersymmetries it was shown via the AdS/CFT

correspondence that the HS theory describes a closed subsector in the symmetric phase of the type IIB

string theory on AdS3 × S3 × T 4 in the high energy limit [52, 53].
2In CMSY, the Newton constant GHS was identified with 1

M+N
. However, as we will see below, the

finite M corrections instead suggest that the identification GHS ∝ 1
M

works better.
3It should be noted that there has been significant progress in the study of the free field limit of

AdS5/CFT4 [61–67].
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The free energy or the partition function of the ABJ(M) theory has been studied ex-

tensively over the last few years thanks to the localization technique [68] which drastically

simplifies path integrals of supersymmetric gauge theories [69, 70]. Inspired by the semi-

nal work of Drukker, Marino, and Putrov [71, 72] and, in good part, with the use of the

elegant Fermi gas approach developed by Marino and Putrov [73], a great deal about the

ABJ(M) partition function has been uncovered, in particular, at large N , both in pertur-

bative [73, 74] and nonperturbative expansions [75–82]. There has also been significant

progress in the study of Wilson loops in the ABJ(M) theory [83–86] as well as the partition

functions of more general Chern-Simons-matter theories [87–91]. However, the ABJ par-

tition function in the HS limit (1.1) has not been much investigated in the literature. In

the current paper, building on our earlier work [92, 93], we develop a systematic procedure

to compute a large M expansion of the partition function and start exploring the highly

stringy regime of the HS/ABJ duality at finite N . The HS limit can alternatively be ex-

tracted from the conifold expansion developed in [94], but our approach has the advantage

of directly giving the 1/M expansion.4

To compare the 1/M expansion of the ABJ free energy with that of the HS free energy,

an obstacle is the lack of the action for the Vasiliev theory from which to extract a weak

coupling expansion.5 In this paper, following refs. [17, 20], we circumvent this problem by

computing the one-loop free energy, which can be computed without the action as long

as we know the spectrum, and by comparing it with the ABJ free energy. In specifying

the spectrum, it is crucial to choose appropriate boundary conditions of the HS fields.

For generic t, however, nontrivial boundary conditions bring technical difficulties into the

calculation. For this reason, we adopt the strategy that performing the calculation in the

regime t� 1 and then, with the help of the result in [95], we infer the form of the one-loop

free energy for generic t.

The organization of this paper is as follows: in section 2 we summarize our claim

and the main results on the HS and ABJ free energy and the correspondence between the

two sides. In section 3 we review the integral representation, sometimes referred to as

“mirror description” of the ABJ partition function, using which we analyze the free energy

in the HS limit and develop a systematic 1/M expansion. Some of the technical details in

section 3 are provided in appendices A and B. In section 4 we calculate the one-loop free

energy of N = 6 Vasiliev HS theory. We close our paper with discussions in section 5.

2 The main results

We first summarize our claim and the main results on the correspondence between the

N = 6 HS and ABJ free energies in the limit (1.1) with 1/M corrections.

Higher spin theories are dual to vector models. Our working assumption is that the

vector degrees of freedom dual to the N = 6 HS theory are massless open strings stretched

betweenN regular and M fractional D3-branes in the type IIB frame of the (UV-completed)

4We thank Marcos Mariño for pointing out to us the use of the conifold expansion for the HS limit.
5Although there are some propositions about actions of the Vasiliev theory [96–99], it is not obvious to

compute tree level free energy from these actions.
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Figure 1. The open-string interpretation of the field content of the ABJ theory in the type IIB UV

description. N D3-branes are intersecting with an NS5-brane and with a (1, k) 5-brane, and wrap

the horizontal direction which is periodically identified. M fractional D3-branes partially wrap

the horizontal direction, ending on the 5-branes. (For more detail about the brane configuration,

see [55, 56].) The open strings stretching between D3-branes represent fields in the ABJ theory.

To obtain the fields relevant for the duality to higher spin (HS) theory, we must remove the open

strings related to the U(M) CS theory ((a), blue dashed-dotted line). The HS degrees of freedom

are dual to combinations of U(M) vectors (thick black lines), U(N) adjoints (b) and U(N)×U(N)

bi-fundamentals (c) (black dashed lines).

ABJ theory; see figure 1. Since the ABJ theory has a U(N) × U(N + M) adjoint and

(N̄ ,N +M) bi-fundamentals with their conjugates, in addition to the U(M) vectors which

are expected to be dual to the higher spin fields, we have non-vector degrees of freedom,

i.e., (a) the U(M) adjoint, (b) U(N)×U(N) adjoints, (c) the (N̄ ,N) bi-fundamentals and

their conjugates. Note that (b) and (c) give the same matter content as that appears in

the U(N)k ×U(N)−k ABJM theory.

As alluded in the introduction, we wish to compare the free energy (or the partition

function) of the N = 6 U(N) Vasiliev HS theory with the coupling GHS and the PV phase

θ0 with that of the U(N)k × U(N +M)−k ABJ theory. Since the U(M) adjoint fields are

clearly unwanted degrees of freedom, they have to be removed in the HS/ABJ duality. We

thus propose that the partition function ZHS(GHS, θ0;N) of the former, normalized by the

U(N) volume, is related to that of the latter, ZABJ(N,N +M)k, by the quotient6

ZHS(GHS, θ0;N)

Vol (U(N))
=
|ZABJ(N,N +M)k|

ZCS(M)k
(2.2)

with the identification of the parameters7

GHS =
γ

M

πt

sin(πt)
and θ0 =

πt

2
, (2.3)

6We revise the proposal in the previous version of our paper,

ZHS(GHS, θ0;N) =
1

Vol (U(N))

|ZABJ(N,N +M)k|
ZCS(M)k ZABJM(N)k

(2.1)

which we believe was incorrect.
7More recently, one of the authors determined the constant γ to be γ = 2

π
by computing the two point

function of the stress-energy tensor [100].
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where γ is a constant that cannot be fixed by the analysis of the current paper, t = M/|k| as

defined in (1.1), and ZCS(M)k is the partition function of the N = 2 U(M) Chern-Simons

theory at level k.

As indicated in figure 1, the (massless) open strings involved in (2.2) are U(M) vectors

and U(N)×U(N) bi-fundamentals and adjoints. The HS fields, which are U(N) adjoints,

arise by connecting these open strings as follows. Among the open strings, there are two

types of U(M)−k vectors, namely (i) the U(M)−k × U(N)−k bi-fundamentals which are

contained in the U(N + M)−k adjoint and represented in figure 1 by the middle pair of

black thick arrows, and (ii) the U(M)−k × U(N)k bi-fundamentals which are represented

in figure 1 by the pairs of black thick arrows on the right and left. Each of these U(M)−k-

vector strings can be connected with the U(N)−k×U(N)k bi-fundamentals, open strings (c),

to form (i) U(M)−k×U(N)k bi-fundamentals and (ii) U(M)−k×U(N)−k bi-fundamentals.

The latter bi-fundamental strings can be further connected with their conjugates on their

U(M)−k endpoints to form (i) U(N)k and (ii) U(N)−k adjoints. These U(N) adjoints

correspond to the HS fields with pure, as opposed to mixed, boundary conditions. On the

other hand, the U(N)k and U(N)−k adjoints represented by open strings (b) correspond

to spin 1 fields with the mixed boundary condition. (The latter would have been absent if

the U(N) symmetries were not gauged.)

The identification of the Newton constant GHS in (2.3) can be inferred from the 1/M

expansion (3.25) of the ABJ free energy in which 1/M systematically appears in the com-

bination GHS. The proposal (2.2) then predicts the HS free energy, FHS ≡ − lnZHS, to be8

FHS(GHS, θ0, N) =
γN

GHS

2 I(θ0)

sin(2θ0)
+
N2

2
ln

(
2γ

πGHS

)
− N2

2
ln
(
sin2(2θ0)

)
− (2N2 − 1)(3 cos(4θ0) + 1)

NGHS

48γ
+O(G2

HS)

(2.4)

where

I(x) ≡ −
∫ x

0
dy ln tan y = Im[Li2(i tanx)]− x ln tanx = I

(π
2
− x
)
. (2.5)

It is worth emphasizing that the Newton constant GHS agrees with the one suggested by

the computation of three point functions of higher spin currents for non-supersymmetric

theories which is an independent and a completely different analysis [101]. Furthermore,

as remarked in footnote 7, the constant γ has been recently determined to be γ = 2/π

in [100] from the two point function of the stress-energy tensor.

The proposal (2.2) was motivated in part to respect the invariance under the duality

M ↔ |k| −M , k ↔ −k , (2.6)

which can be expressed in terms of the HS parameter as

θ0 →
π

2
− θ0 . (2.7)

8With the large M expansion we develop in section 3, one can in principle compute the expansion to

arbitrary finite order. In eq. (3.25), we present the explicit expansion up to order G4
HS ∝ 1/M4 terms.
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In the case of the ABJ theory this is known as the Giveon-Kutasov-Seiberg duality under

which the partition function ZABJ(N,N + M)k is invariant [55, 102]. For the CS parti-

tion function ZCS(M)k, this is nothing but the level-rank duality. Note that the Newton

constant GHS in (2.3) is a duality invariant.

The HS free energy (2.4) has a few favorable features: (1) The leading 1/GHS term

is linear in M , as opposed to M2 as would be expected from the U(M) vector degrees of

freedom, and the dependence on the PV phase θ0 is qualitatively similar to that of the

N = 2 theory in [103] which exhibits the invariance under θ0 ↔ π
2 − θ0. (2) The leading

1/M correction, the first logarithmic term in (2.4), is consistent with the one-loop free

energy of the N = 6 HS theory whose contribution comes solely from the U(N) gauge

fields, as calculated in section 4, up to the ambiguity of the constant γ.

Finally, the presence of the third term −N2

2 ln(sin2(2θ0)) in (2.4) may call for a further

explanation. This is a part of the HS one-loop contribution and diverges logarithmically

as the PV phase θ0 is switched off or takes the maximal value π/2.9 Although this might

look like an unpleasant result, it can be argued that this indeed precisely agrees with the λ̃-

dependent factor in the anomalous dimension eq. (A.5) of [95] predicted from HS symmetry

considerations. We will make a more detailed discussion on this point later in section 5.

3 The boundary side: ABJ theory

In this section, we study the HS limit of the partition function of the ABJ theory and

develop a systematic way to derive its large M expansion. The expansion can be explicitly

worked out any finite order in principle. In the next section, we will use the 1-loop part of

the expansion for comparison with the bulk Vasiliev theory.

3.1 The ABJ partition function

The partition function of the U(N1)k×U(N2)−k ABJ theory on S3 has been written in the

matrix model form [68, 69] using the localization technique [70]. The explicit expression of

the partition function is

ZABJ(N1, N2)k = N
∫ N1∏

j=1

dµj
2π

N2∏
a=1

dνa
2π

∆sh(µ)2∆sh(ν)2

∆ch(µ, ν)2
e
ik
4π

(∑N1
j=1 µ

2
j−
∑N2
a=1 ν

2
a

)
, (3.1)

where ∆sh and ∆ch are the one-loop determinant of the vector multiplets and the matter

multiplets in the bi-fundamental representation, respectively:

∆sh(µ) =
∏

1≤j<m≤N1

(
2 sinh

µj − µm
2

)
, ∆sh(ν) =

∏
1≤a<b≤N2

(
2 sinh

νa − νb
2

)
, (3.2)

∆ch(µ, ν) =

N1∏
j=1

N2∏
a=1

(
2 cosh

µj − νa
2

)
. (3.3)

9In fact, the first term in (2.4) which is the classical contribution also diverges logarithmically as θ0 → 0

or π/2. With the lack of full understanding of the HS theory action, it is not clear how this singularity

should be interpreted.
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Furthermore, k ∈ Z 6=0 is the Chern-Simons level, whileN is the normalization factor [71, 72]

N ≡ i−
κ
2

(N2
1−N2

2 )

N1!N2!
, κ ≡ sign k . (3.4)

Because of the relation

ZABJ(N2, N1)k = ZABJ(N1, N2)−k = ZABJ(N1, N2)∗k , (3.5)

we can assume N1 ≤ N2 and k > 0 without loss of generality, as we will do henceforth.

We set

N1 ≡ N, N2 ≡ N +M, M ≥ 0. (3.6)

We write ZABJ(N1, N2) also as ZABJ(N ;M).

There are various ways to analyze the ABJ partition function (3.1), including the Fermi

gas approach [73, 104, 105] extensively used in the literature. However, for the purpose

of studying its HS limit, the most convenient starting point is the “mirror description” of

the ABJ partition function found in [92], generalizing the mirror description of the ABJM

partition function [106, 107]. The “mirror description” of the ABJ partition function is as

follows:

ZABJ(N ;M)k = i−N(N+M−1)2−Nk−Nq
1
6
M(M2−1)ZCS(M)kΨ(N ;M)k, (3.7)

where

ZCS(M)k = q−
1
12
M(M2−1)k−

M
2

M−1∏
j=1

(
2 sin

πj

k

)M−j
(3.8)

is the partition function for the U(M)k CS theory and we defined the quantity10

Ψ(N ;M)k ≡
(−1)

1
2
N(N−1)

N1!

N∏
j=1

[
−1

2πi

∫
C

π dsj
sin(πsj)

] N∏
j=1

(qsj+1)M
(−qsj+1)M

∏
1≤j<m≤N

(1− qsm−sj )2

(1 + qsm−sj )2
.

(3.9)

In the above, we defined

q ≡ e−
2πi
k , (3.10)

and (a)n = (a; q)n ≡
∏n−1
j=0 (1 − aqj) is the q-Pochhammer symbol. The contour of in-

tegration in (3.9) is C = [−i∞+ η,+i∞+ η] with the constant η chosen to lie in the

following range: {
−M − 1 < η < 0 (k ≥ 2M)

−k
2 − 1 < η < −k

2 −M (M ≤ k ≤ 2M) .
(3.11)

In [92], various consistency checks of the expression (3.7) were performed: (i) agreement

of the perturbative expansion with the original matrix integral (3.1), (ii) vanishing of the

partition function for k < M , in accord with the prediction [55] that there must be no

SCFT in this range, and (iii) invariance under the Giveon-Kutasov-Seiberg duality (2.6).

Later, the expression (3.7) was derived in [93] directly from the matrix integral (3.1) using

the Cauchy-Vandermonde formula.

10Note that Ψ defined in (3.9) is different from the one in [92] by the inclusion of the factor (−1)
1
2
N(N−1).
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3.2 The large M expansion

We would like to develop a formulation to evaluate the ABJ partition function in the HS

limit (1.1). The expression (3.7) is especially suitable for that purpose, since the number

of integrals N is fixed in the HS limit. To begin with, let us rewrite (3.9) in the following

way [105]:

Ψ(N ;M)k =
1

N !

 N∏
j=1

∫ ∞
−∞

dxj

 e∑N
j=1 f(xj)

N∏
j<m

tanh2 π(xj − xm)

k
, (3.12)

where we did the following change of variables

sj = −M + 1

2
+ ixj , j = 1, . . . , N, (3.13)

and also defined

f(x, k, t) =

M−1
2∑

m=−M−1
2

ln tanh
π(x+ im)

k
−R(x), (3.14)

with

R(x) =

{
ln(2 cosh(πx)) (M = 2p : even),

ln(2 sinh(πx)) (M = 2p− 1 : odd).
(3.15)

In (3.14), the summation over m is done in steps of one; namely, m = −M−1
2 ,−M−1

2 +

1, . . . , M−1
2 − 1, M−1

2 , whether M is even or odd. It is easy to show that the integration

contour for xj in (3.12) corresponds to choosing η correctly in the range (3.11), and that

x = 0 is the critical point of the function f(x) for both even and odd M . Therefore, the

strategy is to expand f(x) around x = 0 and carry out the integration by expansion around

that point, taking into account the HS limit (1.1). It is easy to show that f(x, k, t) is an

even function in x.

As we have shown in appendix A, using the Euler-Maclaurin formula, f(x, k, t) can be

formally rewritten as

f(x, k, t) =
cos 2x∂t

k

sinh ∂t
k

ln tan
πt

2
, (3.16)

in the sense that the formal power expansion of (3.16) around x = 0 reproduces the formal

power expansion of (3.14). Namely, the right hand side gives the asymptotic expansion of

f(x, k, t). Let us write the expansion of (3.16) in x as

f(x, k, t) ≡
∞∑
n=0

(−1)nf2n(k, t)

(2n)!

x2n

k2n−1
. (3.17)

Here, the quantities f2n(k, t) are defined as the expansion coefficients and their explicit

expression is given by (3.16) as

f2n(k, t) = k2n−1 (2∂t
k )2n

sinh ∂t
k

ln tan
πt

2
=
∞∑
m=0

22n(2− 22m)B2m

(2m)! k2m
∂2n+2m−1
t ln tan

πt

2
, (3.18)
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where Bn are the Bernoulli numbers. Note that f2n(k, t) is defined so that its 1/k expansion

(which is equivalent to the 1/M expansion) starts with an O(k0) term. The m = 0 term

in f0 is understood as

1

∂t
ln tan

πt

2
=

∫ t

0
dy ln tan

πy

2
= − 2

π
I
(πt

2

)
, (3.19)

where I(x) was defined in (2.5).

If we write down the first few terms of the expansion (3.17), we have

f(x, k, t) = kf0(k, t)− f2(k, t)

2!

x2

k
+
f4(k, t)

4!

x4

k3
− · · · . (3.20)

The first term gives a constant contribution irrelevant for the x integration, while the x2

term suggests that we define a new variable ξ by

x = k1/2 ξ, (3.21)

so that the expansion (3.20) now reads

f(x, k, t) =

∞∑
n=0

(−1)nf2n(k, t)

(2n)!

ξ2n

kn−1
= kf0(k, t)− f2(k, t)

2!
ξ2 +

f4(k, t)

4!

ξ4

k
+ · · · . (3.22)

Now, the ξ2 term is O(k0) and the higher power terms in ξ are down by powers of 1/k.

This gives a starting point for the large k (large M) expansion of the integral (3.12).

In terms of ξ, the integral (3.12) can be rewritten as

Ψ(N ;M)k =
πN(N−1)ekNf0(k,t)

N ! k
N2

2
−N

 N∏
j=1

∫ ∞
−∞

dξj

∆(ξ)2

× exp

 ∞∑
n=1

(−1)nf2n(k, t)

(2n)! kn−1

N∑
j=1

ξ2n
j + 2

∑
1≤j<m≤N

ln
tanh

π(ξj−ξm)

k1/2

π(ξj−ξm)

k1/2

 , (3.23)

where ∆(ξ) is the Vandermonde determinant,

∆(ξ) ≡
∏

1≤j<m≤N
(ξj − ξm). (3.24)

The integral (3.23) is a standard Hermitian matrix integral and can be straightforwardly

evaluated, regarding the ξ2 term as giving the propagator and all higher power terms as

interactions. Here we do not present the detail of the computation but simply write down
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the resulting large M expansion:

F(N ;M)k ≡ − ln Ψ(N ;M)k

=
2NM

πt
I
(πt

2

)
+
N2

2
ln

4M

πt sin(πt)
− N

2
ln

2M2

πt2
− lnG2(N + 1)

− N(2N2 − 1)

48

( πt

M sin(πt)

)
[3 cos(2πt) + 1]

− N2

2304

( πt

M sin(πt)

)2 [
(17N2 + 1) cos(4πt) + 4(11N2 − 29) cos(2πt)− 157N2 + 211

]
− N

552960

( πt

M sin(πt)

)3[
(674N4 + 250N2 + 201) cos(6πt)

− 6(442N4 + 690N2 − 427) cos(4πt) + 3(2282N4 + 3490N2 − 3635) cos(2πt)

+ 4348N4 − 21940N2 + 12750
]

− N2

22118400

( πt

M sin(πt)

)4[
(6223N4 + 8330N2 + 2997) cos(8πt)

− 8(3983N4 + 6730N2 − 363) cos(6πt) + 20(3797N4 + 1870N2 + 1623) cos(4πt)

− 8(22249N4 − 44410N2 + 37011) cos(2πt)− 56627N4 + 113630N2 − 18753
]

+O(M−5). (3.25)

Note that the full ABJ free energy FABJ =− lnZABJ contains more terms coming from (3.7).

The computational detail of (3.25) can be found in appendix B. Because we used an

asymptotic expansion in evaluating the integral, the large M expansion (3.25) is also an

asymptotic expansion to be completed by non-perturbative corrections.

As the last and important remark in this section, we emphasize that as is evident

in (3.25), the 1/M expansion organizes itself into the GHS expansion, which lead us to the

proposal in (2.3).

4 The bulk side: N = 6 Vasiliev theory

In this section we compute the one-loop free energy of the bulk HS theory dual to the ABJ

theory in the higher spin limit (1.1).11 It was conjectured in [54] that the ABJ theory in

the higher spin limit corresponds to the N = 6 parity-violating U(N) Vasiliev theory on

AdS4. The Vasiliev theory has three parameters:

1. The Newton constant GHS which is proportional to M−1 at large M , as mentioned

in the Introduction and section 2.

2. The rank N of the U(N) Chan-Paton factors which is identified with the N of the

U(N)×U(N +M) gauge group of the ABJ theory.

3. The PV phase θ0 which violates parity and higher spin symmetry. As stated in the

Introduction, θ0 is identified with the ’t Hooft coupling t by θ0 = πt/2 [54, 95].

11We thank Rajesh Gopakumar for stimulating discussions which motivated us to carry out the calculation

in this section.
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The partition function of the Vasiliev theory takes the following form in perturbation

theory:

ZHS ≡ e−FHS where FHS =
1

GHS
F

(−1)
HS + F

(0)
HS +GHSF

(1)
HS + · · · . (4.1)

The free energy F
(`)
HS at (` + 1)-loops is a function of the PV phase θ0 and may receive

logarithmic corrections of the form G`HS lnGHS. The tree-level free energy G−1
HSF

(−1)
HS is the

saddle point action of the Vasiliev theory. Although there are some propositions on the

actions of the Vasiliev theory [96–99], it is not obvious to compute the tree level free energy

from these actions. Thus we focus on the leading correction F
(0)
HS , the one-loop free energy

of the Vasiliev theory. The spectrum does not depend on the PV phase θ0, and we can

compute F
(0)
HS in the standard manner [17–20, 33–36, 108].

4.1 The one-loop contribution

The N = 6 Vasiliev theory is constructed from the so-called n = 6 extended supersym-

metric Vasiliev theory by imposing a set of SO(6) invariant boundary conditions [54, 109].

The parity-even n = 6 Vasiliev theory can have 64 supercharges, but the boundary con-

ditions and the parity violation reduce the number of supersymmetries to N = 6 with 24

supercharges. The spectrum of the N = 6 Vasiliev theory is given by [54, 109]

• 32 fields for each integer, s = 0, 1, · · · , and half-integer spin, s = 1
2 ,

3
2 ,

5
2 , . . . and their

associated ghosts with spin s− 1.

• All integer and half-integer spin fields with s ≥ 2 obey the so-called ∆+ = s + 1

boundary condition at the AdS4 boundary, and their associated ghosts have ∆+ =

s+ 2.

• Half of the spin-0 fields have the ∆+ = 1 boundary condition, whereas the other half

∆− = 2.

• Except for one out of thirty-two, the U(N) spin-1 fields have the ∆+ = 2 boundary

condition and ∆+ = 3 for the associated ghosts. The remaining one has the mixed

boundary condition, iεijk(∂jAk+AjAk)+tan(πt)∂zAi = 0, with the boundary Chern-

Simons term at level k, corresponding to the gauging of the U(N) symmetry [18, 54].

• The spin-0 ghost field for the spin-1 field with the mixed boundary condition has the

∆− = 0 boundary condition [18].

As our strategy, to avoid the technical difficulty caused by the mixed boundary condition,

we only deal with the regime t � 1 where the spin-1 field with the mixed boundary

condition in effect has ∆ = 2+O(t) ' 2 and then infer the form of the one-loop free energy

for generic t from this data in conjunction with the result of [95].
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• Spin-s fields

spin 0 0 1 1 (gauge) s ≥ 2 s = Z≥0 + 1
2

no. of fields 16 16 31 1 32 32

boundary cond. ∆+ = 1 ∆− = 2 ∆+ = 2 ∆ ' 2 (mixed) ∆+ = s+ 1 ∆+ = s+ 1

• Spin-(s− 1) ghosts

spin N/A N/A 0 0 (gauge) s− 1 ≥ 1 s− 1 = Z≥0 + 1
2

no. of fields N/A N/A 31 1 32 32

boundary cond. N/A N/A ∆+ = 3 ∆− = 0 + c−(θ0)
M ∆+ = s+ 2 ∆+ = s+ 2

Table 1. The spectrum of the N = 6 Vasiliev theory (in the regime t� 1) labeled by spin, number

of fields, and boundary conditions and associated ghosts. Note, in particular, the O(1/M) correction

to the ∆− spin-0 ghost for the spin-1 gauge field, where c−(θ0) is known up to a numerical constant.

The dimension of other fields also receives O(1/M) corrections which, however, do not contribute to

the one-loop free energy. As mentioned above, the spin 1 field with the mixed boundary condition

has ∆ = 2 +O(t) ' 2 in the regime t� 1.

We summarize the spectrum in table 1. There is a very important point to be stressed:

the boundary conditions, as stated here, are only true in the strict large M limit. In fact,

∆± are the dimensions of CFT operators dual to higher spin fields and may thus receive

1/M corrections which moreover depend on the PV phase θ0 [95, 110]. As we will see, the

1/M correction to the ∆− spin-0 ghost fields are particularly important and contribute to

the one-loop free energy, whereas all the rest of 1/M corrections, even if present, have no

contributions to one-loop. In table 1 we indicated the O(1/M) correction to the ∆− spin-0

ghost to emphasize this point.

We can now write down the bulk one-loop partition function. Taking into account the

U(N) Chan-Paton factors, it reads

e−F
(0)
HS =

[
Z16

0,∆+
Z16

0,∆−Z
31
1,∆+

Z1,∆

∞∏
s=2

Z32
s,∆+

∞∏
s=0

Z32
s+ 1

2
,∆+

]N2

, (4.2)

where Zs,∆± is the partition function for a field with spin s and the boundary condition ∆±
and can be expressed in terms of functional determinants of symmetric transverse traceless

(STT) tensors in AdS4 [17, 19, 20, 108]:12

Zs,∆± =



[
detSTT

s−1,∆± [−∇2 + (s+ 1)(s− 1)]

detSTT
s,∆± [−∇2 + (s+ 1)(s− 2)− s]

]1/2

for s ∈ Z≥0

[
detSTT

s,∆± [− /∇2
+ (s− 1/2)2]

detSTT
s−1,∆± [− /∇2

+ (s+ 1/2)2]

]1/4

for s ∈ Z≥0 +
1

2

, (4.3)

12In the unit RAdS = 1.
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with the understanding that

detSTT
s [· · · ] = 1 for s < 0 . (4.4)

Z1,∆ is the partition function for the spin-1 gauge field with the mixed boundary condition

in the regime t � 1, corresponding effectively to ∆ ' ∆+ = 2, and its associated ghost

with the ∆− boundary condition, and a similar one-loop determinant formula holds for

Z1,∆. The spin-(s − 1) determinants in (4.3) are the contributions from the gauge fixing

ghosts. These determinants can be explicitly computed by applying the techniques devel-

oped in [111–113]. To proceed, we first simplify (4.2) by using the result of Giombi and

Klebanov for the type-A Vasiliev theory [17],

Ztype A =
∞∏
s=0

Zs,∆+ = 1. (4.5)

Dividing (4.2) by (Ztype A)32N2

yields

e−F
(0)
HS =

[(
Z0,∆−

Z0,∆+

)16 Z1,∆

Z1,∆+

∏
s∈Z≥0+ 1

2

Z32
s,∆+

]N2

. (4.6)

Thus the bosonic contribution to the one-loop free energy could come only from the spin-0

and spin-1 fields. This simplifies the calculation.

For the convenience of the subsequent calculations we introduce

F(∆,s) =


1
2 ln detSTT

s

[
−∇2 +

(
∆− 3

2

)2 − s− 9
4

]
for s ∈ Z

1
2 ln detSTT

s

[
− /∇2

+
(
∆− 3

2

)2]
for s ∈ Z + 1

2

(4.7)

which has been computed by Camporesi and Higuchi [111–113] and is given in terms of

the spectral zeta function

F(∆,s) = −1

2
ζ ′(∆,s)(0)− 1

2
ζ(∆,s)(0) ln (Λ2) , (4.8)

where the spectral zeta function ζ(∆,s)(z) is defined by

ζ(∆,s)(z) =
8(2s+ 1)

3π

∫ ∞
0
du

µs(u)

[u2 + (∆− 3/2)2]z
, ζ ′(∆,s)(z) =

∂

∂z
ζ(∆,s)(z) ,

µs(u) =
πu

16

[
u2 +

(
s+

1

2

)2
]

tanh (π(u+ is)) . (4.9)

The parameter Λ in (4.8) is a UV cutoff. The logarithmic divergence arises in even di-

mensions and is related to the conformal anomaly. As we will show below, the logarithmic

divergence actually cancels out in the N = 6 Vasiliev theory (in a certain regularization

scheme). Hence the net contribution to the one-loop partition function comes solely from

ζ ′(∆,s). In particular, the O(lnM) correction observed in the ABJ theory comes entirely

from the ∆− spin-0 ghosts for the spin-1 U(N) gauge fields and the consequence of the

“induced gauge symmetry” [18].

– 13 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
4

4.2 The bosonic contributions

We first consider the bosonic part F
(0)
HS,B of the one-loop free energy. As commented on

below (4.6), there are only contributions from the spin-0 and spin-1 fields. Moreover, as

it will turn out, it is free of logarithmic divergences. For integer spins, the spectral zeta

function ζ(∆,s)(0) has been calculated by Camporesi and Higuchi [17, 111]:

ζ(∆,s)(0) =
2s+ 1

24

[
ν4 −

(
s+

1

2

)2(
2ν2 +

1

6

)
− 7

240

]
with ν = ∆− 3

2
. (4.10)

Noting that ∆+− 3/2 = −(∆−− 3/2), this expression implies, due to the invariance under

ν → −ν, that

ζ(∆+,s)(0) = ζ(∆−,s)(0) . (4.11)

Thus the logarithmic divergence in the bosonic part of the free energy cancel out between

the contributions from different boundary conditions, namely,

ln
Z0,∆−

Z0,∆+

∣∣∣∣
log div

= 0 , ln
Z1,∆

Z1,∆+

∣∣∣∣
log div

= 0 , (4.12)

where . . . |log div means the logarithmically divergent part read off from (4.8).

Turning to the finite piece, we first calculate the spin-1 free energy. Again borrowing

the result from [17, 111] and paying special attention to the ghost boundary conditions,

we have13

ln
Z1,∆

Z1,∆+

=
1

2

(
IB(∆+ − 3/2, 0)− IB(∆− − 3/2, 0)

)
, (4.13)

where

IB(ν, s) =
2s+ 1

3

∫ ν

0
dx

[(
s+

1

2

)2

x− x3

]
ψ(x+ 1/2) (4.14)

with ψ(z) being the digamma function. Here, as emphasized in the discussion of the

spectrum, we need special care in dealing with the conformal dimensions ∆±. Generically,

the dimensions ∆± may receive the finite M corrections, and for the spin-0 ghosts it reads

∆+ = 3 +
c+(θ0)

M
+O

(
1

M2

)
, ∆− = 0 +

c−(θ0)

M
+O

(
1

M2

)
, (4.15)

where c±(θ0) are functions of the PV phase θ0. In fact, it has been shown [95, 110] that the

O(1/M) corrections exist in three-dimensional interacting CFTs with pseudo-higher spin

symmetries. When we take into account the O(1/M) corrections, an explicit calculation

shows that

IB(∆+ − 3/2, 0) = O(M0) , IB(∆− − 3/2, 0) = + ln (M/c−(θ0)) +O(M0) , (4.16)

where the O(M0) terms are independent of c±(θ0). We thus find that

ln
Z1,∆

Z1,∆+

= −1

2
ln (M/c−(θ0)) +O(M0) . (4.17)

13To be more precise, there is a contribution from the spin 1 fields, 1
2

(
IB(∆− 3/2, 1)− IB(∆+− 3/2, 1)

)
,

which, however, is at most of order O(t) and negligible for our purpose.
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Since there is an unknown numerical constant in c−(θ0), we cannot accurately calculate

the O(M0) term. Similarly, it is straightforward to find the spin-0 free energy as

ln
Z0,∆−

Z0,∆+

=
1

2

(
−IB(−1/2, 0) + IB(1/2, 0)

)
= O(M0) . (4.18)

Combining (4.17) and (4.18) together, we conclude that the bosonic part of the bulk one-

loop free energy is

F
(0)
HS,B = +

N2

2
ln (M/c−(θ0)) +O(M0) . (4.19)

We will later discuss the form of c−(θ0) in section 5.

4.3 The fermionic contributions

We next consider the fermionic part F
(0)
HS,F of the one-loop free energy. Again, as it will

turn out, it is free of logarithmic divergences. Moreover, it has no lnM corrections.

We first show the absence of the logarithmic divergences: for s ∈ Z + 1/2, we can

rewrite the spectral zeta function ζ(∆,s)(z) as a sum of two terms

ζ(∆,s)(z) =
8(2s+ 1)

3π
(g1(ν, s; z) + g2(ν, s; z)) , (4.20)

where

g1(ν, s; z) =
π

16

∫ ∞
0
du

u

(u2 + ν2)z

[
u2 +

(
s+

1

2

)2
]
,

g2(ν, s; z) =
π

8

∫ ∞
0
du

u

(u2 + ν2)z(e2πu − 1)

[
u2 +

(
s+

1

2

)2
]
. (4.21)

By explicit calculations, these two terms are given by

g1(ν, s; 0) =
πν2

64

[
ν2 −

(
s+

1

2

)2
]
, g2(ν, s; 0) =

π(20s(s+ 1) + 7)

3840
. (4.22)

Meanwhile, from (4.6) and (4.8), the logarithmically divergent piece of F
(0)
HS,F is

− 8N2

ζ(3/2,1/2)(0) +
∑

s∈Z≥0+1/2

(
ζ(s+1,s)(0)− ζ(s+2,s−1)(0)

) ln (Λ2) . (4.23)

This sum, as it stands, is divergent, and must be regularized. We adopt the regularization

used in the analysis [20].14 This yields

F
(0)
HS,F

∣∣∣
log div

= −8N2

[
ζ(3/2,1/2)(0) + lim

α→0

∑
s∈Z≥0+1/2

s−α
(
ζ(s+1,s)(0)−ζ(s+2,s−1)(0)

)]
ln (Λ2)

= 32

[
11

360
+ lim
α→0

∑
s∈Z≥0+1/2

s−α
(
−5s4

12
+

5s2

24
+

13

2880

)]
ln (Λ2) = 0 , (4.25)

14This regularization can be slightly generalized to:

ζ(3/2,1/2)(0) + lim
α→0

∑
s∈Z≥0+1/2

(s+ x)−α ζ(s+1,s)(0)− lim
α→0

∑
s∈Z≥0+1/2

(s+ y)−α ζ(s+2,s−1)(0) . (4.24)

One can show that this vanishes so long as x+ y = 0.
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where we used (4.22) to find the second line. Thus the fermionic part of the one-loop free

energy is also free of logarithmic divergences.

We next evaluate the finite part. For s ∈ Z≥0 + 1/2, an explicit computation yields

ζ ′(∆,s)(0) = −8(2s+ 1)

3π

(
(s+ 1/2)2d1 + d3

)
+ IF (ν, s)

− (2s+ 1)

72
ν
(
−3ν3 + 4ν2 + ν − 12s2 − 12s− 3

)
, (4.26)

where

dn =
π

8

∫ ∞
0

du
un lnu2

e2πu − 1
, IF (ν, s) =

2s+ 1

3

∫ ν

0
dx

[(
s+

1

2

)2

x− x3

]
ψ(x) . (4.27)

It is then straightforward to show that each piece in the finite part is of order O(M0),

ζ ′(s+1,s)(0) = O(M0) , ζ ′(s+2,s−1)(0) = O(M0) . (4.28)

Hence the O(lnM) contribution is absent in the fermionic free energy, and it is at most of

order O(M0),

F
(0)
HS,F = O(M0) . (4.29)

4.4 The full one-loop free energy

Altogether, we find the full bulk one-loop free energy to be

F
(0)
HS = F

(0)
HS,B + F

(0)
HS,F = +

N2

2
ln (M/c−(θ0)) +O(M0) . (4.30)

Note that the leading O(lnM) contribution comes entirely from the ∆− spin-0 ghosts

for the spin-1 U(N) gauge fields and, as in [18], is the consequence of the “induced

gauge symmetry.”

The bulk one-loop free energy (4.30) is consistent with the O(lnM) correction to the

ABJ free energy with the identification (2.3) of the Newton constant

GHS =
γ

M

πt

sin(πt)
. (4.31)

We are, however, unable to determine the constant γ which requires the precise value of

the O(M0) correction.15 We will make further comments on c−(θ0) in the one-loop free

energy in the next section.

15Once again, as remarked in footnote 7, the constant γ has been recently determined to be γ = 2/π by

one of the authors in [100].
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5 Discussions

In the last two sections, we have calculated the free energies of the ABJ theory in the HS

limit and the N = 6 Vasiliev theory at one-loop. We are now ready to discuss the corre-

spondence between the two theories. However, it is not as straightforward as comparing

the free energy of the ABJ theory (3.25) and that of the N = 6 HS theory (4.30) as they

are, and it requires some considerations to make the correspondence more precise.

As already mentioned in section 2, the ABJ theory, even in the HS limit (1.1), has

more degrees of freedom than necessary to describe the N = 6 HS dual. For instance,

the free energy of the ABJ theory in the limit (1.1) goes as M2, since the ABJ theory

is a theory of U(M) matrices. On the other hand, the free energy of the HS theory is

expected to grow as M , reflecting the fact that it is dual to a U(M) vector model. The M2

growth comes from the U(M) part of the U(N) × U(N + M) CS free energy. In the case

of U(M) CS theory coupled to fundamental matter [114], the O(M) growth was extracted

by normalizing the CS partition function to be unity, or equivalently, dividing the full

partition function by the CS partition function. In our case, however, the situation is more

involved, since the gauge group is a product group U(N)×U(N +M) and the ABJ theory

has bi-fundamental matter.

Here we first recall our proposal made in section 2 and then elaborate on it. The

proposed correspondence is given in (2.2):

ZHS(GHS, θ0;N)

Vol (U(N))
= Zvec(M ;N)k , (5.1)

where the “vector model subsector” of the partition function is identified as

Zvec(M ;N)k =
|ZABJ(N,N +M)k|

ZCS(M)k
. (5.2)

In addition to the quotient by the U(M) CS partition function on the r.h.s. , the l.h.s.

of (5.1) is divided by the U(N) volume, Vol (U(N)) = (2π)
N
2

(N+1)/G2(N + 1). This is the

natural normalization for the bulk U(N) theory. The main idea behind (5.2) is to regard

the open strings stretched between N regular and M fractional (and N regular) D3-branes

as the vector degrees of freedom dual to the HS theory, as illustrated in figure 1 for the

type IIB brane construction of the ABJ(M) theory. Thus the quotient by ZCS(M)k is to

remove contributions from the diagrams that only involve open strings whose both ends

are on M fractional D3-branes. As quantitative justifications, we note that the free energy

Fvec = − lnZvec of the vector model subsector has the following properties:

1. Fvec scales as M ∝ G−1
HS at the leading order in the HS limit (and of order O(N2)

when expressed in terms of the bulk ‘t Hooft coupling λHS = NGHS, as it should be

for U(N) theory).

2. Fvec enjoys the Giveon-Kutasov-Seiberg duality (2.6), namely,

Fvec(M ;N)k = Fvec(|k| −M ;N)−k . (5.3)

3. The leading logarithmic correction agrees with the bulk one-loop result (4.30),

Fvec(M ;N)k = · · ·+ N2

2
lnM + · · · . (5.4)

– 17 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
4

We have already emphasized the importance of the first property. Meanwhile, the second

property might look a matter of aesthetics. However, the duality invariance (5.3) ensures

the parity symmetry restoration at θ0 = 0 and π
2 with the identification θ0 = πt/2 where

t = M/|k|, as required by the PV Vasiliev theory [54]. Had it been the U(N + M) CS

partition function ZCS(N + M)k to be divided in (5.2), the duality invariance would not

have been respected. This vindicates the quotient by the U(M) CS partition function

ZCS(M)k as opposed to ZCS(N +M)k. Lastly, as already stated in previous sections, the

third property implies the agreement between the ABJ and HS theories, provided that the

HS Newton constant is identified as

GHS =
γ

M

πt

sin(πt)

t→0−−−−→ γ

M
(5.5)

which agrees with the one suggested in [101] for non-supersymmetric theories. We em-

phasize once again that the HS Newton constant GHS, rather than simply 1/M , is the

expansion parameter that appears in the systematic 1/M expansion (3.25) of the ABJ free

energy. To this end, we spell out the free energy for the r.h.s. of (5.2) which lead to the

main result (2.4):

Fvec(M ;N)k = Re [FABJ(N,N +M)k]− FCS(M)k

=
2NM

πt
I
(πt

2

)
+
N2

2
ln

(
2

π

M sin(πt)

πt

)
− N2

2
ln
(
sin2(πt)

)
(5.6)

+ ln (Vol (U(N))) +O (πt/(M sin(πt))) .

As promised, we would like to add more comments on the logarithmic terms in the

second line. The first logarithmic term is identified with +N2/2 ln
(
G−1

HS

)
up to a numerical

constant as in (2.4). As noted in the end of section 2, the second logarithmic term diverges

as t→ 0 or 1, and this might look like an unpleasant result. However, we now argue that

this is indeed precisely the result predicted in [95] from HS symmetry considerations.16 To

see it, note that comparing these two terms with the HS one-loop result (4.30), we wish to

show that

c−(θ0)

M
= GHS sin2(πt) (5.7)

up to a numerical constant. In [95] it was suggested in eq. (A.5) that

c−(θ0)

M
= aGHS

λ̃2

1 + λ̃2
+ bGHS

λ̃2

(1 + λ̃2)2
(5.8)

where a and b are unknown constants. Meanwhile, λ̃ for the N = 6 theory was conjectured

in [54] to be

λ̃ = tan(2θ0) = tan(πt) . (5.9)

16Two comments are in order: (1) Due to the U(N) symmetry and supersymmetries, the spectrum of the

N = 6 theory is larger than that assumed in [95]. Thus, strictly speaking, we are pushing the applicability

of their results potentially beyond the limits. (2) This argument of [95] applies to dimensions of CFT

operators dual to higher spin fields. We are, however, applying their result to dimensions of bulk ghosts,

even though there are no CFT operators dual to them. It is, however, reasonable to assume that the

O(1/M) corrections to the dimensions of spin (s − 1)-ghosts appear in the same form as those of their

associated spin s-fields.
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Provided that b = 0 for the N = 6 theory, it indeed yields

c−(θ0)

M
= aGHS sin2(πt) (5.10)

as we wished. It should also be noted that from the field theory viewpoint, the ABJ theory

is related to the N = 3 U(N + M)−k Chern-Simons-matter theory with 2N fundamental

hypermultiplets by gauging the U(N) subgroup of the flavour symmetry. The logarithmic

singularity (as well as +N2

2 lnM term) is nothing but the one which appears in the dif-

ference of the free energies of the ABJ and the N = 3 theories and similar to the one in

eq. (4.18) of [18].

We believe that all indicate our proposal (5.1) and (5.2) is at work. However, it is worth

noting that the “vector model subsector” may be a misnomer, since open strings stretched

between M fractional and N regular D3-branes, corresponding to the U(M) vector, do

couple with open strings which ends only on M fractional D3-branes, corresponding to the

U(M) adjoint. Although the quotients (5.2) do remove all diagrams that only involve the

latter degrees of freedom, it is not the case that these degrees of freedom do not appear at

all in Feynman diagrams.
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A Formal expansion of f(x, k, t)

In this appendix, we derive the formal expansion (3.16) of the quantity f(x, k, t) defined

in (3.14).

First, let us do the following trivial rewriting of (3.14) as

f(x, k, t) =

M−1
2∑

m=−M−1
2

ln
tanh π(x+im)

k
π(x+im)

k

+

M−1
2∑

m=−M−1
2

ln
π(x+ im)

k
−R(x). (A.1)
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The quantity f2n(k, t), which was defined in (3.17) and can be written as

f2n(k, t) = (−1)nk2n−1∂2n
x f(x, k, t)|x=0, (A.2)

is computed from the expression (A.1) as follows. First, for even M ,17

f2n=



k−1

 M−1
2∑

m=−M−1
2

ln
tan πm

k
πm
k

+ 2

M−1
2∑

m= 1
2

ln πm
k − ln 2

 (n = 0),

k2n−1

 M−1
2∑

m=−M−1
2

∂2n
m ln

tan πm
k

πm
k
−2(2n−1)!

M−1
2∑

m= 1
2

1
m2n−(−1)n (2π)2n(22n−1)B2n

2n

 (n ≥ 1).

(A.3)

Here, we used the relation ∂x = −i∂m and the formula [115, eq. 1.518.2]

RM : even(x) = ln(2 cosh(πx)) = ln 2 +

∞∑
n=1

(2π)2n(22n − 1)B2n

2n(2n)!
x2n. (A.4)

For odd M , some care is needed in setting x = 0, because the singularity at x = 0 coming

from the m = 0 term in the second sum of (A.1) cancels against the singularity coming

from R(x). Using the formula [115, eq. 1.518.1]

RM : odd(x) = ln(2 sinh(πx)) = ln(2πx) +

∞∑
n=1

(2π)2nB2n

2n(2n)!
x2n, (A.5)

we obtain, for odd M ,

f2n =



k−1

 M−1
2∑

m=−M−1
2

ln
tan πm

k
πm
k

+ 2

M−1
2∑

m=1
ln πm

k − ln(2k)

 (n = 0),

k2n−1

 M−1
2∑

m=−M−1
2

∂2n
m ln

tan πm
k

πm
k
− 2(2n− 1)!

M−1
2∑

m=1

1
m2n − (−1)n (2π)2nB2n

2n

 (n ≥ 1).

(A.6)

Because the summand in the first terms of (A.3), (A.6) is regular at m = 0 thanks

to the rewriting (A.1), it can be safely evaluated using the Euler-Maclaurin formula. The

version of the Euler-Maclaurin formula relevant here is the one that uses the midpoint

trapezoidal rule and is given by (see e.g. [116])

g
(
a+

1

2

)
+ g
(
a+

3

2

)
+ · · ·+ g

(
b− 1

2

)
=

∫ b

a
dt g(t) +

w∑
n=1

(2−2n+1 − 1)B2n

(2n)!
[g(2n−1)(m)− g(2n−1)(0)] +R2w−1, (A.7)

where the remainder function is

Rw =
(−1)w+1

w!

∫ m

0
dt g(w+1)(t) ζ

(
−w, t+

1

2

)
(A.8)

17Recall that the summation is always done in steps of one.

– 20 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
4

and ζ(s, q) is the Hurwitz zeta function. Generally, Rw does not vanish in the w → ∞
limit and, therefore, sending w → ∞ and dropping Rw in (A.7) gives a non-convergent

asymptotic expansion.

For n ≥ 1, the second terms of (A.3) and (A.6) involve the generalized harmonic

number,

H(r)
q =

q∑
m=1

1

mr
. (A.9)

Its asymptotic expansion for large q is [117]

H(r)
q ∼ ζ(r)− 2q + r + 1

2(r − 1)(q + 1)r
− 1

(r − 1)!

∞∑
l=1

(2l + r − 2)!B2l

(2l)! (q + 1)2l+r−1
, (A.10)

where “∼” means an asymptotic expansion and ζ(s) is the Riemann zeta function. By

expanding this in r around r = 0 and collecting the O(r) terms, we obtain the asymptotic

expansion

q∑
m=1

lnm ∼ 1

2
ln(2π)− 1− q +

(
q +

1

2

)
ln(q + 1) +

∞∑
k=1

B2k

2k(2k − 1)(q + 1)2k−1
, (A.11)

which we can use for evaluating the n = 0 case of (A.3) and (A.6).

Applying the above formulas (A.7), (A.10) and (A.11) to (A.3) and (A.6) and massag-

ing the resulting expression, we obtain the following asymptotic expansion:

f2n ∼



∫ t

0
dy ln tan

πy

2
+ 2

∞∑
l=1

(2−2l+1 − 1)B2l

(2l)!

(2∂t)
2l−1

k2l
ln tan

πt

2
+ f̃0 (n = 0),

2

∞∑
l=0

(2−2l+1 − 1)B2l

(2l)!

(2∂t)
2n+2l−1

k2l
ln tan

πt

2
+ f̃2n (n ≥ 1),

(A.12)

where, for even M ,

kf̃0 = 2
∞∑
l=1

(22l−1 − 1)B2l

2l(2l − 1)M2l−1
+ (2M + 1) ln

(
1 +

1

M

)
− (M + 1) ln

(
1 +

2

M

)

+ 2
∞∑
l=1

B2l

2l(2l − 1)

[
1

(M + 1)2l−1
− 1

(M2 + 1)2l−1

]
, (A.13)

f̃2n

k2n−1
= 2

∞∑
l=0

22n(22l−1−1)(2n+2l−2)!B2l

(2l)!M2l+2n−1
+(2n−2)!

[
22n(2M+2n+1)

(M+1)2n
− M+2n+1

(M2 + 1)2n

]

+ 2
∞∑
l=1

(2l + 2n− 2)!B2l

(2l)!

[
22n

(M + 1)2l+2n−1
− 1

(M2 + 1)2l+2n−1

]
(A.14)

– 21 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
4

while, for odd M ,

kf̃0 = 2
∞∑
l=1

(22l−1−1)B2l

2l(2l−1)M2l−1
+M ln

(
1+

1

M

)
−1+2

∞∑
l=1

22l−1B2l

2l(2l−1)(M+1)2l−1
, (A.15)

f̃2n

k2n−1
= 2

∞∑
l=0

22n(22l−1 − 1)(2n+ 2l − 2)!B2l

(2l)!M2l+2n−1

+ (2n− 2)!
22n(M + 2n)

(M + 1)2n
+ 2

∞∑
l=1

22l+2n−1(2l + 2n− 2)!B2l

(2l)! (M + 1)2l+2n−1
(A.16)

with n ≥ 1. Some comments in deriving the expression (A.12) are in order. First, the first

terms in (A.3), (A.6) were evaluated using the Euler-Maclaurin formula (A.7) and formally

dropping the remainder function. In the resulting integrals, we defined y ≡ 2m/k and

rewrote it in terms of y-integrals. For n ≥ 1, the integral can be trivially integrated to give

the l = 0 term in (A.12). Furthermore, we split ln[(tan πy
2 )/(πy2 )] = ln[tan(πy2 )]−ln(πy2 ) and

put the ones originating from ln(πy2 ) into f̃0, f̃2n. Next, the second terms in (A.3), (A.6)

were evaluated using the asymptotic formulas (A.10), (A.11). For odd M , there is no

problem in directly applying the these formulas but, for even M = 2p, we need to use the

following trick,

p− 1
2∑

m= 1
2

ln j = −2p ln 2 +

2p∑
m=1

lnm−
p∑

m=1

lnm, (A.17)

p− 1
2∑

m= 1
2

1

m2n
= 22n

2p∑
m=1

1

m2n
−

p∑
m=1

1

m2n
, (A.18)

before applying the asymptotic formulas. The asymptotic formula (A.10) involves the ζ

function which may look like a nuisance, but it precisely cancels the last (constant) terms

in (A.3), (A.6), due to the identity

ζ(2n) =
(−1)n+1(2π)2nB2n

2(2n)!
, n ≥ 1. (A.19)

Similar cancellations happen for the ln terms for n = 0.

Actually, as we will show below, f̃0 = f̃2n = 0. Therefore, (A.12) actually becomes

f2n ∼ 2

∞∑
l=0

(2−2l+1 − 1)B2l

(2l)!

(2∂t)
2n+2l−1

k2l
ln tan

πt

2
(n ≥ 0), (A.20)

where it is understood that, for n = l = 0,

1

∂t
ln tan

πt

2
=

∫ t

0
dy ln tan

πy

2
. (A.21)

Formally carrying out the summation in (A.20), we obtain

f2n ∼
(2∂t)

2n

k sinh ∂t
k

ln tan
πt

2
. (A.22)

If we substitute the expression (A.22) into (3.17) and formally perform the summation over

n, we obtain the expression in the main text, (3.16).
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The final result (A.20) may look like the expression which we would obtain if we directly

applied the Euler-Maclaurin formula (A.7) to the original expression (3.14). However, of

course, the Euler-Maclaurin formula does not work in the presence of a singularity that

gives a divergent integral. It is only after the above careful treatment of the singularities

as we did above and the delicate cancellation of terms due to the presence of the seemingly

unwanted function R(x) that we arrived at the very simple expression (A.20).

Proof of f̃2n = 0. Let us show that f̃2n = 0 as mentioned above. For simplicity, let us

consider the case with odd M and n ≥ 1. The relevant expression is (A.16). First, because

B0 = 1, B1 = −1/2 and B2n+1 = 0 for n ≥ 1, we can combine the two terms in the second

line to get the following expression:

f̃2n

k2n−1
= 2

∞∑
l=0

22n(22l−1−1)(2n+2l−2)!B2l

(2l)!M2l+2n−1
+
∞∑
l=0

(−1)l 2l+2n(l+2n−2)!Bl
l! (M + 1)l+2n−1

. (A.23)

When expanded in 1/M , the second term is equal to

∞∑
l=0

(−1)l 2l+2n(l + 2n− 2)!Bl
l!M l+2n−1

∞∑
p=0

(−1)p
(
l + 2n+ p− 2

p

)
1

Mp

=

∞∑
q=0

q∑
l=0

(−1)q 2l+2n! (q + 2n− 2)!Bl
M q+2n−1l! (q − l)!

(l + p ≡ q)

=
∞∑
q=0

(−1)q 22n(q + 2n− 2)!Bl
M q+2n−1q!

q∑
l=0

(
q

l

)
2lBl. (A.24)

Now, recalling the relation between the Bernoulli polynomial Bn(x) and the Bernoulli

numbers Bn,

Bn(x) =

n∑
l=0

(
n

l

)
xn−lBl, (A.25)

and also the relation

Bn

(
1

2

)
= (21−n − 1)Bn, (A.26)

we find
q∑
l=0

(
q

l

)
2lBl = 2q

q∑
l=0

(
q

l

)(
1

2

)q−l
Bl = 2qBq

(
1

2

)
= 2q(21−q − 1)Bq. (A.27)

Therefore,

(A.24) =

∞∑
q=0

(−1)q 2q+2n(2−q+1 − 1)(q + 2n− 2)!Bq
q!M q+2n−1

. (A.28)

Because the summand vanishes for q = 1 and because B2n+1 = 0 for n ≥ 1, we can set

q = 2l, l ≥ 0. Then this cancels the first term in (A.23). So, we have shown f̃2n = 0.

In a quite similar manner, using Bernoulli polynomial/number identities, we can show

that f̃0 = 0 for even M and f̃0 = f̃2n = 0 (n ≥ 1) for odd M .

– 23 –



J
H
E
P
0
8
(
2
0
1
6
)
1
7
4

B Evaluation of the matrix integral (3.23)

In this appendix, we would like to systematically evaluate the integral (3.23), which we

write down here again for convenience:

Ψ(N ;M)k = e−F(N ;M)k =
πN(N−1)ekNf0

N ! k
N2

2
−N

 N∏
j=1

∫ ∞
−∞

dξj

∆(ξ)2 (B.1)

× exp

 ∞∑
n=1

(−1)nf2n

(2n)! kn−1

N∑
j=1

ξ2n
j + 2

∑
j<m

ln
tanh

π(ξj−ξm)

k1/2

π(ξj−ξm)

k1/2

 .
Note that F defined here is different from the full ABJ free energy FABJ = − lnZABJ which

contains more terms coming from (3.7).

Because f2n = f2n(k, t) = O(k0), we can treat the ξ2 term in the exponential of (B.1)

as the propagator and all higher power terms as interactions, and evaluate the integral

perturbatively in a 1/k expansion. The last term in the exponential can be written as

∑
j<m

ln
tanh

π(ξj−ξm)

k1/2

π(ξj−ξm)

k1/2

=

∞∑
n=1

c2n

(π2

k

)n∑
j<m

(ξi − ξj)2n (B.2)

where we used the relation [115, eq. 1.518.3]

ln
tanx

x
=

∞∑
n=1

c2nx
2n, c2n =

(−1)n+1(22n−1 − 1)22nB2n

n(2n)!
. (B.3)

To avoid clutter, let us use the shorthand notation

N∏
j=1

∫ ∞
−∞

dξj ≡
∫
dNξ,

N∑
j=1

ξnj ≡ ξn,
∑

1≤j<m≤N
(ξj − ξm)2n ≡ (∆ξ)2n. (B.4)

First, note that the Gaussian integral of the quadratic term is given by∫
dNξ ∆(ξ)2 e−

f2
2
ξ2 = f

−N
2

2
2 (2π)

N
2 G2(N + 2), (B.5)

where G2(N) is the Barnes G-function. For a quantity O(ξ), let us define its expectation

value by

〈O〉 ≡
∫
dNξ∆(ξ)2 e−

f2
2
ξ2 O∫

dNξ∆(ξ)2 e−
f2
2
ξ2

. (B.6)

Then the integral (B.1) can be written as

e−F(N ;M)k =
2
N
2 G2(N + 1)πN

2−N
2 ekNf0

k
N2

2
−Nf

N2

2
2

×

〈
exp

[ ∞∑
n=2

(−1)nf2n

(2n)! k2n−1
ξ2n +

∞∑
n=1

c2n

(π2

k

)n
(∆ξ)2n

]〉
, (B.7)

where we used the relation G2(z + 1) = Γ(z)G2(z).
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The above is sufficient for computing F(N ;M)k in principle, but the following obser-

vation makes the computation simpler. Note that ∆(ξ)2 is nothing but the Fadeev-Popov

determinant for going from the matrix model of an N ×N Hermitian matrix X to the di-

agonal gauge where ξj , j = 1, . . . , N are the eigenvalues of X. So, the expectation value of

O defined in (B.6) can be written as the expectation value in a Hermitian matrix model as

〈O〉 =

∫
dN

2
X e−

f2
2

trX2 O∫
dN2X e−

f2
2

trX2
, (B.8)

where X is an N ×N Hermitean matrix. When going from the eigenvalue basis in terms

of ξj back to the Hermitean matrix model, we do the following replacements in O:

ξ2n =
∑
i

ξ2n
i → trX2n, (B.9)

(∆ξ)2n =
∑
i<j

(ξi − ξj)2n =
1

2

∑
i,j

(ξi − ξj)2n =
1

2

∑
i,j

2n∑
l=0

(−1)l
(

2n

l

)
ξliξ

2n−l
j

→ 1

2

2n∑
l=0

(−1)l
(

2n

l

)
trX l trX2n−l

=

n−1∑
l=0

(−1)l
(

2n

l

)
trX l trX2n−l +

(−1)n

2

(
2n

n

)
(trXn)2 ≡ (∆X)2n, (B.10)

and use the contraction rule

〈Xα
βX

γ
δ〉 = f−1

2 δαδ δ
γ
β . (B.11)

Some of the correlators computed using the matrix model diagrams are:

〈ξ2〉 = 〈trX2〉 = N2, 〈(ξ1)2〉 = 〈(trX)2〉 = N,

〈(∆ξ)2〉 = 〈N trX2 − (trX)2〉 = N3 −N,
〈ξ4〉 = 〈trX4〉 = 2N3 +N, 〈ξ3ξ1〉 = 〈trX3 trX〉 = 3N2,

〈ξ2ξ2〉 = 〈(trX2)2〉 = N4 + 2N2, 〈ξ2(ξ1)2〉 = 〈trX2(trX)2〉 = N3 + 2N,

〈(ξ1)4〉 = 〈(trX)4〉 = 3N2,

〈(∆ξ)4〉 = 〈N trX4 − 4 trX3 trX + 3(trX2)2〉 = 5N4 − 5N2,

〈(∆ξ2)2〉 = 〈[N trX2 − (trX)2]2〉 = N6 −N2,

〈ξ6〉 = 〈trX6〉 = 5N4 + 10N2, 〈ξ4ξ2〉 = 2N5 + 9N3 + 4N,

〈ξ4(ξ1)2〉 = 2N4 + 13N2, 〈ξ4(∆ξ)2〉 = 〈ξ4[N trX2 − (trX)2]〉 = 2N6 + 7N4 − 9N2,

〈(ξ4)2〉 = 〈(trX4)2〉 = 4N6 + 40N4 + 61N2. (B.12)

In the above expressions, we set f2 = 1 for simplicity, but the correct powers of f2 can be

recovered on dimensional grounds. When computing correlators such as (B.12), diagrams

get out of hand quickly as the power grows. Rather than directly dealing with diagrams,
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it is easier to assume that a given correlator is an even/odd polynomial in N with certain

degree, and determine the coefficients by computer for some small values of N .

So, in terms of the Hermitian matrix model, the “free energy” F(N ;M)k can be

computed as follows:

F(N ;M)k = −kNf0 +
N2

2
ln
kf2

π
− N

2
ln

2k2

π
− lnG2(N + 1)

+

〈
exp

[ ∞∑
n=2

(−1)nf2n

(2n)! k2n−1
trX2n+

∞∑
n=1

c2n

(π2

k

)n
(∆X)2n

]
−1

〉
conn

, (B.13)

where 〈 〉conn means the connected part; for example,

〈(trX2)2〉conn = 〈(trX2)2〉 − 〈trX2〉2. (B.14)

Carrying out the diagram expansion in (B.13) to a few orders and using the large k expan-

sion of f2n(k, t) given in (3.18), we obtain the following large k expansion for F(N ;M)k:

F(N ;M)k

=
2kN

π
I
(πt

2

)
+
N2

2
ln

4k

π sin(πt)
− N

2
ln

2k2

π
− lnG2(N + 1)

−
πN

(
2N2 − 1

)
48 sin(πt) k

[3 cos(2πt) + 1]

− π2N2

2304 sin2(πt) k2

[
(17N2 + 1) cos(4πt) + 4(11N2 − 29) cos(2πt)− 157N2 + 211

]
− π3N

552960 sin3(πt)k3

[
(674N4+250N2+201) cos(6πt)−6(442N4+690N2−427) cos(4πt)

+ 3(2282N4 + 3490N2 − 3635) cos(2πt) + 4348N4 − 21940N2 + 12750
]

− π4N2

22118400 sin4(πt)k4

[
(6223N4 + 8330N2 + 2997) cos(8πt)

− 8(3983N4 + 6730N2 − 363) cos(6πt) + 20(3797N4 + 1870N2 + 1623) cos(4πt)

− 8(22249N4 − 44410N2 + 37011) cos(2πt)− 56627N4 + 113630N2 − 18753
]

+O(k−5). (B.15)

Rewriting this as a large M expansion gives eq. (3.25) presented in the main text.
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