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1 Introduction

Computation of higher-order perturbative corrections in quantum field theories is a very

active research field in these days in view of the high-quality data provided by the LHC. The

standard approach to perform these calculations in perturbative QCD relies in the appli-

cation of the subtraction formalism. According to Kinoshita-Lee-Nauenberg theorem [1, 2]

theoretical predictions in theories with massless particles can only be obtained after the

definition of infrared-safe physical observables. These involve performing a sum over all

degenerate states, which means adding together real and virtual contributions. After ultra-

violet (UV) renormalisation of virtual scattering amplitudes, the remaining contributions

develop infrared (IR) singularities that cancel when putting all the terms together. This

implies that the IR divergent structure of real and virtual corrections are closely related:

thus the subtraction method exploits the factorisation properties of QCD to define suitable

subtraction IR counter-terms which mimic their singular behaviour.
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There are several variants of the subtraction method at NLO and beyond [3–13], which

involve treating separately real and virtual contributions. However, from a computational

point of view, these methods might not be efficient enough for multi-particle processes.

The main reason for that is related to the fact that the final-state phase-space (PS) of

the different contributions involves different numbers of particles. For instance, at NLO,

virtual corrections with Born kinematics have to be combined with real contributions in-

volving an additional final-state particle. The IR counter-terms have to be local in the real

PS, and analytically integrable over the extra-radiation factorised PS to properly cancel

the divergent structure present in the virtual corrections. Building these counter-terms

represents a challenge and introduces a potential bottleneck to efficiently carry out the IR

subtraction for multi-leg multi-loop processes.

With the aim of eluding the introduction of IR counter-terms, we explore an alternative

idea based in the application of the loop-tree duality (LTD) [14–27]. The LTD theorem

establishes that loop scattering amplitudes can be expressed as a sum of PS integrals

(i.e. the so-called dual integrals) with an additional physical particle. Dual integrals and

real-radiation contributions exhibit a similar structure, and can be combined at integrand

level. As shown in refs. [19, 25–27], the divergent behaviour of both contributions is

matched, and the combined expression is finite. In other words, working in the context

of dimensional regularisation (DREG) [28–31] with d = 4 − 2ε the number of space-time

dimensions, the mapped real-virtual contributions do not lead to ε-poles, which implies

that the limit ε → 0 can safely be considered. This fact has a strong implication: the

possibility of carrying out purely four-dimensional implementations for any observable at

NLO and higher-orders. Thus, the aim of this paper is to implement a novel algorithm for

a four-dimensional regularisation of multi-leg physical cross-sections at NLO free of soft

and final-state collinear subtractions.

It is worth to mention that the idea of obtaining purely four-dimensional expressions

to compute higher-order observables has been previously studied. For instance, it was

proposed to apply momentum smearing [32–35] to combine real and virtual contributions,

thus achieving a local cancellation of singularities. Other alternative methods consist in

rewriting the standard IR/UV subtraction counter-terms in a local form, as discussed in

refs. [36, 37], or modifying the structure of the propagators (and the associated Feynman

rules) [38–40] to regularise the singularities. Besides that, the numerical computation

of virtual corrections has received a lot of attention in recent years [41–51]. For these

reasons, through the application of LTD, we will tackle both problems simultaneously;

we will express virtual amplitudes as phase-space integrals and combine them with the

real contributions, working directly at integrand level. Moreover, physically interpretable

results will emerge in a natural way.

The outline of this article is the following. In section 2 we introduce and review the

basis of LTD. As starting point, we describe in detail the unsubtracted implementation of

NLO corrections with an scalar toy example. First, the IR singular structure of the scalar

three-point function and the construction of the corresponding dual integrals is commented

in section 3. Second, the mapping of momenta between real and virtual corrections is

defined in section 4 for the toy example, and our four-dimensional regularisation of soft
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and collinear singularities is presented with a strong physical motivation. Then, in section 5

we study the renormalisation of UV divergences at integrand level in the LTD framework.

The discussion is focused on the treatment of scalar two-point functions, and we properly

rewrite unintegrated dual UV counter-terms in a fully local way. After that, we carefully

analyse the implementation of these techniques to the process γ∗ → qq̄(g) in section 6.

We put special emphasis in the algorithmic construction of the integrands, and in the

numerical implementation of the purely four-dimensional representation. In section 7, we

generalise the unsubtraction algorithm to multi-leg processes, and briefly comment about

the extension of the algorithm to NNLO. Finally, we present the conclusions and discuss

the future research directions in section 8.

2 Review of the loop-tree duality

In this section we review the main ideas behind the LTD method. The LTD theorem [14]

establishes a direct connection among loop and phase-space integrals. Explicitly, it demon-

strates that loop contributions to scattering amplitudes in any relativistic, local and unitary

quantum field theory can be computed through dual integrals, which are build from single

cuts of the virtual diagrams. Let’s consider a generic N -particle scalar one-loop integral, i.e.

L(1)(p1, . . . , pN ) =

∫
`

∏
i∈α1

GF (qi) , (2.1)

over Feynman propagators GF (qi) = (q2
i − m2

i + ı0)−1, whose most general topology is

shown in figure 1. Then, there is a corresponding dual representation consisting of the sum

of N dual integrals:

L(1)(p1, . . . , pN ) = −
∑
i∈α1

∫
`
δ̃ (qi)

∏
j∈α1, j 6=i

GD(qi; qj) , (2.2)

where

GD(qi; qj) =
1

q2
j −m2

j − ı0 η · kji
(2.3)

are dual propagators, and i, j ∈ α1 = {1, 2, . . . N} label the available internal lines.

In eq. (2.1) and eq. (2.2), the masses and momenta of the internal lines are denoted mi and

qi,µ = (qi,0,qi), respectively, where qi,0 is the energy and qi are the spatial components. In

terms of the loop momentum ` and the outgoing four-momenta of the external particles

pi, the internal momenta are defined as

qi = `+ ki , ki = p1 + . . .+ pi , (2.4)

together to the constraint kN = 0 imposed by momentum conservation.

On the other hand, the d-dimensional loop measure is given by∫
`
• = −ıµ4−d

∫
dd`

(2π)d
• , (2.5)

– 3 –
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Figure 1. Generic one-loop topology with N external legs. All momenta are considered outgoing,

and the internal momentum flow is taken counter-clockwise.

and

δ̃ (qi) ≡ 2π ı θ(qi,0) δ(q2
i −m2

i ) , (2.6)

is used in eq. (2.2) to set the internal lines on-shell. Moreover, the presence of the Heaviside

function restricts the integration domain to the positive energy region (i.e. qi,0 > 0). Since

LTD is derived through the application of the Cauchy’s residue theorem, the remaining

d− 1 dimensional integration is performed over the forward on-shell hyperboloids defined

by the solution of GF (qi)
−1 = 0 with qi,0 > 0. Notice that these on-shell hyperboloids

degenerate to light-cones when internal particles are massless.

The dual representation shown in eq. (2.2) is built by adding all possible single-cuts of

the original loop diagram. In this procedure, the propagator associated with the cut line

is replaced by eq. (2.6) whilst the remaining uncut Feynman propagators are promoted

to dual ones. The introduction of dual propagators modifies the ı0-prescription since it

depends on the sign of η · kji, with η a future-like vector, η2 ≥ 0, with positive definite

energy η0 > 0, and kji = qj−qi, which is independent of the loop momentum ` at one-loop.

According to the derivation shown in ref. [14], η is arbitrary so we can chose ηµ = (1,0) to

simplify the implementation.

The difference between LTD and the Feynman Tree Theorem (FTT) [52, 53], where

the loop integral is obtained after summing over all possible m-cuts, is codified in the

dual prescription: correlations coming from multiple cuts in FTT are recovered in LTD

by considering only single-cuts with the modified ı0-prescription. In other words, hav-

ing different prescriptions for each cut is a necessary condition for the consistency of the

method. As discussed in ref. [19], the integrand in eq. (2.2) becomes singular at the inter-

section of forward on-shell hyperboloids (FF case), and forward with backward (qj,0 < 0)

on-shell hyperboloids (FB intersections). On one hand, the FF singularities cancel each

other among different dual contributions; the change of sign in the modified prescription is

crucial to enable this behaviour. On the other hand, the singularities associated with FB

intersections remain constrained to a compact region of the loop-three momentum space

and are easily reinterpreted in terms of causality. From a physical point of view, FB singu-

larities take place when the on-shell virtual particle interacts with another on-shell virtual

particle after the emission of outgoing on-shell radiation. The direction of the internal

momentum flow establishes a natural causal ordering, and this interpretation is consistent

– 4 –
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with the Cutkosky rule. In fact, the total energy of the emitted particles, which is equal

to qi,0 − |qj,0|, has to be positive. Together with the positive energy constraint imposed

by the delta distribution in eq. (2.6), it restricts the possible situations compatible with a

sequential decay of on-shell physical particles.

3 Singularities of the scalar three-point function

In this section, we show a detailed derivation of the results presented in ref. [25] concerning

the scalar three-point function with massless internal particles. This discussion is useful to

analyse and understand the application of LTD to the realistic case presented in section 6,

and the posterior generalisation to multi-leg processes in section 7. We consider final-state

massless and on-shell momenta labeled as p1, p2, and the incoming momenta p3 = p1 +p2 ≡
p12, by momentum conservation, with virtuality p2

3 = s12 > 0. The internal momenta are

q1 = `+p1, q2 = `+p12 and q3 = `, where ` is the loop momentum. The scalar three-point

function at one-loop is given by the well-known result [54, 55]

L(1)(p1, p2,−p3) =

∫
`

3∏
i=1

GF (qi) = −cΓ
µ2ε

ε2
(−s12 − ı0)−1−ε , (3.1)

where cΓ is the usual loop volume factor (see eq. (A.1) in appendix A). The LTD repre-

sentation of the scalar integral in eq. (3.1) consists of three contributions

L(1)(p1, p2,−p3) =

3∑
i=1

Ii , (3.2)

with

I1 = −
∫
`

δ̃ (q1)

(2q1 · p2 − ı0) (−2q1 · p1 + ı0)
,

I2 = −
∫
`

δ̃ (q2)

(−2q2 · p2 + ı0) (−2q2 · p12 + s12 + ı0)
,

I3 = −
∫
`

δ̃ (q3)

(2q3 · p1 − ı0) (2q3 · p12 + s12 − ı0)
. (3.3)

In order to simplify the computation of these integrals, we work in the centre-of-mass frame

of p1 and p2, and parametrise the momenta as

pµ1 =

√
s12

2
(1,0⊥, 1) , pµ2 =

√
s12

2
(1,0⊥,−1) ,

qµi =

√
s12

2
ξi,0

(
1, 2
√
vi(1− vi) ei,⊥, 1− 2vi

)
, (3.4)

with ξi,0 ∈ [0,∞) and vi ∈ [0, 1] the integration variables describing the energy and polar

angle of the loop momenta, respectively. Integration of the loop momentum in the trans-

verse plane, which is described by the unit vectors ei,⊥, is trivial in this case. The scalar

products of internal with external momenta are given by

2qi · p1/s12 = ξi,0 vi ,

2qi · p2/s12 = ξi,0 (1− vi) , (3.5)

– 5 –
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and the dual integrals in eq. (3.3) are rewritten as

I1 =
1

s12

∫
d[ξ1,0] d[v1] ξ−1

1,0 (v1(1− v1))−1 ,

I2 =
1

s12

∫
d[ξ2,0] d[v2]

(1− v2)−1

1− ξ2,0 + ı0
,

I3 = − 1

s12

∫
d[ξ3,0] d[v3]

v−1
3

1 + ξ3,0
, (3.6)

with the integration measure in DREG given by the direct product of

d[ξi,0] =
(4π)ε−2

Γ(1− ε)

(
s12

µ2

)−ε
ξ−2ε
i,0 dξi,0 , d[vi] = (vi(1− vi))−ε dvi . (3.7)

It is possible to perform these integrals analytically; the result is

I1 = 0 ,

I2 = c̃Γ
µ2ε

ε2
s−1−ε

12 ei2πε ,

I3 = c̃Γ
µ2ε

ε2
s−1−ε

12 , (3.8)

where the phase-space volume factor c̃Γ is defined in eq. (A.1). As expected, the sum of the

three dual integrals agrees with the well-known result from eq. (3.1). It is worth noticing

here that the integrand of I1 is both IR and UV divergent. However, the application of

DREG leads to equal and opposite ε-poles, which justifies the result shown in eq. (3.8).

We will discuss this fact more carefully in section 5.1, since it plays a crucial role in the

whole implementation of the LTD approach for physical processes.

Notice that in eq. (3.6) the dual +ı0 prescription is crucial for computing I2, because

1 − ξ2,0 changes sign inside the integration region, leading to a threshold singularity. For

later use, it will be necessary an explicit expression for the imaginary part of I2 at the

integrand level, which is determined by setting the integrand of I2 on the negative-energy

on-shell mode of GF (q3), i.e.

ı ImL(1)(p1, p2,−p3) = ı Im I2 =
1

2

∫
`
GD(q2; q1) δ̃ (q2) δ̃ (−q3) (3.9)

= − ı π
s12

∫
d[ξ2,0] d[v2] (1− v2)−1 θ(2− ξ2,0) δ(1− ξ2,0) = ı c̃Γ

µ2ε

2ε2
s−1−ε

12 sin(2πε) .

We remark that GD(q2; q1) = GF (q1) because η · k12 = −p2,0 < 0 with ηµ = (1,0), and

hence eq. (3.9) is consistent with the Cutkosky’s rule, which is determined by setting two

propagators on-shell and outgoing, namely, by reversing the momentum flow of one of

the on-shell internal lines [14]. This is the causality connection mentioned in section 2,

and it becomes relevant in our computation because the ε-expansion of eq. (3.9) reveals

the presence of a purely imaginary single-pole in I2 that will not be cancelled by real

corrections. At integrand level, this means that the real part of I2 presents an integrable

singularity in the neighbourhood of ξ2,0 = 1, but there is also a non-integrable singularity

– 6 –
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that must be cancelled by removing its imaginary component before performing a four-

dimensional numerical implementation. Thus, the real part of I2 is defined as

Re I2 = I2 − ı Im I2 =
1

s12

∫
d[ξ2,0] d[v2](1− v2)−1

(
1

1− ξ2,0 + ı0
+ ıπδ(1− ξ2,0)

)
, (3.10)

and, by virtue of the Sokhotski-Plemelj theorem,

Re I2 =
1

s12

∫
d[ξ2,0] d[v2] (1− v2)−1 PV

(
1

1− ξ2,0

)
, (3.11)

where we make use of the Cauchy’s principal value (PV) to get rid of the +ı0 prescription

and the imaginary pole. From the formal point of view, we could perform this computation

by simply working with the real part of the integrand (and neglecting the prescription).

However, numerical instabilities arise and the application of PV prescription leads to a

more efficient implementation.

LTD can further be exploited to have a deeper and detailed understanding of the

origin of the singularities of the loop integral under consideration. As commented before,

the origin of the singularities can be underlined by analysing the relative position and

intersections of the on-shell hyperboloids or light-cones of the propagators entering the

loop integrand [19]. In figure 2, we plot the light-cones that support each of the dual

integrals of the dual representation of the three-point function in eq. (3.2). Although the

scalar three-point function is UV finite, the individual dual integrals in eq. (3.3) diverge in

the UV because dual propagators are linear in the loop momentum. However, their sum

has the same UV singularities present in the original integral, as expected according to the

LTD theorem. Thus, we can focus on its IR behaviour; renormalisation of UV divergences

will be considered later in section 5.

Collinear divergences are associated with an extended region supported in the inter-

section of light-cones, as shown in figure 2. At large loop momentum, the intersections

occur among forward light-cones and the collinear singularities cancel in the sum of dual

integrals. However, there are still collinear divergences originated in the compact region

defined by the intersection of forward and backward light-cones. Soft singularities arise at

q
(+)
i,0 = 0 (point-like solution), but the soft singularities of the integrand at q

(+)
i,0 = 0 lead

to divergences only if two other propagators — each one contributing with one power in

the infrared — are light-like separated from the ith propagator. In figure 2 this condition

is fulfilled only at q
(+)
1,0 = 0. Finally, a threshold singularity appears at the dual integral I2

through the intersection of the backward light-cone of GF (q3) with the forward light-cone

of GF (q2). The imaginary part of I2 is singular but this singularity can be removed by

using eq. (3.9). The singularity of the real part of I2 is integrable but will lead to instabil-

ities by a direct numerical computation. In that case, a contour deformation is employed

to achieve an stable numerical implementation [21–24].

Motivated by figure 2 and in order to isolate the IR divergences of the scalar three-point

function, we define the soft and collinear components of the dual integrals in well-defined

– 7 –
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Figure 2. Light-cones of the three-point function in the loop coordinates `µ =
√
s12/2 (ξ0, ξ⊥, ξz),

with ξ⊥ =
√
ξ2x + ξ2y ; two dimensions (left) and three-dimensions (middle). LTD is equivalent

to integrate along the forward-light cones (solid lines in the left plot). Backward light-cones are

represented by dashed lines. The intersection of light-cones leads to soft, collinear, and threshold

singularities in the loop three-momentum space (right plot), or to the cancellation of singularities

among dual contributions.

compact regions of the loop three-momentum, i.e.

I
(s)
1 = I1(ξ1,0 ≤ w) ,

I
(c)
1 = I1(w ≤ ξ1,0 ≤ 1 ; v1 ≤ 1/2) ,

I
(c)
2 = I2(ξ2,0 ≤ 1 + w ; v2 ≥ 1/2) , (3.12)

where 0 < w < 1 is a cut in the energy of the internal on-shell particle. The collinear

singularity of the dual integral I2 appears at v2 = 1 with ξ2,0 ∈ [0, 1], but I2 develops

also a threshold singularity at ξ2,0 = 1. For that reason we have imposed a finite w-cut

to include the threshold region in the definition of I
(c)
2 . The integral I

(s)
1 includes the

soft singularity of the dual integral I1 at ξ1,0 = 0, and the collinear singularities in the

neighbourhood of ξ1,0 = 0 at v1 = 0. The ε-poles present in the integral I
(c)
1 are due to

collinear singularities only. There is some arbitrariness in the definition of the integration

regions of these integrals. Provided that we include the soft and collinear singularities,

different definitions will differ only in the finite contributions. Indeed, we will redefine

them later with a better motivated physical target. These are, however, the simplest

choice for the current illustrative purpose. Analytic integration gives

I
(s)
1 = c̃Γ

w−2ε

ε2
µ2ε s−1−ε

12

sin(2πε)

2πε
,

I
(c)
1 = c̃Γ

1− w−2ε

2ε2
µ2ε s−1−ε

12

sin(2πε)

2πε
,

I
(c)
2 = −c̃Γ

(1 + w)1−2ε

2(1− 2ε)ε

(
1 +

4εΓ(1− 2ε)

Γ2(1− ε)

)
2F1

(
1, 1− 2ε, 2− 2ε;

s12(1 + w)

s12 + ı0

)
×µ2ε s−1−ε

12

sin(2πε)

2πε
. (3.13)
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Using Pfaff and shift identities, the hypergeometric function in I
(c)
2 can be written in the

physical region with w > 0 and s12 > 0. This leads to

I
(c)
2 = c̃Γ

µ2ε

4ε2
s−1−ε

12

(
1 +

4εΓ(1− 2ε)

Γ2(1− ε)

)
×
[
eı2πε − w−2ε

2F1

(
2ε, 2ε, 1 + 2ε;− 1

w

)
sin(2πε)

2πε

]
, (3.14)

with

2F1 (2ε, 2ε, 1 + 2ε; z) = 1 + 4ε2 Li2(z) +O(ε3) . (3.15)

As expected, the soft integral in eq. (3.13) contains double poles, while the collinear inte-

grals develop single poles only. Although each integral depends on the cut w, the poles of

the sum are independent of w and agree with the total divergences of the full integral, i.e.

L(1)(p1, p2,−p3) = IIR +O(ε0) with

IIR = I
(s)
1 + I

(c)
1 + I

(c)
2 =

cΓ

s12

(
−s12 − ı0

µ2

)−ε
×
[

1

ε2
+ log (2) log (w)− π2

3
− 2Li2

(
− 1

w

)
+ ıπlog (2)

]
+O(ε) . (3.16)

Outside the region that contains the IR poles, the sum of the dual integrals is finite,

although they are separately divergent. A suitable combination is required to obtain finite

results. So, we define the forward and the backward regions as those contained in vi ≤ 1/2

and vi ≥ 1/2, respectively. This separation does not have any physical meaning; it is just

convenient for the analytic computation. Explicitly, we define

I(f) = I1(ξ1,0 ≥ 1 ; v1 ≤ 1/2) + I2(v2 ≤ 1/2) + I3(v3 ≤ 1/2) (3.17)

=
cΓ

s12

∫ ∞
0
dξ0

∫ 1/2

0
dv

[
1

1 + ξ0

(
(1−v)−1 + 2 log

(
1 + ξ0

ξ0

)
δ(v)

)
+

(1− v)−1

1− ξ0 + ı0

]
+O(ε) ,

where we have performed a trivial change of the integration variables, i.e.

ξ1,0 = 1 + ξ0 , ξ2,0 = ξ3,0 = ξ0 , vi = v , (3.18)

and we have taken the limit ε → 0 at integrand level. Notice that each dual integrand is

still individually singular. For instance, I1 and I3 are divergent at v1 = 0 = v3 but their

sum is finite in this limit, although UV divergences survive in the sum. The divergent

high-energy behaviour of I1 + I3 is cancelled once we add the contribution of I2. These

cross-cancellations of singularities allow to perform the integral of the forward contribution

with ε = 0. The logarithmic terms in eq. (3.17) are originated from the fact that we are

using different coordinate systems for each dual integral. This produces a mismatch of the

integration measures that is of O(ε). Since the integral behaves as O(ε−1) in the collinear

limit, a non-vanishing finite contribution arises from the collinear region. Explicitly, the

expansion of v−1−ε by using eq. (B.5) leads to(
−1

ε
δ(v) +

(
1

v

)
C

+O(ε)

)(
(1 + ξ0)−2ε (1− v)−1 − ξ−2ε

0

)
= (1− v)−1 + 2 log

(
1 + ξ0

ξ0

)
δ(v) +O(ε) , (3.19)
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where we removed the C-distribution. These logarithms are avoidable by a proper

reparametrisation of the integration variables; we will return to this point in section 3.1.

From eq. (3.17), we obtain

I(f) =
cΓ

s12

[
π2

3
− ıπ log (2)

]
+O(ε) . (3.20)

In an analogous way, we can compute the finite contribution originated in the backward

region (vi ≥ 1/2), which is given by

I(b) = I1(ξ1,0 ≥ w ; v1 ≥ 1/2) + I2(ξ2,0 ≥ 1 + w ; v2 ≥ 1/2) + I3(v3 ≥ 1/2) (3.21)

=
cΓ

s12

∫ ∞
0
dξ0

∫ 1

1/2
dv

[
1

w + ξ0

(
v−1 + 2 log

(
w + ξ0

1 + w + ξ0

)
δ(1− v)

)
− v−1

1 + ξ0

]
+O(ε),

where we throw the +ı0 prescription because w > 0 excludes the threshold singularity

from the integration region. Also, to obtain eq. (3.21) starting from eq. (3.6), we used the

following change of variables

ξ1,0 = w + ξ0 , ξ2,0 = 1 + ξ0 + w , ξ3,0 = ξ0 , vi = v, (3.22)

and then we took the limit ε→ 0 at integrand level. Similarly to the forward integral, there

is a cancellation of collinear singularities among I1 and I2, which takes place at v1 = 1 = v2

in this case; thus I1 + I2 is IR-finite but it is still UV-divergent. To regularise the high-

energy behaviour, we need to add the contribution of I3. Again, notice that we have

introduced some logarithmic terms in eq. (3.21). These terms are due to the mismatch in

the collinear behaviour of I1 and I2 at O(ε). As we did for the forward case, we derived the

logarithmic corrections by expanding the collinear factor (1 − v)−1−ε and the integration

measure after the implementation of eq. (3.22); i.e.(
−1

ε
δ(1− v) +

(
1

1− v

)
C

+O(ε)

)(
(w + ξ0)−2ε v−1 − (1 + w + ξ0)−2ε

)
= v−1 + 2 log

(
w + ξ0

1 + w + ξ0

)
δ(1− v) +O(ε) , (3.23)

and, again, the C-distribution can be removed because the integrand is regular for v = 1.

So, the integral over the sum of the three dual integrands can be performed with ε = 0,

and we obtain

I(b) =
cΓ

s12

[
2Li2

(
− 1

w

)
− log (2) log (w)

]
+O(ε) . (3.24)

The sum of eq. (3.16), eq. (3.20) and eq. (3.24) leads to the correct full result up to O(ε)

L(1)(p1, p2,−p3) = IIR + I(b) + I(f) +O(ε) , (3.25)

which is independent of w. This was expected because w is a non-physical cut. It is

worth noting that only IIR contains the ε-poles and the remaining contributions have been

computed directly with ε = 0. Moreover, through the application of eqs. (3.19) and (3.23),

the integrand can easily be expressed as the ε → 0 limit of the original DREG expression

plus some logarithmic corrections which lead to the right result.
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3.1 Unifying the coordinate system

As a final remark, we point out that it is possible to avoid the introduction of the extra

logarithmic terms in I(f) and I(b). They are originated from the fact that each dual inte-

grand has been expressed in a different coordinate system and they approach the collinear

limit in a slightly different way at O(ε). The solution consists in using the same coordi-

nate system for all the dual integrals, i.e. we have to map exactly the loop three-momenta

qi. Although for analytic computations this leads to more complex integration limits, for

numerical applications it is indeed the natural choice for the implementation of this ap-

proach. For instance, for the forward integral I(f) the integration variables (ξ1,0, v1) must

be written in terms of (ξ3,0, v3). Notice that q3 = ` is set on-shell in I3, but not in I1

where q2
1 = 0. From eq. (3.4), the spatial components of the internal loop momenta are

parametrised according to

q1 =

√
s12

2
ξ1,0

(
2
√
v1(1− v1) e1,⊥, 1− 2v1

)
= q3 + p1 =

√
s12

2

(
ξ3,0 2

√
v3(1− v3) e3,⊥, ξ3,0(1− 2v3) + 1

)
, (3.26)

with q
(+)
1,0 =

√
(q3 + p1)2 − ı0 when q1 is on-shell, which leads to

ξ1,0 =
√

(1 + ξ3,0)2 − 4v3 ξ3,0 ,

v1 =
1

2

(
1− 1 + (1− 2v3) ξ3,0√

(1 + ξ3,0)2 − 4v3 ξ3,0

)
. (3.27)

With this change of variables, we find the following representation of the forward integral

with ε = 0,

I(f) =
cΓ

s12

{∫ 1/2

0
dv

∫ ∞
0

dξ0

[
v−1

(
(1− v)−1√

(1 + ξ0)2 − 4v ξ0

− 1

1 + ξ0

)
+

(1− v)−1

1− ξ0 + ı0

]
+

∫ 1/2

0
dv1

∫ 1/(1−2v1)

1
dξ1,0 ξ

−1
1,0 (v1(1− v1))−1

}
+O(ε) , (3.28)

which is free of the logarithmic contributions that appear in eq. (3.17), and leads to the same

result as in eq. (3.20). Notice that in eq. (3.28) we used v2 = v3 = v and ξ2,0 = ξ3,0 = ξ0.

A similar representation is available for the backward integral, where we must combine I1

and I2, by expressing (ξ1,0, v1) in terms of (ξ2,0, v2). Explicitly, we use the same change of

variables as in eq. (3.27), which leads to

I(b) =
cΓ

s12

∫ 1

1/2
dv

∫ ∞
0

dξ0

[
(1− v)−1

(v−1 θ
(√

(1 + ξ0)2 − 4v ξ0 − w
)

√
(1 + ξ0)2 − 4v ξ0

θ

(
ξ0 −

1

2v − 1

)
+
θ (ξ0 − 1− w)

1− ξ0 + ı0

)
− v−1

1 + ξ0

]
+O(ε) , (3.29)

where we also applied v2 = v3 = v and ξ2,0 = ξ3,0 = ξ0. The integration limits in eq. (3.29),

codified through the Heaviside theta functions, are more cumbersome than in eq. (3.21),

but the result of both expressions is the same, and is given by eq. (3.24).
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In summary, the IR singularities of loop integrals are restricted to a compact area

of the integration domain, and the finite remnants are expressible in terms of pure four-

dimensional functions, which implies that DREG could be avoided. Still, we need to keep

d 6= 4 to deal with IIR; in the following we will show how to overcome this issue to achieve

a fully four-dimensional implementation.

4 Unsubtraction of soft and collinear divergences

In section 3, we have illustrated in detail the application of LTD to a scalar one-loop

Feynman integral and we have isolated its infrared divergences in the function IIR (see

eq. (3.16)), which is obtained from a compact region of the loop three-momentum. In the

framework of LTD, a suitable mapping of external and loop momenta between virtual and

real corrections allows to cancel the IR singularities at the integrand level, such that a

full four-dimensional implementation is achieved without the necessity to introduce soft

and collinear subtraction terms [25]. We illustrate the method with a simplified toy scalar

example before affording a complete calculation in a realistic physical process in section 6.

We consider the one-loop virtual corrections to the cross-section that are proportional

to the scalar three-point function

σ
(1)
V =

1

2s12

∫
dΦ1→2 2 Re 〈M(0)|M(1)〉 = −σ(0) 2g2 s12 ReL(1)(p1, p2,−p3) , (4.1)

where

σ(0) =
g2

2s12

∫
dΦ1→2 , (4.2)

is the Born cross-section,
∫
dΦ1→2 is the integrated phase-space volume, given in eq. (B.2),

and g is a generic coupling.

On the other hand, it is necessary to include also the real radiation due to 1 → 3

processes. The momenta configuration is p3 → p′1 + p′2 + p′r, where we keep the same

incoming momentum as in the 1 → 2 contributions, where p3 → p1 + p2 with p2
3 = s12,

since we aim to obtain a local cancellation of singularities. The real radiation correction

to the cross-section is given by

σ
(1)
R =

1

2s12

∫
dΦ1→3 2Re 〈M(0)

2r |M
(0)
1r 〉 =

g4

2 s12

∫
dΦ1→3

2s12

s′1r s
′
2r

, (4.3)

with s′ir = (p′i + p′r)
2. The real corrections included in eq. (4.3) can be understood as

the interference of the two scattering amplitudes corresponding to the emission of the real

radiation from each of the outgoing particles. We do not take into account for the moment

the squares of these amplitudes, which are proportional to 1/s′2ir. They are topologically

related to self-energy diagrams and will be considered explicitly in section 6 for the physical

process γ∗ → qq̄(g). For the current illustrative purpose it is enough to consider this

interference.

Then, we split the three-body phase-space to isolate the different IR singular regions.

This strategy is a common practice in the context of subtraction methods [3, 4], because
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it allows to optimise the local cancellation of the collinear singularities at integrand level.

Since there are three particles in the final state and the incoming one is off-shell, it is enough

to separate the three-body phase-space into two pieces by making use of the identity

1 = θ(y′2r − y′1r) + θ(y′1r − y′2r) , (4.4)

which leads to the definitions

σ̃
(1)
R,i =

1

2s12

∫
dΦ1→3 2Re 〈M(0)

2r |M
(0)
1r 〉 θ(y

′
jr − y′ir) , i, j ∈ {1, 2} , (4.5)

where y′ir = s′ir/s12 are dimensionless variables. Analogously, we define the corresponding

dual contributions to the virtual cross-section as

σ̃
(1)
V,i =

1

2s12

∫
dΦ1→2 2Re 〈M(0)|M(1)

i 〉 θ(y
′
jr − y′ir) , (4.6)

with

〈M(0)|M(1)
i 〉 = −g4 s12 Ii , (4.7)

the dual components of the one-loop scattering amplitude according to the decomposition

suggested in eq. (3.2). So, we claim that

σ̃
(1)
i = σ̃

(1)
V,i + σ̃

(1)
R,i , (4.8)

with i ∈ {1, 2}, is finite in the limit ε → 0 and can be expressed using a purely four-

dimensional representation. It is worth appreciating that the dual integral I3 is not nec-

essary to cancel the IR singularities present in the real corrections. This behaviour was

expected from the analysis shown in section 3, explicitly from eqs. (3.13) and (3.16). The

dual integral I3 does not lead to collinear divergences that are not cancelled by the other

dual contributions, therefore it is not necessary to define the corresponding σ̃
(1)
3 . In fact, I3

will solely contribute to the definition of the IR finite virtual remnant, formerly described

in terms of the backward and forward integrals.

We now implement a mapping between the final-state momenta of the loop amplitudes

{p1, p2}, the loop three-momentum `, and the final-state momenta of the real amplitudes

{p′1, p′2, p′r}. Momentum conservation and on-shell constraints must be fulfilled by pi and

p′i, simultaneously. Hence, assuming q1 on-shell and q3 = q1 − p1 off-shell, we propose

p′µr = qµ1 , p′µ1 = pµ1 − q
µ
1 + α1 p

µ
2 ,

p′µ2 = (1− α1) pµ2 , α1 =
q2

3

2q3 · p2
, (4.9)

to perform the evaluation of the dual cross-section in eq. (4.8). This mapping has many

interesting properties, which deserve to be discussed. In first place, momentum conserva-

tion is automatically fulfilled as p′1 + p′2 + p′r = p1 + p2 , and all the final-state momenta

in eq. (4.9) are on-shell. Also, it is suitable to describe collinear configurations where

p1 ‖ q1, which are reached for α1 → 0; this is crucial to properly combine the divergent

regions of the loop and real contributions to the cross-section and achieve a fully local
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regularisation. Notice that although we are restricted to 1 → 2 and 1 → 3 kinematics,

the mapping in eq. (4.9) can easily be extended to processes with an arbitrary number of

external particles (see section 7).

The next step consists in using the parametrisation of qi and pi proposed in eq. (3.4),

together with the mapping in eq. (4.9), to rewrite the two-body kinematic invariants y′ij
in terms of the integration variables (ξ1,0, v1). Expressing the scalar products p′i · p′j with

both sets of variables, we find

y′1r =
v1 ξ1,0

1− (1− v1) ξ1,0
, y′2r =

(1− v1)(1− ξ1,0) ξ1,0

1− (1− v1) ξ1,0
, y′12 = 1− ξ1,0 . (4.10)

Since this mapping is optimised for the description of the collinear limit p1 ‖ q1, it must be

used in the regions of the two-body and three-body phase-space where y′1r < y′2r.
1 The lower

limit in the value of y′2r avoids to deal with p2 ‖ q1. Thus, a second mapping is necessary

to treat the collinear limit with y′2r → 0, that is isolated in the region corresponding to

y′2r < y′1r. With q2 on-shell and q1 = q2 − p2 off-shell, we define

p′µ2 = qµ2 , p′µr = pµ2 − q
µ
2 + α2 p

µ
1 ,

p′µ1 = (1− α2) pµ1 , α2 =
q2

1

2q1 · p1
, (4.11)

and the two-body invariants are given by

y′1r = 1− ξ2,0 , y′2r =
(1− v2) ξ2,0

1− v2 ξ2,0
, y′12 =

v2 (1− ξ2,0) ξ2,0

1− v2 ξ2,0
. (4.12)

By virtue of eq. (4.4), the complete three-body phase space for the real radiation can be

parametrised by applying eq. (4.9) and eq. (4.11); in fact, it is useful to define

θ(y′2r − y′1r) ≡ R1(ξ1,0, v1) = θ(1− 2v1) θ

(
1− 2v1

1− v1
− ξ1,0

)
, (4.13)

θ(y′1r − y′2r) ≡ R2(ξ2,0, v2) = θ

(
1

1 +
√

1− v2
− ξ2,0

)
, (4.14)

to parametrise the integration regions for σ̃
(1)
1 and σ̃

(1)
2 , respectively. A graphical represen-

tation of the integration regions defined by eqs. (4.13) and (4.14) is shown in figure 3.

Once the momenta are properly parametrised, we proceed to evaluate together the real

and virtual contributions at integrand level. For y′1r < y′2r, we obtain

σ̃
(1)
1 = σ̃

(1)
V,1 + σ̃

(1)
R,1 = σ(0) 2g2

∫
d[ξ1,0] d[v1]R1(ξ1,0, v1)

×ξ−1
1,0 (v1(1− v1))−1

[(
1− ξ1,0

1− (1− v1) ξ1,0

)−2ε

− 1

]
, (4.15)

1To be mathematically rigourous, the transformation proposed in eq. (4.10) is a diffeomorphism connect-

ing the physical three-body phase-space and its image in the integration domain of the dual contributions.

Thus, in principle, it would not be necessary to define a new mapping, since it covers the whole phase-space

in this simple example, although it is not really optimised for the collinear limit p2 ‖ q1.
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Figure 3. The dual integration regions in the loop three-momentum space.

whilst

σ̃
(1)
2 = σ̃

(1)
V,2 + σ̃

(1)
R,2 = σ(0) 2g2

∫
d[ξ2,0] d[v2]R2(ξ2,0, v2)

×(1− v2)−1

[
(1− ξ2,0)−2ε

(1− v2 ξ2,0)1−2ε
− 1

1− ξ2,0 + ı0
− ıπδ(1− ξ2,0)

]
, (4.16)

represents the analogous expression for y′2r < y′1r. The integrand in eq. (4.15) has the form

ξ−1−2ε
1,0 v−1−ε

1 f(ξ1,0, v1) , (4.17)

and the function f(ξ1,0, v1) vanishes in the soft and collinear regions (i.e. ξ1,0 = 0 and/or

v1 = 0); moreover, f(ξ1,0, v1) = O(ε) which implies that

σ̃
(1)
1 = O(ε). (4.18)

On the other hand, the integrand of σ̃
(1)
2 in eq. (4.16) behaves as (1 − v2)−1−εf(ξ2,0, v2),

and f(ξ2,0, v2) vanishes for v2 = 1. The delta function in eq. (4.16) cancels the imaginary

part of the I2 dual integral, which is given by eq. (3.9). But indeed the condition y′2r < y′1r
excludes the threshold singularity of I2 from the integration region with the exception of

the single point at (ξ2,0, v2) = (1, 1). This fact allows to calculate eq. (4.16) by removing

the +ı0 prescription and the delta function. We obtain

σ̃
(1)
2 = −σ(0) a

π2

6
+O(ε) , (4.19)

with a = g2/(4π)2. It is important to notice that this result can be reached following two

different paths. The first one consists in using DREG and integrating with d = 4 − 2ε;

once an analytic expression is obtained, we verify that no ε-poles are present and we take

the limit ε→ 0. On the other hand, we can consider directly the limit ε→ 0 at integrand

level; the expressions obtained are integrable and the results agree in both cases.
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After combining virtual and real corrections, we define the virtual remnant σ
(1)
V as the

sum of the three dual integrals excluding the regions of the loop three-momentum already

included in eq. (4.15) and eq. (4.16):

σ
(1)
V = σ(0) 2g2

∫
d[ξ0] d[v]

[
− (1−R1(ξ0, v))

v−1(1− v)−1√
(1 + ξ0)2 − 4v ξ0

− (1−R2(ξ0, v)) (1− v)−1

(
1

1− ξ0 + ı0
+ ıπδ(1− ξ0)

)
+

v−1

1 + ξ0

]
. (4.20)

This expression is analogous to the sum of the forward and backward contributions defined

in section 3, but does not require any unphysical cut w to deal properly with the threshold

singularity. In the previous expression, we have identified all the integration variables,

ξ0 = ξ2,0 = ξ3,0 and v = v2 = v3, while (ξ1,0, v1) are expressed in terms of (ξ3,0, v3) by

using the change of variables in eq. (3.27) to directly avoid the appearance of logarithmic

contributions from the expansion of the integration measure. The integration regions are

defined through

R1(ξ0, v) = θ(1− 2v1) θ

(
1− 2v1

1− v1
− ξ1,0

)∣∣∣∣
{ξ1,0,v1}→{ξ3,0,v3}={ξ0,v}

,

R2(ξ0, v) = θ

(
1

1 +
√

1− v
− ξ0

)
. (4.21)

The explicit expression for R1(ξ0, v) is, however, rather cumbersome, although this should

not be a problem in numerical computations. For the analytic integration, we use a clever

expansion of R1(ξ0, v) that exploits both reference systems;

1−R1(ξ0, v) = θ(1− 2v) + θ(ξ0 − 1) θ(2v − 1) + θ

(
ξ1,0 −

1− 2v1

1− v1

)
×
[
θ

(
1

1− 2v1
− ξ1,0

)
θ

(
2−
√

2

4
− v1

)

+θ (2− 4v1 − ξ1,0) θ

(
v1 −

2−
√

2

4

)
θ(1− 2v1)

]
. (4.22)

The first two terms in the right-hand side of eq. (4.22) contribute at large loop three-

momenta rendering the integral defined by eq. (4.20) finite in the UV. The next two terms

provide a finite contribution. The virtual remnant in eq. (4.20) is also IR finite, and

therefore it can be calculated with ε = 0. In particular, we get

σ
(1)
V = σ(0) a

π2

6
+O(ε) . (4.23)

The sum of all the contributions, eq. (4.18), eq. (4.19) and eq. (4.23), gives a total cross-

section of O(ε), in agreement with the result that would be obtained from the standard

calculations in DREG.
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5 Ultraviolet renormalisation

In the previous section we have shown how to avoid the introduction of subtraction counter-

terms to cancel soft and collinear singularities by a suitable mapping of the momenta

entering virtual and real corrections. In any practical computation in QFT, UV divergences

must also be taken into account. Another advantage of LTD is to enlighten the physical

aspects of renormalisation. In order to explain the proposed approach, we consider first

the simplest scalar two-point function, with massless internal lines. There is only one

external momenta, pµ, and the two-point function is free of IR singularities if the incoming

momentum is not light-like. Due to the fact that the virtuality of the incoming particle is

the unique physical scale involved in the problem, the integral vanishes if we set p2 = 0.

So, the non-trivial massless scalar two-point function requires p2 6= 0 and it is only UV

divergent. Labelling the internal momenta as q1 = `+ p and q2 = `, then we have

L(1)(p,−p) =

∫
`

2∏
i=1

GF (qi) = cΓ
µ2ε

ε (1− 2ε)

(
−p2 − ı0

)−ε
, (5.1)

as shown in the literature.2 The LTD representation of the scalar two-point function reads

L(1)(p,−p) =

2∑
i=1

Ii , (5.2)

with the dual integrals

I1 = −
∫
`

δ̃ (q1)

−2 q1 · p+ p2 + ı0
,

I2 = −
∫
`

δ̃ (q2)

2 q2 · p+ p2 − ı0
, (5.3)

where for simplicity we consider p0 > 0 and p2 > 0 (i.e. the incoming particle has positive

energy and we work in the TL region). Following the discussion presented in section 3, we

parametrise the momenta using

pµ = (p0,0) ,

qµi = p0 ξi,0

(
1, 2
√
vi(1− vi) ei,⊥, 1− 2vi

)
, (5.4)

which is equivalent to settle in the rest frame of the incoming particle. With this choice,

the dual integrals are rewritten as

I1 = −
∫

d[ξ1,0] d[v1]
4ξ1,0

1− 2ξ1,0 + ı0
, (5.5)

I2 = −
∫

d[ξ2,0] d[v2]
4ξ2,0

1 + 2ξ2,0
, (5.6)

2For instance, see refs. [14, 54, 55].
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where we follow the definition of the d-dimensional integration measure given in eq. (3.7);

the only difference is that we must set (2p0)2 = 4p2 instead of s12 as the normalisation

scale of the system:

d[ξi,0] =
(4π)ε−2

Γ(1− ε)

(
4p2

µ2

)−ε
ξ−2ε
i,0 dξi,0 . (5.7)

The integration in ξi,0 and vi can be performed analytically, resulting in

I1 =
c̃Γ

2ε (1− 2ε)

(
p2

µ2

)−ε
eı2πε , (5.8)

I2 =
c̃Γ

2ε (1− 2ε)

(
p2

µ2

)−ε
. (5.9)

The sum of both contributions gives the standard DREG result in eq. (5.1). The imaginary

part of the scalar two-point function is calculable as

ı Im
[
L(1)(p,−p)

]
= ı Im I1 =

1

2

∫
`
δ̃ (q1) δ̃ (−q2) = ı π

∫
δ̃ (q1) θ(p0 − q1,0) δ(p2 − 2q1 · p)

= ı
c̃Γ

2ε (1− 2ε)

(
p2

µ2

)−ε
sin(2πε) , (5.10)

which agrees with the result directly obtained from eq. (5.1). This imaginary component

is associated with I1 and it is due to the presence of a threshold singularity. This threshold

behaviour can graphically be explained from figure 4 (left); the forward light-cone associ-

ated with I1 intersects only once the backward region of the other light-cone, and it is the

only dual integral which requires to keep explicitly the +ı0 prescription in eq. (5.5) .

In order to build a suitable local UV counter-term of the two point-function, we follow

the ideas presented in ref. [36] and we consider

Icnt
UV =

∫
`

1(
q2

UV − µ2
UV + ı0

)2 , (5.11)

where µUV is an arbitrary energy scale, and qUV = ` + kUV with kUV an arbitrary four-

momentum. Notice that the counter-term is expressed as a Feynman integral using the

customary +ı0 prescription. We should now construct the corresponding dual representa-

tion and combine it with eqs. (5.8) and (5.9). The counter-term in eq. (5.11) exhibits a

double pole in the complex plane of the loop energy component which requires to apply the

extended version of the LTD theorem [17]. There are two possible paths to follow: either

to compute the residue at the relevant higher-order pole and use the Cauchy’s residue the-

orem to perform the `0 integral, or to apply integration-by-parts (IBP) identities to rewrite

eq. (5.11) in terms of a massive tadpole.

Let’s start with the first approach. The residue of a function f(z) at a multiple pole

is given by

Res (f, z0) =
1

(n− 1)!

[
∂n−1

∂zn−1
((z − z0)n f(z))

]
z=z0

, (5.12)
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Figure 4. Light-cones of the two-point function in the loop coordinates `µ = p0 (ξ0, ξ⊥, ξz) for a

time-like, p2 > 0 (left), and a light-like, p2 = 0 (right), configuration. The internal momenta are

q1 = `+p and q2 = `. In the time-like case, a threshold singularity appears when the backward light-

cone (dashed) of GF (q2) intersects with the forward light-cone (solid) of GF (q1). In the light-like

case, the IR singularities are restricted to the compact region ξ1,0 ≤ 1.

with n the multiplicity of the pole at z0. The location of the double pole of the UV

propagator in eq. (5.11) is obtained from the on-shell condition, i.e.

G−1
F (qUV) = q2

UV − µ2
UV + ı0 = 0 ⇒ q

(±)
UV,0 = ±

√
q2

UV + µ2
UV − ı0 , (5.13)

where we just keep the solution q
(+)
UV,0 because it lies in the lower part of the complex plane

and describes a positive-energy particle. The calculation of the residue gives

Res
(

(GF (qUV))2 , q
(+)
UV,0

)
= − 1

4(q
(+)
UV,0)3

, (5.14)

and

Icnt
UV =

∫
`

δ̃ (qUV)

2
(
q

(+)
UV,0

)2 (5.15)

is a possible dual representation of the UV counter-term.

On the other hand, we can apply IBP to lower the power of the propagator, and then

use LTD in its usual form. It is straightforward to obtain

Icnt
UV =

1− ε
µ2

UV

∫
`
GF (qUV) =

ε− 1

µ2
UV

∫
`
δ̃ (qUV) . (5.16)

Both eq. (5.15) and eq. (5.16) are equivalent dual representations of the UV counter-term

in eq. (5.11). If we perform the change of variables ξUV =
√

q2
UV/p0, mUV = µUV/p0, the
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UV counter-term gets either of the two following dual forms:

Icnt
UV =

∫
d[ξUV] d[vUV]

2ξ2
UV(

ξ2
UV +m2

UV

)3/2
=
ε− 1

m2
UV

∫
d[ξUV] d[vUV]

4ξ2
UV(

ξ2
UV +m2

UV

)1/2 , (5.17)

which corresponds to the explicit expressions for eq. (5.15) and eq. (5.16), respectively. We

have dropped the +ı0 prescription because it is not necessary. After explicit computation,

both representations in eq. (5.17) lead to the same result:

Icnt
UV =

S̃ε
(4π)2

1

ε

(
µ2

UV

µ2

)−ε
=
cΓ

ε

(
µ2

UV

µ2

)−ε
+O(ε2) , (5.18)

which successfully reproduce the single ε-pole present in the scalar two-point function. The

prefactor3 is defined as S̃ε = (4π)εΓ(1 + ε).

The next step consists in combining a dual representation of the UV counter-term with

the dual integrals I1 and I2. So, we define the renormalised scalar two-point function as

L(1,R)(p,−p) = L(1)(p,−p)− Icnt
UV

= −4

∫
d[ξ] d[v]

[
ξ

1− 2ξ + ı0
+

ξ

1 + 2ξ
+

ξ2

2
(
ξ2 +m2

UV

)3/2
]
, (5.19)

with ξ = ξi,0 = ξUV and v = vi = vUV, that verifies

L(1,R)(p,−p) =
1

(4π)2

[
−log

(
− p2

µ2
UV

− ı0
)

+ 2

]
+O(ε) , (5.20)

which is free of ε-poles. The integrand of eq. (5.19) is integrable in the limit ε → 0, and

the computation can be fully performed with ε = 0. So, we succeeded in finding a purely

four-dimensional representation of the renormalised two-point function. Consistently, the

integration and the limit ε→ 0 commute.

5.1 Scaleless two-point function

As mentioned before, if we consider p2 = 0 then L(1)(p,−p) = 0 since it does not contain

any scale. From a physical point of view, this implies that self-energy corrections to on-

shell massless particles are zero. However, a vanishing integral in DREG does not imply

a vanishing integrand. This is particularly an issue in LTD where the aim is to cancel

singularities locally, and therefore it is relevant to properly characterise the IR and the

UV behaviour separately. So, let’s consider the LTD representation of the massless two-

point function in the light-like case, i.e. p2 = 0. We start from eq. (5.3), and use the

parametrisation

pµ = p0 (1,0⊥, 1) , (5.21)

3We distinguish S̃ε from the usual MS scheme factor SMS
ε = (4π)ε exp(−ε γE) or Sε = (4π)ε/Γ(1− ε) as

used in ref. [10]. At NLO all these definitions lead to the same expressions. At NNLO, they lead to slightly

different bookkeeping of the IR and UV poles at intermediate steps, but physical cross-sections of infrared

safe observables are the same.

– 20 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
0

for the incoming particle, whilst qµi is given by eq. (5.4). Then, the dual contributions

become

I1 =

∫
d[ξ1,0] d[v1] v−1

1 ,

I2 = −
∫

d[ξ2,0] d[v2] v−1
2 , (5.22)

whose sum is equal to zero because they have opposite sign. In the context of DREG, the

scaleless scalar two-point function develops both IR and UV divergences that cancel each

other because the parameter εIR regularising the IR singularities is identified with εUV,

which regulates the UV divergences. The important fact is that we can exploit LTD to

separate them, proceeding analogously as we did in section 3. Analysing the integration

domain of the dual contributions, and the relative position of the light-cone as shown in

figure 4 (right), we realise that the IR singularity is associated with I1, because its forward

light-cone overlaps with the backward light-cone of GF (q2) in the region ξ1,0 ≤ 1. Thus,

we define

L
(1)
IR (p,−p)

∣∣∣
p2=0

= I1(ξ1,0 ≤ 1) = − c̃Γ

ε(1− 2ε)

(
4p2

0

µ2

)−ε
sin(2πε)

2πε
, (5.23)

which contains a single ε-pole. Again, as we found for the massless three-point function,

the IR singularities are confined in a compact region of the loop three-momentum space.

Outside this region, the remnant is given by

L
(1)
UV(p,−p)

∣∣∣
p2=0

= I1(ξ1,0 > 1) + I2 =
c̃Γ

ε(1− 2ε)

(
4p2

0

µ2

)−ε
sin(2πε)

2πε
, (5.24)

which is renormalised with the UV counter-term defined in eq. (5.15). It is worth not-

ing that LTD leads naturally to this separation of IR/UV regions, which is crucial to

achieve a local cancellation of singularities in the computation of physical observables at

higher-orders.

5.2 Renormalisation of scattering amplitudes and physical interpretation

In general, the UV counter-terms of scattering amplitudes are derived by expanding the

internal propagators around the UV propagator [36]. For a single propagator:

1

q2
i −m2

i + ı0
=

1

q2
UV − µ2

UV + ı0
(5.25)

×
[
1−

2qUV · ki,UV + k2
i,UV −m2

i + µ2
UV

q2
UV − µ2

UV + ı0
+

(2qUV · ki,UV)2

(q2
UV − µ2

UV + ı0)2

]
+O

(
(q2

UV)−5/2
)
,

with ki,UV = qi− qUV, and similarly with numerators. In order to improve the convergence

in numerical implementations, the authors of ref. [37] propose to expand even to higher-

powers of GF (qUV)−1.

Once the desired UV expansion is obtained, we shall derive the corresponding dual

representation following the procedure described before. To obtain a suitable LTD repre-

sentation of the UV counter-terms, it is necessary to deal with multiple-poles and non-trivial
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Figure 5. On-shell hyperboloids of the UV counter-term. The forward and backward on-shell

hyperboloids are separated by a distance 2µUV/Q, where Q is the characteristic hard scale.

numerators depending on qUV. The following identities are enough to construct most of

the UV counter-terms:∫
`

(GF (qUV))n =
(−1)n (2n− 2)!

((n− 1)!)2

∫
`

δ̃ (qUV)(
2q

(+)
UV,0

)2n−2 ,

∫
`
qUV,0 (GF (qUV))n = 0 ,∫

`
q2

UV,0 (GF (qUV))n =
(−1)n−1 (2n− 4)!

2 (n− 1)! (n− 2)!

∫
`

δ̃ (qUV)(
2q

(+)
UV,0

)2n−4 . (5.26)

These expressions have been obtained from eq. (5.12). Alternatively, we can apply IBP to

obtain equivalent dual representations. Explicit examples will be presented in section 6.

Only the genuine UV singularities of the original scattering amplitudes need to be sub-

tracted with this procedure. The spurious UV singularities of the individual dual integrals

are cancelled in the sum of all the dual contributions.

To conclude this section, let us remind about the physical interpretation of the arbitrary

energy scale µUV introduced in the renormalisation procedure [25]. This arbitrary scale can

be interpreted as a renormalisation scale, since the UV counter-term affects the behaviour

of the integrand only in the high-energy region. In fact, as seen in figure 5, its dual

representation only contributes for loop energies larger than kUV,0 + µUV, although it is

unconstrained in the loop three-momentum. So, we should choose µUV ≥ O(Q), with Q the

physical hard scale that determines the size of the compact region in the loop momentum

space where the IR and threshold singularities are located. However, the intersection of the

integration domains of the dual integrands gives rise to singularities, thus we could improve

the UV cancellations if we avoid those intersections. In other terms, we must choose µUV in

such a way that the on-shell hyperboloids of the UV propagator do not intersect with any

of the on-shell hyperboloids of the original integral. Since the UV forward and backward
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Figure 6. Momentum configuration and Feynman diagrams associated with the process γ∗ →
qq̄(g), up to O(ααS). Notice that we also consider self-energy corrections to the on-shell outgoing

particles, even if their total contribution is zero.

on-shell hyperboloids are separated by a distance 2µUV, it is possible to give a physical

motivation for an optimal minimal choice of µUV and kUV. If we take µUV = Q/2, and

kUV in the centre of the physical compact region, these conditions are fulfilled in a minimal

way, i.e. we naturally avoid intersections with the physical on-shell hyperboloids.

6 NLO corrections to γ∗ → qq̄(g)

In this section, we discuss in detail the computation of NLO QCD corrections to the total

cross-section for the process γ∗ → qq̄(g) by using the LTD approach. We emphasise that

it constitutes the first realistic physical application of this method, as already anticipated

in ref. [27].

The computation is done in the context of QCD+QED with massless quarks, up to

O(ααS). The requested Feynman diagrams are shown in figure 6. Starting at the LO,

we have

|M(0)
qq̄ |2 = 2CA (e eq)

2 s12 (1− ε) , (6.1)

for γ∗(p12)→ q(p1)+ q̄(p2) with p12 = p1 +p2 and p2
12 = s12 > 0, where e and eq denote the

electromagnetic coupling and the quark electric charge, respectively.4 The corresponding

Born level total cross-section is given by

σ(0) =
1

2s12

∫
dΦ1→2 |M(0)

qq̄ |2 =
1

2
α e2

q CA +O(ε) , (6.2)

where the two-body phase-space factor is shown in eq. (B.2) (appendix B).

Let’s centre in the NLO contributions. The real corrections from the radiative process

γ∗(p12)→ q(p′1) + q̄(p′2) + g(p′r) are

σ
(1)
R = σ(0) (4π)ε−2

Γ(1− ε)
g2

SCF

(
s12

µ2

)−ε ∫ 1

0
dy′1r

∫ 1−y′1r

0
dy′2r (y′1r y

′
2r y
′
12)−ε

×
[
4

(
y′12

y′1r y
′
2r

− ε
)

+ 2(1− ε)
(
y′2r
y′1r

+
y′1r
y′2r

)]
= σ(0) cΓ g

2
SCF

(
s12

µ2

)−ε 4(2− 2ε+ ε2) Γ(2− 2ε)

ε2 Γ(3− 3ε) Γ(1 + ε)
, (6.3)

4As usual, the squared matrix elements are averaged over the number of spin degrees of freedom of the

incoming particles, which is taken to be 2(1− ε) for the photon. In any case, we normalise the NLO results

by the LO contribution.
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where the virtuality of the photon is s12, the final-state momenta are denoted primed

to distinguish them from the Born level kinematics, and y′ij = 2 p′i · p′j/s12. To obtain

the expressions in eq. (6.3) we use the expansion of the three-body phase-space shown in

eq. (B.4). If we expand this result, we find

σ
(1)
R = σ(0) cΓ g

2
SCF

(
s12

µ2

)−ε [ 4

ε2
+

6

ε
+ 19− 2π2 +O(ε)

]
, (6.4)

which contains both double and single ε-poles, associated with soft and collinear singu-

larities, respectively. On the other hand, the virtual contribution is generated by the

interference of the one-loop vertex correction with the Born amplitude, which is given by

〈M(0)
qq̄ |M

(1)
qq̄ 〉 = −|M(0)

qq̄ |2
g2

SCF
4 s12 (1− ε)

∫
`

(
3∏
i=1

GF (qi)

)
×Tr (p/1γ

ν1q/3γ
µ1q/2γ

ν2p/2γ
µ2) dν1ν2(q1) dµ1µ2(p12) , (6.5)

with dν1ν2(p) the gluon (or photon) polarisation tensor. In order to obtain this expression,

the internal momenta are defined as q1 = `+p1, q2 = `+p12 and q3 = `, and are considered

as in the scalar case discussed in section 4. In the Feynman gauge, the expression in eq. (6.5)

takes the form

〈M(0)
qq̄ |M

(1)
qq̄ 〉 = g2

SCF |M
(0)
qq̄ |2

4

s12

∫
`

(
3∏
i=1

GF (qi)

)
×
[
(2 + ε)(q2 · p1)(q3 · p2)− ε

(
(q2 · p2)(q3 · p1) +

s12

2
(q2 · q3)

)]
, (6.6)

and leads to the following dual contributions

〈M(0)
qq̄ |M

(1)
qq̄,1〉=−2 g2

SCF |M
(0)
qq̄ |2

∫
d[ξ1,0] d[v1]

(
ξ−1

1,0 v
−1
1 + 1

) (
(1− v1)−1 − ξ1,0

)
,

〈M(0)
qq̄ |M

(1)
qq̄,2〉=−2 g2

SCF |M
(0)
qq̄ |2

∫
d[ξ2,0] d[v2]

ξ2,0

1− ξ2,0 + ı0

(
v2 ((1− v2)−1 − ξ2,0)− ε

)
,

〈M(0)
qq̄ |M

(1)
qq̄,3〉=−2 g2

SCF |M
(0)
qq̄ |2

∫
d[ξ3,0] d[v3]

ξ3,0

1 + ξ3,0

(
(1− v3) (v−1

3 + ξ3,0)− ε
)
, (6.7)

with |M(1)
qq̄ 〉 =

∑
|M(1)

qq̄,i〉. The individual dual integrals in eq. (6.7) contain up to quadratic

UV divergences, although the naive power counting in the original loop integral in eq. (6.5)

leads to a logarithmic behaviour in the UV. The quadratic UV divergences cancel in the

sum of all the dual integrals, while the linear UV divergences disappear after integration

over the polar angle. Applying the change of variables from eq. (3.27) in the first dual

contribution, however, produces the cancellation of the linear UV divergences also at the

integrand level. As expected, only the logarithmic UV divergences remain in the sum of

the dual contributions. Performing the explicit integration over the loop variables leads to

〈M(0)
qq̄ |M

(1)
qq̄,1〉 = 0 ,

〈M(0)
qq̄ |M

(1)
qq̄,2〉 = |M(0)

qq̄ |2 c̃Γ g
2
SCF

(
s12

µ2

)−ε 1

ε2

(
ε

2
− 1

1− 2ε

)
eı2πε ,

〈M(0)
qq̄ |M

(1)
qq̄,3〉 = |M(0)

qq̄ |2 c̃Γ g
2
SCF

(
s12

µ2

)−ε 1

ε2

(
ε

2
− 1

1− 2ε

)
. (6.8)

– 24 –



J
H
E
P
0
8
(
2
0
1
6
)
1
6
0

Putting together the three dual terms, we obtain

σ
(1)
V = σ(0) cΓ g

2
SCF

(
s12

µ2

)−ε 2

ε2

(
ε− 2

1− 2ε

)
cos(πε)

= σ(0) cΓ g
2
SCF

(
s12

µ2

)−ε [
− 4

ε2
− 6

ε
− 16 + 2π2 +O(ε)

]
, (6.9)

i.e., we recover the virtual contribution to the total cross-section at NLO. Notice that it was

unnecessary to introduce any tensor reduction; Gram determinants are naturally avoided in

LTD, and therefore also are the spurious singularities that the tensor reduction introduces

leading to numerical instabilities in the integration over the phase-space. Finally, if we sum

the contributions from eq. (6.3) and eq. (6.9), we obtain

σ = σ(0)
(

1 + 3CF
αS

4π
+O(α2

S)
)
, (6.10)

which agrees with the well-known result available in the literature. The ε-poles cancel

between real and virtual contributions (as expected from the KLN theorem), so we can

safely take the limit ε→ 0 after integration.

It is the purpose of this section to show that ε → 0 can be considered also before

integration, once a proper combination of real and virtual terms is done. In the context of

LTD, we shall also consider carefully the contributions introduced by self-energy diagrams.

On-shell massless quarks do not introduce further corrections to the total cross-section

in eq. (6.10) due to the renormalisation of the wave function because IR and UV divergences

are treated equally in DREG. In the on-shell scheme the wave function renormalisation

constant contains both IR and UV divergences, but they cancel each other, which justifies

the exclusion of the corresponding Feynman diagrams when carrying out the computation

within the traditional approach.

In order to build a complete LTD representation of the virtual contributions, it is

required to include the renormalised self-energy corrections to the external particles and

properly disentangle IR/UV singularities at integrand level. This step is crucial to achieve

a dual representation with a fully local cancellation of singularities, so it can be integrated

in four-dimensions. The quark and antiquark self-energies at one-loop are given by

−ıΣ(p1) = ı g2
SCF

∫
`

( ∏
i=1,3

GF (qi)

)
γµ(−q/3 +m)γν dµν(q1) ,

−ıΣ(−p2) = ı g2
SCF

∫
`

( ∏
i=1,2

GF (qi)

)
γµ(−q/2 +m)γν dµν(q1) , (6.11)

with Σ(pi) = Σ2 p/i − Σ1m. In these expressions, we keep the same internal momenta qi
that were used to define the vertex corrections in eq. (6.5). From the usual renormalisation

procedure, the self-energy contribution is related with the renormalisation factor Z2 =

1 + ∆Z2. Applying on-shell renormalisation conditions to the quark and antiquark self-
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energies in the Feynman gauge, we obtain the following contributions

〈M(0)
qq̄ |Σ(p1)〉 = −2(1− ε) g2

SCF |M
(0)
qq̄ |2

∫
`

( ∏
i=1,3

GF (qi)

) (
1 +

q3 · p2

p1 · p2

)
, (6.12)

〈M(0)
qq̄ |Σ(p2)〉 = −2(1− ε) g2

SCF |M
(0)
qq̄ |2

∫
`

( ∏
i=1,2

GF (qi)

) (
1− q2 · p1

p1 · p2

)
. (6.13)

Formally, these contributions vanish in DREG, but they feature a non-trivial IR and UV

behaviour at the integrand level that we need to make explicit in order to have a local can-

cellation of all the singularities with those present in the real corrections. Applying LTD to

the loop integrals given in eqs. (6.12) and (6.13), the corresponding dual representations are

〈M(0)
qq̄ |Σ(p1)〉 = −2(1− ε) g2

SCF |M
(0)
qq̄ |2

[ ∫
d[ξ1,0] d[v1] v−1

1 (1− v1) ξ1,0

−
∫
d[ξ3,0] d[v3] v−1

3 (1 + (1− v3) ξ3,0)

]
, (6.14)

〈M(0)
qq̄ |Σ(p2)〉 = −2(1− ε) g2

SCF |M
(0)
qq̄ |2

[ ∫
d[ξ1,0] d[v1] v1 (1− v1)−1 ξ1,0

+

∫
d[ξ2,0] d[v2] (1− v2)−1 (1− v2 ξ2,0)

]
, (6.15)

where we also kept explicitly the integration variables associated with each cut.

The UV divergences of the wave function cancel exactly the UV divergences of the

vertex corrections, because conserved currents or partially conserved currents, as the vec-

tor and axial ones, do not get renormalised. To achieve a local cancellation of the UV

divergences, it is relevant to note that the vertex corrections diverge logarithmically in the

UV, while the expressions in eqs. (6.12) and (6.13) behave linearly in the UV. However,

the linear UV divergence cancels upon angular integration. Therefore, a subtraction UV

counter-term is needed to cancel locally also the linear singularities. Assuming kUV = 0

(namely qUV = `) and following the discussion of section 5, we define

〈M(0)
qq̄ |ΣUV(p1)〉 = −2 (1− ε) g2

SCF |M
(0)
qq̄ |2

∫
`

(GF (qUV))2

(
1 +

qUV · p2

p1 · p2

)
×
[
1−GF (qUV)(2 qUV · p1 + µ2

UV)
]
, (6.16)

whose dual representation is given by

〈M(0)
qq̄ |ΣUV(p1)〉 = −2(1− ε) g2

SCF |M
(0)
qq̄ |2 (6.17)

×
∫
`

δ̃ (qUV)

2
(
q

(+)
UV,0

)2

[(
1− qUV · p2

p1 · p2

)(
1−

3 (2 qUV · p1 − µ2
UV)

4
(
q

(+)
UV,0

)2

)
− 1

4

]

= −2(1− ε) g2
SCF |M

(0)
qq̄ |2

∫
d[ξUV] d[vUV]

ξ2
UV

(ξ2
UV +m2

UV)3/2

×

[(
2 + ξUV (1− 2vUV)

)(
1−

3
(
2 ξUV (1− 2vUV)−m2

UV

)
4 (ξ2

UV +m2
UV)

)
− 1

2

]
,
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with mUV = 2µUV/
√
s12. Notice that the term proportional to (1 − 2vUV) integrates to

zero and cancels the linear UV singularity. The integration of eq. (6.17) leads to

〈M(0)
qq̄ |ΣUV(p1)〉 = −S̃ε

αS

4π
CF |M(0)

qq̄ |2
(
µ2

UV

µ2

)−ε
1

ε
+O(ε) . (6.18)

Consequently, 〈M(0)
qq̄ |Σ(p1) − ΣUV(p1)〉 develops IR singularities only. The same

counter-term cancels the UV divergence of the antiquark leg, i.e. 〈M(0)
qq̄ |ΣUV(p2)〉 =

〈M(0)
qq̄ |ΣUV(p1)〉.
Similarly, it is necessary to remove the UV divergences from the vertex correction in-

cluded in |M(1)
qq̄ 〉. In fact, working in the Feynman gauge, we use the following counter-term

〈M(0)
qq̄ |M

(1)
qq̄,UV〉 = g2

SCF |M
(0)
qq̄ |2

∫
d[ξUV] d[vUV]

×
ξ2

UV

(
4(1− 3vUV(1− vUV)− ε) ξ2

UV + (7− 4ε)m2
UV

)
(ξ2

UV +m2
UV)5/2

, (6.19)

where the subleading terms have been fixed such that only the pole is subtracted, i.e.

〈M(0)
qq̄ |M

(1)
qq̄,UV〉 = S̃ε

αS

4π
CF |M(0)

qq̄ |2
(
µ2

UV

µ2

)−ε
1

ε
. (6.20)

The crucial observation here is that eq. (6.18) and eq. (6.20) share the same divergent

structure, which allows to cancel completely the UV divergences.

With all these ingredients, we are able to define a four-dimensional representation of

the total cross-section at NLO, with a local cancellation of the IR divergences of the loop

and the real corrections. In first place, the UV renormalised virtual cross-section is given by

σ
(1,R)
V =

1

2s12

∫
dΦ1→2 2Re〈M(0)

qq̄ |M
(1,R)
qq̄ 〉 , (6.21)

withM(1,R)
qq̄ =M(1)

qq̄ −M
(1)
qq̄,UV, which also includes the self-energy corrections for simplicity.

The renormalised virtual cross-section σ
(1,R)
V contains only IR singularities at the integrand

level, and the UV counter-terms involve a non-trivial integrand level cancellation of UV

singularities that must be taken into account in order to find a proper four-dimensional

representation of the total cross-section. For this reason, we start by splitting σ
(1,R)
V ac-

cording to

σ
(1,R)
V = σ

(1)
V − σ

(1,UV)
V , (6.22)

where we define

σ
(1)
V =

1

2s12

∫
dΦ1→2 2Re〈M(0)

qq̄ |M
(1)
qq̄ 〉 , (6.23)

σ
(1,UV)
V =

1

2s12

∫
dΦ1→2 2Re〈M(0)

qq̄ |M
(1)
qq̄,UV〉 , (6.24)

as the original virtual terms (including self-energies) and the UV counter-terms, respec-

tively. From eq. (6.23), we collect all the dual terms arising when either of the internal
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momenta q1 or q2 are set on-shell, and restrict the loop integration by the dual mapping

conditions defined in eq. (4.13) and eq. (4.14), respectively. This leads us to define the

virtual dual contributions to the cross-section as

σ̃
(1)
V,1 = −σ(0) g2

SCF

∫
d[ξ1,0] d[v1]R1(ξ1,0, v1)

[
4
(
ξ−1

1,0 v
−1
1 + 1

) (
(1− v1)−1 − ξ1,0

)
+2(1− ε) ξ1,0

(
v−1

1 (1− v1) + v1(1− v1)−1
) ]

,

σ̃
(1)
V,2 = −σ(0) g2

SCF

∫
d[ξ2,0] d[v2]R2(ξ2,0, v2)

[
4ξ2,0

1− ξ2,0

(
v2((1− v2)−1 − ξ2,0)− ε

)
+2(1− ε) (1− v2)−1(1− v2 ξ2,0)

]
, (6.25)

together with the dual remnants

σ̄
(1)
V,1 = −σ(0) g2

SCF

∫
d[ξ1,0] d[v1] (1−R1(ξ1,0, v1))

[
4
(
ξ−1

1,0 v
−1
1 + 1

) (
(1− v1)−1 − ξ1,0

)
+2(1− ε) ξ1,0

(
v−1

1 (1− v1) + v1(1− v1)−1
) ]

,

σ̄
(1)
V,2 = −σ(0) g2

SCF

∫
d[ξ2,0] d[v2] (1−R2(ξ2,0, v2))

[
4 ξ2,0

(
v2((1− v2)−1 − ξ2,0)− ε

)
×
(

1

1− ξ2,0 + ı0
+ ıπδ(1− ξ2,0)

)
+ 2(1− ε) (1− v2)−1(1− v2 ξ2,0)

]
,

σ
(1)
V,3 = −σ(0) g2

SCF

∫
d[ξ3,0] d[v3]

[
4 ξ3,0

1 + ξ3,0

(
(1− v3)(v−1

3 + ξ3,0)− ε
)

−2(1− ε) v−1
3 (1 + (1− v3) ξ3,0)

]
, (6.26)

which fulfill

σ
(1)
V =

∑
i=1,2

(σ̃
(1)
V,i + σ̄

(1)
V,i) + σ

(1)
V,3. (6.27)

Finally, the UV cross-section is given by

σ
(1,UV)
V = σ(0) g2

SCF

∫
d[ξUV] d[vUV]

[
(1− ε) (1− 2vUV) ξ3

UV (12− 7m2
UV − 4ξ2

UV)

(ξ2
UV +m2

UV)5/2

+
2 ξ2

UV((1 + 2ε)m2
UV + 4ξ2

UV(1− ε− 3(2− ε)vUV(1− vUV)))

(ξ2
UV +m2

UV)5/2

]
. (6.28)

Following the discussion presented in section 4, we also separate the real three-body

phase-space to isolate the different collinear configurations; this motivates us to introduce

σ̃
(1)
R,i =

1

2s12

∫
dΦ1→3 |M(0)

qq̄g|2 θ(y′jr − y′ir) i, j ∈ {1, 2} , i 6= j , (6.29)
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that are analogous to eq. (4.5) for the toy-model previously analysed and fulfil
∑

i σ̃
(1)
R,i =

σ
(1)
R . Explicitly,

σ̃
(1)
R,1 = σ(0) g2

SCF

∫
d[ξ1,0]d[v1]R1(ξ1,0, v1)

2(1− ξ1,0)−2ε

(1− (1− v1) ξ1,0)−2ε

×(v1(1− v1))−1

[
(1− ξ1,0)2 +

(
(1− ξ1,0)2 (1− v1) + v1

)2
ξ1,0 (1− (1− v1) ξ1,0)2

− ε ξ1,0

]
,

σ̃
(1)
R,2 = σ(0) g2

SCF

∫
d[ξ2,0]d[v2] R2(ξ2,0, v2)

2(1− ξ2,0)−2ε

(1− v2 ξ2,0)1−2ε

×(1− v2)−1

[
(1− ξ2,0)2 − ε

(
(1− ξ2,0)2 v2 + 1− v2

)2
(1− v2 ξ2,0)2

+ ξ2
2,0

]
, (6.30)

which are obtained by applying the mappings defined in eqs. (4.9)–(4.12) to eq. (6.3),

respectively. Since the total cross-section is given by

σ(1) = σ
(1,R)
V + σ

(1)
R , (6.31)

we put together σ̃
(1)
V,i and σ̃

(1)
R,i to define,

σ̃
(1)
i = σ̃

(1)
V,i + σ̃

(1)
R,i , i ∈ {1, 2} , (6.32)

that are finite in the limit ε→ 0. Moreover, through the application of the momenta map-

ping and the separation of the integration region, there is a local cancellation of singularities

which allows us to take the limit ε→ 0 at integrand level, i.e. before integration.

From eq. (6.31), we appreciate that there are still some missing contributions to the

cross-section. In fact, we must combine all the virtual terms and UV counter-terms that

have not been included in the virtual dual cross-sections in eq. (6.25). So, we define

σ
(1)
V =

( ∑
i=1,2

σ̄
(1)
V,i

)
+ σ

(1)
V,3 − σ

(1,UV)
V , (6.33)

as the remnant virtual correction. It is worth appreciating that this expression admits a

four-dimensional representation, which can be build applying the change of variables shown

in section 3.1. Finally, the calculation of the total integrals leads to

σ̃
(1)
1 = σ(0) αS

4π
CF (19− 32 log (2)) ,

σ̃
(1)
2 = σ(0) αS

4π
CF

(
−11

2
+ 8 log (2)− π2

3

)
,

σ
(1)
V = σ(0) αS

4π
CF

(
−21

2
+ 24 log (2) +

π2

3

)
, (6.34)

whose sum gives

σ̃
(1)
1 + σ̃

(1)
2 + σ

(1)
V = σ(0) 3CF

αS

4π
, (6.35)
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that is in agreement with the ε→ 0 limit of the result obtained through DREG. The crucial

difference is that we get these results after the integration of four-dimensional expressions,5

thus avoiding to deal with complicated ε expansions.

To conclude this section, let’s notice that the procedure shown here could be simplified.

In order to achieve an analytical computation it was necessary to split the integration

region of the virtual corrections into different pieces. In a numerical implementation, this

procedure will not be necessary. The loop integration will occur unrestricted, and the real

corrections will be switch on to cancel the collinear and soft divergences in the region of the

loop three-momentum where the respective momentum mapping conditions are fulfilled.

7 Generalisation to multi-leg processes and NNLO

Assuming there are no initial-state partons (for instance in e+e− annihilation) the general-

isation to multi-leg processes is straightforward from the results presented in the previous

sections. The implementation of the method in a Monte Carlo event generator is indeed

simpler than presented before. As usual, the NLO cross-section is constructed from the one-

loop virtual correction with m partons in the final state and the exclusive real cross-section

with m+ 1 partons in the final state

σNLO =

∫
m
dσ

(1,R)
V +

∫
m+1

dσ
(1)
R , (7.1)

where the virtual contribution is obtained from its dual representation

dσ
(1,R)
V =

N∑
i=1

∫
`

2 Re 〈M(0)
N |M

(1,R)
N (δ̃ (qi))〉ON ({pj}) . (7.2)

In the above equation, M(0)
N is the N -leg scattering amplitude at LO, with N > m, and

M(1,R)
N is the renormalised one-loop scattering amplitude, which also contains the self-

energy corrections of the external legs. On the other hand, ON ({pj}) defines a given

IR-safe physical observable by constraining the integration domain, for example, a jet

function. The delta function δ̃ (qi) symbolises the dual contribution with the internal

momentum qi set on-shell. By renormalised, we mean that appropriate UV counter-terms

have been subtracted locally, according to the discussion presented in section 5, including

UV singularities of degree higher than logarithmic that integrate to zero, and the UV

contributions from the wave function of the external particles, in such a way that only

IR singularities arise in dσ
(1,R)
V . In eq. (7.2), we have also assumed a definite ordering

of the external particles that leads to a definite set of internal momenta qi. This means,

that the one-loop scattering amplitudeM(1,R)
N contains not only the contribution from the

maximal one-loop N -point function, but also all the terms that can be constructed with the

same set of internal momenta. Keeping this ordering is necessary to preserve the partial

cancellation of singularities among dual contributions at integrand level. Obviously, all the

5Explicit four-dimensional expressions are shown in appendix C.
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possible permutations and symmetry factors have to be considered to obtain the physical

cross-section.

The real cross-section is given by∫
m+1

dσ
(1)
R =

N∑
i=1

∫
m+1

|M(0)
N+1(qi, pi)|2Ri(qi, pi)ON+1({p′j}) , (7.3)

where the external momenta {p′j}, the phase-space and the tree-level scattering amplitude

M(0)
N+1 are rewritten in terms of the loop three-momentum (equivalently, the internal loop

on-shell momenta) and the external momenta pi of the Born process. The momentum

mapping links uniquely the soft and collinear states of the real and virtual corrections.

Therefore, if the physical observable is IR-safe then ON+1 → ON in all the possible IR-

degenerate configurations of the (N +1)-particle process. In this way, it is guaranteed that

the simultaneous implementation of the real-emission terms with the corresponding dual

contributions leads to an integrand level cancellation of IR singularities.

Analogously to the dipole method [5, 6], in order to construct the momentum mapping

between the m and m+1 kinematics, we single out two partons for each contribution. The

first parton is the emitter and the second parton is the spectator. The difference with

respect to the dipole formalism is that both the emitter and the spectator are initially

related to external momenta of the virtual scattering amplitudes, and not to internal or

external momenta of the real emission processes. Then, the loop three-momentum and the

four-momenta of the emitter and the spectator are used to reconstruct the kinematics of

the corresponding real emission cross-section in the region of the real phase-space where the

twin of the emitter decays to two partons in a soft or collinear configuration. Explicitly,

if the momentum of the final-state emitter is pi, the internal momentum prior6 to the

emitter is qi and it is on-shell, and pj is the momentum of the final-state spectator, then,

the multi-leg momentum mapping is given by

p′µr = qµi ,

p′µi = pµi − q
µ
i + αi p

µ
j , αi =

(qi − pi)2

2pj · (qi − pi)
,

p′µj = (1− αi) pµj ,
p′µk = pµk , k 6= i, j . (7.4)

The incoming initial-state momenta, pa and pb, are left unchanged. Momentum conserva-

tion is automatically fulfilled by eq. (7.4) because pi+pj+
∑

k 6=i,j pk = p′i+p
′
r+p

′
j+
∑

k 6=i,j p
′
k,

and all the primed final-state momenta are massless and on-shell if the virtual unprimed

momenta are also massless. The momentum mapping in eq. (7.4) is motivated by the

general factorisation properties in QCD [19, 56], and it is graphically explained in figure 7.

The emitter pi has the same flavour as p′ir, the twin emitter or parent parton (called

emitter in the dipole formalism) of the real splitting configuration that is mapped. The

spectator pj is used to balance momentum conservation, and has the same flavour in

6We assume that the internal and external momenta are ordered according to figure 1.
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the virtual and real contributions. As for the dipoles, there are alternatives to treat the

recoiling momentum, but the option with a single spectator is the most suitable. The

radiated particles, p′i and p′r, might have a different flavour than the emitter pi. If the

emitter is a quark or antiquark, the role of p′i and p′r can be exchanged if the subindex i is

used to denote the flavour, as we did in eq. (4.11). If the emitter is a gluon, the radiated

partons are gluons or a quark-antiquark pair.

The momentum mapping in eq. (7.4) is suitable in the region of the loop-momentum

space where qi is soft or collinear with pi, and therefore in the region of the real phase-

space where p′i and p′r are produced collinear or one of them is soft. In eq. (7.2), we have

introduced a complete partition of the real phase-space∑
Ri(qi, pi) =

∑ ∏
jk 6=ir

θ(y′jk − y′ir) = 1 , (7.5)

which is equivalent to divide the phase-space by the minimal two-body invariant y′ir. Since

the real and virtual kinematics are related, the real phase-space partition defines equivalent

regions in the loop three-momentum space. Notice, however, that we have not imposed

these constrains in the definition of the virtual cross-section in eq. (7.2), as we did for the

analytic applications presented in sections 4 and 6. The actual implementation of the NLO

cross-section in a Monte Carlo event generator is a single unconstrained integral in the loop

three-momentum, and the phase-space with m final-state particles. By virtue of the mo-

mentum mapping, real corrections are switch on in the region of the loop three-momentum

where they map the corresponding soft and collinear divergences. This region is a compact

region, and it is of the size of the representative hard scale of the scattering process. At

large loop three-momentum only the virtual corrections contribute, and their UV singulari-

ties are subtracted locally by suitable counter-terms. These are the only counter-terms that

are required for the implementation of the method, the IR singularities are unsubtracted

because their cancellation is achieved simultaneously. The full calculation is implemented

in four-dimensions, more precisely with the DREG parameter ε = 0. Moreover, there is no

need to perform any tensor reduction in the calculation of the virtual contributions, hence

avoiding the appearance of Gram determinants leading to spurious numerical instabilities.

Integrable threshold singularities of the loop contributions are also restricted to the physi-

cal compact region, and are treated numerically by contour deformation [21–24] in a Monte

Carlo implementation.

The case of lepton-hadron and hadron-hadron collisions deserves a comment apart.

The cross-section is computed by convoluting the corresponding partonic cross-section with

the process-independent parton distributions of the incoming hadrons. Since the initial-

state partons carry a well defined momentum, the partonic subprocesses are not collinear

safe. By virtue of the universal factorisation properties of QCD for massless incoming

partons [57], the initial-state collinear singularities are factorised and reabsorbed in the

definition of the non-perturbative parton distributions, and are removed from the partonic

cross-section by suitable collinear counter-terms which are proportional to 1/ε and the

Altarelli-Parisi splitting functions [55, 58–62]. The initial-state collinear counter-terms are

convoluted with the Born cross-section. However, their standard form is not suitable in
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Figure 7. Factorisation of the dual one-loop and tree-level squared amplitudes in the collinear

limit. The dashed line represents the momentum conservation cut. Interference of the Born process

with the one-loop scattering amplitude with internal momentum qi on-shell, M(1)
N (δ̃ (qi))⊗M(0) †

N

(left), and interference of real processes with the parton splitting p′ir → p′i + p′r: M
(0)
N+1 ⊗M

(0) †
N+1,ir

(right). In this limit the momenta qi−1 = qi − pi and p′ir become on-shell and the scattering

amplitudes factorise.

the LTD approach because that convolution is a single integral in longitudinal momentum

with Born kinematics. Its unintegrated form, which should depend also on the transverse

momentum of the real radiation, is necessary, and will be presented in a future publication.

The extension to NNLO, although not straightforward, can instinctively be anticipated

and will be treated also in a future publication. The NNLO cross-section consists of three

contributions

σNNLO =

∫
m
dσ

(2)
VV +

∫
m+1

dσ
(2)
VR +

∫
m+2

dσ
(2)
RR , (7.6)

where the double virtual cross-section dσ
(2)
VV receives contributions from the interference

of the two-loop with the Born scattering amplitudes, and the square of the one-loop scat-

tering amplitude with m final-state particles, the virtual-real cross-section dσ
(2)
VR includes

the contributions from the interference of one-loop and tree-level scattering amplitudes

with one extra external particle, and the double real cross-section dσ
(2)
RR are tree-level con-

tributions with emission of two extra particles. The LTD representation of the two-loop

scattering amplitude is obtained by setting two internal lines on-shell [16]. It leads to the

two-loop dual components 〈M(0)
N |M

(2)
N (δ̃ (qi) , δ̃ (qj))〉, while the two-loop momenta of the

squared one-loop amplitude are independent and generate dual contributions of the type

〈M(1)
N (δ̃ (qi))|M(1)

N (δ̃ (qj))〉. In both cases, we have at our disposal two independent loop

three-momenta and m final-state momenta, from where we can reconstruct the kinematics

of the one-loop corrections entering dσ
(2)
VR, and the tree-level corrections in dσ

(2)
RR.

8 Conclusions and outlook

In this article, we carefully discussed the implementation of a novel algorithm to compute

higher-order corrections to physical observables. This method is based on the LTD theorem,

which states that virtual contributions can be expressed as the sum over single-cut (at

one-loop) or dual integrals, whose structure closely resembles real-emission amplitudes.

We exploit this knowledge to perform an integrand-level combination of real and virtual

terms, which leads to a fully local cancellation of singularities and allows to implement the

calculation without making use of DREG.
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One of the interesting uses of LTD lies in the possibility of exploring the causal structure

of virtual contributions and disentangling their singularities. In particular, we applied this

technique to prove that the IR divergences are generated in a compact region of the loop-

momentum space. This is a crucial fact in order to achieve the real-virtual cancellation of

singularities in IR-safe observables.

To illustrate the importance of the compactness of the IR singular regions, we studied

the NLO corrections to a 1 → 2 process in the context of a toy scalar model. By using

suitable momentum mappings, we generated 1 → 3 on-shell massless kinematics from

the 1 → 2 process and the loop three-momentum. These mappings relate exactly the

integration regions where the singularities are originated. In this example, we distinguished

two regions in the real-emission phase-space and defined suitable mappings to cover them

in the dual space of the loop three-momentum. In this way, the combination of dual and

real contributions led to expressions that are integrable in four-dimensions; the remainders

of the virtual part were also represented by a four-dimensional integral. The algorithm

is called unsubtracted because the summation over degenerate soft and collinear final-

states is performed thanks to these momentum mappings, then making unnecessary the

introduction of IR subtractions.

On the other hand, we investigated the cancellation of UV divergences at integrand

level. We started with the simplest example of a massless scalar two-point function. Using

the ideas presented in ref. [36], we obtained the dual representation of the local UV counter-

term that exactly cancels the divergences in the high-energy region of the loop momentum,

rendering an integrable representation in four-dimensions. We also extended the procedure

to deal with arbitrary scattering amplitudes, and provided a subtle physical interpretation

of the energy scale entering the UV counter-term as renormalisation scale.

Then, we applied the IR unsubtraction LTD algorithm to the physical process γ∗ →
qq̄(g) at NLO in QCD. In the first place, we found the dual representation of the virtual

contribution and made use of the momentum mappings to perform the real-virtual combi-

nation. It is worth appreciating that we had to include also self-energy corrections to the

external on-shell legs, while they are usually ignored because their integrated form vanishes

in DREG due to the lack of physical scales. Since our approach explicitly splits the IR and

UV regions in the dual integrals, it was necessary to disentangle their IR/UV behaviour.

In this way, we computed the full NLO correction to γ∗ → qq̄(g) by making use of purely

four-dimensional expressions also in a physical application.

The generalisation of the algorithm to deal with multi-particle processes is quite

straightforward, at least when only final-state singularities take place. Essentially, the

real emission phase-space must be split to isolate the different collinear configurations and,

then, a proper momentum mapping for each of these configurations is defined. Combin-

ing the dual integrands with the real matrix elements in the corresponding regions leads

to integrable expressions in four-dimensions. The cancellation of UV divergences is done

following the same ideas as in the 1 → 2 case. To conclude, we succinctly sketched the

extension of the algorithm to cure initial-state collinear singularities, and discussed briefly

its generalisation to NNLO.
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In summary, in this work we presented explicitly a well-defined algorithm that allows

to override DREG by exploiting LTD. It constitutes a new paradigm in perturbative calcu-

lations because it takes advantage of combining directly real and virtual corrections in an

integrable four-dimensional representation, while providing an easy physical interpretation

of the singularities of the scattering amplitudes and unveiling their hidden nature.
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A The dual integration measure

Starting from the expressions for the loop integration measure and the on-shell delta func-

tion given in section 2, we define

c̃Γ =
cΓ

cos(πε)
, cΓ =

Γ(1 + ε)Γ2(1− ε)
(4π)2−εΓ(1− 2ε)

, (A.1)

as the phase-space and one-loop volume factors, respectively. Notice that

c̃Γ ≡ cΓ + O(ε2) , cΓ ≡
(4π)ε−2

Γ(1− ε)
+ O(ε3) , (A.2)

which implies that at NLO, we can interchange these prefactors without altering the final

expressions up to O(ε).

On the other hand, using spherical coordinates in d-dimensions, the dual integration

measure is rewritten as∫
`
δ̃ (qi) =

µ2ε

(2π)d−1

∫
ddqi θ(qi,0) δ(q2

i −m2
i ) =

µ2ε

(2π)d−1

∫
(q2
i )

1−ε

2 q
(+)
i,0

d|qi| dΩ
(d−2)
i , (A.3)

where q
(+)
i,0 =

√
q2
i +m2

i − ı0. If the azimuthal integration is trivial, with cos θi = 1 − 2vi
the cosinus of the polar angle, the solid angle is given by

dΩ
(d−2)
i =

(4π)1−ε

Γ(1− ε)

∫ 1

0
d[vi] , d[vi] = (vi(1− vi))−ε dvi , (A.4)

that leads to ∫
`
δ̃ (qi) =

µ2ε(4π)ε−2

Γ(1− ε)

∫
(4q2

i )
1−ε

q
(+)
i,0

d|qi| d[vi] . (A.5)

Since in this work we deal with massless internal propagators, then q
(+)
i,0 =

√
q2
i − ı0 and

the dual integration measure simplifies to∫
`
δ̃ (qi) =

µ2ε(4π)ε−2

Γ(1− ε)

∫
(2qi,0)1−2ε d(2qi,0) d[vi] , (A.6)

which justifies the notation established in eq. (3.7).
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B Phase-space

Following the notation introduced in eq. (2.6), the d-dimensional phase-space associated

to a N -leg scattering process with m final-state particles is given by the expression

dΦm = µd−4

(
m∏
i=1

∫
pi

δ̃ (pi)

)
(2π)d δ(d)

(
m∑
i=1

pi − pa

)
, (B.1)

with pa the sum of the incoming momenta for either 1→ m or 2→ m processes. The total

volume of the 1→ 2 phase-space is given by the well-known formula∫
dΦ1→2 =

Γ(1− ε)
2(4π)1−ε Γ(2− 2ε)

(
s12

µ2

)−ε
, (B.2)

where s12 = p2
12 is the invariant mass of the decaying particle. For the NLO real-radiation

correction to 1 → 2 process we need to deal with 1 → 3 decays; the corresponding phase-

space is

dΦ1→3 =
s12

2 (4π)3−2εΓ(2− 2ε)

(
s12

µ2

)−2ε

(y′12 y
′
1r y
′
2r)
−ε dy′1r dy

′
2r , (B.3)

where the parametrisation used is the one introduced in eqs. (4.10) and (4.12). Because

we are interested in the relative factors of dΦ1→3 compared with dΦ1→2, eq. (B.3) can be

rewritten as

dΦ1→3 =
(4π)ε−2 s12

Γ(1− ε)

(
s12

µ2

)−ε (∫
dΦ1→2

)
(y′12 y

′
1r y
′
2r)
−ε dy′1r dy

′
2r . (B.4)

Notice that the kinematical configuration in the TL-region is given by p3 → p1 + p2 (or

p3 → p′1 + p′2 + p′r for the real term), with p3 a massless off-shell particle whose virtuality is

p2
3 = s12 > 0. The integrand is considered Lorentz invariant, so we integrated out angular

degrees of freedom associated with the extra-dimensions.

Finally, let’s recall another useful technique for phase-space integration and ε-expansion

of the results, which relies in the application of distributions [4] to rewrite the DREG

measure. The basic formula is given by∫ 1

0
dxx−1+aε f(x, ε) =

∫ 1

0
dx

[
(xC)a ε

aε
δ(x) +

(
1

x

)
C

+ aε

(
log (x)

x

)
C

]
f(x, ε) +O(ε2),

(B.5)

where xC ∈ (0, 1] is an arbitrary cut and f is a generic test function without singularities

at x = 0 and without ε-poles. The C-distributions are defined according to∫ 1

0
dx

(
logn(x)

x

)
C

f(x, ε) =

∫ 1

0
dx logn(x)

f(x, ε)− f(0, ε) θ(xC − x)

x
, (B.6)

i.e. the cancellation of the integrand is forced in a neighbourhood of the singular point

x = 0. Notice that the test function must be an entire function of ε in order to avoid
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additional ε-poles. Besides that, eqs. (B.5) and (B.6) can be adapted to several domains

and measures. In particular, the ε-expansion of the phase-space at large loop momentum

becomes expressible as∫
`
δ̃ (qi) f(qi, ε) ≡ 4cΓ

∫
qi,0 dqi,0

∫
dv

{
[1 + 2 log(qi,0) (v δ(v) + (1− v) δ(1− v))] f(qi, 0)

− (v δ(v) + (1− v) δ(1− v))
∂f

∂ε

∣∣∣∣
ε=0

}
+O(ε) , (B.7)

under the assumption that f(qi, ε) is an entire function of ε and it has a vanishing soft

limit (i.e. f → 0 as qi,0 → 0). Appreciate the presence of extra-contributions given by the

collinear residues at v = 0 or v = 1, as well as some additional terms introduced by the

linear ε dependence of the integrand.

C NLO corrections to γ∗ → qq̄(g): explicit 4D formulae

In this appendix, we collect the four-dimensional representation of the integrands associated

to the integrals in eq. (6.34). Explicitly, we have

σ̃
(1)
1 = σ(0)αS

4π
CF

∫ 1

0
dξ1,0

∫ 1/2

0
dv14R1(ξ1,0, v1)

[
2
(
ξ1,0 − (1− v1)−1

)
− ξ1,0(1− ξ1,0)

(1− (1− v1)ξ1,0)2

]
,

σ̃
(1)
2 = σ(0)αS

4π
CF

∫ 1

0
dξ2,0

∫ 1

0
dv22R2(ξ2,0, v2)(1− v2)−1

[
2v2ξ2,0 (ξ2,0(1− v2)− 1)

1− ξ2,0

−1 + v2ξ2,0 +
1

1− v2ξ2,0

(
(1− ξ2,0)2

(1− v2ξ2,0)2
+ ξ2

2,0

)]
, (C.1)

for the real-virtual combinations, and

σ
(1)
V = σ(0)αS

4π
CF

∫ ∞
0

dξ

∫ 1

0
dv

{
− 2 (1−R1(ξ, v)) v−1(1− v)−1 ξ

2(1− 2v)2 + 1√
(1 + ξ)2 − 4vξ

+2 (1−R2(ξ, v)) (1− v)−1

[
2vξ (ξ(1− v)− 1)

(
1

1− ξ + ı0
+ ıπδ(1− ξ)

)
− 1 + vξ

]
+2v−1

(
ξ(1− v)(ξ(1− 2v)− 1)

1 + ξ
+ 1

)
−

(1− 2v)ξ3(12− 7m2
UV − 4ξ2)

(ξ2 +m2
UV)5/2

−
2ξ2(m2

UV + 4ξ2(1− 6v(1− v)))

(ξ2 +m2
UV)5/2

}
, (C.2)

the dual virtual remnant. In the previous expression, we have identified all the integration

variables, ξ = ξ2,0 = ξ3,0 = ξUV and v = v2 = v3 = vUV, while (ξ1,0, v1) are expressed in

terms of (ξ3,0, v3) by using the change of variables in eq. (3.27). The integration regions

are defined through eq. (4.22), and we use eq. (4.21) to simplify the analytic integration.

Notice that the integrand of the dual virtual remnant behaves as

d σ
(1)
V

dξ dv
∝ 1− 2v

ξ2
+O(ξ−3) , (C.3)
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in the high-energy limit, and as O(ξ−3) after angular integration, thanks to the UV counter-

term that subtracts up to linear UV divergences locally.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[arXiv:1509.07167] [INSPIRE].

[22] S. Buchta, G. Chachamis, P. Draggiotis, I. Malamos and G. Rodrigo, Towards a Numerical

Implementation of the Loop-Tree Duality Method, Nucl. Part. Phys. Proc. 258-259 (2015) 33

[arXiv:1509.07386] [INSPIRE].

[23] S. Buchta, First Numerical Implementation of the Loop-Tree Duality Method,

PoS(EPS-HEP2015)430 [arXiv:1510.04105] [INSPIRE].

[24] S. Buchta, G. Chachamis, P. Draggiotis and G. Rodrigo, Numerical implementation of the

Loop-Tree Duality method, arXiv:1510.00187 [INSPIRE].

[25] R.J. Hernandez-Pinto, G.F.R. Sborlini and G. Rodrigo, Towards gauge theories in four

dimensions, JHEP 02 (2016) 044 [arXiv:1506.04617] [INSPIRE].

[26] G.F.R. Sborlini, R. Hernández-Pinto and G. Rodrigo, From dimensional regularization to

NLO computations in four dimensions, PoS(EPS-HEP2015)479 [arXiv:1510.01079]

[INSPIRE].

[27] G.F.R. Sborlini, Loop-tree duality and quantum field theory in four dimensions,

PoS(RADCOR2015)082 [arXiv:1601.04634] [INSPIRE].

[28] C.G. Bollini and J.J. Giambiagi, Dimensional Renormalization: The Number of Dimensions

as a Regularizing Parameter, Nuovo Cim. B 12 (1972) 20 [INSPIRE].

[29] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl.

Phys. B 44 (1972) 189 [INSPIRE].

[30] G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension,

Lett. Nuovo Cim. 4 (1972) 329 [INSPIRE].

[31] J.F. Ashmore, A Method of Gauge Invariant Regularization, Lett. Nuovo Cim. 4 (1972) 289

[INSPIRE].

[32] D.E. Soper, QCD calculations by numerical integration, Phys. Rev. Lett. 81 (1998) 2638

[hep-ph/9804454] [INSPIRE].

– 39 –

http://dx.doi.org/10.1016/j.nuclphysBPS.2008.09.114
http://arxiv.org/abs/0807.0531
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0531
http://dx.doi.org/10.1007/JHEP10(2010)073
http://arxiv.org/abs/1007.0194
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0194
http://dx.doi.org/10.1007/JHEP03(2013)025
http://arxiv.org/abs/1211.5048
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5048
http://dx.doi.org/10.5506/APhysPolB.44.2207
http://inspirehep.net/search?p=find+J+%22ActaPhys.Polon.,B44,2207%22
http://dx.doi.org/10.1007/JHEP11(2014)014
http://arxiv.org/abs/1405.7850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7850
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LL2014)066
http://arxiv.org/abs/1407.5865
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5865
http://arxiv.org/abs/1509.07167
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07167
http://dx.doi.org/10.1016/j.nuclphysBPS.2015.01.008
http://arxiv.org/abs/1509.07386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.07386
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(EPS-HEP2015)430
http://arxiv.org/abs/1510.04105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.04105
http://arxiv.org/abs/1510.00187
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.00187
http://dx.doi.org/10.1007/JHEP02(2016)044
http://arxiv.org/abs/1506.04617
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04617
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(EPS-HEP2015)479
http://arxiv.org/abs/1510.01079
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01079
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RADCOR2015)082
http://arxiv.org/abs/1601.04634
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.04634
http://dx.doi.org/10.1007/BF02895558
http://inspirehep.net/search?p=find+J+%22NuovoCim.,B12,20%22
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://dx.doi.org/10.1016/0550-3213(72)90279-9
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B44,189%22
http://dx.doi.org/10.1007/BF02756527
http://inspirehep.net/search?p=find+J+%22Lett.NuovoCim.,4,329%22
http://dx.doi.org/10.1007/BF02824407
http://inspirehep.net/search?p=find+J+%22Lett.NuovoCim.,4,289%22
http://dx.doi.org/10.1103/PhysRevLett.81.2638
http://arxiv.org/abs/hep-ph/9804454
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9804454


J
H
E
P
0
8
(
2
0
1
6
)
1
6
0

[33] D.E. Soper, Techniques for QCD calculations by numerical integration, Phys. Rev. D 62

(2000) 014009 [hep-ph/9910292] [INSPIRE].

[34] D.E. Soper, Choosing integration points for QCD calculations by numerical integration, Phys.

Rev. D 64 (2001) 034018 [hep-ph/0103262] [INSPIRE].
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