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1 Introduction

Strong chaos, the butterfly effect, is a ubiquitous phenomenon in physical systems, ex-
plaining thermal behavior, among other things. In quantum mechanics, this phenomenon
can be characterized using the commutator [W(t), V(0)] between rather general Hermitian
operators at time separation t. The commutator diagnoses the effect of perturbations by
V on later measurements of W and vice versa. One indication of the strength of such
effects is
C(t) = — (W (1), V(O)]) (1.1)
where (-) = Z 'tr[e™#H.] denotes the thermal expectation value at temperature T =
B~1. A quantum definition of the butterfly effect is that C(t) should become of order
2(VVY(WW) for large t, regardless of the specific choice of V, W [1] within an appropriate
class. In general, we assume V' (0) and W(0) are simple Hermitian operators, describable
as a sum of terms, each a product of only O(1) degrees of freedom.! We further assume
that V, W have zero thermal one point functions.
We call the time scale where C(t) becomes significant the “scrambling time” ¢, [2, 3].
There is another shorter time scale relevant for chaos, the exponential decay time ¢4 for
two point expectation values like (V(0)V (t)). We call this time scale the “dissipation

ITraces of finite products of matrix fields are simple by this definition; time evolved operators et Qe

with ¢ large are generally not.



time,” or, when a quasiparticle description applies, the “collision time.” In the strongly
coupled systems we will focus on, we expect t; ~ 5. We also expect general time or-
dered correlators to approach their long time limits after this time scale. For example
(VOYWVOYWEHW () ~ (VVNWW) + O(et/ta).

We can gain some intuition for the relation between C(t) and chaos by studying the
semiclassical limit of a one particle quantum chaotic system, like semiclassical billiards,
following the classic reference [4]. Schematically, in the semiclassical limit taking V' = p
and W (t) = ¢(t) the commutator [¢(t), p] becomes the Poisson bracket ii{q(t),p} = zhaq t)
This gives the dependence of the final position on small changes in the initial position, the
classical diagnostic of the butterfly effect. Nearby trajectories in such systems diverge
exponentially, ~ e*-t where )\ is a Lyapunov exponent. Here t; ~ . For early times,
the correlator C(t) ~ ~ h2e2ALt g0 t, ~ E log 7 In this context ¢, is called the “Ehrenfest
time.” There is a parametrically large hierarchy between scrambling and collision times
determined, in this case, by the small parameter ¢ = h. Systems with such a large hierarchy
will be the focus of this paper.

From a purely quantum mechanical point of view we can follow the analysis of [5] and
use C(t) as a measure of the growth of the operator W (¢) expressed as a sum of products
of simple basis operators. In qubit models these would just be Pauli matrices. A large
commutator indicates a complicated operator W (¢) that arises because chaos disrupts the
cancellation between the initial and final factors in W (t) = e/1'We=#t  If the number of
qubits Ny is large it will in general take a long time for a large commutator to build up. If
the interactions are local, the time is linear in the separation between W and V [6-8]. Even
if the interactions are nonlocal, but are formed from products of just a few qubits, it will
take a time t, ~ log N, for C(t) to become large.? The analog of ¢4 here is roughly the time
for W(t) to add a few Pauli matrices, so large N, qubit systems provide another example
of a large hierarchy between t, and t;. Clearly these ideas generalize to a wide variety of
lattice quantum systems. Here 1/e¢ would be the size of the system (in the nonlocal case),
or an exponential of the distance between the V(0) and W (0) operators (in the local case).

In a lattice system, the square of the commutator in C(t) is a reasonable operator, but
in a quantum field theory it generally requires regularization. A convenient prescription is
to move one of the commutators halfway around the thermal circle, so that we consider

—tx [P [W(0), VI [W (). V]] (1.2)

where y is defined by

1
y4 = Ee_BHa (13)

and V is always V(0). A closely related function, and the one that we will work with
directly in this paper, is
F(t) = tryVyW ()yVyW (t)), (1.4)

corresponding to insertion of the V' and W operators at equal spacing around the thermal
circle. As explained in figure 1, F' is analytic in a strip of width /2 in the complex

2Scrambling in nonlocal quantum circuits was studied in [9-14]. A logarithmic scrambling time was
conjectured for nonlocal Hamiltonian systems in [2, 3], and supported by a Lieb-Robinson bound in [15].
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Figure 1. F(¢) is the correlation function of operators arranged on the thermal circle as shown at
left. The folds indicate the Lorentzian time evolution to produce W (t). At complex time, F'(¢ +i7)
is given by rotating one of the pairs of operators by angle 2w7/8. The center panel corresponds to
|7| < B/4 and the right panel corresponds to 7 = 5/4.

time plane, and at the edges of this strip we can relate F' to the regularized commutator
discussed above. To see this, notice that F(t —i3/4) = tr[y>VW (t)y>VW (t)], so

—tr [y’ [W (1), VI W (2), V]] = te[y*W () VYV (1)) + te[y VW (£)y* W (1)V]

Cp(ens) p (o). 0

We can use this equation to develop some intuition for the time dependence of F'(t).
First, for small ¢, all terms on the r.h.s. are positive and roughly equal. The commutator
is small because of a cancellation between the first and second lines. The terms on the
first line can be be written as norms of states, e.g. yW (t)Vy~!|TFD) (the state |[TFD) is
defined below), so they remain of order one at large t. The growth of the commutator is
therefore due to a decrease in F'(t +i3/4). This gives us a second quantum definition of
the butterfly effect: at large t, I’ should become small, regardless of V, W.

We will give two additional pieces of intuition for the late-time decrease of F'. The first
is based on the observation that, as t becomes large, all pairs of operators are separated by
large intervals along the contours in figure 1. This is true independently of 7. Notice the
contrast here between correlation functions with the contour ordering VW (¢)VW (t) (which
decay at large t) and correlation functions with the ordering VVW (¢)W (t) (which do not).

The second piece of intuition requires us to introduce the thermofield double state in the
Hilbert space of two copies of the quantum system, [TFD) = Z~Y23" e=#En/2|); |n) .
For any operator O, we define O, = OT @ 1, acting only on the L Hilbert space, and
Opr = 1®0 acting only on R. As an entangled state, [T F D) has a very nongeneric pattern
of correlation between L and R. In particular, simple operators are highly correlated, so
that e.g. (TFD|VL,VR|TFD) is large.

The point of this preparation is that we can understand F'(t) as a similar two-sided cor-
relation function in a perturbed version of |TF D). Specifically, F(t) = (V|V.Vg|¥) where

U) = 2712 " e PEnAEN AW (£, ) ) g (1.6)

For small ¢, the simple W operator will not significantly change the global pattern of
correlation in the state, so F' remains large. However, as t increases, the W (t) perturbation



becomes more and more complicated, and the delicate local correlations present in the
thermofield double state will be destroyed [16], causing F' to become small. This perspective
makes the connection to the classical butterfly effect particularly clear.

Note that from the two-sided perspective, the ordering of operators in F' is quite
natural. F'(t +i5/4) has a simple interpretation as a correlator in the thermofield double
state, with two operators acting on one side and two operators acting on the other. This
correlation function is actually time ordered with respect to a two-sided time that increases
forwards on both sides. However, in the rest of the paper we will reserve the term “time
ordered” for configurations where the order of the operators in the trace coincides with the
order expected when we view ¢ as a time variable. The distinction is important because ¢
runs forwards on the R system and backwards on L.

Another important class of examples with a large hierarchy between scrambling and
dissipation scales are the large IV gauge theories and related systems that can be studied
using gauge/gravity duality. Here the number of degrees of freedom is N2 = 1/e. For such
systems, there has been recent progress in computing correlators such as C(t) and F\(t)
using holographic techniques in black hole backgrounds [5, 16-20].> The key element of
these calculations is the connection of the long time behavior of (1.1) and (1.4) to a high
energy scattering process near the bulk black hole horizon. The center of mass energy
squared s ~ éexp %”t grows exponentially with time, as dictated by the local Rindler
structure of the horizon [23, 24]. The strength of this scattering becomes of order one
when G s ~ 1 in AdS units.

For alarge N CFT holographically described by Einstein gravity, the methods of [5, 16—
20] give (for t > f3)

F(t) = fo— % exp 2ﬁ7rt +O(N™ (1.7)
where fy, f1 are positive order one constants that depend on the specific operators V, W.
The growing N2 term gives the first indication of the butterfly effect, that is, the beginning
of a rapid decrease of F'(t) that takes place near the scrambling time ¢, = % log N2. The
dissipation time in such systems is determined by black hole quasinormal modes which give
tqy ~ B for low dimension operators. So again there is a large hierarchy between scrambling
and dissipation.

This result provides the reference point for the following conjecture.

2 Conjecture

We conjecture that chaos can develop no faster than the Einstein gravity result (1.7) in
thermal quantum systems with many degrees of freedom® and a large hierarchy between
scrambling and dissipation.This conjecture is similar in spirit to the 7/S result of KSS [25]
that points to black holes in Einstein gravity as systems with very strong scattering. It is
a refinement of the fast scrambling conjecture of [3] which again singles out black holes.

3See also [21, 22] for computations using related large ¢ sparse spectrum techniques in d = 2 CFTs.
4In semiclassical billiards this would be the number of cells in phase space.



In such systems, out of time order correlators such as F' in (1.4) should display the
following behavior. Well after the dissipation time ¢4, but well before the scrambling time
t. they take an approximately constant factorized value F(t) ~ Fy, where

Fy = tly?ViPV]uly®W ()W (1)) (2.1)

is the product of disconnected correlators. Due to time translation invariance, this is
independent of t. For example, in a large N system with ¢ independent of N, large N
factorization implies

F(t) = (t[VyW (0)y®))* + (W (0)yVy®) + ey Vy?Viey* Wy W] + O(N %) (2.2)

The first two terms decay to zero for ¢ > t4. In more general systems the role of large N
is played by the large number of degrees of freedom that cause commutators to be small
for t < t,.

However, due to quantum mechanics and chaos, F'(t) cannot remain a constant forever.
Scrambling causes a commutator to develop and F(t) to decrease. We conjecture that this
rate of decrease is bounded (for times greater than a time ¢y, which will be discussed at

length in section 4):

%(Fd —F(t) < 2;(Fd - F(t)) . (2.3)

As Kitaev [18] has emphasized, building on [4], if the system is chaotic we expect correlators
like F; — F(t) to initially grow exponentially

F;—F(t)=eexpApt+--- (2.4)

where A\r, might depend on the operators V, W as well as the particular quantum system.
We will follow Kitaev and refer to Az, as a Lyapunov exponent. (This exponential behavior
and the factor of € in (2.4) are related to the fast scrambling conjecture of [3].)

Assuming this form we conjecture the existence of a universal bound

2
AL < % =T . (2.5)

In the following section we present evidence motivating this bound. In section 4 we give a
precise argument, based on plausible physical assumptions, establishing it.

3 DMotivation for the conjecture

A number of lines of evidence led us to this conjecture. These involve the study of large
N gauge theories, with and without gravity duals.

Einstein gravity. In the holographic calculations [5, 16-18, 20] that use Einstein gravity
in the bulk, the result (1.7) holds independent of d and independent of the choice of V and
W. This is because (i) gravitational scattering is of order Gys (in AdS units) because the
graviton is spin two, and Gy oc N~2, (ii) gravity couples universally, and (7ii) s ~ exp %’Tt

because of the kinematics of Rindler horizons.



Higher derivative corrections. The result (1.7) is unchanged if Einstein gravity is
modified by higher derivative corrections with a finite number of derivatives, like the Gauss-
Bonnet term [18]. This is because such corrections do not change the spin of the graviton,
so (i) remains true. The relation (%ii) also remains correct as long as the thermal state
is dual to a black hole with a smooth horizon. Notice that the situation here is different
than for the /S calculation, where higher derivative couplings can move 7/S above and
below the reference Einstein value of 1/47 [26-28]. This suggests that a sharp bound might
exist for \p,.

Weak coupling. If the gauge theory is weakly coupled, with ‘t Hooft coupling A inde-
pendent of N, the intuition described in [3] suggests that because the strength of gluon
scattering in the gauge theory is of order A at small A, the Lyapunov exponent should be
small, A\, ~ \/B, parametrically smaller than in the gravitational limit.> We expect this
to be true in any weakly coupled theory.

Stringy corrections. In a bulk weakly coupled string theory in a geometry with large
radius of curvature, the first corrections to the Einstein gravity calculation of scrambling
can be computed using the perturbative string theory techniques of [30]. For planar or
spherical horizons, ref. [20] showed that

AL:?[ —;M2l§+...]. (3.1)
where I, is the string length, and 2 is a constant that appears in the equation for a shock
wave propagating along the horizon. This equation involves the transverse dimensions and
is of the form (V2 — p?)h = 0. Here h is the shock wave profile.5 (If the horizon is
hyperbolic, we replace p? by u? + k3 in (3.1), where k3 is the lowest eigenvalue of —Vi.)
Einstein’s equations imply that u? is positive if the transverse space warp factor grows as
one moves away from the bifurcation surface in a spacelike direction [31, 32].7 This will be
the case if this horizon corresponds to a wormhole-like configuration. This is the geometry
appropriate to the dual of a thermal field theory.

Scattering bound. Because of the Rindler relation between bulk scattering energy and
time s ~ exp %’rt the bound (2.5) is equivalent to the bulk statement that the eikonal phase
0 is of order Gy sP and p < 1. (A spin J field exchanged in the Mandelstam ¢-channel gives
p = J —1). The authors of [33] argued that in scattering p must be < 1 because causality

i(s) to be analytic in the upper half of the complex s plane and unitarity requires

requires e
]ei5(5)| < 1 there. This is consistent with our conjectured bound and suggests that unitarity,

analyticity and causality are the crucial assumptions necessary to prove the bound. We

PFor the particular case of Rindler AdS black holes (hyperbolic black holes at temperature 8 = 27) it
was indicated in [20] that Az is the same as the Regge intercept j(t = 0) — 1 in the gauge theory, which can
be computed using the BFKL analysis and is of order A at small A. See the discussion in [29]. This case is
discussed in more detail in appendix A. It was also suggested in [20] that a modification of the BFKL weak
coupling calculation would allow the calculation of Az at weak coupling in more general cases.

®For the particular case of a planar AdSg4+1 black brane we have p? = dz(;é_l) [20].
AdS

"We are grateful to Mark Mezei for discussions on this point.



work in Hamiltonian systems where unitarity and causality are manifest, and correlation
functions are analytic. Because of the relation between s and time ¢, a natural strategy is
to formulate a bound on F' in the complex t plane.

4 Argument

In this section we will provide a two-part argument for the bound. The first part consists of
a simple mathematical result bounding the derivative of any function that satisfies certain
assumptions. The second part consists of physical arguments that F' should satisfy closely
related assumptions in the systems of interest. The resulting bound on the derivative
implies (2.3).

4.1 A mathematical result

Suppose we have a function f(t) with the following properties:

1. f(t+i7) is analytic in the half strip 0 < ¢t and -5 <

T < g (Here t and 7 are the
real and imaginary parts of the complex number ¢ +i7.) We also assume that f(¢) is

real for 7 = 0.
2. |f(t+i7)| < 1 in the entire half strip.

Then we claim that

= OB, 4.1
|5 < % oty (a.1)
Before presenting the proof, it is useful to consider the example f(t) =1 — ee*t. Here
it is easy to see that the above properties imply the bound A; < %’T
To establish the claim in general, we first map the half strip to the unit circle in the
complex plane using the transformation

1 — sinh [ T(t+ ZT):|

(4.2)

2=

1+ sinh [%’r(t + ZT)} ‘

Then f(z) is an analytic function from the unit disk into the unit disk, thanks to the
second property. Such functions cannot increase distances in the hyperbolic metric (the
Schwarz-Pick theorem). The hyperbolic metric is ds? = 4dzdz/(1 —|z|?)?, so we must have

|df | |dz|
< . 4.3
=[P = T—|:P 3
We apply this inequality for 7 = 0 where f is real, finding
2t (1+f ) —4mt
oth =L O(e P 4.4
1—Aﬁ"6 (6) 31 < o) (44

which is the claim (4.1).



4.2 Deriving the bound

If we could show that F'(t)/Fy satisfies properties one and two, above, then (4.1) would
imply the conjecture (2.3). Recall that Fy is the disconnected correlator

Fy=tr [yQVyZV] tr [yQWyQW] . (4.5)

The first property is easy to establish. The meaning of F' for complex times is most
simply understood from figure 1, but we can also write it out explicitly as

F(t+ir) = %tr [e_(5/4_T)HVe_(5/4+T)HW(t)e_(6/4_T)HV6_(6/4+T)HW(t)] . (4.6)

For finite N and finite volume the r.h.s. defines an analytic function in the strip |7] < /4,
even in quantum field theory. We also see that when 7 = 0 F(¢) is real. (Recall that W
and V are Hermitian operators.) Therefore the first property holds in general.

The second property is more subtle. In fact, we will only show that |F(t+i7)| < Fy+-e,
for an appropriate e, and for times ¢ greater than a reference time ty. This will allow us to
apply the result from the previous section to the function

F(t +to)

f) = G

(4.7)
Provided that ¢ is small, this will give us the bound (2.3) up to small errors, for times
greater than tg. We will derive conditions on ¢ and %y in the process of arguing that f
satisfies property two.

Our strategy will be to show that |f(t +i7)| < 1 on the three boundaries of the half
strip 0 < t and —3/4 < 7 < /4, and that f is bounded by some constant everywhere in the
interior. Then the Phragmén-Lindeldf principle (the analog of the maximum principle for
non-compact regions) implies that the function actually obeys |f(t +i7)| < 1 everywhere
in the interior, establishing the second property.

First, we consider the edges of the half strip |7| = /3/4. Notice that

F(t —iB/4) = tr[y* VW (£)y> VWV (1)]. (4.8)

The r.h.s. can be viewed as an inner product of “vectors” [yVW (t)yl;; and [yW (¢)Vyls;
(W and V are assumed Hermitian). The Cauchy-Schwarz inequality then gives®

[F(t —iB/4)] < e[y*W (VY VIV (2))]. (4.9)

In a chaotic system with many degrees of freedom, and for times large compared to the
dissipation timescale, we expect that the r.h.s. factorizes and is given by Fj;. This is the
main physical input to the argument. To make the possible error explicit, we define ¢ by
the condition that for all ¢ > ¢y, we will have

tr [y*W () V> VW ()] < tr [ W @) v*W @)] tr [y*Vy*V] +¢ . (4.10)

8Note that at leading N2 order, the Einstein gravity result (1.7) saturates this bound.



In general the size of ¢ will depend on ty. In systems where we can take & small while
keeping ty < t., we will get a good approximation to the bound (2.3) once F; — F(t)
exceeds €. We will analyze € and tp in some example systems in the following sections.
For the present purposes, the important point is that with the definition of ¢ in (4.10), the
Cauchy-Schwarz inequality ensures that |f| < 1 on the edges |7| = /4.

Next, consider the third boundary at ¢ = 0. This corresponds to F'(tyg + it) with
—B/4 < 7 < (/4. Here the possible error in factorization has two sources. One is the
failure of the time-ordered correlation function to factorize, which is order €. The other is
due to the fact that F' is not time-ordered; F' will begin to move from its factorized value
due to the onset of scrambling. In general, we expect this to cause F to decrease, but
it is not necessary to assume this. As long as we choose ty early enough that the effect
of scrambling is smaller than the e defined by condition (4.10), the second error will be
smaller than the first, so |f| < 1 on the third boundary as well.

To complete the argument for property two via the Phragmén-Lindelof principle, we
need to establish that f is bounded in the interior by some constant, |f(z)| < C, where C
might be bigger than one. Again, we apply the Cauchy-Schwarz inequality, viewing F as
the product of two vectors. Choosing the vectors appropriately we find (for positive 7)

|F(t +i7)| < tr[y' TV yl Ty Ty Y
~ tr[y TV STV e[y Wy T (4.11)
< trlyVy Vit [yWy* W)

with n = %. In the second line we have again invoked factorization at late times for time
ordered correlators. (All the W are evaluated at time ¢ and V' at time zero.) The third line
uses Hermiticity of V, W and the contracting property of y. What appears on the r.h.s. is
not the same as Fy, since we have fewer powers of y compared to (4.10), but it is finite, so
we have established property two.

Finally, let us address a slight imprecision in our discussion. In the above we assumed
that the largest times we would talk about are of order the scrambling time, which are
logarithmic in the small parameter. On the other hand, after very large times we can have
Poincare recurrences, and we expect factorization to fail. To avoid this we can cut off the
half strip by adding an additional boundary at a time much larger than the scrambling
time but much smaller than the recurrence time. At this additional boundary we need to
have |F| < Fy+ €. In a chaotic system, we expect F' to be very small for almost all times,
so it should be easy to find a suitable time for the cutoff.” The conformal transformation
from this finite strip to the disk will be more complicated, but it will coincide with the one
we used in the region of interest for our arguments.

We conclude that f in (4.7) satisfies properties one and two from the previous section.
The mathematical result (4.1) then implies that for ¢ greater than ¢y plus a few thermal

times, we have
%(Fd _ () < ?(Fd _F(t) +e). (4.12)

9 Assuming incommensurate energies, one can show that the long time average of F is exponentially

small in the entropy of the system.



Here, to recap, € is the maximum error in the time ordered factorization (4.10) for times
t > tg. For different systems, we might make different choices of ¢ and #¢, in order to get
the best bound. Examples will be discussed below. The essential point is that for a wide
class of chaotic systems where V, W are small perturbations, we expect the scrambling
time ¢, to be large, and we expect factorization to hold up to small errors after a time ¢g
with tg < t,. For such systems, the result (4.12) implies the bound (2.3) for the growth of
F,; — F(t) once this quantity exceeds the small error.

4.3 Examples
4.3.1 Large NN systems

In large N systems we can take V and W to be single trace operators and exploit large N
factorization. The error ¢ in the estimate discussed in (4.10) is then given by

e = tr[y VW ()]tr [y W () V] + te[y> W (8)y> V]t [y? V> W ()] + O(N~2) . (4.13)

For general V' and W these off diagonal expectation values are nonzero but decay because
of dissipation, leading to an estimate ¢ ~ N =2 4+ e~%/t We must now choose to. In order
to get the best bound, we set £ equal to the growing effect of scrambling on F'(¢) at time
to. As an example, suppose that Fy — F(t) is proportional to € e*-t. Then the optimal tg is
given by t,./(1+ ﬁ), and we have ¢ ~ e*rta/(1+Acta) - Once Fy — F(t) exceeds this value
(near the time tg), (4.12) implies the bound (2.3).

We can get a bound for a wider range of times if the system has a global symmetry
like parity and we choose V and W to transform differently under it. Then the first two
terms above vanish and ¢ ~ N~2. This means we can take to = 0 and still make chaotic
effects dominate over the error. Because chaos is almost by definition generic even special
operators will couple to the basic chaotic dynamics of the system so we can apply the
bound to the very early development of this chaos. In particular, by integrating (4.4) from
early time we find

Fy—F(t) < % exp <2B7Tt) (4.14)

where c is an order one N independent constant.

4.3.2 Extended local systems

For lattice systems, or for thermal quantum field theories, the large number of degrees of
freedom comes from the fact that we have an extended system. We can take V to be an
operator at the origin and W to be an operator at a site at large distance L. For such
systems, we get an interesting bound by setting tg = 0. Then ¢ is equal to the maximum
over t of

tr [y W (£) VY2V (8)] — tr [y*W (1) * W (¢)] tr [y*Vy*V] . (4.15)

@1l in general, because of the short range

At t = 0, we expect the above to be ~ e~
correlations in the thermal state.
In special systems (such as those discussed below), this factorization might break down

for times t < L, due to the possibility of signalling between W and V. However, for generic

~10 -



chaotic systems at finite temperature, we expect that signals should be exponentially sup-
pressed in distance, so that the difference in (4.15) is < e~“2F for all time. We can then
take ¢ = e~“2L. As before, the bound (4.12) implies (2.3) once Fy — F(t) exceeds this small

value. Note that this may take a long time if L is large.

4.3.3 Cases where there is no bound

There are local systems for which factorization (VW ()W (t)V) ~ (VV){(WW) does not
hold for an appropriate range of times, even for widely separated V,W. For example,
consider a massless free field ¢ in two dimensions and take the operators to be V(0) =
0_¢(0) and W (t) = 0_¢(L —t). Even if L is large, the contraction between V and W
becomes important for ¢ ~ L. This is the same time at which the commutator becomes
nonzero, so we cannot bound its growth.

Indeed, in this system the commutator is [V, W (t)] o< §'(L — t), which rises very fast,
independently of the temperature.!”

There is a related issue in any two dimensional conformal field theory. Such theories
contain a stress tensor operator 7 _ (2~ ) which has singularities along the light-cone. Tak-
ing V =T__ and W some other local operator we find that factorization fails near the light
cone. However, at large ¢, this is suppressed by 1/c and (after smearing) can be absorbed
within the small € that we are tolerating.

In fact this is a problem specific to two dimensional systems where the light cones are
one dimensional so signals cannot spread around them. In higher dimensions this is not an
issue and the commutators are suppressed at large spatial separation. This is easy to see
in free theories, and for general conformal field theories, as explained in appendix A.

In addition to the factorization assumption, we have assumed that there is a large
hierarchy between the dissipation time and the scrambling time. We have justified this on
the grounds that we have many degrees of freedom and that the Hamiltonian is built from
finite products of simple operators. Alternatively, one could consider a Hamiltonian given
by a random Hermitian matrix. For such a system, we expect no such hierarchy, so our
conjecture does not apply.

4.3.4 Rindler space and the scattering bound

Field theories on Rindler space are simple examples of thermal systems. In this case
the Minkowski vacuum is the thermofield double state. For the case of conformal field
theories in d > 2, one can prove that the bound (4.12) holds with small ¢ for Rindler
correlators of well separated operators. This follows from the fact that the correlators are
related to Minkowski vacuum four point functions which can be approximated using the
operator product expansion. For theories with gravity duals this implies the scattering
bound [33] mentioned in section 3. We discuss this point more extensively in appendix A.
This appendix also serves as a worked out example of the considerations in this paper.

10WWe can smear the operators a bit, but we retain the same conclusion: the growth is determined by the
parameters of the smearing function rather than the temperature.
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4.3.5 Semiclassical billiards

At first sight one might think that a classical system could violate the bound since classical
Lyapunov exponents can take any value. However, restoring dimensionful factors, our

conjecture is
)\L < QW;BT’

so there is no contradiction in the strict classical limit A — 0.

(4.16)

It is interesting to consider a semiclassical chaotic system with a small & at finite tem-
perature. For such systems, we can take e ~ e %0/t as with the large N case. The analysis
is as before. One can also give a direct (although heuristic) argument for a bound, following
reasoning in [25]. Consider a semiclassical chaotic system such as interacting quasiparti-
cles or stadium billiards. A naive definition of the Lyapunov exponent is the inverse of the
timescale 7,1 over which the evolution of a particle becomes nonlinear. For example, 7
would be proportional to the mean free time for a system of interacting quasiparticles, or
the time to cross the stadium for a billiards problem. To violate the bound, we would need
T kBT < h. Since kgT is the typical energy, we would need a violation of the energy-time
uncertainty principle, indicating that the semiclassical description is invalid.

5 Concluding remarks

We have given a strong argument for a bound on the rate at which chaos can develop in

general thermal quantum systems with a large number of degrees of freedom. The large

number of degrees of freedom suppresses the initial size of the commutator causing strong

chaos-scrambling-to develop parametrically later than dissipation. We diagnosed chaos

using an out of time order correlator F'(t) related to a commutator. Characterizing this

growth in terms of a Lyapunov exponent, we claim that it is bounded by
2rkgT

AL < (5.1)

where T is the temperature of the system.

Our direct argument for this bound relied on analyticity, as well as the physical input
that certain time-ordered correlation functions should approximately factorize. We gave
arguments justifying this factorization for different classes of physical systems with many
degrees of freedom. In the general case, these arguments also relied either on large timelike
or spacelike separation between operators.

It is tempting to speculate [18] that a large N system which saturates this bound will
necessarily have an Einstein gravity dual, at least in the near horizon region. This is in the
spirit of the speculation in [34] that a system with no light higher spin single trace states
should have a gravity dual.
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Figure 2. Consider a two dimensional Minkowski space, with its right and left Rindler wedges.
We insert two operators in the right Rindler wedge and two on the left. Then we act on W and
Wr by the Rindler time translation generator, which is a boost around the origin. This translates
Wgr upwards in time and W, downwards in time, as shown by the arrows.

A Rindler space and the scattering bound

The Rindler construction gives simple examples of thermal systems. We consider a CFTy
on Minkowski space and choose Rindler coordinates ds? = —p?dt? + dp® + d Hd2_2. The
Minkowski vacuum corresponds to a thermal state on Rindler space. These coordinates
cover the right Rindler wedge. There is an identical set of coordinates which cover the
left Rindler wedge, see figure 2. The Minkowski vacuum can be viewed as the thermofield
double, entangling these two systems. We can now apply our general discussion to the
particular case of a Rindler wedge. In this context the function F'(t41i3/4) corresponds to
an ordinary Minkowski space four point function. More precisely, imagine that we choose
all four points inside a two dimensional R subspace of the full R~! space. Let us insert
the four operators as shown in figure 2, with the points

:chE ==+1, xét =Fl1, acét = 4¢eFt xff = Fe ot (A.1)

The cross ratios then become

+ +
L12T34 1 A
* mﬁazég cosh? ( —H;” ) (A.2)

Here we have used the label ¢, as in the rest of this paper, to denote the flow by the Killing
vector generating Rindler time translations. Note that this flows backwards in time on the
left Rindler wedge, see figure 2.

All four point functions of conformal primaries V, W can be computed by analytically
continuing the flat space euclidean correlator, with suitable ie prescriptions [21, 35]. The
1€ prescription that gives rise to the F' correlator is the one that is natural from the point
of view of Minkowski space. More precisely, the correlator F(t 4 i/3/4) corresponds to a
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correlator in Minkowski space with the standard time ordering,'! see figure 2,
F(t+iB/4) = te[W (&) V> W () Vy?] = (0|Wr(t — ie)VRVLWL(t — i€)|0) (A.3)

where we have not bothered to introduce ie’s for operators that stay spacelike separated
as we change t. On the other hand, a correlator that naturally factorizes at large times is
given by

tr[VW (8)y* W () Vy?] = (0|Wy(t + ie)Wr(t — i€) VRV |0) (A4)
For t = 0 and 0 < 0 these correlators are equal. They are in the Euclidean OPE region in
the V'V channel (or 12 channel). We will now keep o fixed and increase ¢. Increasing ¢ we
pass through a point where two of the operators are null separated at ¢t + ¢ = 0. At this
point z4 = 1. This is a singular point for the four point function. By suitably smearing the
operators we can remove the singularity. Notice that, for o < 0, the other cross ratio, z_,
remains small throughout the discussion. Therefore, using the OPE in the V'V channel,
we can expand the correlators in a series of the form

szrSzé_ScA’S (A.5)

where A and S are the dimension and spin of the intermediate operators. Since z_ is
small, after smearing in z4, we can apply a uniform bound for this quantity when d > 2,
since unitarity implies that!'? A — 8§ > %. This holds on the first sheet of the z; plane.
The ie prescription in (A.4) implies that z; remains on the first sheet as we change ¢. But
for (A.3) we circle around the branch cut at zy = 1, which changes the behavior when we
return to z; — 0. In conclusion, we find that by taking V and W far away in space we
ensure that (A.4) factorizes as indicated in (4.10) for all times. Therefore the bound (4.12)
is a theorem in this situation.

The dissipation time ¢4 is just the inverse of the smallest A in (A.5). The manifest
lack of recurrences here can be interpreted thermally as due to the infinite entropy of the
thermal system on H;_ 1. As we remarked above, here the Lyapunov exponent is the same
as the BFKL intercept A\, = j(t = 0) — 1 [20, 29]. The high energy nature of the process
for large t is apparent from figure 2.

We now consider large N CFTs which have an Einstein gravity dual. We can extend
the Rindler coordinates through the bulk and we can view the resulting space as a zero
mass hyperbolic black hole, or a two sided hyperbolic black hole. The bulk scattering that
is dual to chaos here is just high energy gravitational scattering in vacuum AdS space.
More precisely F' is computed by folding bulk to boundary propagators against the bulk
gravitational scattering amplitude [18, 20]. When the scattering is weak!'? the propagator
variation is a small effect and the rate of decrease of F' directly diagnoses the size of the
eikonal phase d(s). The bound (4.12) shows that this phase cannot increase faster than s.

"Recall that the ie prescription for any ordered Minkowski correlator (0|O(xy) - O(z2)O(z1)|) is that
we add z? — x? — ie; with €; < €;41. Note, however, that the shift in Minkowski time to —ie in the left
wedge translates into a shift into the +ie direction in the ¢ coordinate due to opposite flow of time there.

12The exceptions in two dimensions pointed out in section 4.3.3 follow from the existence of operators
with A = S there, like the stress tensor.

13The parts of the propagators that correspond to strong scattering make a small contribution to F,
which is dominated by Gns ~ 1 at large boundary time ¢ [20]. So this argument for the bound only applies
in the region where Gy s is small (but order one).
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This is an alternate derivation of the scattering bound in [33] that helped motivate
this work. More precisely, we get the bound |1 + id(s)| < 1+ O(62) in the upper half s
plane, when §(s) is small but of order one. This bound also implies the positivity of the
Shapiro time delay. This is a nontrivial constraint for classical Gauss-Bonnet theories, it
rules them out as classical theories [33]. The exchange of a spin J field in the Mandelstam
t channel gives §(s) ~ s/~!. Then the bound (4.12) rules out any weakly coupled large
radius bulk theory with a finite number of light particles with spin greater than two.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] A. Almbheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls,
JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

[2] P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random
subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] InSPIRE].

[3] Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]
[INSPIRE].

[4] A.I Larkin and Y.N. Ovchinnikov, Quasiclassical method in the theory of superconductivity,
JETP 28 (1969) 1200.

[5] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051
[arXiv:1409.8180] NSPIRE].

[6] E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun.
Math. Phys. 28 (1972) 251 [iNnSPIRE].

[7] M.B. Hastings and T. Koma, Spectral gap and exponential decay of correlations, Commun.
Math. Phys. 265 (2006) 781 [math-ph/0507008] [INSPIRE].

[8] M.B. Hastings, Locality in quantum systems, arXiv:1008.5137.

[9] C. Dankert, R. Cleve, J. Emerson and E. Livine, Ezact and approzimate unitary 2-designs
and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304
[quant-ph/0606161].

[10] A.W. Harrow and R.A. Low, Random quantum circuits are approximate 2-designs, Comm.
Math. Phys. 291 (2009) 257 [arXiv:0802.1919].

[11] L. Arnaud and D. Braun, Efficiency of producing random unitary matrices with quantum
circuits, Phys. Rev. A 78 (2008) 062329 [arXiv:0807.0775].

[12] W.G. Brown and L. Viola, Convergence rates for arbitrary statistical moments of random
quantum circuits, Phys. Rev. Lett. 104 (2010) 250501 [arXiv:0910.0913].

[13] I.T. Diniz and D. Jonathan, Comment on the paper ‘Random quantum circuits are
approximate 2-designs’, Comm. Math. Phys. 304 (2011) 281 [arXiv:1006.4202].

[14] W. Brown and O. Fawzi, Scrambling speed of random quantum circuits, arXiv:1210.6644
[INSPIRE].

[15] N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast
Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INnSPIRE].

~15 —


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP09(2013)018
http://arxiv.org/abs/1304.6483
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6483
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://arxiv.org/abs/0708.4025
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.4025
http://dx.doi.org/10.1088/1126-6708/2008/10/065
http://arxiv.org/abs/0808.2096
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2096
http://dx.doi.org/10.1007/JHEP03(2015)051
http://arxiv.org/abs/1409.8180
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8180
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,28,251%22
http://dx.doi.org/10.1007/s00220-006-0030-4
http://dx.doi.org/10.1007/s00220-006-0030-4
http://arxiv.org/abs/math-ph/0507008
http://inspirehep.net/search?p=find+EPRINT+math-ph/0507008
http://arxiv.org/abs/1008.5137
http://dx.doi.org/10.1103/PhysRevA.80.012304
http://arxiv.org/abs/quant-ph/0606161
http://dx.doi.org/10.1007/s00220-009-0873-6
http://dx.doi.org/10.1007/s00220-009-0873-6
http://arxiv.org/abs/0802.1919
http://dx.doi.org/10.1103/PhysRevA.78.062329
http://arxiv.org/abs/0807.0775
http://dx.doi.org/10.1103/PhysRevLett.104.250501
http://arxiv.org/abs/0910.0913
http://dx.doi.org/10.1007/s00220-011-1217-x
http://arxiv.org/abs/1006.4202
http://arxiv.org/abs/1210.6644
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6644
http://dx.doi.org/10.1007/JHEP04(2013)022
http://arxiv.org/abs/1111.6580
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6580

[16] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067
[arXiv:1306.0622] [INSPIRE].

[17] S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296]
[INSPIRE].

[18] A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, talk given at
Fundamental Physics Prize Symposium, November 10, 2014.

[19] A. Kitaev, Stanford SITP seminars, November 11 and December 18, 2014.

[20] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132
[arXiv:1412.6087] [INSPIRE].

[21] D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly
effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

[22] S. Jackson, L. McGough and H. Verlinde, Conformal Bootstrap, Universality and
Gravitational Scattering, Nucl. Phys. B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].

[23] G.’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138
[INSPIRE].

[24] Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys.
Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].

[25] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field
theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231]
[INSPIRE].

[26] Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the
dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [InSPIRE].

[27] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in
Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [iINSPIRE].

[28] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and
Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].

[29] T. Banks and G. Festuccia, The Regge Limit for Green Functions in Conformal Field
Theory, JHEP 06 (2010) 105 [arXiv:0910.2746] NSPIRE].

[30] R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The pomeron and gauge/string
duality, JHEP 12 (2007) 005 [hep-th/0603115] [INSPIRE].

[31] T. Dray and G. 't Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys.
B 253 (1985) 173 nSPIRE].

[32] K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995)
721 [hep-th/9408169] [INSPIRE].

[33] X.0. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on
Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597]
[INSPIRE].

[34] 1. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field
Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] INSPIRE].

[35] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Fikonal Approzimation in
AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019
[hep-th/0611122] [INSPIRE].

~16 -


http://dx.doi.org/10.1007/JHEP03(2014)067
http://arxiv.org/abs/1306.0622
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0622
http://dx.doi.org/10.1007/JHEP12(2014)046
http://arxiv.org/abs/1312.3296
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3296
http://dx.doi.org/10.1007/JHEP05(2015)132
http://arxiv.org/abs/1412.6087
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6087
http://dx.doi.org/10.1103/PhysRevLett.115.131603
http://arxiv.org/abs/1412.5123
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5123
http://dx.doi.org/10.1016/j.nuclphysb.2015.10.013
http://arxiv.org/abs/1412.5205
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5205
http://dx.doi.org/10.1016/0550-3213(90)90174-C
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B335,138%22
http://dx.doi.org/10.1103/PhysRevD.52.7053
http://dx.doi.org/10.1103/PhysRevD.52.7053
http://arxiv.org/abs/hep-th/9502074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9502074
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://arxiv.org/abs/hep-th/0405231
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405231
http://dx.doi.org/10.1088/1126-6708/2009/01/044
http://arxiv.org/abs/0712.0743
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0743
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://arxiv.org/abs/0712.0805
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0805
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://arxiv.org/abs/0802.3318
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3318
http://dx.doi.org/10.1007/JHEP06(2010)105
http://arxiv.org/abs/0910.2746
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.2746
http://dx.doi.org/10.1088/1126-6708/2007/12/005
http://arxiv.org/abs/hep-th/0603115
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603115
http://dx.doi.org/10.1016/0550-3213(85)90525-5
http://dx.doi.org/10.1016/0550-3213(85)90525-5
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B253,173%22
http://dx.doi.org/10.1016/0550-3213(94)00573-W
http://dx.doi.org/10.1016/0550-3213(94)00573-W
http://arxiv.org/abs/hep-th/9408169
http://inspirehep.net/search?p=find+EPRINT+hep-th/9408169
http://dx.doi.org/10.1007/JHEP02(2016)020
http://arxiv.org/abs/1407.5597
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5597
http://dx.doi.org/10.1088/1126-6708/2009/10/079
http://arxiv.org/abs/0907.0151
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0151
http://dx.doi.org/10.1088/1126-6708/2007/08/019
http://arxiv.org/abs/hep-th/0611122
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611122

	Introduction
	Conjecture
	Motivation for the conjecture
	Argument
	A mathematical result
	Deriving the bound
	Examples
	Large N systems
	Extended local systems
	Cases where there is no bound
	Rindler space and the scattering bound
	Semiclassical billiards


	Concluding remarks
	Rindler space and the scattering bound

