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1 Introduction

This paper is a revised version of a previous work [1] and as such possesses a considerable

overlap with this earlier effort. However, this paper is a major revision of [1] which, due

to its brevity, left a number of statements implicit or unsaid. We have received a critique

of this earlier work in [1] which asserts it did not succeed in giving enough detail so as

to provide convincing arguments on the basis of the preponderance of evidence that was

presented. The aim of the current work is to “pull back the curtain” on such information

and give a much more expansive presentation.

After a presentation at the 2015 Miami Topical Physics Conference and during a

question-and-answer session afterward there arose a query from Prof. J. Lukierski about

what he perceived as the non-obvious relationship between the Euclidean SO(4) symme-

try manifest in the use of adinkras [2] and their adjacency-like matrices [3–5] versus the

Lorentzian structure required to describe theories of interest realizing the 4D, N = 1

spacetime supersymmetry algebra.

This exchange motivated us to review [1] tools developed in prior works to show ev-

idence that although adinkras with four colors, four open nodes, and four closed nodes

manifestly realize a Euclidean SO(4) symmetry there is a “hidden path” that also relates

each of them to a set of SO(1, 3) Dirac γ-matrices.
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In the second section, we review results that are standard to the usual Dirac matrices

appropriate for a four dimensional Minkowski space. We also show how the generators of

SO(4) possess an apparently often overlooked relationship to the Dirac matrices appropriate

for a four dimensional Minkowski space. The main purpose of this discussion is to proffer

a direct response to the query raised at the Miami Topical Physics Conference. We also

discuss the issue of the inherent ambiguities that arise in connecting matrices describing

the generators of SO(4) to the SO(1, 3) gamma-matrices appropriate for a four dimensional

Minkowski space.

In the third section, there follows a discussion of the L-matrices and R-matrices [3, 4]

(obtainable by a modification of the standard notion of an adjacency matrix [5]) asso-

ciated with every adinkra graph [2]. Forming the absolute values of the entries in the

L-matrices and R-matrices leads to the conventional definitions of adjacency matrices for

bipartitte graphs. The commutator algebra of the L-matrices and R-matrices define the

‘holoraumy’ [6–10] associated with the graph. Since this class of adinkra graphs possess

an obvious SO(4) symmetry, by exploiting the results in section 3, the spinorial nodes of

these adinkra graphs can provide a realization upon which the SO(1, 3) Dirac γ-matrices

can act. By this means it is shown that one of the ‘holoraumy’ matrices associated with

any of these adinkras can be written as a linear combination of matrices in the enveloping

algebra of the SO(1, 3) Dirac γ-matrices. These linear combinations are expressed in terms

of a set of parameters denoted by ` and ˜̀which provide a characterization of each adinkra

graph relative to its relation to the SO(1, 3) Dirac γ-matrices.

In the fourth section, we discuss a starting point of adinkras with four colors, four open

nodes and four closed nodes within the context of a Coxeter group because we constructed

all possible representations of this kind in a previous analysis [11]. Using a computer

software program, it was found one can start with the Coxeter Group BC4 [12, 13] and

associate with every one of the 384 elements of this group to an adinkra with links of

a single color. In particular, quartets of elements of BC4 form representations of the

adjacency-like matrices associated with this class of adinkras. This previous work showed

there are 96 such quartets possible and built strictly from the elements of a faithful BC4

representation. By taking the elements of the BC4 Coxeter Group as our starting point,

we have a rigorous mathematically well-defined beginning for our analysis. However, when

considering quartets of elements of the Coxeter group we find that “twists” arise and this

leads to the appearance of 672 additional adinkras, after “moding out” by adinkras that

are related by an overall change of signs of all links.

In the fifth and sixth sections, we introduce two quadratic forms on the space of the

` and ˜̀ parameters. These quadratic forms are then used to define two scalar functions

over the space of the parameters and it is noted zeros of one of the quadratic form are

directly tied to the value of the other quadratic form. The seventh section consists of a

listing of the explicit values of the ` and ˜̀ parameters over the 96 adinkra formed from

quartets of BC4 elements without including twists. The eighth section is a departure from

the graph theoretic structure of the work. In this section, we show the three minimal

off-shell supermultiplets of 4D N = 1 SUSY possess a set of numerical quantities which

can be calculated directly within the context of four dimensional field theory. When these
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three supermultiplets are considered as elements of a representation space indexed by the

symbol (R̂), it is shown how to define two functions over this representation space.

The ninth section is the one where all the previous results are collected together to

describe a procedure by which some of the 768 adinkras can be used to provide a description

of the supermultiplets described in section 8. The essential key is that the scalar functions

defined on the basis of the ` and ˜̀ parameters (related to the adinkra graphs) can be

matched to the two scalar functions define on the basis of the 4D N = 1 supermultiplets.

This is the realization of concept of “SUSY holography”.1 This presents a criteria by

which a subset of the elements of Coxeter Group BC4 can be consistently interpreted as a

projection of the 4D, N = 1 fundamental irreducible supermultiplet representations. Thus

we also identify obstructions that prevent such identifications for all the elements of BC4.

There is a final section that includes our summary comments and perspective.

2 Connecting Dirac SO(1, 3) γ-matrices to SO(4) rotation matrices

A set of Dirac γ-matrices is provided by γµ = (γ0, γ1, γ2, γ3 ) and must satisfy the usual

condition

γµ γν + γν γµ = 2 ηµ ν I4 , (2.1)

where the 4 × 4 identity matrix is denoted by I4 and the Minkowski metric ηµ ν in (2.1)

has non-vanishing diagonal entries (−1, +1, +1, +1 ).

Given a set of Dirac gamma matrices γµ, we define γ5 via the usual definition

γ5 = iγ0γ1γ2γ3 , (2.2)

and we also define a representation of the generators of spatial rotations provided by the

set containing the three elements {σ1 2, σ2 3, σ3 1} where

σ1 2 = − iγ1γ2 , σ2 3 = − iγ2γ3 , σ3 1 = − iγ3γ1 . (2.3)

The commutator algebra of these takes the usual form

[σ1 2 , σ2 3 ] = i 2σ3 1 , [σ2 3 , σ3 1 ] = i 2σ1 2 , [σ3 1 , σ1 2 ] = i 2σ2 3 , (2.4)

with all other commutators vanishing.

We now introduce another set of matrices containing three elements {iγ0, γ5, γ0γ5}.
The commutator algebra of these elements is

[ iγ0 , γ5 ] = i 2γ0γ5 , [γ5 , γ0γ5 ] = i 2 (iγ0) , [γ0γ5 , iγ0 ] = i 2 (γ5) ,

(2.5)

with all other commutators vanishing. The form of this commutator algebra (2.5) is iden-

tical to the one in (2.4) and both are recognizable as SU(2) algebras. Furthermore, it is

easy to show

[ iγ0 , σi j ] = 0 , [γ5 , σi j ] = 0 , [γ0γ5 , σi j ] = 0 . (2.6)

1This concept was initially simply called “holography” in the work of [14].
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This all implies given a set of Dirac γ-matrices together with a γ5-matrix it is possible to

construct the six matrices above (2.3) and (2.5), each forming a representation of an SU(2)

algebra, and each SU(2) algebra commutes with the other.

A standard result for γ-matrices implies

γ1 = γ0γ5 σ2 3 , γ2 = γ0γ5 σ3 1 , γ3 = γ0γ5 σ1 2 , (2.7)

which demonstrates that given the data of the two distinct SU(2) matrices, the three spatial

γ-matrices can be reconstructed. Actually, the information in both commuting SU(2)’s is

over-complete as it is only the “third” component of the “non-orbital” SU(2) along the

three components of the “orbital” SU(2) that are required.

At this point, a different set of 4 × 4 matrices can be introduced via the definitions

α1 = σ2 ⊗ σ1 , β1 = σ1 ⊗ σ2 ,

α2 = I⊗ σ2 , β2 = σ2 ⊗ I ,

α3 = σ2 ⊗ σ3 , β3 = σ3 ⊗ σ2 ,

(2.8)

where these matrices satisfy the identities

αÎ αK̂ = δÎ K̂ I4 + i εÎ K̂ L̂αL̂ ,

βÎ βK̂ = δÎ K̂ I4 + i εÎ K̂ L̂ βL̂ ,

[αÎ , βĴ ] = 0 .

(2.9)

The commutator algebra derivable from (2.9) allows us to identify the six matrices (2.8)

as the hermitian 4×4 matrix generators of SO(4). We also have

Tr
(
αÎ αĴ

)
= Tr

(
βÎ βĴ

)
= 4 δÎ Ĵ , Tr

(
αÎ βĴ

)
= 0 ,

Tr
(
αÎ
)

= Tr
(
βÎ
)

= 0 .
(2.10)

However, the commutator algebra defined by (2.4), (2.5), and (2.6) is isomorphic to

that which is derivable from (2.9). Hence both are representations of SO(4). Therefore,

the Dirac gamma matrices can be expressed using the ‘α-set’ and ‘β-set’. One such set of

definitions are

γ0 = iβ3 , γ1 = α1β2 , γ2 = α2β2 , γ3 = α3β2 , (2.11)

which imply

σ1 2 = α3 , σ2 3 = α1 , σ3 1 = α2 . (2.12)

These equations make manifest that the σi j-matrices are the generators of SU(2). A

definition of the γ5 matrix following from (2.2) takes the form

γ5 = − β1 , (2.13)

together with the definition of γ0 shown above implies

γ0γ5 = β2 . (2.14)
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It is not commonly noted that given a set of four dimensional Lorentzian gamma matrices,

it is possible to use them to define two mutually commuting SU(2)’s and this is valid

independent of the representation chosen for the gamma matrices.

Let us also note the identifications between the γ-matrices on the one side of the

equations (2.11) compared to the α-matrices and the β-matrices on the other

are not unique.

One can cyclically permute, independently, the α-matrices and the β-matrices simultane-

ously in all of these equations and this still leads to a properly defined set of γ-matrices.

Similarly, one can perform the exchanges of the form αÎ ↔ βÎ simultaneously in all of the

equations (2.11) and this also leads to a properly defined set of γ-matrices. Finally, one

can introduce (±) factors on the r.h.s. of each of the equations in (2.11) and this also leads

to proper definitions of a set of four dimensional gamma matrices.

Thus one can ask a question, “what is the group of transformations acting on the α-

matrices and the β-matrices in (2.11), (2.13), and (2.14) such that the so defined γ-matrices

satisfy (2.1)?”. The answer we find is (Z2)4 × SP2 × (SP
+
3 )2 and thus the number of

ambiguities in making such identifications is 16 × 2 × 9 = 288. The bottom line is there is

not a unique way to construct a set of Dirac γ-matrices for a four dimensional Minkowski

space from the two commuting SU(2) groups contained in SO(4).

However, the fact that SO(4) can ‘secretly’ carry information about SO(1, 3) spinors

and γ-matrices is one of the important mechanisms for use of adinkras with four colors to

describe 4D, N = 1 SUSY theories that utilize Minkowski space spinors.

3 From L-matrices, R-matrices to Dirac γ-matrices

In this section, we will show how the L-matrices and R-matrices [3, 4] that occur in the

description of any adinkra graph [2, 5] with four colors (I = 1, . . . , 4) four open nodes

(i = 1, . . . , 4), and four closed nodes (k̂ = 1, . . . , 4) are related to a set of SO(4) rotation

matrices. From the last section, we showed there exist a possibility of linking the γ-matrices

of SO(1, 3) to the SO(4) rotation matrices. Combining these two results, we thus find a

pathway that connects all adinkras with four colors, four open nodes, and four closed nodes

to the representations of SO(1, 3) γ-matrices.

Every adinkra representation (R) of this type leads to a set of four adjacency-like

matrices denoted by L
(R)
I and R

(R)
I which satisfy the conditions

( L
(R)
I )i

̂ ( R
(R)
J )̂

k + ( L
(R)
J )i

̂ ( R
(R)
I )̂

k = 2 δIJ δi
k ,

( R
(R)
J )ı̂

j ( L
(R)
I )j

k̂ + ( R
(R)
I )ı̂

j ( L
(R)
J )j

k̂ = 2 δIJ δı̂
k̂ ,

( R
(R)
I )̂

k δik = ( L
(R)
I )i

k̂ δ̂k̂ .

(3.1)

This we call the “Garden Algebra”. Given a set of L-matrices and R-matrices for a specified

adinkra representation (R), we can define two additional matrix sets denoted by V
(R)

IJ and
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Ṽ
(R)

IJ [6–10] via the equations

( L
(R)
I )i

̂ ( R
(R)
J )̂

k − ( L
(R)
J )i

̂ ( R
(R)
I )̂

k = i 2 (V
(R)

IJ )i
k ,

( R
(R)
I )ı̂

j ( L
(R)
J )j

k̂ − ( R
(R)
J )ı̂

j ( L
(R)
I )j

k̂ = i 2 (Ṽ
(R)

IJ )ı̂
k̂ .

(3.2)

We have given the name of “bosonic holoraumy matrices” to the quantities V
(R)

IJ and

“fermionic holoraumy matrices” to the quantities Ṽ
(R)

IJ defined here. Due to the definitions

in (3.1), it follows that both sets of holoraumy matrices satisfy the commutator algebra

that describes SO(4). Since the Ṽ
(R)

IJ matrices act in the spinor space of the adinkras, we

concentrate upon it. This means we can write an equation of the form

Ṽ
(R)

IJ =
[
`
(R)1
IJ α1 + `

(R)2
IJ α2 + `

(R)3
IJ α3

]
+
[ ˜̀(R)

IJ
1 β1 + ˜̀(R)

IJ
2 β2 + ˜̀(R)

IJ
3 β3

]
, (3.3)

for some set of coefficients `
(R)1
IJ , `

(R)2
IJ , `

(R)3
IJ , ˜̀(R)1

IJ , ˜̀(R)2
IJ , and ˜̀(R)3

IJ . Using the results of

the last section, this becomes

Ṽ
(R)

IJ =
[
`
(R)1
IJ Σ23 + `

(R)2
IJ Σ31 + `

(R)3
IJ Σ12

]
+
[
− ˜̀(R)

IJ
1 γ5 + ˜̀(R)

IJ
2 γ0γ5 − i ˜̀(R)

IJ
3 γ0

]
.

(3.4)

We have referred to (3.4) in the past [6, 7] as the “Adinkra/γ-matrix Holography Equation”.

The importance of (3.4), when combined with (2.7), is it implies for any four color, four

open-node, four-closed node adinkra along with the introduction of the complete specifica-

tion of two distinct commuting SU(2) algebras, {Σi j} and {iγ0, γ5 ,γ0γ5}, derivable from

adinkras, it is possible to find a set of three spatial γ-matrices and connect to the Lorentz

symmetries. The link between any specific adinkra, of the type under consideration, to

the representations of the Minkowski space SU(2) algebras, {Σi j} and {iγ0, γ5 ,γ0γ5}, is

specified by the constants `
(R)1
IJ , `

(R)2
IJ , `

(R)3
IJ , ˜̀(R)1

IJ , ˜̀(R)2
IJ , and ˜̀(R)3

IJ .

4 The Coxeter group BC4 embedding starting point

For our purposes, we can define the elements of BC4 [12, 13] in the following manner.

Consider the set of all real 4 × 4 matrices that can be formally written as [11]

L = S ·P . (4.1)

We call the matrix S the “Boolean Factor” [11] as it is a real diagonal 4 × 4 matrix that

squares to the identity. The matrix P is a matrix representation of a permutation of 4

objects. There are 2d d! = 24 × 4! = 384 ways to choose the Boolean Factor and the

Permutation matrix. This is the dimension of the Coxeter group BC4.

By embedding the L-matrices as the elements in the entirety of BC4 we know that for

each one we can write the equation

(LI
(R))i

k̂ = [S(I)(R)]i
ˆ̀
[P(I)

(R)]ˆ̀
k̂, for each fixed I = 1, 2, 3, 4 on the l.h.s. (4.2)

This notation anticipates that there are distinct adinkra representations denoted by the

label (R) and each adinkra leads to four matrices labeled by the index I. In other words,

– 6 –
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Figure 1. Set of all elements of BC4.

the L-matrix for a single fixed value of I can be chosen to be any element in the Coxeter

group BC4.

We can illustrate some of these 384 elements in the context of a Venn diagram where

each element is represented by the symbol in the image of figure 1. and where we only

include a small sample of all the BC4 elements.

If we were simply picking quartets of distinct elements of the Coxeter group BC4 in

an arbitrary manner there would be n4 where

n4 =
384 · 383 · 382 · 381

4!
= 891, 881, 376 (4.3)

ways to pick the quartets. However, we wish to pick the distinct quartet elements of the

BC4 Coexeter Group so that they satisfy the “Garden Algebra”. This requirement is so

severe there are only 1,536 ways in which four elements of the BC4 Coexeter Group can

be chosen to form a supersymmetry quartet. This was discovered by utilizing a code [11]

to exhaustively construct all possible quartets starting from the BC4 Coexeter Group

elements. The label (R) written in (4.2) takes its values over these representations and a

more detailed description is given later.

This startlingly smaller number is mostly determined by the permutation elements from

which any L-matrix is constructed. It turns out only particular choices of the permutation

elements can appear within any given quartet. This is shown in the following collections

of sets
{P1} = {(243), (123), (134), (142)} = (123){V} ,
{P2} = {(234), (124), (132), (143)} = (124){V} ,
{P3} = {(1243), (23), (14), (1342)} = (14){V} ,
{P4} = {(24), (1234), (13), (1432)} = (13){V} ,
{P5} = {(34), (12), (1324), (1432)} = (12){V} ,
{P6} = {(), (12)(34), (13)(24), (14)(23)} = (){V} ,

(4.4)

where we use cycle notation to indicate the distinct permutations and relate all the permu-

tations to the Vierergruppe2 denoted by {V} [15, 16] thus making manifest its critical role.

2We thank our colleague K. Iga for this observation.
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While the terminology “Vierergruppe” or “Klein Group” is used in the mathematical

literature, for physicists this structure is recognizable as {Z2 ×Z2}. This is the group of

symmetries of the regular rhombus and is therefore isomorphic to D2 which is described

in the 2-plane by the generators I, A, B, and AB,

I =

 1 0

0 1

 , A =

 − 1 0

0 − 1

 , (4.5)

B =

 − 1 0

0 1

 , AB =

 1 0

0 − 1

 , (4.6)

when expressed as 2 × 2 matrices.

At first, the six cosets written explicitly in (4.4) appear not to exhaust all possible

such cosets. Of the cosets that use 2-cycles, the ones including (23) {V}, (24){V}, and

(34){V}, do not appear. In a similar manner, of the cosets that use 3-cycles, the ones

including (132) {V}, (142){V}, (134){V}, (143){V}, (234){V}, and (243){V}, do not

appear. The reasons for the missing 2-cycle cosets in the list can be understood since

(12){V} = (34){V} , (13){V} = (24){V} , (14){V} = (23){V} , (4.7)

and similar results hold for the missing 3-cycle cosets from the list since

(142){V} = (134){V} = (234){V} = (243){V} = (123){V} ,
(132){V} = (143){V} = (124){V} ,

(4.8)

are also valid results. Thus, the listing of cosets as given in (4.4) is in actually exhaustive

in accounting for the existence of 6 sets with each set containing four elements and all

twenty-four element of the permutation group appear within one of the listed cosets.

We collectively express the permutations subsets as {PΛ}, with the index Λ taking on

values 1 thru 6, as cosets involving the Vierergruppe and this allows a partitioning of BC4

(since it contains S4) into six distinct subsets as shown in figure 2. All of the 384 elements

associated with figure 1. now reside inside 96 quartets which are equally distributed among

all six partitions (i.e. 16 quartets per section).

The action of transposition (denoted by the symbol ∗) on these sets is straightforward

to calculate and we find

∗{P1}= {P2} ,
∗{P2}= {P1} ,

∗{P3}= {P3} ,
∗{P4}= {P4} ,

∗{P5}= {P5} ,
∗{P6}= {P6} ,

(4.9)

and, we define two sets to be equal if they contain the same elements, independent of order.

In figure 3 these subsets of permutations together with the action of the ∗ map are shown.

We now turn to the assignments of the Boolean factors to the permutation elements. In

order to do this, we first observe there exits 16 sets of Boolean factors that can be assigned

to each of the permutation partition factors and faithfully represent BC4. It suffices to

– 8 –
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Figure 2. {Z2 ×Z2} Partitioning of S4.

specify the Boolean factors in the same order as the permutation quartet factors appear

in (4.4). Thus for each of the six sectors we find

SP1[α] :{(0)b, (6)b, (12)b, (10)b}, {(0)b, (12)b, (10)b, (6)b}, {(2)b, (4)b, (14)b, (8)b},
{(2)b, (14)b, (8)b, (4)b}, {(4)b, (2)b, (8)b, (14)b}, {(4)b, (8)b, (14)b, (2)b},
{(6)b, (0)b, (10)b, (12)b}, {(6)b, (10)b, (12)b, (0)b}, {(8)b, (4)b, (2)b, (14)b},
{(8)b, (14)b, (4)b, (2)b}, {(10)b, (6)b, (0)b, (12)b}, {(10)b, (12)b, (6)b, (0)b},
{(12)b, (0)b, (6)b, (10)b}, {(12)b, (10)b, (0)b, (6)b}, {(14)b, (2)b, (4)b, (8)b},
{(14)b, (8)b, (2)b, (4)b} ,

(4.10)

SP2[α] :{(0)b, (10)b, (6)b, (12)b}, {(0)b, (12)b, (10)b, (6)b}, {(2)b, (8)b, (4)b, (14)b},
{(2)b, (14)b, (8)b, (4)b}, {(4)b, (8)b, (14)b, (2)b}, {(4)b, (14)b, (2)b, (8)b},
{(6)b, (10)b, (12)b, (0)b}, {(6)b, (12)b, (0)b, (10)b}, {(8)b, (2)b, (14)b, (4)b},
{(8)b, (4)b, (2)b, (14)b}, {(10)b, (0)b, (12)b, (6)b}, {(10)b, (6)b, (0)b, (12)b},
{(12)b, (0)b, (6)b, (10)b}, {(12)b, (6)b, (10)b, (0)b}, {(14)b, (2)b, (4)b, (8)b},
{(14)b, (4)b, (8)b, (2)b} ,

(4.11)

SP3[α] :{(0)b, (6)b, (10)b, (12)b}, {(0)b, (12)b, (6)b, (10)b}, {(2)b, (4)b, (8)b, (14)b},
{(2)b, (14)b, (4)b, (8)b}, {(4)b, (2)b, (14)b, (8)b}, {(4)b, (8)b, (2)b, (14)b},
{(6)b, (0)b, (12)b, (10)b}, {(6)b, (10)b, (0)b, (12)b}, {(8)b, (4)b, (14)b, (2)b},
{(8)b, (14)b, (2)b, (4)b}, {(10)b, (6)b, (12)b, (0)b}, {(10)b, (12)b, (0)b, (6)b},
{(12)b, (0)b, (10)b, (6)b}, {(12)b, (10)b, (6)b, (0)b}, {(14)b, (2)b, (8)b, (4)b},
{(14)b, (8)b, (4)b, (2)b} ,

(4.12)
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Figure 3. Orbit space of P permutation matrices under the ∗ map.

SP4[α] :{(0)b, (10)b, (12)b, (6)b}, {(0)b, (12)b, (6)b, (10)b}, {(2)b, (8)b, (14)b, (4)b},
{(2)b, (14)b, (4)b, (8)b}, {(4)b, (8)b, (2)b, (14)b}, {(4)b, (14)b, (8)b, (2)b},
{(6)b, (10)b, (0)b, (12)b}, {(6)b, (12)b, (10)b, (0)b}, {(8)b, (2)b, (4)b, (14)b},
{(8)b, (4)b, (14)b, (2)b}, {(10)b, (0)b, (6)b, (12)b}, {(10)b, (6)b, (12)b, (0)b},
{(12)b, (0)b, (10)b, (6)b}, {(12)b, (6)b, (0)b, (10)b}, {(14)b, (2)b, (8)b, (4)b},
{(14)b, (4)b, (2)b, (8)b} ,

(4.13)

SP5[α] :{(0)b, (6)b, (10)b, (12)b}, {(0)b, (10)b, (12)b, (6)b}, {(2)b, (4)b, (8)b, (14)b},
{(2)b, (8)b, (14)b, (4)b}, {(4)b, (2)b, (14)b, (8)b}, {(4)b, (14)b, (8)b, (2)b},
{(6)b, (0)b, (12)b, (10)b}, {(6)b, (12)b, (10)b, (0)b}, {(8)b, (2)b, (4)b, (14)b},
{(8)b, (14)b, (2)b, (4)b}, {(10)b, (0)b, (6)b, (12)b}, {(10)b, (12)b, (0)b, (6)b},
{(12)b, (6)b, (0)b, (10)b}, {(12)b, (10)b, (6)b, (0)b}, {(14)b, (4)b, (2)b, (8)b},
{(14)b, (8)b, (4)b, (2)b} ,

(4.14)

SP6[α] :{(0)b, (6)b, (12)b, (10)b}, {(0)b, (10)b, (6)b, (12)b}, {(2)b, (4)b, (14)b, (8)b},
{(2)b, (8)b, (4)b, (14)b}, {(4)b, (2)b, (8)b, (14)b}, {(4)b, (14)b, (2)b, (8)b},
{(6)b, (0)b, (10)b, (12)b}, {(6)b, (12)b, (0)b, (10)b}, {(8)b, (2)b, (14)b, (4)b},
{(8)b, (14)b, (4)b, (2)b}, {(10)b, (0)b, (12)b, (6)b}, {(10)b, (12)b, (6)b, (0)b},
{(12)b, (6)b, (10)b, (0)b}, {(12)b, (10)b, (0)b, (6)b}, {(14)b, (4)b, (8)b, (2)b},
{(14)b, (8)b, (2)b, (4)b} .

(4.15)

The notation is designed to elicit the fact that for each choice of PΛ, there are sixteen

possible choices of SPΛ
[α] where the index α enumerates those choices taking on values

1, . . . 16.

At this stage, we have distributed all of the elements of BC4 among the partitions.

This, however, does not saturate the number of adinkras that were found by the code

enabled search. There are more quartets whose existence is due to “color flips”. In order
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to define “color flips”, it is first convenient to define “antonym pairs” of Boolean factors.

Given a Boolean factor (#)b, its antonym is given by (15−#)b. In order to illustrate this,

a few examples suffice.

Each Boolean factor is equivalent to a real diagonal matrix that squares to the identity.

Using the conventions set up in [11]. The Boolean factors (3)b, and (6)b correspond to

respectively to the equations

(3)b =


(−1) 0 0 0

0 (−1) 0 0

0 0 1 0

0 0 0 1

 , (6)b =


1 0 0 0

0 (−1) 0 0

0 0 (−1) 0

0 0 0 1

 , (4.16)

which possess the respective antonyms given by

(12)b =


1 0 0 0

0 1 0 0

0 0 (−1) 0

0 0 0 (−1)

 , (9)b =


(−1) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 (−1)

 . (4.17)

As we have already described, it takes a quartet of Boolean factors to construct a

representation of the Garden Algebra. We now make an observation.

If a specified Boolean factor quartet (together with a permutation partition)

satisfies the Garden Algebra, then replacing any of the Boolean factors by their

antonyms leads to another Boolean factor quartet that satisfies the Garden Al-

gebra.

Let us illustrate the import of this by examining the Boolean factor quartet {(0)b, (6)b,

(12)b, (10)b} and all of its Boolean factor quartet antonyms shown below.

{(0)b, (6)b, (12)b, (10)b} :

{(0)b, (6)b, (12)b, (5)b}, {(0)b, (6)b, (3)b, (5)b}, {(0)b, (6)b, (3)b, (10)b} ,
{(0)b, (9)b, (12)b, (5)b}, {(0)b, (9)b, (3)b, (5)b}, {(0)b, (9)b, (3)b, (10)b} ,
{(0)b, (9)b, (12)b, (10)b}, {(15)b, (9)b, (12)b, (5)b}, {(15)b, (9)b, (3)b, (5)b} ,
{(15)b, (9)b, (3)b, (10)b}, {(15)b, (9)b, (12)b, (10)b}, {(15)b, (9)b, (12)b, (5)b} ,
{(15)b, (6)b, (3)b, (5)b}, {(15)b, (6)b, (3)b, (10)b}, {(15)b, (6)b, (12)b, (10)b} .

(4.18)

On the first line of this expression we have the specified Boolean factor quartet and under

this we list all of its Boolean factor quartet antonyms.

For the first listed antonym, only the fourth Boolean factor entry or the “fourth color”

was replaced by its antonym. This is what is meant by a single “color flip”. For the second

listed antonym, the third and fourth Boolean factor entries or the “third color” and “fourth

color” were replaced by their antonyms. This is what is meant by “flipping” two colors.

For the third listed antonym, only the third Boolean factor entry or the “third color” was

replaced by its antonym. This is again a “flipping” of one color.
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Concentrating now once more only on the Boolean factor quartet {(0)b, (6)b, (12)b,

(10)b}, we can see among the antonyms one is related to it in a special manner. The

antonym Boolean factor quartet {(15)b, (9)b, (3)b, (5)b} has all four of its colors flipped

with respect to the initial Boolean factor quartet. Thus we call {(0)b, (6)b, (12)b, (10)b} and

{(15)b, (9)b, (3)b, (5)b} antipodal Boolean factor quartet pairs. Among the sixteen Boolean

factor quartets shown in (4.18) eight such pairs occur. Thus, for each value of α, one must

specify which of the antonyms is used to construct and L-matrix. For this purpose, we use

an index βa which takes on eight values.

Given two quartets ( L
(R)
I )i

̂ and ( L
(R′)
I )i

̂ where the elements in the second set are

related to the first by replacing at least one Boolean factor by its antonym, there exist a 4

× 4 Boolean factor matrix denoted by [A(R, R′)] I
J which acts on the color space of the

links (i.e. the indices of the I, J , . . . type) such that

( L
(R)
I )i

̂ =
[
A(R, R′)

]
I

J( L
(R′)
J )i

̂ , (4.19)

and as a consequence of (4.19) we see

( R
(R)
I )̂

i =
[
A(R, R′)

]
I

J( R
(R′)
J )̂

i . (4.20)

It should also be noted that the definition of the antonyms imply that the representations

R′ and R that appear in (4.19) and (4.20) must belong to the same partition sector shown

in diagram shown in figure 2. The equations in (3.2), (4.19) and (4.20) imply

`
(R) â
IJ =

[
A(R, R′)

]
I

K
[
A(R, R′)

]
J

L `
(R′) â
KL˜̀(R) â

IJ =
[
A(R, R′)

]
I

K
[
A(R, R′)

]
J

L ˜̀(R′) â
KL .

(4.21)

Let us observe the distinction between the Boolean quartet factors that appear

in (4.10)–(4.15) and all of their antonyms is not intrinsic, but is an artifact of the choices

made to discuss this aspect of the construction. It may be possible to provide a more

symmetrical treatment of the (4.10)–(4.15) and all of their antonyms. However, we have

not been able to create such a formulation.

Now the meaning of the “representation label”, first written in (3.1), can be explicitly

discussed. Each value of R corresponds to a specification of the pairs of indices (Λ, α|βa).
This implies there are 6 × 16 × 8 = 6 × 128 = 768 quartets which satisfy the Garden

Algebra conditions. Notice that 1,536/762 = 2 which shows the algorithmic counting did

not remove antipodal Boolean factor quartets.

Finally, let us note all discussions in this section are totally disconnected from consider-

ations of four dimensional supersymmetry representations. We have simply enunciated the

rich mathematical structure imposed on the Coxeter Group BC4 when analyzed through

the lens of the “Garden Algebra” GR(4,4).

5 Explicit values for ` and ˜̀ coefficients

In this section, for all of the elements of BC4, the explicit values of the coefficients `
(R)1
IJ ,

`
(R)2
IJ , `

(R)3
IJ , ˜̀(R)1

IJ , ˜̀(R)2
IJ , and ˜̀(R)3

IJ which are related to each of the representation (R) in

the order shown in
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P1 : χo

`
(1)2
12 = 1 `

(1)3
13 = 1 `

(1)1
14 = 1 `

(1)1
23 = 1 `

(1)3
24 = −1 `

(1)2
34 = 1 1

˜̀(2)3
12 = 1 ˜̀(2)2

13 = 1 ˜̀(2)1
14 = 1 ˜̀(2)1

23 = −1 ˜̀(2)2
24 = 1 ˜̀(2)3

34 = − 1 −1

`
(3)2
12 = 1 `

(3)3
13 = 1 `

(3)1
14 = 1 `

(3)1
23 = 1 `

(3)3
24 = −1 `

(3)2
34 = 1 1

˜̀(4)3
12 = 1 ˜̀(4)2

13 = 1 ˜̀(4)1
14 = 1 ˜̀(4)1

23 = −1 ˜̀(4)2
24 = 1 ˜̀(4)3

34 = − 1 −1

`
(5)2
12 = 1 `

(5)3
13 = 1 `

(5)1
14 = 1 `

(5)1
23 = 1 `

(5)3
24 = −1 `

(5)2
34 = 1 1

˜̀(6)3
12 = 1 ˜̀(6)2

13 = 1 ˜̀(6)1
14 = 1 ˜̀(6)1

23 = −1 ˜̀(6)2
24 = 1 ˜̀(6)3

34 = −1 −1

`
(7)2
12 = 1 `

(7)3
13 = 1 `

(7)1
14 = 1 `

(7)1
23 = 1 `

(7)3
24 = −1 `

(7)2
34 = 1 1

˜̀(8)3
12 = 1 ˜̀(8)2

13 = 1 ˜̀(8)1
14 = 1 ˜̀(8)1

23 = −1 ˜̀(8)2
24 = 1 ˜̀(8)3

34 = −1 −1

˜̀(9)3
12 = 1 ˜̀(9)2

13 = 1 ˜̀(9)1
14 = 1 ˜̀(9)1

23 = −1 ˜̀(9)2
24 = 1 ˜̀(9)3

34 = −1 −1

`
(10)2
12 = 1 `

(10)3
13 = 1 `

(10)1
14 = 1 `

(10)1
23 = 1 `

(10)3
24 = −1 `

(10)2
34 = 1 1

˜̀(11)3
12 = 1 ˜̀(11)2

13 = 1 ˜̀(11)1
14 = 1 ˜̀(11)1

23 = −1 ˜̀(11)2
24 = 1 ˜̀(11)3

34 = −1 −1

`
(12)2
12 = 1 `

(12)3
13 = 1 `

(12)1
14 = 1 `

(12)1
23 = 1 `

(12)3
24 = −1 `

(12)2
34 = 1 1

˜̀(13)3
12 = 1 ˜̀(13)2

13 = 1 ˜̀(13)1
14 = 1 ˜̀(13)1

23 = −1 ˜̀(13)2
24 = 1 ˜̀(13)3

34 = −1 −1

`
(14)2
12 = 1 `

(14)3
13 = 1 `

(14)1
14 = 1 `

(14)1
23 = 1 `

(14)3
24 = −1 `

(14)2
34 = 1 1

˜̀(15)3
12 = 1 ˜̀(15)2

13 = 1 ˜̀(15)1
14 = 1 ˜̀(15)1

23 = −1 ˜̀(15)2
24 = 1 ˜̀(15)3

34 = −1 −1

`
(16)2
12 = 1 `

(16)3
13 = 1 `

(16)1
14 = 1 `

(16)1
23 = 1 `

(16)3
24 = −1 `

(16)2
34 = 1 1
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P2 : χo

˜̀(1)3
12 = 1 ˜̀(1)2

13 = 1 ˜̀(1)1
14 = 1 ˜̀(1)1

23 = −1 ˜̀(1)2
24 = 1 ˜̀(1)3

34 = −1 −1

`
(2)2
12 = 1 `

(2)3
13 = 1 `

(2)1
14 = 1 `

(2)1
23 = 1 `

(2)3
24 = −1 `

(2)2
34 = 1 1

˜̀(3)3
12 = 1 ˜̀(3)2

13 = 1 ˜̀(3)1
14 = 1 ˜̀(3)1

23 = −1 ˜̀(3)2
24 = 1 ˜̀(3)3

34 = −1 −1

`
(4)2
12 = 1 `

(4)3
13 = 1 `

(4)1
14 = 1 `

(4)1
23 = 1 `

(4)3
24 = −1 `

(4)2
34 = 1 1

`
(5)2
12 = 1 `

(5)3
13 = 1 `

(5)1
14 = 1 `

(5)1
23 = 1 `

(5)3
24 = −1 `

(5)2
34 = 1 1

˜̀(6)3
12 = 1 ˜̀(6)2

13 = 1 ˜̀(6)1
14 = 1 ˜̀(6)1

23 = −1 ˜̀(6)2
24 = 1 ˜̀(6)3

34 = −1 −1

`
(7)2
12 = 1 `

(7)3
13 = 1 `

(7)1
14 = 1 `

(7)1
23 = 1 `

(7)3
24 = −1 `

(7)2
34 = 1 1

˜̀(8)3
12 = 1 ˜̀(8)2

13 = 1 ˜̀(8)1
14 = 1 ˜̀(8)1

23 = −1 ˜̀(8)2
24 = 1 ˜̀(8)3

34 = −1 −1

˜̀(9)3
12 = 1 ˜̀(9)2

13 = 1 ˜̀(9)1
14 = 1 ˜̀(9)1

23 = −1 ˜̀(9)2
24 = 1 ˜̀(9)3

34 = −1 −1

`
(10)2
12 = 1 `

(10)3
13 = 1 `

(10)1
14 = 1 `

(10)1
23 = 1 `

(10)3
24 = −1 `

(10)2
34 = 1 1

˜̀(11)3
12 = 1 ˜̀(11)2

13 = 1 ˜̀(11)1
14 = 1 ˜̀(11)1

23 = −1 ˜̀(11)2
24 = 1 ˜̀(11)3

34 = −1 −1

`
(12)2
12 = 1 `

(12)3
13 = 1 `

(12)1
14 = 1 `

(12)1
23 = 1 `

(12)3
24 = −1 `

(12)2
34 = 1 1

`
(13)2
12 = 1 `

(13)3
13 = 1 `

(13)1
14 = 1 `

(13)1
23 = 1 `

(13)3
24 = −1 `

(13)2
34 = 1 1

˜̀(14)3
12 = 1 ˜̀(14)2

13 = 1 ˜̀(14)1
14 = 1 ˜̀(14)1

23 = −1 ˜̀(14)2
24 = 1 ˜̀(14)3

34 = −1 −1

`
(15)2
12 = 1 `

(15)3
13 = 1 `

(15)1
14 = 1 `

(15)1
23 = 1 `

(15)3
24 = −1 `

(15)2
34 = 1 1

˜̀(16)3
12 = 1 ˜̀(16)2

13 = 1 ˜̀(16)1
14 = 1 ˜̀(16)1

23 = −1 ˜̀(16)2
24 = 1 ˜̀(16)3

34 = −1 −1
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˜̀(1)3
12 = −1 ˜̀(1)2

13 = 1 ˜̀(1)1
14 = −1 ˜̀(1)1

23 = 1 ˜̀(1)2
24 = 1 ˜̀(1)3

34 = 1 −1

`
(2)2
12 = −1 `

(2)3
13 = −1 `

(2)1
14 = 1 `

(2)1
23 = 1 `

(2)3
24 = 1 `

(2)2
34 = −1 1

˜̀(3)3
12 = −1 ˜̀(3)2

13 = 1 ˜̀(3)1
14 = −1 ˜̀(3)1

23 = 1 ˜̀(3)2
24 = 1 ˜̀(3)3

34 = 1 −1

`
(4)2
12 = −1 `

(4)3
13 = −1 `

(4)1
14 = 1 `

(4)1
23 = 1 `

(4)3
24 = 1 `

(4)2
34 = −1 1

˜̀(5)3
12 = −1 ˜̀(5)2

13 = 1 ˜̀(5)1
14 = −1 ˜̀(5)1

23 = 1 ˜̀(5)2
24 = 1 ˜̀(5)3

34 = 1 −1

`
(6)2
12 = −1 `

(6)3
13 = −1 `

(6)1
14 = 1 `

(6)1
23 = 1 `

(6)3
24 = 1 `

(6)2
34 = −1 1

˜̀(7)3
12 = −1 ˜̀(7)2

13 = 1 ˜̀(7)1
14 = −1 ˜̀(7)1

23 = 1 ˜̀(7)2
24 = 1 ˜̀(7)3

34 = 1 −1

`
(8)2
12 = −1 `

(8)3
13 = −1 `

(8)1
14 = 1 `

(8)1
23 = 1 `

(8)3
24 = 1 `

(8)2
34 = −1 1

`
(9)2
12 = −1 `

(9)3
13 = −1 `

(9)1
14 = 1 `

(9)1
23 = 1 `

(9)3
24 = 1 `

(9)2
34 = −1 1

˜̀(10)3
12 = −1 ˜̀(10)2

13 = 1 ˜̀(10)1
14 = −1 ˜̀(10)1

23 = 1 ˜̀(10)2
24 = 1 ˜̀(10)3

34 = 1 −1

`
(11)2
12 = −1 `

(11)3
13 = −1 `

(11)1
14 = 1 `

(11)1
23 = 1 `

(11)3
24 = 1 `

(11)2
34 = −1 1

˜̀(12)3
12 = −1 ˜̀(12)2

13 = 1 ˜̀(12)1
14 = −1 ˜̀(12)1

23 = 1 ˜̀(12)2
24 = 1 ˜̀(12)3

34 = 1 −1

`
(13)2
12 = −1 `

(13)3
13 = −1 `

(13)1
14 = 1 `

(13)1
23 = 1 `

(13)3
24 = 1 `

(13)2
34 = −1 1

˜̀(14)3
12 = −1 ˜̀(14)2

13 = 1 ˜̀(14)1
14 = −1 ˜̀(14)1

23 = 1 ˜̀(14)2
24 = 1 ˜̀(14)3

34 = 1 −1

`
(15)2
12 = −1 `

(15)3
13 = −1 `

(15)1
14 = 1 `

(15)1
23 = 1 `

(15)3
24 = 1 `

(15)2
34 = −1 1

˜̀(16)3
12 = −1 ˜̀(16)2

13 = 1 ˜̀(16)1
14 = −1 ˜̀(16)1

23 = 1 ˜̀(16)2
24 = 1 ˜̀(16)3

34 = 1 −1
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`
(1)2
12 = 1 `

(1)3
13 = 1 `

(1)1
14 = 1 `

(1)1
23 = 1 `

(1)3
24 = −1 `

(1)2
34 = 1 1

˜̀(2)3
12 = 1 ˜̀(2)2

13 = 1 ˜̀(2)1
14 = 1 ˜̀(2)1

23 = −1 ˜̀(2)2
24 = 1 ˜̀(2)3

34 = −1 −1

`
(3)2
12 = 1 `

(3)3
13 = 1 `

(3)1
14 = 1 `

(3)1
23 = 1 `

(3)3
24 = −1 `

(3)2
34 = 1 1

˜̀(4)3
12 = 1 ˜̀(4)2

13 = 1 ˜̀(4)1
14 = 1 ˜̀(4)1

23 = −1 ˜̀(4)2
24 = 1 ˜̀(4)3

34 = −1 −1

˜̀(5)3
12 = 1 ˜̀(5)2

13 = 1 ˜̀(5)1
14 = 1 ˜̀(5)1

23 = −1 ˜̀(5)2
24 = 1 ˜̀(5)3

34 = −1 −1

`
(6)2
12 = 1 `

(6)3
13 = 1 `

(6)1
14 = 1 `

(6)1
23 = 1 `

(6)3
24 = −1 `

(6)2
34 = 1 1

˜̀(7)3
12 = 1 ˜̀(7)2

13 = 1 ˜̀(7)1
14 = 1 ˜̀(7)1

23 = −1 ˜̀(7)2
24 = 1 ˜̀(7)3

34 = −1 −1

`
(8)2
12 = 1 `

(8)3
13 = 1 `

(8)1
14 = 1 `

(8)1
23 = 1 `

(8)3
24 = −1 `

(8)2
34 = 1 1

`
(9)2
12 = 1 `

(9)3
13 = 1 `

(9)1
14 = 1 `

(9)1
23 = 1 `

(9)3
24 = −1 `

(9)2
34 = 1 1

˜̀(10)3
12 = 1 ˜̀(10)2

13 = 1 ˜̀(10)1
14 = 1 ˜̀(10)1

23 = −1 ˜̀(10)2
24 = 1 ˜̀(10)3

34 = −1 −1

`
(11)2
12 = 1 `

(11)3
13 = 1 `

(11)1
14 = 1 `

(11)1
23 = 1 `

(11)3
24 = −1 `

(11)2
34 = 1 1

˜̀(12)3
12 = 1 ˜̀(12)2

13 = 1 ˜̀(12)1
14 = 1 ˜̀(12)1

23 = −1 ˜̀(12)2
24 = 1 ˜̀(12)3

34 = −1 −1

˜̀(13)3
12 = 1 ˜̀(13)2

13 = 1 ˜̀(13)1
14 = 1 ˜̀(13)1

23 = −1 ˜̀(13)2
24 = 1 ˜̀(13)3

34 = −1 −1

`
(14)2
12 = 1 `

(14)3
13 = 1 `

(14)1
14 = 1 `

(14)1
23 = 1 `

(14)3
24 = −1 `

(14)2
34 = 1 1

˜̀(15)3
12 = 1 ˜̀(15)2

13 = 1 ˜̀(15)1
14 = 1 ˜̀(15)1

23 = −1 ˜̀(15)2
24 = 1 ˜̀(15)3

34 = −1 −1

`
(16)2
12 = 1 `

(16)3
13 = 1 `

(16)1
14 = 1 `

(16)1
23 = 1 `

(16)3
24 = −1 `

(16)2
34 = 1 1
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P5 : χo

`
(1)2
12 = 1 `

(1)3
13 = 1 `

(1)1
14 = 1 `

(1)1
23 = 1 `

(1)3
24 = −1 `

(1)2
34 = 1 1

˜̀(2)3
12 = 1 ˜̀(2)2

13 = 1 ˜̀(2)1
14 = 1 ˜̀(2)1

23 = −1 ˜̀(2)2
24 = 1 ˜̀(2)3

34 = −1 −1

`
(3)2
12 = 1 `

(3)3
13 = 1 `

(3)1
14 = 1 `

(3)1
23 = 1 `

(3)3
24 = −1 `

(3)2
34 = 1 1

˜̀(4)3
12 = 1 ˜̀(4)2

13 = 1 ˜̀(4)1
14 = 1 ˜̀(4)1

23 = −1 ˜̀(4)2
24 = 1 ˜̀(4)3

34 = −1 −1

`
(5)2
12 = 1 `

(5)3
13 = 1 `

(5)1
14 = 1 `

(5)1
23 = 1 `

(5)3
24 = −1 `

(5)2
34 = 1 1

˜̀(6)3
12 = 1 ˜̀(6)2

13 = 1 ˜̀(6)1
14 = 1 ˜̀(6)1

23 = −1 ˜̀(6)2
24 = 1 ˜̀(6)3

34 = −1 −1

`
(7)2
12 = 1 `

(7)3
13 = 1 `

(7)1
14 = 1 `

(7)1
23 = 1 `

(7)3
24 = −1 `

(7)2
34 = 1 1

˜̀(8)3
12 = 1 ˜̀(8)2

13 = 1 ˜̀(8)1
14 = 1 ˜̀(8)1

23 = −1 ˜̀(8)2
24 = 1 ˜̀(8)3

34 = −1 −1

˜̀(9)3
12 = 1 ˜̀(9)2

13 = 1 ˜̀(9)1
14 = 1 ˜̀(9)1

23 = −1 ˜̀(9)2
24 = 1 ˜̀(9)3

34 = −1 −1

`
(10)2
12 = 1 `

(10)3
13 = 1 `

(10)1
14 = 1 `

(10)1
23 = 1 `

(10)3
24 = −1 `

(10)2
34 = 1 1

˜̀(11)3
12 = 1 ˜̀(11)2

13 = 1 ˜̀(11)1
14 = 1 ˜̀(11)1

23 = −1 ˜̀(11)2
24 = 1 ˜̀(11)3

34 = −1 −1

`
(12)2
12 = 1 `

(12)3
13 = 1 `

(12)1
14 = 1 `

(12)1
23 = 1 `

(12)3
24 = −1 `

(12)2
34 = 1 1

˜̀(13)3
12 = 1 ˜̀(13)2

13 = 1 ˜̀(13)1
14 = 1 ˜̀(13)1

23 = −1 ˜̀(13)2
24 = 1 ˜̀(13)3

34 = −1 −1

`
(14)2
12 = 1 `

(14)3
13 = 1 `

(14)1
14 = 1 `

(14)1
23 = 1 `

(14)3
24 = −1 `

(14)2
34 = 1 1

˜̀(15)3
12 = 1 ˜̀(15)2

13 = 1 ˜̀(15)1
14 = 1 ˜̀(15)1

23 = −1 ˜̀(15)2
24 = 1 ˜̀(15)3

34 = −1 −1

`
(16)2
12 = 1 `

(16)3
13 = 1 `

(16)1
14 = 1 `

(16)1
23 = 1 `

(16)3
24 = −1 `

(16)2
34 = 1 1
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P6 : χo

˜̀(1)3
12 = 1 ˜̀(1)2

13 = 1 ˜̀(1)1
14 = 1 ˜̀(1)1

23 = −1 ˜̀(1)2
24 = 1 ˜̀(1)3

34 = −1 −1

`
(2)2
12 = 1 `

(2)3
13 = 1 `

(2)1
14 = 1 `

(2)1
23 = 1 `

(2)3
24 = −1 `

(2)2
34 = 1 1

˜̀(3)3
12 = 1 ˜̀(3)2

13 = 1 ˜̀(3)1
14 = 1 ˜̀(3)1

23 = −1 ˜̀(3)2
24 = 1 ˜̀(3)3

34 = −1 −1

`
(4)2
12 = 1 `

(4)3
13 = 1 `

(4)1
14 = 1 `

(4)1
23 = 1 `

(4)3
24 = −1 `

(4)2
34 = 1 1

˜̀(5)3
12 = 1 ˜̀(5)2

13 = 1 ˜̀(5)1
14 = 1 ˜̀(5)1

23 = −1 ˜̀(5)2
24 = 1 ˜̀(5)3

34 = −1 −1

`
(6)2
12 = 1 `

(6)3
13 = 1 `

(6)1
14 = 1 `

(6)1
23 = 1 `

(6)3
24 = −1 `

(6)2
34 = 1 1

˜̀(7)3
12 = 1 ˜̀(7)2

13 = 1 ˜̀(7)1
14 = 1 ˜̀(7)1

23 = −1 ˜̀(7)2
24 = 1 ˜̀(7)3

34 = −1 −1

`
(8)2
12 = 1 `

(8)3
13 = 1 `

(8)1
14 = 1 `

(8)1
23 = 1 `

(8)3
24 = −1 `

(8)2
34 = 1 1

`
(9)2
12 = 1 `

(9)3
13 = 1 `

(9)1
14 = 1 `

(9)1
23 = 1 `

(9)3
24 = −1 `

(9)2
34 = 1 1

˜̀(10)3
12 = 1 ˜̀(10)2

13 = 1 ˜̀(10)1
14 = 1 ˜̀(10)1

23 = −1 ˜̀(10)2
24 = 1 ˜̀(10)3

34 = −1 −1

`
(11)2
12 = 1 `

(11)3
13 = 1 `

(11)1
14 = 1 `

(11)1
23 = 1 `

(11)3
24 = −1 `

(11)2
34 = 1 1

˜̀(12)3
12 = 1 ˜̀(12)2

13 = 1 ˜̀(12)1
14 = 1 ˜̀(12)1

23 = −1 ˜̀(12)2
24 = 1 ˜̀(12)3

34 = −1 −1

`
(13)2
12 = 1 `

(13)3
13 = 1 `

(13)1
14 = 1 `

(13)1
23 = 1 `

(13)3
24 = −1 `

(13)2
34 = 1 1

˜̀(14)3
12 = 1 ˜̀(14)2

13 = 1 ˜̀(14)1
14 = 1 ˜̀(14)1

23 = −1 ˜̀(14)2
24 = 1 ˜̀(14)3

34 = −1 −1

`
(15)2
12 = 1 `

(15)3
13 = 1 `

(15)1
14 = 1 `

(15)1
23 = 1 `

(15)3
24 = −1 `

(15)2
34 = 1 1

˜̀(16)3
12 = 1 ˜̀(16)2

13 = 1 ˜̀(16)1
14 = 1 ˜̀(16)1

23 = −1 ˜̀(16)2
24 = 1 ˜̀(16)3

34 = −1 −1

On the basis of this list, algorithms and codes were written in order to calculate the

values of the two quadratic forms, to be discussed later, on the ˜̀ and ` adinkra param-

eter spaces. The results of these calculation provide the calculational foundation for the

statements made subsequently.

6 A first quadratic form on the Adinkra parameter space

In some of our previous work, we have defined the “chi-oh” function χo(SPΛ
[α] · PΛ)

that maps the three quartets (SP1 [1] · P1), (SP2 [1] · P2), and (SP3 [1] · P3) into Z2

according to

χo(SP1 [1] · P1) = + 1 , χo(SP2 [1] · P2) = χo(SP3 [1] · P3) = − 1 . (6.1)

Using the same definition, we can now extend the range of the “chi-oh” function throughout

the entirety of BC4. Expressed in terms of the ` and ˜̀parameters in (3.3) we have

χo(SPΛ
[α] · PΛ) =

1

24
εI J K L

∑
I,J,K,L,â

[
`

(α)â
IJ `

(α)â
KL + ˜̀(α)â

IJ
˜̀(α)â
JL

]
, (6.2)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 + 1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 +1 1- +1 -1 +1

2 - 1 +1 -1 +1 +1 -1 +1 -1 -1 +1 -1 +1 +1 -1 +1 -1

3 - 1 +1 -1 +1 -1 +1 -1 +1 +1 -1 +1 -1 +1 -1 +1 -1

4 +1 -1 +1 -1 -1 +1 -1 +1 +1 -1 +1 -1 -1 +1 -1 +1

5 +1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 +1 -1 +1 -1 +1

6 -1 +1 -1 +1 -1 +1 -1 +1 +1 -1 +1 -1 +1 -1 +1 -1

Table 1. Values of χo(SPΛ
[α] · PΛ) in BC4.

and we show the values of this function in table 1 where the numbers in the first row

correspond to the values of α and the numbers in the first column correspond to Λ. We

note the identities∑
Λ

χo(SPΛ
[α] · PΛ) =

∑
α

χo(SPΛ
[α] · PΛ) = 0 , (6.3)

so that half the elements of BC4 are mapped into +1 and half the elements of BC4 are

mapped into −1.

One result that follows from the emergence of these two distinct classes defined by

the values of χo(R) can be combined with the discussion given in section 2 to make an

important observation. If one begins solely with the adinkra’s holoraumy matrices, it is

necessary to have at least two sets of four-color adinkras with opposite values of χo(R)

in order to reconstruct a set of γ-matrices from the L-matrices and R-matrices associated

with the adinkras.

Finally, we note that if ( L
(R)
I )i

̂ and ( R
(R)
I )̂

i for representation R are related to

( L
(R′)
I )i

̂ and ( R
(R′)
I )̂

i for representation R′ as shown in (4.19) and (4.20), it follows that

χo(R) = det
∣∣[A(R, R′)

]∣∣χo(R′) , (6.4)

where det |[A(R, R′)]| denotes the determinant of the matrix [A(R, R′)] I
J and can only

take on the values of ± 1.

7 A second quadratic form on the Adinkra parameter space

Defining a dot product in the parameters space as

G
[
(R) , (R′)

]
` ≡

1

12

∑
I,J,â

[
`

(R)â
IJ `

(R′)â
IJ + ˜̀(R)â

IJ
˜̀(R′)â
IJ

]
, (7.1)

the ‘angles’ (denoted by θ[(R) , (R′)]`) between two representations (R), and (R′) specified

by their values of ` and ˜̀ in the 72-dimensional parameter space of (3.3) and (3.4), can be

defined from this inner product in the usual way:

cos
{
θ[(R) , (R′)]`

}
=

G[ (R), (R′) ]`√
G[ (R), (R) ]`

√
G[ (R′), (R′)]`

. (7.2)

Here we discuss this dot products between each of the 16 representations within {P1}.
We use these explicitly derived results to motivate their extension throughout all the sec-

tions {P1}, . . . , {P6}.
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For {P1}, these form two sets of mutually “orthogonal” representations:

G
[
(R) , (R′)

]
` = 1 for χo(R) = χo(R′)

G
[
(R) , (R′)

]
` = 0 for χo(R) = − χo(R′) .

(7.3)

These equations are very interesting from one perspective.

The definition of χo implies that it is measuring a property of each individual represen-

tation without regard to any other representation. On the other hand, when (R) 6= (R′),
the quantity G [(R) , (R′)] ` is measuring a property of the (R) representation relative to

the (R′) representation. It is useful to make analogy here.

If we think about the elements of the adinkra space described by the ˜̀and ` as vectors

and the quantity G [(R) , (R′)] ` as defining an inner product, then when G [(R) , (R′)] ` =

1 but (R) 6= (R′), we would conclude that the two vectors associated with (R) (R′) are

collinear and in fact the same.

Once more the cases when (L
(R)
I )i

̂ and (R
(R)
I )̂

i are associated with representation R
and (L

(R′)
I )i

̂ and (R
(R′)
I )̂

i associated with representation R′, subject to the relationships

shown in (4.19) and (4.20) has a number of implications.

We are now in position to present a surprising theorem.

Let (R) denote an adinkra representation constructed from elements of BC4, as listed

in section 4. Let (R′) denote an adinkra representation constructed from the listed

ones involving BC4, but with the difference that (R′) is constructed from (R) by use of

antonyms but excluding anti-podal copies. Under these conditions the only possible values

of G [(R) , (R′)] ` are given by −1/3, 0, and 1. We will now give a proof by construction.

Using the definition of the gadget we recall

G
[
(R) , (R′)

]
` ≡

1

12

∑
I,J,â

[
`

(R)â
IJ `

(R′)â
IJ + ˜̀(R)â

IJ
˜̀(R′)â
IJ

]
, (7.4)

where the parameters `
(R)â
IJ , ˜̀(R)â

IJ , `
(R′)â
IJ , ˜̀(R′)â

IJ are defined via equations of the form given

in (3.3). We emphasize for adinkras constructed from BC4, when the `’s are non-zero, the˜̀vanish and vice-versa.

Furthermore, if the L-matrices and R-matrices associated with the two representations

(R) and (R′) satisfy the conditions in (4.19) and (4.20) then

G
[
(R),(R′)

]
` ≡

1

12

∑
I,J,K,L,â

[
A(R,R′)

]
I
K
[
A(R,R′)

]
J

L
[
`
(R′)â
KL `

(R′)â
IJ + ˜̀(R′)â

IJ
˜̀(R′)â
KL

]
.

(7.5)

Let us rewrite (7.4) more explicitly to find

G
[
(R) , (R′)

]
` ≡

1

6

∑
â

[
`

(R)â
1 2 `

(R′)â
1 2 + `

(R)â
1 3 `

(R′)â
1 3 + `

(R)â
1 4 `

(R′)â
1 4

+ `
(R′)â
2 3 `

(R′)â
2 3 + `

(R)â
2 4 `

(R′)â
2 4 + `

(R)â
3 4 `

(R′)â
3 4

+ ˜̀(R)â
1 2

˜̀(R′)â
1 2 + ˜̀(R)â

1 3
˜̀(R′)â
1 3 + ˜̀(R)â

1 4
˜̀(R′)â
1 4

+ ˜̀(R′)â
2 3

˜̀(R′)â
2 3 + ˜̀(R)â

2 4
˜̀(R′)â
2 4 + ˜̀(R)â

3 4
˜̀(R′)â
3 4

]
.

(7.6)
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R̂ Φ G W a

χ̂o(R̂) +1 −1 −1

Table 2. 4D Superfield Values of χ̂o(R̂).

Color flipping does not change the orthogonality between the distinct set of represen-

tations listed in section 4. However, when the dot products between any two pair of those

representations are non-zero, color flipping of one with respect to the other may change

the value of the dot product calculated. With a small amount of effort, we observed the

changes occur as follows: within each set, flipping an odd number of colors for one repre-

sentation in the dot product relative to the other representation used in the dot product

implies the representations are orthogonal. Flipping two colors, the dot product becomes

−1/3. Flipping four colors, the dot product maintains the value of 1. This is because

flipping all four colors within a representation leads to no change with respect to the `’s

and ˜̀’s. Additional deliberation shows this same behavior extends throughout all six of

the sectors {P1}, . . . ,{P6} together with their antonym extensions.

Finally, flipping an odd number of colors, as seen via the result in (6.4), implies that

even for the antonym extended quartets, the condition χo(R) = −χo(R′) implies orthogo-

nality with respect to the gadget.

8 4D supermultiplet numbers

As shown in [17], a parameter χ̂o, that appears in the following definition

[ 1 + χ̂o ]� = − 1

4
[ I + γ5]a b [ I − γ5]c d

[
DaDcDdDb

]
, (8.1)

can be used on the chiral, vector and tensor supermultiplets in 4D by evaluation on the

spinor components given respectively by

ψa ≡ Da Φ
∣∣ , χa ≡ DaG

∣∣ , λa ≡ W a

∣∣ , (8.2)

and where Φ, G, and W a are the usual superfields that describe the 4D chiral, tensor, and

vector supermultiplets. Direct calculations yield the results shown in table 2. We have

asserted that the 4D quantity χ̂o(R̂) is the analog of the first quadratic form defined on

adinkras.

In the work of [10], it was shown that within 4D supersymmetrical theories involving

the supermultiplets described by Φ, G, and W a it is possible to define an analog of the

second quadratic form that exists for adinkras. In order to define this analog, one must first

define 4D holoraumy tensors denoted by
[
Hµ(R̂)

]
a b c

d over the superfield representations

R̂ = (Φ, G, W a). Once more direct calculations yield respectively

Da,Dbt ψc = −i (γ5γν)ab(γ
5[γν , γ

µ])c
d∂µψd

≡
[
Hµ(CS)

]
a b c

d (∂µψd ) ,

(8.3)
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Da,Dbt χc = i2Cab(γ
µ)c

d∂µχd − i2 (γ5)ab(γ
5γµ)c

d∂µχd

+ i2 (γ5γµ)ab(γ
5)c

d∂µχd

≡
[
Hµ(TS)

]
a b c

d (∂µχd ) .

(8.4)

Da,Dbt λc = −i2Cab(γµ)c
d∂µλd − i2 (γ5)ab(γ

5γµ)c
d∂µλd

− i2 (γ5γµ)ab(γ
5)c

d∂µλd

≡
[
Hµ(V S)

]
a b c

d (∂µλd ) ,

(8.5)

A metric on the representation space of these supermultiplets can be defined by

Ĝ[(R̂), (R̂′)] = − 1

768

{{{
[Hµ(R̂)]a b c

d [Hµ
(R̂′)]a bd

c

− 1

2
(γα) e

c [Hµ(R̂)]a b e
f (γα) d

f [Hµ
(R̂′)]a bd

c

− 1

2
(γ5γα) e

c [Hµ(R̂)]a b e
f (γ5γα) d

f [Hµ
(R̂′)]a bd

c

}}}
,

(8.6)

and this readily leads to a definition of the angles between the 4D supermultiplet repre-

sentations

cos
{
θ[(R̂) , (R̂′)]

}
=

Ĝ[ (R̂), (R̂′) ]√
Ĝ[ (R̂), (R̂) ]

√
Ĝ[ (R̂′), (R̂′)]

. (8.7)

When we display these angles in the form of a matrix where the rows and columns each

take on the respective values Φ, G, and W a we find

θ[(R̂) , (R̂′)] =

 0 π
2

π
2

π
2 0 cos−1

(−1
3

)
π
2 cos−1

(−1
3

)
0

 . (8.8)

9 Culling & filtering

In a previous work [18], there was presented an obstruction that indicated when an adinkra

with two colors was compatible with being the projection of a two dimensional supermul-

tiplet. It was shown there exist what we may call the “no two-color ambidextrous bow tie”

theorem which asserted if an adinkra graph contained a certain structure, then it was not

possible to consistently “lift” the adinkra graph in such a way that it could be associated

with a supermultiplet defined on a Minkowski space with a Lorentzian metric with diagonal

entries of the (−1, 1) variety.

Up until now we have made no similar comments about when an arbitrary four-color

adinkra can be regarded as being associated with the projection of a supermultiplet defined

on a Minkowski space with a Lorentzian metric with diagonal entries of the (−1, 1, 1, 1)

variety.

Due to our analysis of BC4, we now have enough hints so as be comfortable laying out

a set of analogous requirements for all adinkras based on BC4 elements that correspond to
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valise adinkras. We are now ready to describe how a subset of the elements of BC4 can be

used to construct the off-shell minimal representations of 4D, N = 1 SUSY.

This section will depend crucially on some conjectures for which we do not have closed-

form explicit mathematical proofs.

Conjecture 1. Given an arbitrary element in BC4 it is always possible to find three

additional distinct elements so that this quartet of distinct elements satisfies the “Garden

Algebra” with four colors.

Conjecture 2. Given an a quartet of elements in BC4 that satisfies the “Garden Algebra”

with four colors, their holoramy tensors always takes the form given in (3.3) and (3.4) with

either all of the `-coefficients equal to zero or all of the ˜̀-coefficients equal to zero.

We do not have a closed-form explicit analytical mathematical proof of either. For

the first conjecture, the explicit construction in the work of [11] gives us confidence in its

validity. The code described therein constitutes a proof by exhaustive examination. For

the second conjecture in this current work we now once more created algorithms upon

which to make the claim throughout the elements of BC4.

Under the two conjectures, the process of culling and filtering of the elements of BC4

to consistently describe 4D, N = 1 spacetime supermultiplets only requires the application

of the tools of the ∗-map and the holoraumy tensor Ṽ
(R)

IJ .

One can pick an arbitrary element of BC4 and examine how it behaves with respect

to the ∗-map acting on the permutation upon which the element is constructed. The

permutation associated with the element will be in one of the “even” sets ({P3} thru {P6})
or one of the “odd” sets ({P1} or {P2}). If the permutation associated with the element is

in one of the “even” sets, we next calculate the holoraumy associated with it. Let us call

the element our base element. By conjecture 2 this must take to the form of (3.3) with

half of the coefficients vanishing.

Now there comes a subtlety. In going from (3.3) to (3.4) there is an ambiguity. To go

from the former to the latter required the identifications made in (2.11) and (2.12). How-

ever, as we discussed below the latter equations, there is always an inherent ambiguity as

identified in the discussion above (2.7). So using this ambiguity we can simply declare that

whatever explicit matrices emerge from the holoraumy associated with this base element

are associated with the orbital SU(2).

To the skeptical reader on this point, we should also note this also emphasizes that

the 4D Lorentz symmetry is an emergent symmetry. Before the choice of which adinkra

based SU(2) symmetry corresponds to the orbital SU(2) of Minkowski space, both adinkra

based SU(2) symmetry groups are equivalent.

This choice immediately culls and filters the rest of the BC4 elements dependent on

even permutations. Given a second element dependent upon an even permutation, if its

holoraumy tensor commutes with that of the base element, this second element does not

provide an example that can be reached by projection of any 4D, N = 1 spacetime super-

multiplet. On the other hand, given a second element dependent upon an even permutation,
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if its holoraumy tensor does not commute with that of the base element, this second ele-

ment does provide an example that can be reached by projection of a 4D, N = 1 spacetime

supermultiplet.

The process we have described above provides a set theoretic definition of a 4D, N = 1

spacetime vector supermultiplet based solely on the properties of elements of BC4. We

must still consider the BC4 elements that depend on odd permutations.

For the BC4 elements dependent on odd permutations, we now imagine calculating

the holoraumy tensors. Given conjecture 2, some of these will have holoraumy tensors that

commute with the vector supermultiplet holoraumy tensor as defined above. Others will

have holoraumy tensors that do not commute with the vector supermultiplet holoraumy

tensor as defined above.

If the BC4 elements dependent on odd permutations possess holoraumy tensors that

commute with the vector supermultiplet holoraumy tensor as defined above, then such

elements describe the projections of 4D, N = 1 spacetime chiral supermultiplets.

If the BC4 elements dependent on odd permutations possess holoraumy tensors that

do not commute with the vector supermultiplet holoraumy tensor as defined above, then

such elements describe the projections of 4D, N = 1 spacetime tensor supermultiplets.

Notice that the definitions given above depend only on structures that are intrinsic

to BC4. So these are “BC4-centric” definitions of the chiral, vector, and tensor multiplet

adinkras that do not require any information from the higher dimensional supermultiplets.

Only the behavior of the BC4 elements under the ∗-map and the holoraumy tensors as-

sociated with each BC4 element have been used to define the respective adinkras to be

associated with each off-shell supermultiplet. Although there is nothing in these defini-

tions that depend on structures outside BC4, the requirement on the commutativity or

non-commutativity of the various holoraumies is motivated by the study [10] where these

conditions were found to hold in four dimensional description of these supermultiplets.

The arguments are a little bit more involved if one begins the analysis from a start-

ing point of picking an element of BC4 that depends on odd permutations. But with

appropriate modifications, the same final result occurs.

In this section, we have proposed a set of criterion and described a process by which

one-half of all possible four color adinkras described by BC4 can simultaneously describe

results obtainable from a 0-brane reduction procedure applied to minimal off-shell 4D,

N = 1 supermultiplets. The proposed method for starting from some of adinkras and

using them as the basis for constructing 4D supermultiplets may seem convoluted. We

wish to motivate the proposed method. For this purpose, the image in figure 4 is useful

to illustrate some points. On the left portion of the image, the Venn diagram contains

the three minimal supermultiplets (denoted by dots within the Venn diagram) reduced

to one dimension. Under a consistent reduction procedure (denoted by the blue lines),

these supermultiplets lead to three adinkras represented by dots within the leftmost Venn

diagram.

We know based on the construction from the permutation group, its Boolean quartets,

and their antonyms, there are 768 adinkras and thus 765 of these are not obtained from the

reduction procedure. In figure 4 these are represented by dots in the leftmost Venn diagram
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CM
Adinkra

VM
Adinkra

TM
Adinkra

1d CM
Supermultiplet

1d VM
Supermultiplet

1d TM
Supermultiplet

Figure 4. Adinkra Space, 1d Supermultiplet Space, Reduction & Enhancement.

that are unconnected to the supermultiplets represented by dots within the rightmost Venn

diagram.

The important point to note is that precisely which three adinkras are obtained by the

reduction procedure depends on many details of the reduction procedure itself as well as

the gamma matrices defined in the four dimensional theory prior to the reduction. This

is where the ambiguities discussed in section 2 play a role. If one changes the reduction

procedure (e.g. re-order the fermions in going from 4D to 1d), uses it uniformly, then the

reduction can lead to a different triplet of four color adinkras.

The proposal we have made for enhancing the adinkras from one dimensions to become

the bases for four dimensional supermultiplets enforces a sort of “democracy” among the

768 adinkra quartets. Our proposal is essentially that any subset of them whose values

calculated from χo(R) and θ[(R) , (R′)]` that align precisely with the values of the 4D

results shown in section 8 χ̂o(R̂) and θ[(R̂) , (R̂′)] should be regarded as candidates for

dimensional enhancement to 4D. Let us ensure the reader understands we have now checked

our proposal on several, but not the entirety of, elements of the two spaces illustrated in

figure 4.

10 Conclusion

In this paper, we have attempted to repeat the path pioneered by the work in [18] that

showed how adinkras in one dimension can be extended to understand when such adinkras

also allow the interpretation of being the reductions of 2D, N = 1 supermultiplets. The

work in [18] can be interpreted as the analog of the integration of a 1-cycle along a closed

path. More recently [19, 20], however, there has been introduced another methodology

only based on the codes. Older works, [21–23] had made note of the role of codes in

defining irreducible representations of adinkras that descend from four dimensions. But

the work in [19, 20] emphasizes that codes also play a role in understanding dimensional

enhancement from 1D to 2D. In the light of the result in [17] on fermionic dimensional

enhancement, it would be an interesting investigation to see how codes play a role in that

result.
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p (4p!)/2(p+1)

1 6

2 5, 040

Table 3. Sections by Quotienting.

It has been noted [27] the mathematical object shown in figure 2 is the case of p = 1 of

the more general partitions given by S4p/{Z(1)
2 ×· · ·×Z

(p+1)
2 } of S4p. In our discussion the

next required step to obtaining L-matrices was to append to each section a set of Boolean

factors. In appendix C of the work given in [28], this same sort of construction was used

where the L-matrices were constructed by appending Boolean factors to the generators of

P2. If such quotients are taken as a starting point for higher order construction, this will

present some challenges as noted in table 3.

Before leaving entirely the realm of conjectures, there is one more that we would like

to present. This one is not confined to adinkras related to BC4.

In a recent fascinating development [29, 30] in this general line of research on Garden

Algebras, Adinkras, and codes (GAAC), there has appeared indications that adinkras

can be interpreted as objects possessing algebraic geometrical descriptions as punctures of

Riemann surfaces. This work also introduced the concept that monodromy matrices exist

that are related to the bosonic fields of adinkras. With this occurrence, we now discuss how

the holoraumy matrices defined by V
(R)
IJ are related to the monodromy argument based in

algebraic geometry.

As far back as the work in [11, 28], it was pointed out there are two sets of matrices

which can be denoted by {A} and {B}, each consisting of three elements ({A} = {α1,

α2, α3} and {B} = {β1, β2, β3}), that play a significant role with regard to this class of

adinkras. Using the nomenclature of this older work, these are described by

α1 = − i (12)b(14)(23) , β1 = − i (10)b(14)(23) ,

α2 = − i (10)b(12)(34) , β2 = − i (12)b(13)(24) ,

α3 = − i (6)b(13)(24) , β3 = − i (6)b(12)(34) ,

(10.1)

and when we multiply by i and then drop sign factors (#)b (or equivalently take absolute

values) we see that∣∣iα1
∣∣ =

∣∣iβ1
∣∣ , ∣∣iα2

∣∣ =
∣∣iβ3

∣∣ , ∣∣iα3
∣∣ =

∣∣iβ2
∣∣ , (10.2)

which together with the identity matrix form the vierergruppe. This further implies

µ4 =
∣∣iα1

∣∣ =
∣∣iβ1

∣∣ ,
µ3 =

∣∣iα3
∣∣ =

∣∣iβ2
∣∣ ,

µ2 =
∣∣iα2

∣∣ =
∣∣iβ3

∣∣ . (10.3)

relating the three elements µ4, µ3, and µ2 [29, 30] of the monodromy to elements in the

{A} and {B} matrix sets.
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Figure 5. Placement-putting Graph.

To continue in our discussion, we now reintroduce an image (see figure 5) from the

work of [14] which show the relationships between all the mathematical constructs of the

Garden Algebra. The space of all the bosonic nodes is illustrated by the set VL, the space

of all the fermionic nodes is illustrated by the set VR, the space of all linear maps that

relate bosonic elements to fermionic ones is illustrated by the setMR, and finally the space

of all linear maps that relate fermionic elements to bosonic ones is illustrated by the set

ML. The L-matrices are contained in the space ML, the R-matrices are contained in the

space MR, the (V IJ) matrices are contained in the space UL, and the (Ṽ IJ) matrices are

contained in the space UR. In particular, considering the bosonic holoraumy matrices, it

has been noted [6, 7]

V
(R)
IJ =

[
κ

(R)1
IJ α1 + κ

(R)2
IJ α2 + κ

(R)3
IJ α3

]
+
[
κ̃

(R)
IJ

1 β1 + κ̃
(R)
IJ

2 β2 + κ̃
(R)
IJ

3 β3
]
, (10.4)

where the quantities κ
(R)1
IJ , κ

(R)2
IJ , κ

(R)3
IJ , κ̃

(R)
IJ

1, κ̃
(R)
IJ

2, and κ̃
(R)
IJ

3 are parameters analogous

to the ` and ˜̀discussed earlier. Multiplying this last equation by factors of i on both sides

and taking absolute values, we find,∣∣iV (R)
IJ

∣∣ =
[
κ

(R)1
IJ

∣∣iα1
∣∣ + κ

(R)2
IJ

∣∣iα2
∣∣ + κ

(R)3
IJ

∣∣iα3
∣∣ ]

+
[
κ̃

(R)
IJ

1
∣∣iβ1

∣∣ + κ̃
(R)
IJ

2
∣∣iβ2

∣∣ + κ̃
(R)
IJ

3
∣∣iβ3

∣∣ ]
=
[

(κ
(R)1
IJ + κ̃

(R)
IJ

1)µ4 + (κ
(R)2
IJ + κ̃

(R)
IJ

3)µ2 + (κ
(R)3
IJ + κ̃

(R)
IJ

2)µ3

]
(10.5)

and thus the bosonic holoraumy matrix on the l.h.s. above is related to the monodromy

matrices on the r.h.s. of the equation. We thus assert that the monodromy calculations that

arise from the view of Riemann surface and adinkra chromotopologies lead to information

about the absolute values of the entries in the bosonic holoraumy matrices.

With this occurrence, we conjecture the full bosonic holoraumy matrices defined by

V
(R)
IJ will also likely be related to a set of extensions of monodromy matrices [29, 30].
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Conjecture 3. The holoraumy matrices V
(R)
IJ , that can be constructed from the L-matrices

and R-matrices of the “Garden Algebra”, may be obtained from an algebraic geometrical

construction based on monodromy matrices including data about dashing.

“A mathematician, like a painter or a poet, is a maker of patterns. If his

patterns are more permanent than theirs, it is because they are made with

ideas”.

G.H. Hardy
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