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UMR 5108, Université de Savoie, CNRS,
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1 Introduction

The correlation functions of gauge invariant operators are the natural object in a confor-

mal field theory like N = 4 super-Yang-Mills. Among them a privileged role is played by

the correlators of half-BPS scalar operators. They form short superconformal multiplets

whose lowest-weight states are annihilated by half of the Poincaré supercharges. The con-

formal dimensions and more generally, the two- and three-point correlation functions of the

half-BPS operators are protected from quantum corrections, but the four-point functions

are not. The OPE spectrum of two half-BPS operators is rich, coupling-dependent and

generically contains unprotected (long) supermultiplets. Thus, the four-point correlators of

half-BPS operators encode some genuinely dynamical information and hence are interesting

objects to study.
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Such correlators have attracted a lot of attention in the context of the AdS/CFT

correspondence [1–3]. In its simplest form it states that type IIB supergravity on an

AdS5×S5 background is dual to the limit of the gauge theory where the ’t Hooft coupling

a = g2Nc/(4π
2) is infinite and the number of colours Nc is large. The compactification of

type IIB supergravity on S5 results in an infinite tower of (generically massive) Kaluza-

Klein modes. According to the AdS/CFT conjecture, the half-BPS operators O(k) of

dimension k are dual to the KK modes transforming in the irrep [0, k, 0] of SU(4) ∼ SO(6).

Among all half-BPS operators the simplest and widely studied one is that of minimal

weight k = 2. The corresponding supermultiplet T = O(2) + . . . is very special, as it

contains the conserved R symmetry current, the stress-energy tensor and the Lagrangian

of the N = 4 theory. It is dual to the graviton multiplet of the AdS5 × S5 supergrav-

ity comprising the massless KK modes. In perturbation theory the loop corrections are

generated by integrated Lagrangian insertions. The integrand of the `-loop correction to

the n-point correlator of the stress-tensor multiplet is most naturally obtained from the

correlator 〈T (1) . . . T (n+ `)〉 evaluated at the lowest perturbative (Born) level. This ap-

proach was developed and successfully used for calculating the two-loop four-point function

〈O(2)O(2)O(2)O(2)〉 in [4]. More recently, by exploiting a hidden permutation symmetry

of the correlators 〈T (1) . . . T (4 + `)〉 the planar integrand of this four-point function was

found up to seven loops [5–7].

Apart from the simplest case of the stress-tensor supermultiplet, the correlators of

half-BPS operators of arbitrary weights deserve equal attention. From the AdS point of

view, to start bringing out the flavor of the more involved ten-dimensional physics one has

to go beyond the massless sector of the theory and consider new examples of supergravity-

induced four-point correlators involving BPS operators of higher dimension. The first steps

in this direction were made in [8, 9]. In [9] the four-point correlator 〈O(3)O(3)O(3)O(3)〉 was

obtained at two loops and the matching AdS supergravity amplitude of massive KK states

was constructed. Later on, the general case of four half-BPS operators of equal weights

〈O(k)O(k)O(k)O(k)〉 up to two loops was considered in [10, 11].1 This study revealed a

degeneracy phenomenon: in the large Nc limit only one (at one loop) and two (at two loops)

distinct functions of the conformally invariant cross-ratios described the whole variety of

SU(4) channels in these correlators. The degeneracy is lifted at strong coupling (AdS

supergravity).

Besides the AdS/CFT duality, another good reason for studying four-point correlators

of unequal BPS weights comes from the recent advances in integrability. In the paper [15],

which generalizes the results of [16, 17] to the non-compact case, the three-point correlators

of two half-BPS operators and one unprotected operator in the SL(2) sector were studied

in the one-loop approximation. An integrability based conjecture was made for the values

of the corresponding structure constants. Recently, this result was extended to two loops

in [18] and to three loops in [19, 20]. In the absence of direct calculations of the relevant

three-point functions, use can be made of the OPE of the four-point correlators of half-

BPS operators, which produces sum rules for the structure constants. Such tests of the

1Classes of correlators with different weights have also been studied in AdS supergravity in [12–14].
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integrability conjecture are most sensitive if the four-point correlators involve half-BPS

operators of different weights. Two particular cases, the correlators 〈O(2)O(2)O(k)O(k)〉 and

〈O(2)O(3)O(3)O(4)〉 have been computed to two loops in [21] and [22], respectively. These

results confirm the prediction of [15]. Some preliminary three-loop results of the present

paper have already been used by the authors of [20] as a valuable check of their findings.

Finally, another motivation for the study of the whole class of correlators of half-BPS

operators is the search for integrability directly at the level of the multipoint correlation

functions. The recent advances in integrability give us strong evidence that the spectrum

of anomalous dimensions (i.e., the two-point functions) and the OPE structure constants

(i.e., the three-point functions) are integrable in planar N = 4 SYM. It is well known that

all correlation functions in a conformal theory can eventually be built from these two ele-

mentary ingredients. It is therefore reasonable to expect some kind of integrable structure

in the higher-point functions as well. The results of the present work give indications in

this direction.

In this paper we address the problem of finding the perturbative corrections to the

four-point functions of half-BPS operators of arbitrary weights 〈O(k1)O(k2)O(k3)O(k4)〉 up

to three loops. We apply and further develop the method proposed in [5, 6]. The idea

is not to compute such correlators using standard Feynman rules but rather to predict

their integrands. As mentioned above, the integrand of the `-loop correction to the four-

point function can be viewed as a (4 + `)-point correlator with ` Lagrangian insertions,

calculated at Born level. This is a rational function of the (4 + `) space-time points having

certain simple properties. They follow from N = 4 superconformal symmetry and also

from the known short-distance physical singularities. This allows us to write down the

most general ansatz in the form of a polynomial numerator with given conformal weights

at each points, and a fixed universal denominator accounting for the expected singularities.

We then classify all possible numerators. Their number is drastically reduced if we restrict

ourselves only to planar configurations.

The next step is to find a way to fix the arbitrary coefficients in the ansatz. Using the

light-cone super-OPE of two half-BPS operators, we derive a very simple relation between

two correlators with shifted weights at two points, k1k2k3k4 and k1 + 1, k2 + 1, k3k4, in the

limit where these two points become light-like separated. Iterating this relation imposes

many consistency conditions on the coefficients in our ansatz, for all possible values of the

BPS weights. These conditions allow us to determine all the coefficients at two loops and

all but one at three loops. The latter can be fixed by adapting the Euclidean logarithmic

singularity criterion on the integrand elaborated in [6].

Our main result is that all possible correlators of four half-BPS operators, in the planar

limit and up to three loops, are described by a limited number of conformally invariant

functions (9 at two loops and 55 at three loops). This result, which we call uniformity,

generalises the degeneracy of the one- and two-loop correlators with equal weights observed

in [10, 11]. The various functions are made of a small number of one-, two- and three-loop

planar conformal integrals, all of which have already appeared in the simplest correlator

〈O(2)O(2)O(2)O(2)〉 at three loops [5]. When we convert the integrands that our method

produces into conformal integrals, we use a number of identities for the latter [5, 23]. This
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reduces the basis of independent integrals in the final result. We would like to emphasise

that, unlike the case 2222 where planarity is automatic (absence of non-planar Feynman

graphs), this is not so in the general case k1k2k3k4. So, planarity is a key ingredient in our

construction. The fact that we are able to unambiguously predict the entire class of planar

correlators of half-BPS operators to three loops, using only their elementary properties,

can be interpreted as evidence for a new integrable structure.

Having obtained an expression for all the three-loop correlators, we perform an OPE

analysis of the results in perturbation theory. We focus on the leading twist contributions

to each contributing su(4) channel present in the joint OPE of O(k1)O(k2) and O(k3)O(k4)

for many different values of k1, k2, k3, k4. We are able to verify predictions from [15, 18–20]

for three-point functions of two protected operators and one unprotected one. We also

use this approach to formulate many consistency checks on the results obtained from the

construction of the Born-level correlators. We are also able to relate the uniformity prop-

erty of the Born-level correlators to the appearance of wrapping corrections to three-point

functions in the approach of [18].

The paper is organised as follows. In section 2 we give the basic definitions and

recall some properties of the correlators we discuss. Then we summarise our two- and

three-loop results in the form of two tables. The tables list the coefficients in front of

the two- and three-loop conformal integrals that form a basis for all the correlators. The

finite size of our tables reflects the fact the number of independent functions is limited

(uniformity). We only display our results for the integrals, not the integrands due to size

limitations. Section 3 contains a detailed description of the method we use to predict the

integrand. We recall its basic properties and formulate the most general ansatz reflecting

these properties. We then explain the role of planarity for drastically restricting the number

of possible topologies of the integrands. The examination of the light-cone super-OPE of

two half-BPS operators leads us to a powerful relation between pairs of correlators with

shifted weights. In this section we also recall the Euclidean log criterion from [6] and the

conformal integral identities from [5, 23]. Section 4 is devoted to an independent check of

our results via the standard OPE analysis of the integrated correlation function. Section

5 contains our conclusions and possible further developments. Appendix A contains some

details of the proof of the uniformity property. Appendix B summarises the necessary

information on the superconformal OPE of two half-BPS operators.

2 Generalities and summary of the results

The lowest component of a half-BPS multiplet in N = 4 SYM is a real scalar field of

dimension k (with k ≥ 2) transforming in the irrep [0, k, 0] of the R symmetry group

SO(6) ∼ SU(4). In terms of the elementary fields it can be realised as a single-trace

operator

tr(φ{I1 . . . φIk}) . (2.1)

Here φI , I = 1, . . . , 6 are the N = 4 SYM scalars and {, } denotes traceless and weighted

symmetrization. A convenient way of handling the SO(6) indices is to project the opera-
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tor (2.1) onto the highest weight state of the irrep [0, k, 0]. This can be done with the help

of a complex null vector Y I (Y IY I = 0):

O(k)(x, y) = Y I1 . . . Y Ik tr(φI1 . . . φIk) . (2.2)

We start by summarizing the general properties of the four-point correlator of half-BPS

operators in the N = 4 SYM theory,

Gk1k2k3k4 = 〈O(k1)(x1, Y1)O(k2)(x2, Y2)O(k3)(x3, Y3)O(k4)(x4, Y4)〉 , (2.3)

where k1 ≥ k2 ≥ k3 ≥ k4 ≥ 2 are the weights of the four half-BPS operators. The allowed

combinations of four label are those for which
∑4

i=1 ki = 2n and k1 ≤ k2 + k3 + k4, so that

it is possible to connect the four points with free propagators without leaving any scalars

unpaired. For our purposes, a further restriction comes from the fact that the so-called

‘extremal’ (with k1 = k2 + k3 + k4) and ‘next-to-extremal’ (with k1 = k2 + k3 + k4 − 2)

correlators are protected [24–26], i.e. for them Gloop does not exist. This amounts to

requiring ki <
∑

j 6=i kj − 2.

The correlator (2.3) splits into two parts,

Gk1k2k3k4 = G0
k1k2k3k4

+ Gloop
k1k2k3k4

. (2.4)

The first part is a rational function of the space-time coordinates and corresponds to the

Born (free) approximation. The second part includes all the loop corrections which involve

non-trivial functions originating from Feynman integrals.

The expression for G0 is a polynomial in the elementary propagators (Wick contrac-

tions) of two free scalars

dij = dji ≡ 4π2〈φ(xi, yi)φ(xj , yj)〉 =
y2
ij

x2
ij

, (2.5)

where y2
ij = Yi · Yj and x2

ij = (xi − xj)2. Then we can write the general expression

G0
k1k2k3k4

=
∑
{aij}

 ∏
1≤i<j≤4

(dij)
aij

C{aij} , (2.6)

where aij = aji ≥ 0 (with i 6= j) are integers such that
∑

j 6=i aij = ki for each i = 1, . . . , 4.

The sum in (2.6) goes over all possible partitions {aij} satisfying the above condition.

Each term in the sum has the required conformal and R-symmetry weights at each of the

four points. The coefficients C{aij} are numbers obtained by calculating the colour and

combinatorial factors of the different free Feynman diagrams. Here is a simple example:

G0
2222 =

N2
c

(4π2)4
(d12d23d34d14 + d12d24d34d13 + d13d23d24d14) , (2.7)

where we have displayed only the connected part and the colour factor is given for Nc � 1.2

2Our colour convention is tr(tatb) = δab/2.
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In principle, the interacting (loop) part of the correlator Gloop has a structure simi-

lar to (2.6). The main difference is that the constant coefficients C{aij} are replaced by

functions of the two independent conformally invariant cross-ratios

u =
x2

12 x
2
34

x2
13 x

2
24

, v =
x2

14 x
2
23

x2
13 x

2
24

. (2.8)

Thus, in general we can write

Gloop
k1k2k3k4

=
∑
{aij}

∏
1≤i<j≤4

(dij)
aijF{aij}(u, v) , (2.9)

where each function admits a perturbative expansion in the ‘t Hooft coupling a=g2Nc/(4π
2),

F{aij}(u, v) =
∑
`≥1

a`F
(`)
{aij}(u, v) . (2.10)

N = 4 superconformal symmetry puts additional restrictions on the coefficient func-

tions in (2.9). According to the ‘partial non-renormalisation’ theorem of ref. [8, 27] (for

alternative derivations see also [5, 28]), the interacting part of the correlator takes the

factorised form

Gloop
k1k2k3k4

= Ck1k2k3k4 R(1, 2, 3, 4)×
∑
{bij}

 ∏
1≤i<j≤4

(dij)
bij

 F{bij}(u, v)

x2
13x

2
24

, (2.11)

where

Ck1k2k3k4 =
1

2

(
Nc

2

)1
2
∑
ki−2 k1k2k3k4

(4π2)
1
2

∑
ki

(2.12)

is a normalisation factor (for convenience here quoted only the large Nc limit) and R is a

universal rational prefactor carrying SU(4) weight 2 and conformal weight 1 at each point.

Explicitly,

R(1, 2, 3, 4) = d2
12d

2
34x

2
12x

2
34 + d2

13d
2
24x

2
13x

2
24 + d2

14d
2
23x

2
14x

2
23

+ d12d23d34d14(x2
13x

2
24 − x2

12x
2
34 − x2

14x
2
23)

+ d12d13d24d34(x2
14x

2
23 − x2

12x
2
34 − x2

13x
2
24)

+ d13d14d23d24(x2
12x

2
34 − x2

14x
2
23 − x2

13x
2
24) , (2.13)

which is fully symmetric in the points 1, 2, 3, 4. The denominator x2
13x

2
24 supplies the

missing conformal weights, so that the functions F{bij}(u, v) are conformally invariant.

The new partitions {bij} in (2.11) satisfy the modified conditions
∑

j 6=i bij = ki−2 for each

i = 1, . . . , 4. For the purpose of presentation we organise {bij} into sextuples of integers,

{bij} = {b12, b13, b14, b23, b24, b34} . (2.14)
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The simplest example again is

Gloop
2222 =

2N2
c

(4π2)4
R(1, 2, 3, 4)× F (u, v)

x2
13x

2
24

. (2.15)

Here {bij} = {0, 0, 0, 0, 0, 0} and the dynamical information is encoded in the single function

F (u, v). This is not the only case where the sum on the right-hand side of (2.11) contains

only one term. There are several infinite families of such correlators. A straightforward

generalization of Gloop
2222 is the correlator Gloop

kk22 with k ≥ 2. In this case there is a unique

y-structure encoded by the sextuple {bij} = {k − 2, 0, 0, 0, 0, 0}.
More generally, the correlators with weights k1 = a+ b+ c+ 2, k2 = a+ 2, k3 = b+ 2,

k4 = c+ 2 (or equivalently, k1 = k2 + k3 + k4− 4) are characterised by the unique sextuple

{bij} = {a, b, c, 0, 0, 0}. Such correlators are known as ‘near extremal’ [12] or ‘next-next-

to-extremal’ [14]. Another three-parameter family of correlators with a unique y-structure

are those containing one (or more) weight-two operator. For example, if k4 = 2 the unique

sextuple is {bij} = {a, b, 0, c, 0, 0} corresponding to weights k1 = a+ b+ 2, k2 = a+ c+ 2,

k3 = b+ c+ 2, k4 = 2.

In addition to the conformal and R-symmetry properties, the correlator may be further

restricted by the permutation symmetry of the external points. If two or more of the labels

ki are equal, the operators O(ki) are identical and the correlator must be invariant under

the permutations of the corresponding points. This symmetry organises the propagator

structures
∏

(dij)
bij and the coefficient functions F{bij} into equivalence classes.

A further and less obvious symmetry takes place if some ki = 2. In this case O(2) is the

superconformal primary of the energy-momentum supermultiplet, which also contains the

Lagrangian of the theory. This results in a rather powerful permutation symmetry between

(some of) the external points and the Lagrangian insertion points (see [5] for details).

2.1 Summary of the results

In this subsection we summarise our results for all possible choices of the four labels ki,

up to three loops. We restrict ourselves to the planar limit Nc → ∞ and planarity of the

resulting correlator graphs will be a key input.

The generic expression for the conformally invariant functions F{bij}(u, v) is given in

terms of a set of one-, two- and three-loop integrals (with the cross-ratios defined in (2.8)):

F (1)/x2
13x

2
24 = g1234

F (2)/x2
13x

2
24 = c1

hh12;34 + c2
hh13;24 + c3

hh14;23 +
1

2

(
c1
ggx

2
12x

2
34 + c2

ggx
2
13x

2
24 + c3

ggx
2
14x

2
23

)
[g1234]2

F (3)/x2
13x

2
24 = c1

ghx
2
12x

2
34 (g × h)12;34 + c2

ghx
2
13x

2
24 (g × h)13;24 + c3

ghx
2
14x

2
23 (g × h)14;23

+ c1
LL12;34 + c2

LL13;24 + c3
LL14;23 + c1

EE12;34 + c2
EE13;24 + c3

EE14;23

+
1

2
(c1
H + c2

H1/v)H12;34 +
1

2
(c3
H + c4

Hu/v)H13;24 +
1

2
(c5
H + c6

Hu)H14;23 ,

(2.16)
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where the conformal integrals are defined as follows:

g1234 = − 1

4π2

∫
d4x5

x2
15x

2
25x

2
35x

2
45

h12;34 =
x2

34

(4π2)2

∫
d4x5 d

4x6

(x2
15x

2
35x

2
45)x2

56(x2
26x

2
36x

2
46)

E12;34 =
x2

23x
2
24

(−4π2)3

∫
d4x5 d

4x6 d
4x7 x

2
16

(x2
15x

2
25x

2
35)x2

56(x2
26x

2
36x

2
46)x2

67(x2
17x

2
27x

2
47)

L12;34 =
x4

34

(−4π2)3

∫
d4x5 d

4x6 d
4x7

(x2
15x

2
35x

2
45)x2

56(x2
36x

2
46)x2

67(x2
27x

2
37x

2
47)

(g × h)12;34 =
x2

12x
4
34

(−4π2)3

∫
d4x5d

4x6d
4x7

(x2
15x

2
25x

2
35x

2
45)(x2

16x
2
36x

2
46)(x2

27x
2
37x

2
47)x2

67

H12;34 =
x2

41x
2
23x

2
34

(−4π2)3

∫
d4x5 d

4x6 d
4x7 x

2
57

(x2
15x

2
25x

2
35x

2
45)x2

56(x2
36x

2
46)x2

67(x2
17x

2
27x

2
37x

2
47)

. (2.17)

The one-loop correlators are always the same independently of the partition {bij},
only the normalisation factor (2.12) changes (see [10] for the case of equal weights). Our

two- and three-loop results are presented in the form of two tables where the values of

the numerical coefficients in front of the various integrals in (2.16) are listed. Some of

the two-loop results in table 1 were obtained in the past through direct Feynman graph

calculations [4, 9, 11, 14, 21, 22]. The three-loop result for the case G2222 was first obtained

in ref. [5] by a method similar to the one used in the present paper. The other results

shown in table 2 are new.

We show that the number of functions that encode the quantum corrections of all

the correlators at two and three loops is finite. There are 9 independent functions at two

loops and 55 functions at three loops. These functions F{bij} have the form (2.16) with

the numerical coefficients listed in tables 1, 2. Some of the lines in the tables are double,

which means that the two sextuples come with the same function.

We say that a pair of sextuples are two-loop-equivalent, {bij} ∼ {b′ij}, if some of

the entries bij , b
′
ij ≥ 1 are different but all the entries bij , b

′
ij = 0 are the same. The

corresponding two-loop functions are equal, F
(2)
{bij} = F

(2)
{b′ij}

. Similarly, a pair of sextuples

are three-loop-equivalent, {bij} ∼ {b′ij}, if only their entries bij , b
′
ij ≥ 2 can possibly differ

but all the entries bij , b
′
ij = 0, 1 are the same. The corresponding three-loop functions are

equal, F
(3)
{bij} = F

(3)
{b′ij}

.

To extract a particular correlator Gloop
k1k2k3k4

from the tables, we first need to enumerate

all the relevant y-structures encoded by the sextuples {bij} in (2.11), satsifying the con-

ditions
∑

j 6=i bij = ki − 2 for each i = 1, . . . , 4. . The coefficients of the various integrals

making up the functions F{bij} (one representative of each crossing equivalence class) are

then listed in the tables.

Let us consider a couple of examples. In the correlator G3322 there is a unique y-

structure y2
12 corresponding to {1, 0, 0, 0, 0, 0}. At two loops we find F

(2)
{1,0,0,0,0,0} in the

– 8 –
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{bij} 4

1

3

2

c1
gg c2

gg c3
gg c1

h c2
h c3

h

{ 0 , 0 , 0 , 0 , 0 , 0 } 1 1 1 2 2 2

{β1 , 0 , 0 , 0 , 0 , 0 } 0 1 1 1 2 2

{β1 , β2 , 0 , 0 , 0 , 0 } 0 0 1 1 1 2

{β1 , β2 , 0 , β3 , 0 , 0 }
{β1 , β2 , β3 , 0 , 0 , 0 }

0 0 0 1 1 1

{ 0 , 0 , β1 , β2 , 0 , 0 } 1 1 0 2 2 0

{β1 , 0 , β2 , β3 , 0 , 0 } 0 1 0 1 2 0

{β1 , β2 , β3 , β4 , 0 , 0 } 0 0 0 1 1 0

{ 0 , β1 , β2 , β3 , β4 , 0 } 1 0 0 2 0 0

{β1 , β2 , β3 , β4 , β5 , 0 } 0 0 0 1 0 0

{β1 , β2 , β3 , β4 , β5 , β6} 0 0 0 0 0 0

Table 1. Numerical coefficients specifying the two-loop functions F
(2)
{bij}, eq. (2.16). All possible

sextuples {bij} (up to crossing permutations) are listed. The parameters βi ≥ 1 in the different

lines are independent. The graphs depict the y-structures encoded by the sextuples {bij}. A line

between points i and j corresponds to (y2ij)
bij with bij ≥ 1.

2nd line of table 1 and at three loops F
(3)
{1,0,0,0,0,0} in the 2nd line of table 2. In the

correlator G4444 there are six y-structures which break down into two equivalence classes

under crossing symmetry

y4
14y

4
23 {0, 0, 2, 2, 0, 0} y4

13y
4
24 {0, 2, 0, 0, 2, 0} y4

12y
4
34 {2, 0, 0, 0, 0, 2}

y2
13y

2
23y

2
24y

2
14 {0, 1, 1, 1, 1, 0} y2

12y
2
23y

2
34y

2
14 {1, 0, 1, 1, 0, 1} y2

12y
2
24y

2
34y

2
13 {1, 1, 0, 0, 1, 1}

At two loops we find F
(2)
{0,0,2,2,0,0} in the 5th line of table 1 and F

(2)
{0,1,1,1,1,0} in the 8th line.

The remaining four functions are obtained by crossing from the previous two. At three

loops we find F
(3)
{0,0,2,2,0,0} in the 20th line of table 2 and F

(3)
{0,1,1,1,1,0} in the 28th line.

3 Description of the method

The results listed in the tables have been obtained by using similar ideas to those employed

in refs. [5, 6] for constructing (the integrand of) the correlator G2222. In the case of different

BPS weights there appear some important new ingredients. Here we give a brief summary

of the method and explain the new key points.

3.1 General properties of the integrand

The loop corrections (2.11) are obtained by the Lagrangian insertion procedure. It amounts

to computing the Born-level (4 + `)-point correlator with ` Lagrangian insertions and then
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{bij} 4

1

3

2

c1gh c2gh c3gh c1L c2L c3L c1E c2E c3E c1H c2H c3H c4H c5H c6H

{ 0 , 0 , 0 , 0 , 0 , 0 } 2 2 2 6 6 6 4 4 4 2 2 2 2 2 2

{ 1 , 0 , 0 , 0 , 0 , 0 } -1 2 2 2 6 6 4 2 2 1 1 2 0 2 0

{β1 , 0 , 0 , 0 , 0 , 0 } 0 2 2 3 6 6 4 2 2 1 1 2 0 2 0

{ 1 , 1 , 0 , 0 , 0 , 0 } -1 -1 2 2 2 6 2 2 1 1 0 1 0 0 0

{β1 , 1 , 0 , 0 , 0 , 0 } 0 -1 2 3 2 6 2 2 1 1 0 1 0 0 0

{β1 , β2 , 0 , 0 , 0 , 0 } 0 0 2 3 3 6 2 2 1 1 0 1 0 0 0

{ 1 , 1 , 0 , 1 , 0 , 0 }
{ 1 , 1 , 1 , 0 , 0 , 0 }

-1 -1 -1 2 2 2 1 1 1 0 0 0 0 0 0

{β1 , 1 , 0 , 1 , 0 , 0 }
{β1 , 1 , 1 , 0 , 0 , 0 }

0 -1 -1 3 2 2 1 1 1 0 0 0 0 0 0

{β1 , β2 , 0 , 1 , 0 , 0 }
{β1 , β2 , 1 , 0 , 0 , 0 }

0 0 -1 3 3 2 1 1 1 0 0 0 0 0 0

{β1 , β2 , 0 , β3 , 0 , 0 }
{β1 , β2 , β3 , 0 , 0 , 0 }

0 0 0 3 3 3 1 1 1 0 0 0 0 0 0

{ 0 , 0 , 1 , 1 , 0 , 0 } 2 2 0 6 6 -2 0 0 4 0 2 0 2 0 0

{ 1 , 0 , 1 , 1 , 0 , 0 } -1 2 0 2 6 -2 0 0 2 0 1 0 0 0 0

{β1 , 0 , 1 , 1 , 0 , 0 } 0 2 0 3 6 -2 0 0 2 0 1 0 0 0 0

{ 1 , 1 , 1 , 1 , 0 , 0 } -1 -1 0 2 2 -2 0 0 1 0 0 0 0 0 0

{β1 , 1 , 1 , 1 , 0 , 0 } 0 -1 0 3 2 -2 0 0 1 0 0 0 0 0 0

{β1 , β2 , 1 , 1 , 0 , 0 } 0 0 0 3 3 -2 0 0 1 0 0 0 0 0 0

{ 1 , 1 , 1 , β1 , 0 , 0 }
{ 1 , 1 , β1 , 1 , 0 , 0 }

-1 -1 0 2 2 -1 0 0 1 0 0 0 0 0 0

{β1 , 1 , 1 , β2 , 0 , 0 }
{β1 , 1 , β2 , 1 , 0 , 0 }

0 -1 0 3 2 -1 0 0 1 0 0 0 0 0 0

{β1 , β2 , 1 , β3 , 0 , 0 }
{β1 , β2 , β3 , 1 , 0 , 0 }

0 0 0 3 3 -1 0 0 1 0 0 0 0 0 0

{ 0 , 0 , β1 , β2 , 0 , 0 } 2 2 0 6 6 0 0 0 4 0 2 0 2 0 0

{ 1 , 0 , β1 , β2 , 0 , 0 } -1 2 0 2 6 0 0 0 2 0 1 0 0 0 0

{β1 , 0 , β2 , β3 , 0 , 0 } 0 2 0 3 6 0 0 0 2 0 1 0 0 0 0

{ 1 , 1 , β1 , β2 , 0 , 0 } -1 -1 0 2 2 0 0 0 1 0 0 0 0 0 0

{β1 , 1 , β2 , β3 , 0 , 0 } 0 -1 0 3 2 0 0 0 1 0 0 0 0 0 0

{β1 , β2 , β3 , β4 , 0 , 0 } 0 0 0 3 3 0 0 0 1 0 0 0 0 0 0

{ 1 , β1 , 0 , 0 , 1 , 0 } -1 0 2 2 -1 6 0 2 0 1 0 0 0 0 0

{β1 , β2 , 0 , 0 , 1 , 0 } 0 0 2 3 -1 6 0 2 0 1 0 0 0 0 0

{ 0 , 1 , 1 , 1 , 1 , 0 } 2 0 0 6 -2 -2 0 0 0 0 0 0 0 0 0

{ 1 , 1 , 1 , 1 , 1 , 0 } -1 0 0 2 -2 -2 0 0 0 0 0 0 0 0 0
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{bij} 4

1

3

2

c1gh c2gh c3gh c1L c2L c3L c1E c2E c3E c1H c2H c3H c4H c5H c6H

{β1 , 1 , 1 , 1 , 1 , 0 } 0 0 0 3 -2 -2 0 0 0 0 0 0 0 0 0

{ 1 , β1 , 1 , 1 , 1 , 0 } -1 0 0 2 -1 -2 0 0 0 0 0 0 0 0 0

{β1 , β2 , 1 , 1 , 1 , 0 } 0 0 0 3 -1 -2 0 0 0 0 0 0 0 0 0

{ 1 , β1 , 1 , β2 , 1 , 0 }
{ 1 , β1 , β2 , 1 , 1 , 0 }

-1 0 0 2 -1 -1 0 0 0 0 0 0 0 0 0

{β1 , β2 , 1 , β3 , 1 , 0 }
{β1 , β2 , β3 , 1 , 1 , 0 }

0 0 0 3 -1 -1 0 0 0 0 0 0 0 0 0

{ 0 , 1 , β1 , β2 , 1 , 0 } 2 0 0 6 -2 0 0 0 0 0 0 0 0 0 0

{ 1 , 1 , β1 , β2 , 1 , 0 } -1 0 0 2 -2 0 0 0 0 0 0 0 0 0 0

{β1 , 1 , β2 , β3 , 1 , 0 } 0 0 0 3 -2 0 0 0 0 0 0 0 0 0 0

{ 1 , β1 , β2 , β3 , 1 , 0 } -1 0 0 2 -1 0 0 0 0 0 0 0 0 0 0

{β1 , β2 , β3 , β4 , 1 , 0 } 0 0 0 3 -1 0 0 0 0 0 0 0 0 0 0

{ 0 , β1 , β2 , β3 , β4 , 0 } 2 0 0 6 0 0 0 0 0 0 0 0 0 0 0

{ 1 , β1 , β2 , β3 , β4 , 0 } -1 0 0 2 0 0 0 0 0 0 0 0 0 0 0

{β1 , β2 , β3 , β4 , β5 , 0 } 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

{β1 , 0 , 0 , 0 , 0 , 1 } 0 2 2 -1 6 6 4 0 0 0 0 2 0 2 0

{β1 , 0 , 1 , 1 , 0 , 1 } 0 2 0 -1 6 -2 0 0 0 0 0 0 0 0 0

{β1 , 0 , β2 , β3 , 0 , 1 } 0 2 0 -1 6 0 0 0 0 0 0 0 0 0 0

{β1 , β2 , 0 , 0 , 1 , 1 } 0 0 2 -1 -1 6 0 0 0 0 0 0 0 0 0

{ 1 , 1 , 1 , 1 , 1 , 1 } 0 0 0 -2 -2 -2 0 0 0 0 0 0 0 0 0

{β1 , 1 , 1 , 1 , 1 , 1 } 0 0 0 -1 -2 -2 0 0 0 0 0 0 0 0 0

{β1 , β2 , 1 , 1 , 1 , 1 } 0 0 0 -1 -1 -2 0 0 0 0 0 0 0 0 0

{β1 , β2 , 1 , β3 , 1 , 1 }
{β1 , β2 , β3 , 1 , 1 , 1 }

0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0

{ 1 , 1 , β1 , β2 , 1 , 1 } 0 0 0 -2 -2 0 0 0 0 0 0 0 0 0 0

{β1 , 1 , β2 , β3 , 1 , 1 } 0 0 0 -1 -2 0 0 0 0 0 0 0 0 0 0

{β1 , β2 , β3 , β4 , 1 , 1 } 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0

{ 1 , β1 , β2 , β3 , β4 , 1 } 0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0

{β1 , β2 , β3 , β4 , β5 , 1 } 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

{β1 , β2 , β3 , β4 , β5 , β6 } 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Numerical coefficients specifying the three-loop functions F
(3)
{bij}, eq. (2.16). All possible

sextuples {bij} (up to crossing permutations) are listed. The parameters βi ≥ 2 in the different

lines are independent. A thin line between points i and j corresponds to y2ij , i.e. bij = 1, and a

thick line to (y2ij)
bij with bij ≥ 2.
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integrating over the coordinates of the insertion points,

G`k1k2k3k4
=

∫
d4x5 . . . d

4x4+`

`!(−4π2)`
G`k1k2k3k4

(3.1)

G`k1k2k3k4
= 〈O(k1)(1)O(k2)(2)O(k3)(3)O(k4)(4)L(5) . . .L(4 + `)〉Born . (3.2)

Thus the problem is reduced to determining the correlator (3.2).

The cases where one or more ki = 2 are special. The half-BPS scalar operator O(2) and

the Lagrangian L are members of the same N = 4 supermultiplet, the chiral truncation T
of the stress-tensor supermultiplet,

T (x, y, ρ) = O(2)(x, y) + . . .+ ρ4L(x) , (3.3)

where ρaα = θaα + θa
′
α y

a
a′ is the SU(4) harmonic projection of the chiral odd variable θAα .3

This projection carries U(1) charge (+1). The operator O(2) (as well as the whole super-

multiplet T ) has charge (+4) in the same units. The Lagrangian L is chargeless and hence

independent of the harmonic variable y (SU(4) singlet). The half-BPS operators O(k)(x, y)

of conformal weight k > 2 are the bottom components of other analytic superfields de-

pending on ρ, carrying U(1) charge 2k. Thus, the integrand of the loop corrections is given

by the component (ρ1)0(ρ2)0(ρ3)0(ρ4)0(ρ5)4 . . . (ρ4+`)
4 of the super-correlator

〈O(k1)(1)O(k2)(2)O(k3)(3)O(k4)(4) T (5) . . . T (4 + `)〉Born , (3.4)

evaluated in the Born approximation. It is invariant under the permutations of the points

(5, . . . , 4 + `), i.e. it has S` symmetry. In the special case where p of the ki = 2 this

symmetry is enhanced to Sp+`. If some operators have equal weights ki = kj 6= 2, there

is an additional permutation symmetry of those points. The most symmetric case G`2222

was studied in [5, 6], where the maximal S4+` symmetry proved to be extremely helpful in

constructing the integrand. In the general case G`k1k2k3k4
we have less symmetry but are

nevertheless able to determine the integrand up to three loops, as explained below.

Superconformal symmetry imposes restrictions on the form of the correlators G`. Ac-

cording to the partial non-renormalisation theorem, the loop corrections to any four-point

correlator of scalar half-BPS operators are proportional to the rational function R(1, 2, 3, 4)

defined in (2.13). It is convenient to turn R into a polynomial multiplying it by the permu-

tation invariant factor x2
12x

2
13x

2
14x

2
23x

2
24x

2
34. The prefactor R has U(1) charge (+4) at each

point whereas the correlator Gk1k2k3k4 bears charges 2ki ≥ 4 at each point. The difference

of U(1) charges between G` and R can be compensated by a product of propagator factors,

G`k1k2k3k4
= Ck1k2k3k4 × I ×

∑
{bij}

 ∏
1≤i<j≤4

(dij)
bij

 f `{bij}(x1, . . . , x4+`) . (3.5)

3The complex four-vector yaa′ is part of the SO(6) null vector Y I = (1, y,
√
−1− y2).
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where I = Rx2
12x

2
13x

2
14x

2
23x

2
24x

2
34 is a polynomial in both y and x. Explicitly this polynomial

is given by

I := x4
14x

4
23y

2
12y

2
13y

2
24y

2
34 + x2

12x
2
14x

2
34x

2
23y

4
13y

4
24 + x2

13x
2
14x

2
24x

2
23y

4
12y

4
34

− x2
12x

2
14x

2
34x

2
23y

2
13y

2
14y

2
23y

2
24 − x2

13x
2
14x

2
24x

2
23y

2
12y

2
14y

2
23y

2
34 − x2

13x
2
14x

2
24x

2
23y

2
12y

2
13y

2
24y

2
34

− x2
12x

2
14x

2
34x

2
23y

2
12y

2
13y

2
24y

2
34 + x2

12x
2
13x

2
24x

2
34y

4
14y

4
23 + x4

12x
4
34y

2
13y

2
14y

2
23y

2
24

− x2
12x

2
13x

2
24x

2
34y

2
13y

2
14y

2
23y

2
24 + x4

13x
4
24y

2
12y

2
14y

2
23y

2
34 − x2

12x
2
13x

2
24x

2
34y

2
12y

2
14y

2
23y

2
34 .

(3.6)

This expression accounts for the y-dependence of the integrand of the correlator

Gk1k2k3k4 . The x-coordinate part is not completely fixed by the superconformal symmetry.

It is encoded in the (4 + `)-point rational functions f `{bij}(x) having the crossing symmetry

S` (or higher, depending on the weights k1k2k3k4) of (3.4). They can be written in the form

f `{bij} =
P `{bij}(x1, . . . , x4+`)∏

1≤p<q≤4+` x
2
pq

, (3.7)

where P `{bij} are polynomials of conformal weight (1 − `) at each point. To justify the

singularity structure of this correlator we need to consider the OPE of the various operators

(see section 3.3.3).

All possible numerator terms up to three loops were analysed in [5]. There we had

an additional permutation symmetry — not present in the current more general situation

— which meant that all terms came with the same coefficient. Here the terms which can

appear are the same as there, but the coefficients are different.

At two and three loops then we can write the general ansatz as

P 2
{bij}(x1, . . . x6) =

∑
σ∈S6/auto

a
(2)
{bij ,σ}x

2
σ1σ2

x2
σ3σ4

x2
σ5σ6

P 3
{bij}(x1, . . . x7) =

∑
σ∈S7/auto

a
(3)
{bij ,σ}x

4
σ1σ2

x2
σ3σ4

x2
σ4σ5

x2
σ5σ6

x2
σ6σ7

x2
σ7σ1

, (3.8)

and all that remains is to determine the coefficients a
(`)
{bij ,σ}. Here the sum is over all

permutations of S4+` which are inequivalent when acting on the monomial. So for ex-

ample, clearly x2
12x

2
34x

2
56 = x2

21x
2
34x

2
56, so in the two-loop case the identity permutation

and the permutation (12) give the same monomial and we only sum over one of the two.

This is the same as modding out by the automorphism group of the corresponding graph

which explains our notation S4+`/auto. Furthermore we also explicitly symmetrise over

permutations of the integration variables, which further trivially identifies coefficients.
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To each term in f{bij} we can draw the corresponding graph

f2
{bij ,σ} f3

{bij ,σ} .

(3.9)

An important feature of both these graphs, which we return to in the next subsection, is

that they are planar, and they have the property that adding any further edge to either

graph makes them non-planar.4

We should also note that although at two loops the above structure is the only possi-

bility consistent with conformal weights, at three loops there are three other inequivalent

topologies consistent with conformal weights. However these do not contribute to the pla-

nar correlation function (since they do not yield planar component correlation functions

— a requirement we insist on, as discussed in the following subsection) and so we do not

write them out here.

3.2 The role of planarity

A further strong constraint on the polynomial P ` in (3.7) comes from the planar limit. We

have classified the possible P ` having the properties discussed in section 3.1 above. The

number can be greatly reduced by requiring that the correlator that we want to construct

should correspond to the leading colour approximation in the limit Nc →∞. If we wished

to compute the Born level (4+`)-point component correlator (3.4) from standard Feynman

diagrams, we would only draw planar graphs, i.e. graphs with leading order colour factors.

Here we are not using the highly inefficient Feynman diagram technique. Instead, we wish

to predict the answer based on its elementary properties like symmetries, singularities and

now planarity. Our result should arise from the simplification of the sum of many planar

Feynman graphs. Following [6], we make the natural assumption that the final expression

for any component correlator (i.e. the result of these simplifications) is itself representable

as a sum of planar graphs. These graphs are formed in the usual way with a propagator

1/x2
ij represented by a line between points i and j (we can also represent numerators x2

ij via

dashed lines, but these will not take part in the planarity criterion). We thus assert that

every component correlator corresponds to a sum of planar graphs. Equivalently, every

term accompanying a given y-structure corresponds to a sum of planar graphs. This turns

out to be a strong requirement.

4This property is not valid starting from four loops.
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To illustrate the power of this we will examine in detail the restriction from planarity

on the functions f2
{111110} and f2

{111111}.

Consider the formula for the correlator (3.5). The contribution of the coefficient func-

tion f2
{111110} to the correlator is

I × y2
12y

2
13y

2
14y

2
23y

2
24 ×

P 2
{111110}(x1, . . . , x6)

x4
12x

4
13x

4
14x

4
23x

4
24x

2
34x

2
15x

2
25x

2
35x

2
45x

2
16x

2
26x

2
36x

2
46x

2
56

. (3.10)

The powers of 4 in the denominator come from the additional propagator factors (dij)
bij .

They can never be removed by a numerator term (which in the two-loop case only contain

x2
ij but not x4

ij , see (3.8)). Let us concentrate on an individual term from the sum in (3.8).

In order to obtain a planar contribution all three numerator factors must completely cancel

the matching factors in the denominator. This is because each term in f2
{bij} has the

topology of an octahedron which is a planar graph, see (3.9). But the addition of any new

edges to the octahedron will produce a non-planar graph. In f2
{bij} itself all numerators

cancel denominators, and so we conclude that any numerator not cancelling a denominator

will automatically yield a non-planar graph.

Graphically, the multiplication by dij corresponds to attaching further edges e12, e13,

e14, e23, e24 to the graph in (3.9) for some choice of permutation σ. This is only allowed if

all these 5 edges are already existing edges (since as mentioned below (3.9), adding a new

edge results in a non-planar graph). It thus becomes apparent that the only possible term

in P 2
{111110} which can yield a planar contribution is

P 2
{111110} ∝ x

2
34x

2
15x

2
26 + x2

34x
2
15x

2
26 . (3.11)

This is indeed the only non-zero term in our final result given in the penultimate line of

table 1. It corresponds to a single orientation of the two-loop ladder integral.

However it is also now clear that a similar analysis in the case f2
{111111} — which will

have an additional power of x2
34 in the denominator compared to the previous case — will

mean there is no numerator that can yield a planar contribution. We conclude that this

contribution vanishes, f2
{111111} = 0. It is then clear that having all bij ≥ 1 does not modify

this non-planar topology, therefore planarity alone implies that

f2
{bij} = 0 if all bij ≥ 1 . (3.12)

The analysis at three loops is very similar. However the presence of x4
ij in the numerator

(see (3.8)) means that the effect is slightly delayed and takes place for bij ≥ 2 rather than

bij ≥ 1. We find

f3
{bij} = 0 if all bij ≥ 2 . (3.13)

Note that in the above analysis we have ignored the effect of the polynomial I on

planarity. Indeed terms in I can cancel denominators and this softens the “non-planarity”

of the result. However there are a number of terms in I with different y factors (3.6) and

all terms need to be planar. It turns out that apart from one-loop the presence of this
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polynomial does not affect the conclusions. Similarly one should consider the sum over

all building block functions rather than focussing on each single coefficient function alone.

However, again, doing so does not seem to change the above conclusions. In other words

so far we found that it was enough to assume that ∏
1≤i<j≤4

(dij)
bij

 f `{bij}(x1, . . . , x4+`) (3.14)

are all given by planar expressions. This is not a necessary consequence of the above

planarity requirement. When (3.14) is inserted into the correlator expression (3.5), one

multiplies by the polynomial I — thus removing propagators — and sums over different

structures which all mix together. Thus this leaves the possibility that the contributing

expressions (3.14) could be non-planar whilst still giving planar component correlators.

But in actual fact this never appears to happen in practice.

The next step is to find a way of fixing the coefficients in (3.8) , i.e. in the planar ansatz

for the integrand G`k1k2k3k4
in (3.5). We are going to use two criteria based on the detailed

understanding of the OPE. The first amounts to comparing the singular light-like limits

of two correlators limx2
12→0G

`
k1k2k3k4

and limx2
12→0G

`
k1+1,k2+1,k3,k4

. The second criterion,

proposed in [6], derives from the requirement that the logarithm of the correlator have

simple log divergences in the short-distance limit.

3.3 Light-cone OPE relation

We claim the existence of a powerful relation between different integrands, i.e. Born-level

correlators. It is based on the structure of the OPE of two half-BPS operators O(k1)(1) and

O(k2)(2) in the light-cone limit x2
12 → 0. The key property is that the leading light-cone

singularity in each SU(4) channel of the correlator G`k1+1,k2+1,k3k4
is simply related, in the

planar approximation Nc →∞, to that of G`k1k2k3k4
:

lim
x2

12,y12→0
d12 fixed

[
G`k1+1,k2+1,k3k4

Ck1+1,k2+1,k3k4

− d12 ×
G`k1k2k3k4

Ck1k2k3k4

]
= αd12 . (3.15)

The limit is taken as follows: y12 = ε~n, x2
12 = ε2 with some complex four-vector ~n and

ε → 0. The propagator factor d12 in the second term on the left-hand side equalises the

conformal and SU(4) weights of the two terms. The claim is that in this limit the two

correlators in (3.15) can only differ by terms proportional to d12. The proof is given below

in section 3.3.1.

Let us insert the general form of the correlators (3.5), (3.7) in (3.15):

lim
x2

12,y12→0
d12 fixed

I∏
1≤p<q≤4+` x

2
pq

d12

∑
{bij}

 ∏
1≤i<j≤4

(dij)
bij

[P `{bij}|b12→b12+1 − P `{bij}
]

= 0 ,

(3.16)

where the sextuples {bij} correspond to the labels k1k2k3k4 before the shift. The shift

of the label b12 accounts for the shifts of k1 and k2 (recall that ki =
∑

j 6=i bij + 2).

– 16 –



J
H
E
P
0
8
(
2
0
1
6
)
0
5
3

The reason for the vanishing right-hand side of (3.16) is that in our limit d12I/x2
12 →

(d12)2(x2
13x

2
24−x2

14x
2
23)2y2

13y
2
14y

2
34 (see (3.6)), while we expect only (d12)1 on the right-hand

side of (3.15).5 Let us extract the terms with the same y-structure from (3.16). The

family of sextuples {b(k)} = {b12, b13 − k, b14 + k, b23 + k, b24 − k, b34} parametrised by an

integer k from the interval [α, β] , α = −min(b14, b23), β = min(b13, b24), corresponds to the

y-structure (d2
12)b12(y2

13)b13+b23(y2
14)b14+b24(y2

34)b34 . We deduce the following condition on

the polynomials in the ansatz

β∑
k=α

(x2
13x

2
24)k−α(x2

14x
2
23)α+β−k

[
P `{b(k)}|b12→b12+1 − P `{b(k)}

]
x2

12=0
= 0 . (3.17)

In reality, eq. (3.17) in combination with planarity at two and three loops implies the

stronger constraint (see appendix A)[
P `{bij}|b12→b12+1 − P `{bij}

]
x2

12=0
= 0 . (3.18)

The constraint (3.18) can be applied to any pair of the four outer points of the correla-

tors. It can be repeated iteratively, shifting the weights at the chosen pair of points by any

finite amount. This results in many relations between the coefficients of the numerators

P `{bij} of correlators of different BPS weights. We use the known correlators G2
2222 ,G3

2222

(which have been obtained in [5] by a similar method) as the starting point of the recur-

sion. The planarity requirement of section 3.2, in combination with this light-cone OPE

relation, implies that it is sufficient to consider only configurations with bij = 0, 1 (two

loops) or bij = 0, 1, 2 (three loops), all cases with higher weights are reduced to these (see

appendix A). Then relation (3.18) allows us to fix all the coefficients in our ansatz at two

loops and all but one at three loops. To fix the latter we need yet another OPE criterion

explained in section 3.4.

3.3.1 Origin of the light-cone relation

Relation (3.15) follows from the light-cone OPE of two half-BPS operators and any third

operator O∆,S
[a,b,a] of dimension ∆, spin S and in the SU(4) representation with Dynkin labels

[a, b, a].6 This takes the form

O(k1)(x1, y1)O(k2)(x2, y2)∼C
k1k2O∆,S

[a,b,a]

(y2
12)(k1+k2−2a−b)/2

(x2
12)(k1+k2−∆+S)/2

(
[x12]S [y12]aO∆,S

[a,b,a](x2, y2)+. . .
)
.

(3.19)

Here the dots denote descendant terms, both space-time descendants (x-derivatives of op-

erators) and SU(4) descendants (y-derivatives of operators). Importantly, these descendant

terms only appear together with polynomials in x12 and y12. We are slightly schematic in

our display of indices. The square brackets simply indicate symmetrised tensor products,

5The terms with b12 = 0 in G`
k1+1,k2+1,k3k4

are not displayed in (3.16) because they contribute only to

the right-hand side in (3.15).
6This OPE has been studied in [29, 30]. For a summary see appendix B.
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and the indices will be contracted with those of the operator. The range of SU(4) repre-

sentations on the right-hand side of (3.19) is determined by the tensor product (we assume

that k1 ≥ k2)

[0, k1, 0]⊗ [0, k2, 0] =

k2⊕
r=0

k2−r⊕
a=0

[a, b, a] with b = k1 + k2 − 2a− 2r . (3.20)

These are SO(6) tensor representations of rank 2a+ b = k1 + k2− 2r. The OPE O(k1)(1)×
O(k2)(2) contributes to the correlator (3.2) only those representations which are in the

overlap with the tensor product [0, k3, 0]⊗ [0, k4, 0].

In N = 4 super-Yang-Mills operators form multiplets. The superconformal primary

operators with r = 0, 1 are protected (BPS or semishort), the unprotected operators have

r ≥ 2 (see [29, 30]). Further, the protected operators in the product O(k1)(1) × O(k2)(2)

do not appear in (3.2) because their three-point functions with O(k3)(3)O(k4)(4) are pro-

tected [31] and hence have no loop corrections. Therefore, for our purposes the first sum

on the right-hand side of (3.20) starts at r = 2 corresponding to long multiplets in the

OPE. Each long multiplet contains a number of superdescendant operators, only some of

which appear in the OPE of two half BPS scalars. The superdescendants which occur are:

O∆,S
[a,b,a],

B∆+1,S+1
[a+1,b,a+1], B

∆+1,S+1
[a−1,b+2,a−1], B

∆+1,S−1
[a−1,b+2,a−1], A

′∆+1,S−1
[a+1,b,a+1],

C∆+2,S+2
[a,b+2,a] , C

∆+2,S
[a,b+2,a], C

∆+2,S
[a−2,b+4,a−2], B

′∆+2,S
[a+2,b,a+2], B

′∆+2,S
[a,b+2,a], B

′∆+2,S−2
[a,b+2,a] ,

D∆+3,S+1
[a−1,b+4,a−1], C

′∆+3,S+1
[a+1,b+2,a+1], C

′∆+3,S−1
[a+1,b+2,a+1], C

′∆+3,S−1
[a−1,b+4,a−1],

D′∆+4,S
[a,b+4,a] .

(3.21)

The superdescendants are obtained by acting with the supercharges on the primary oper-

ator (HWS) O∆,S
[a,b,a]. The derivation of this from analytic superspace together with more

details is in appendix B. Here we will simply consider the first and the last terms. The

highest dimension component which occurs is D′∆+4,S
[a,b+4,a] ∈ Q

4Q̄4O∆,S
[a,b,a]. The super OPE

then takes the form

O(k1)(x1, y1)O(k2)(x2, y2) (3.22)

∼
∑

∆, S, [a,b,a]

C
k1k2O∆,S

[a,b,a]
(d12)(k1+k2−2a−b)/2−2 (x2

12)(∆−S−2a−b)/2−2

×
[
y4

12[x12]S [y12]aO∆,S
[a,b,a] + . . . + x4

12[x12]S [y12]aD′∆+4,S
[a,b+4,a] + . . .

]
,

where the dots in the middle denote terms relating to the other superdescendants (listed

in (3.21)) and the dots at the end denote conformal and SU(4) descendants. The main

point is that each component of the supermultiplet appears with the same OPE coeffi-

cient C
k1k2O∆,S

[a,b,a]
.
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We now wish to consider the OPE in the limit in which x2
12 → 0 and y12 → 0 but with

the ratio d12 = y2
12/x

2
12 fixed. The leading contribution to the OPE in this limit comes from

operators with the minimum value of ∆−S−2a−b. Well-known superconformal unitarity

bounds [32] state that for long representations the superconformal primary satisfies ∆ −
S − 2a− b ≥ 2. Let us thus set ∆− S = 2a+ b+ 2 in (3.22):

O(k1)(x1, y1)O(k2)(x2, y2) ∼
∑

∆−S=2a+b+2

C
k1k2O∆,S

[a,b,a]
(d12)(k1+k2−2a−b)/2−1[x12]S

(
y2

12[y12]aO∆,S
[a,b,a]

+ [y12]a+1[x12] B∆+1,S+1
[a+1,b,a+1]+ y2

12[y12]a−1[x12]B∆+1,S+1
[a−1,b+2,a−1]+ [y12]a[x12]2C∆+2,S+2

[a,b+2,a] + . . .
)
,

(3.23)

where we have displayed only the terms of leading twist. In our double limit only one

superdescendant survives,

lim
x2

12,y12→0
d12 fixed

O(k1)(x1, y1)O(k2)(x2, y2)

∼
∑

∆−S=b+2

C
k1k2O∆,S

[0,b,0]
(d12)(k1+k2−b)/2−1 [x12]S+2 C∆+2,S+2

[0,b+2,0] + . . . . (3.24)

An important property of this type of operators is that they are made entirely from scalars.

Indeed, they have twist (∆ + 2) − (S + 2) = b + 2 and SU(4) labels [0, b + 2, 0] implying

that the length of the operator (i.e. number of constituent scalars) equals the rank of the

SO(6) tensor representation. Trying to replace some of the scalars by fermion bilinears or

by gluons either increases the twist or modifies the representation.

The question we want to investigate now is what happens to the OPE structure con-

stant C
k1k2O∆,S

[0,b,0]
when we increase the BPS weights k1 → k1 + 1 , k2 → k2 + 1. We wish

to show that7

C
k1+1,k2+1,O∆,S

[0,b,0]
= C

k1k2O∆,S
[0,b,0]

× Nc

2

(k1 + 1)(k2 + 1)

k1k2
. (3.25)

In other words, the ratio of the two OPE coefficients is independent of the quantum numbers

of the operatorO∆,S
[0,b,0]. We call this property of the structure constants in the relevant sector

of our OPE universality.

The structure constant C
k1k2O∆,S

[0,b,0]
is the same for all the members of the super-

multiplet. We find it advantageous to determine it from the three-point function

〈O(k1)(1)O(k2)(2)C∆+2,S+2
[0,b+2,0] (3)〉 divided by the two-point function 〈CC〉 (the latter drops

out of the ratio (3.25)). The key point in our argument is that the operator C∆+2,S+2
[0,b+2,0]

is made from scalars only. Our integrand (3.2) is a Born-level correlator. For the three-

point function 〈O(1)O(2)C(3)〉, where all the operators are made from scalars, the Born

approximation coincides with the free theory result. It is obtained by Wick contractions

7This result is consistent with the values of the structure constants for the operators in the so-called

SL(2) sector considered in [15]. Such operators correspond to the descendants C∆+2,S+2
[0,b+2,0] in (3.21) and they

are made only from scalars.
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with free scalar propagators. A certain number k of propagators connect points 1 and 2.

The remaining k1− k scalars at point 1 are connected to point 3 and similarly for point 2.

This means that the operator C∆+2,S+2
[0,b+2,0] is made from k1 + k2 − 2k = b + 2 scalars and S

space-time derivatives.8 The space-time dependence of the three-point function 〈OOC〉 is

fixed by conformal symmetry, and the structure constants are determined by the colour and

combinatorial factors. Let us examine the colour tensor of each operator. For the half-BPS

(single-trace) operator O(ki) it is the trace tr(t(a1
. . . taki )

) of ki generators of SU(Nc) (here

(. . .) denotes weighted symmetrisation). For C∆+2,S+2
[0,b+2,0] the colour tensor γSa1...ak1+k2−2k

de-

pends on the details of the operator in question.9 The combination of the three colour

tensors, including the combinatorial factor, has the form

k1!k2!

k!
tr[t(a1

. . . taktb1 . . . tbk1−k)] tr[t(a1
. . . taktc1 . . . tck2−k)] γ

S
b1...bk1−kc1...ck2−k

. (3.26)

Here the k Wick contractions between points 1 and 2 are realised as contractions of the

first k colour tensor indices. In the large Nc limit this becomes10(
Nk−1
c

2k
k1k2

)
(k1 − k)!(k2 − k)! tr[t(b1 . . . tbk1−k) t(c1 . . . tck2−k)]γ

S
b1...ck2−k

(k ≥ 1).

(3.27)

Now, let us see what happens when we shift k1 → k1 + 1 , k2 → k2 + 1. In order to

maintain the twist or equivalently the length k1 + k2 − 2k fixed, we need to also increase

k → k+ 1. Only the first factor in the parentheses in (3.27) changes. Then the ratio of the

structure constants is as given by eq. (3.25).

Next, let us insert the OPE limit (3.24) in the correlator (3.2)

lim
x2

12,y12→0
d12 fixed

G`k1k2k3k4
=

∑
O∆,S

[0,b,0]
:∆=S+b+2

C
k1k2O∆,S

[0,b,0]
d r−1

12 [x12]S+2 (3.28)

×
〈[
C∆+2,S+2

[0,b+2,0] + . . .
]
O(k3)(3)O(k4)(4)L(5) . . .L(4 + `)

〉
Born

,

and in its counterpart G`k1+1,k2+1,k3k4
. The shifted version of the tensor product (3.20) is

[0, k1 + 1, 0]⊗ [0, k2 + 1, 0] =

k2+1⊕
r=0

k2+1−r⊕
a=0

[a, k1 + k2 + 2− 2a− 2r, a] . (3.29)

As before, the long multiplets have r ≥ 2. Comparing this decomposition with (3.20) for

a = 0 and r ≥ 2, we see that the shifted version contains a representation [0, k1 + k2− 2, 0]

8The number k cannot be zero because otherwise the twist of the superconformal primary O∆,S
[0,b,0] will

be ∆ − S = k1 + k2. We have already set ∆ − S = b + 2 = k1 + k2 + 2(1 − r), so this would imply r = 1

in (3.20). As pointed out earlier, the multiplets with r = 1 are protected and do not contribute to the

integrand (3.2).
9In the case of degeneracy, i.e. existence of several operators C with the same quantum numbers made

from scalars (for an example see [33]), we assume that they have been diagonalised. Then the colour tensor

γS corresponds to a specific eigenstate.
10This relation does not hold for k = 0 but as we have explained, this case is of no relevance for us.
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with r = 2. This is an SO(6) tensor of rank k1 + k2 − 2. The maximal rank for long

operators (r = 2) in (3.20) is k1 + k2 − 4. From (3.28) it follows that this extra channel

comes with a prefactor d12 which account for the right-hand side of (3.15). Note that such

a contribution will only be visible if it also appears in the tensor product [0, k3, 0]⊗[0, k4, 0].

Finally, taking into account the universality of the structure constants (3.25) and the

normalisation factors (2.12) in (3.15), we see that the contributions of the long supermul-

tiplets common for both correlators coincide in our limit. The only source of difference

are the terms with r = 2 in the shifted version of (3.28), which are responsible for the

right-hand side of (3.15). We have thus proven this important relation.

3.3.2 A possible stronger relation

The examination of our two- and three-loop results in section 2.1 shows that they are

compatible with a stronger light-cone relation between two planar correlators:

G`k1+1,k2+1,k3k4

Ck1+1,k2+1,k3k4

− d12 ×
G`k1k2k3k4

Ck1k2k3k4

= O(1/x2
12) . (3.30)

The claim is that in this limit the two correlators in (3.15) can only differ by terms of

order 1/x2
12. Bearing in mind that the correlator G`k1k2k3k4

can have poles in x2
12 up to

1/(x2
12)(k1+k2−2)/2, this involves a remarkable cancellation of much of the correlation func-

tions. Notice that the new relation does not involve any limit of the auxiliary y-variables,

i.e. it applies to all the SU(4) channels in the correlators. From (3.30) we deduce the

stronger condition on the numerator polynomials in (3.7)

P `{bij}|b12→b12+1 − P `{bij} = O((x2
12)b12+1) . (3.31)

Here b12 ≤ `− 2 in order to match the conformal weights of the left- and right-hand sides.

If b12 > `− 2 the right-hand side must vanish.

How could we possibly prove such a relation? The starting point would be the confor-

mal light-cone OPE (3.19) (no need to evoke its supersymmetric version (3.22) anymore).

The relation would hold if the universality of the structure constants (3.25) applied to all

possible operators, not just the specific SU(4) channels [0, b, 0]. To prove this we would

be tempted to argue that the structure constants are determined by the free three-point

function 〈O(k1)O(k2)O∆,S
[a,b,a]〉free. Then the planar colour factor (3.27) would explain the uni-

versality, with the exception of the case k = 0, i.e. when the operator O∆,S
[a,b,a] has maximal

length. This would explain the right-hand side in (3.30).

The problem with this argument is that for generic operators O∆,S
[a,b,a], whose length

does not equal the rank 2a+b of the SO(6) representation, we cannot rule out the presence

of fermions and gluons in their composition. For such ingredients the three-point function

〈OOO∆,S
[a,b,a]〉Born is not necessarily free anymore. A simple example is an operator of the

type tr(F 2
µν). It can only talk to the half-BPS scalar operators via interaction vertices, so

〈OO tr(F 2)〉Born ∼ g2 and not g0 as for an operator made of scalars. The colour factors

of such three-point functions become more difficult to control. This does not mean that

the universality of the structure constants stops working, but at present we cannot make

a definitive claim. This issue deserves further study.
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We would like to point out that the three constraints — the weaker (3.17), the in-

termediate (3.18) and the stronger (3.31), are in fact equivalent up to three loops if we

assume planarity (see appendix A for the explanation). This is however not true starting

from four loops.

3.3.3 Singularities of the integrand

The OPE considerations above allow us to explain the structure of the space-time singular-

ities of our ansatz for the integrand (3.5), (3.7). Consider first the singularities with respect

to the four external points, i.e. for x2
ij → 0 with 1 ≤ i, j ≤ 4. They are determined by the

OPE of two half-BPS operators saturating the unitarity bound, eq. (3.23). We see that all

the poles in x2
12 appear as propagator factors, accompanied by an extra power of y2

12 if the

contribution comes from operators of SO(6) rank 2a+ b. Comparing with (3.5), (3.7) and

recalling the definition (2.13), we see exactly the same structure.

Further, the singularities between an external and a Lagrangian insertion points are

determined by the OPE

O(k) × L ∼ COOL
x4
O(k) +O

(
1

x2

)
. (3.32)

The leading singularity 1/x4 does not really appear there because the two-point function

of BPS operators is protected and hence COOL = 0. So, this OPE contributes at most a

singularity 1/x2, as in our ansatz (3.5), (3.7).

Finally, the OPE L×L of two chiral Lagrangians has a leading singularity in the form

of a contact term, δ4(x). Our correlators are always considered for non-coincident points,

so we can only see the subleading singularity 1/x2 in this OPE.

3.4 Double short-distance OPE

As explained in section 3.3, the powerful recursion relation (3.15) allows us to fix all but

one coefficient in our three-loop ansatz (and all at two loops). To fix the single remaining

coefficient it is sufficient to consider the simplest correlator (cf. (2.11))

Gloop
3322 = C3322Rd12

∑
`≥1

a`F` . (3.33)

A new independent restriction on this correlator follows from the Euclidean OPE (coinci-

dent points). Let us perform a double OPE in two inequivalent ways,

lim
1→2,3→4

G3322 = 〈(O(3)(1)×O(3)(2)) (O(2)(3)×O(2)(4))〉

lim
1→3,2→4

G3322 = 〈(O(3)(1)×O(2)(3)) (O(3)(2)×O(2)(4))〉 . (3.34)

In the first case x1 → x2, x3 → x4 or u → 0 , v → 1 in terms of the conformal

cross-ratios (2.8). The criterion derived in [5] is that the function

log

(
1 + 6x4

13

∑
`≥1

a`F`

) u→0
v→1−−−→ γK(a)

2
log u+O(u0) (3.35)
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diverges as a simple logarithm at all orders in a. Here γK is the anomalous dimension

of the Konishi operator, the leading non-protected operator in the overlap of the OPEs

O(3) × O(3) and O(2) × O(2). The numerical coefficient 6 (planar limit) on the left-hand

side has been worked out in [5] for the case G2222 by examination of the Born-level OPE

and comparison of the free two- and three-point functions. Alternatively, knowing the

correlator up to two loops allows us to fix this coefficient by making sure that the log

criterion works at two loops.

In the second case x1 → x4, x2 → x3 the criterion imposes simple logarithmic behaviour

on the function

log

(
1 + 4x4

12

∑
`≥1

a`F`

) v→0
u→1−−−→ γ6(a)

2
log v +O(v0) . (3.36)

Here γ6 is the anomalous dimension of the scalar operator of dimension 3 and in the vector

representation of SO(6), the leading non-protected operator in the OPE O(2) × O(3). On

the left-hand side we used our knowledge of the two-loop correlator from the recursion

relation (3.15) to fix the coefficient 4 (notice that it differs from the 6 in (3.35)).

Conditions (3.35) and (3.36) are to be implemented as follows (see [5] for the detailed

explanation). We expand the logarithms up to a3 and obtain restrictions on the linear

combinations of two-loop (at level a2) and three-loop (at level a3) integrals. The integrals

beyond one loop in general diverge stronger than simple logarithms. In order to weaken

the divergences, the numerator of the integrand must vanish in the singular regime where

an integration point approaches an outer point.11 For example, for the first OPE we choose

x5 → x1 or x5 → x3, for the second OPE we choose x5 → x1 or x5 → x2.

We remark that the conditions following from the OPE (3.35) with dominant twist

two are not independent from what the light-cone relation (3.15) has already given us.

Only the second OPE (3.36) is really useful for our purposes. It fixes the only remaining

coefficient and thus fully determines all the correlators up to three loops.

3.5 Integral identities

Once we have fully determined the integrand of a given correlator, we need to turn it

into a set of conformal integrals by substituting the polynomials P ` in (3.5) and then the

integrand in (3.1). We find the integrals listed in (2.17), appearing in various orientations.

We can profit from a number of identities that these integrals satisfy [5, 23],

h12;34 = h34;12 , h12;34 = h21;34 , h12;34 = h12;43

L12;34 = L34;12 , L12;34 = L21;34 , L12;34 = L12;43

E12;34 = E34;12 , E12;34 = E21;34 , E12;34 = E12;43

H12;34 = H34;12 , H12;34 = H21;43 , H21;34 = 1/vH12;34

H31;24 = u/vH13;24 , H41;23 = uH14;23 , (3.37)

to bring the answer to the form (2.16). The final results are listed in tables 1, 2.

11A similar criterion for the integrand of the four-gluon amplitude was first proposed in [34].

– 23 –



J
H
E
P
0
8
(
2
0
1
6
)
0
5
3

Note that at the level of the integrand we distinguish the topology of the three-loop

ladder integral L12;34 defined in (2.17) from that of the so-called ‘tennis court’ integral,

T12;34 =
x2

34

(−4π2)3

∫
d4x5d

4x6d
4x7 x

2
17

(x2
15x

2
35)(x2

16x
2
46)(x2

37x
2
27x

2
47)x2

56x
2
57x

2
67

. (3.38)

The latter does not appear in our result (2.16) for the integrated four-point correlation

function because of the identity T12;34 = L12;34 proven in [23].

We remark that the same set of integrals was used in [5] to construct the three-loop

correction to the correlator G2222. The main difference is that in the latter case one has

an enhanced permutation symmetry S4+` because all the four operators O(2) belong to the

stress-tensor multiplet (3.3). Consequently, the freedom is reduced to a single constant per

loop order, up to three loops.

4 OPE analysis of the integrated four-point correlators

Now let us turn to an OPE analysis of the four-point correlation functions. We would like

to discuss the constraints that the light-cone OPE places on the functions F{bij} appearing

in (2.11). Similar analysis has been performed in [28, 35] and we follow the general discus-

sion therein.12 We will see that simple consistency conditions in fact require many of the

coefficients in the tables 1 and 2 presented before to take precisely the correct values. By

performing the OPE analysis we will also be able to present detailed checks of the (derived)

tree-level and (conjectured) one-loop formulae for three-point functions of two half-BPS

and one long operator presented in [15]. Moreover we will be able to check the recently

presented three-loop formulae [19, 20] for the same three-point functions in the case where

the long operator has twist two.

In order to have a uniform discussion of the light-cone OPE for the four-point cor-

relators discussed in this paper, we choose to consider the expansion around the limit

x2
12x

2
34 → 0, or equivalently u → 0 with v fixed. Then, instead of discussing different ex-

pansions of a given correlator, we consider our preferred expansion of the various correlators

obtained by permuting the ordering of the external operators.

Without loss of generality we can always pick k4 to be the largest of the weights and

order the weights so that k1 ≤ k2. We define the quantity E via

E =
1

2
(k1 + k2 + k3 − k4) . (4.1)

We then find it convenient to rewrite the correlation functions as follows (we use the

notation kij = ki − kj),

Gk1k2k3k4 = G0
k1k2k3k4

+ Ck1k2k3k4 d
a
14d

b
24d

c
12d

k3
34u

1
2
k34S(u, v;σ, τ)H(u, v;σ, τ) . (4.2)

In equation (4.2) we have introduced the variables

σ =
y2

13y
2
24

y2
12y

2
34

, τ =
y2

14y
2
23

y2
12y

2
34

(4.3)

12For more general and recent approaches see [36, 37].
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while the powers on the propagator factors are given by

a = k1 − E , b = k2 − E , c = E . (4.4)

Finally the function S in (4.2) is a simple polynomial obtained from R(1, 2, 3, 4) and is

given by

S(u, v;σ, τ) = R(1, 2, 3, 4)
x2

12x
2
34x

2
14x

2
23

x2
13x

2
24y

4
12y

4
34

= v + σ2uv + τ2u+ σv(v − 1− u) + τ(1− u− v) + στ(u− 1− v) . (4.5)

We recall [27, 28] that the presence of the factor S in (4.2) or R(1, 2, 3, 4) in (2.11) is a

reflection of the fact that the quantum loop corrections to the full correlator can only come

from intermediate operators in the OPE which belong to long supermultiplets. The free

correlator G0
k1k2k3k4

on the other hand receives contributions both from protected operators

and long operators,

G0
k1k2k3k4

= Gprotected
k1k2k3k4

+ Ck1k2k3k4 d
a
14d

b
24d

c
12d

k3
34u

1
2
k34S(u, v;σ, τ)H(0)(u, v;σ, τ) . (4.6)

In order to understand the OPE expansion of the correlator Gk1k2k3k4 , we first expand

the function H into eigenmodes of the su(4) Casimir acting at points 1 and 2 as follows

H(u, v;σ, τ) =
∑

L≤m≤n≤U
Anm(u, v)Y (a,b)

nm (σ, τ) . (4.7)

The channel with labels n,m corresponds to an exchanged supermultiplet with supercon-

formal primary in the representation with su(4) Dynkin labels [n−m, a+ b+ 2m,n−m].

The bounds on the summation region are given by

L = max(0, E − k1) , U = min(k3, E)− 2 . (4.8)

The functions Y
(a,b)
nm are given in terms of Jacobi polynomials via

Y (a,b)
nm (σ, τ) =

P
(a,b)
n+1 (y)P

(a,b)
m (ȳ)− P (a,b)

m (y)P
(a,b)
n+1 (ȳ)

y − ȳ
, (4.9)

where the variables y and ȳ are defined via

σ =
1

4
(1 + y)(1 + ȳ) , τ =

1

4
(1− y)(1− ȳ) . (4.10)

We recall that the Jacobi polynomials are given by a finite hypergeometric series which

can be usefully expressed via Rodrigues’s formula as follows,

P (α,β)
n (z) =

(−1)n

2nn!
(1− z)−α(1 + z)−β

dn

dzn

[
(1− z)α(1 + z)β(1− z2)n

]
. (4.11)

The function H(0) appearing in (4.6) has an expansion directly analogous to (4.7) with

coefficients A
(0)
nm whose precise form will not be important in what follows.
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Now the functions Anm appearing in the expansion (4.7) can themselves be expanded

in terms of conformal blocks describing the quantum loop corrections to the contributions

of conformal primary operators of dimension ∆ and spin l.13 Specifically we have

A(0)
nm(u, v) +Anm(u, v) =

∑
∆,l

a∆l
nmG

(l)
∆ (u, v; k21, k43) . (4.12)

We are interested in the form of the perturbative quantum corrections, so we will need to

expand the above sum over conformal blocks order by order in the Yang-Mills coupling.

The order g0 term will correspond to the contribution of A
(0)
nm, while all higher orders

come from the Anm which are themselves directly obtained from the explicit results of the

previous sections.

The conformal blocks are given by [38]

G
(l)
∆ (u, v; δ, δ̃) =

u
1
2

(∆−l)

x− x̄

(
x

(
−1

2
x

)l
f δ,δ̃∆+l(x)f δ,δ̃∆−l−2(x̄)− x̄

(
−1

2
x̄

)l
f δ,δ̃∆+l(x̄)f δ,δ̃∆−l−2(x)

)
,

(4.13)

with

f δ,δ̃ρ (z) = 2F1

(
1

2
(ρ+ δ),

1

2
(ρ− δ̃); ρ; z

)
. (4.14)

In (4.13) we employ the variables

u = xx̄ , v = (1− x)(1− x̄) . (4.15)

For our purposes here it will be sufficient to consider only the leading power in the

expansion for small u for each function Anm(u, v), keeping any powers of log u. This

corresponds to keeping the leading twist14 contribution to each distinct su(4) channel in

the expansion of the correlation functions. The limit may be achieved by taking x̄→ 0 with

x fixed. In this case we may drop any power suppressed terms from the conformal blocks,

G
(l)
∆ (u, v; δ, δ̃) = u

1
2

(∆−l)
(
−1

2
x

)l
f δ,δ̃∆+l(x) +O(x̄) . (4.16)

Our task is now to match the explicit expressions for the leading powers in the x̄

expansions of Anm, obtained from the limits of the correlation functions Gk1,k2,k3,k4 , with

the perturbative expansion of the sum over conformal blocks given in (4.12). We write

the scaling dimension ∆ of a superconformal primary as ∆ = ∆0 + γ(λ), where γ is the

anomalous dimension. The free scaling dimension is not a good label for different operators

since in the free theory many operators of a given spin may have the same ∆0. We therefore

label operators of a given spin l which have degenerate free scaling dimensions with an extra

index I. We find

A(0)
nm(u, v) +Anm(u, v) = up

∑
I,l

anm,I,lu
ηI,l

(
−1

2
x

)l
fk21,k43

2p+2l+2ηI,l
(x) +O(up+1) (4.17)

13In this section we denote the spin by l and the ‘t Hooft coupling by λ.
14The twist T of an operator is the dimension minus the spin T = ∆− l.
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where ηI,l = 1
2γI,l and

p =
1

2

(
max(k21, k43) + 2 + 2(n−max(0, E − k1))

)
(4.18)

is half the free twist of the leading twist operators in a given su(4) channel with labels

m,n. The coupling dependence in (4.17) is in the quantities Amn(u, v) on the l.h.s. and

anm,I,l and γI,l on the r.h.s. They admit perturbative expansions of the form

Anm(u, v) =

∞∑
r=1

λrA(r)
nm(u, v) , ηI,l(λ) =

∞∑
r=1

λrη
(r)
I,l , anm,I,l(λ) =

∞∑
r=0

λra
(r)
nm,I,l .

(4.19)

The functions A
(r)
nm(u, v) exhibit logarithmic corrections in their expansions for small u of

the form

A(r)
nm(u, v) = up

r∑
s=0

(log u)sg(r)
nm,s(x) +O(up+1) . (4.20)

Now we may expand both sides of eq. (4.17) in the coupling. This leads us to expres-

sions of the following general form for the functions g
(r)
nm,s,

g(r)
nm,s(x) =

∑
I,l

(
−1

2
x

)l [
O(r)
nm,I,l,sf

k21,k43

2t+2l (x)
]
t=p

, (4.21)

where O(r)
nmI,l,s is in general a differential operator (in t) acting on the function f . To

simplify the notation a little we suppress the indices n and m (in other words we write

O(r)
nm,I,l,s(x) ≡ O(r)

I,l,s(x) and a
(r)
nm,I,l ≡ a

(r)
I,l ). At leading order we simply have a multiplicative

operator,

O(0)
I,l,0 = a

(0)
I,l . (4.22)

At order λ we have

O(1)
I,l,1 = a

(0)
I,l η

(1)
I,l ,

O(1)
I,l,0 = a

(1)
I,l + a

(0)
I,l η

(1)
I,l ∂t . (4.23)

At order λ2 we find

O(2)
I,l,2 = a

(0)
I,l

1

2
(η

(1)
I,l )

2 ,

O(2)
I,l,1 = a

(1)
I,l η

(1)
I,l + a

(0)
I,l η

(2)
I,l + a

(0)
I,l (η

(1)
I,l )

2∂t ,

O(2)
I,l,0 = a

(2)
I,l + a

(1)
I,l η

(1)
I,l ∂t + a

(0)
I,l

[
η

(2)
I,l ∂t +

1

2
(η

(1)
I,l )

2∂2
t

]
. (4.24)

Finally, at order λ3 we have

O(3)
I,l,3 = a

(0)
I,l

1

6
(η

(1)
I,l )

3 ,

O(3)
I,l,2 = a

(1)
I,l

1

2
(η

(1)
I,l )

2 + a
(0)
I,l

[
η

(2)
I,l η

(1)
I,l +

1

2
(η

(1)
I,l )

3∂t

]
,

O(3)
I,l,1 = a

(2)
I,l η

(1)
I,l + a

(1)
I,l

[
η

(2)
I,l + (η

(1)
I,l )

2∂t

]
+ a

(0)
I,l

[
η

(3)
I,l + 2η

(2)
I,l η

(1)
I,l ∂t +

1

2

(
η

(1)
I,l

)2
∂2
t

]
,

O(3)
I,l,0 = a

(3)
I,l + a

(2)
I,l η

(1)
I,l ∂t + a

(1)
I,l

[
η

(2)
I,l ∂t+

1

2
(η

(1)
I,l )

2∂2
t

]
+ a

(0)
I,l

[
η

(3)
I,l ∂t+η

(2)
I,l η

(1)
I,l ∂

2
t +

1

6
(η

(1)
I,l )

3∂3
t

]
.

(4.25)
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These leading-twist OPE expansions are to be compared to the explicit leading-twist

results for the perturbative expansion of the four-point correlation functions. As we have

seen, these correlation functions are expressed purely in terms of one-, two- and three-loop

ladder integrals, as well as, at three-loops, the Easy and Hard integrals.

Let us now compare the expressions (2.4) and (2.11) with the form (4.2) for the four-

point correlator. We find

H(u, v;σ, τ) = u
1
2
k43+1v−1

∑
{bij}

σb13τ b23ub13+b23v−b23F{bij}(u, v) . (4.26)

For fixed k1, k2, k3, k4 we may regard b13 and b23 as free variables while the other bij are

related to them via

b14 = b23 +a , b24 = b13 + b , b12 = E− 2− b13− b23 , b34 = k3− 2− b13− b23 . (4.27)

The bounds on b13 and b23 follow from the fact that all the bij are non-negative. Defining

n = b13 + b23 we may rewrite (4.26) as

H(u, v;σ, τ) = u
1
2
k43+1v−1

∑
L≤b23≤n≤U

σn−b23τ b23unv−b23Fn,b23(u, v) . (4.28)

with

L = max(0, E − k1) , U = min(k3, E)− 2 . (4.29)

We recall that each F{bij}(u, v) is given by a perturbative expansion given in (2.16).

We will now consider a few examples of the above expansions on the correlators under

consideration.

4.1 Equal weights (kkkk)

In the first instance we specialise to the case where all weights are equal, k1 = k2 = k3 =

k4 = k, which was studied extensively in [35]. Note that having all ki equal implies

b14 = b23 , b24 = b13 , b12 = b34 , b34 = k − 2− b13 − b23 . (4.30)

In this case the correlator simplifies to

Gkkkk = G0
kkkk + Ckkkk (d12)k(d34)kS(u, v;σ, τ)H(u, v;σ, τ) . (4.31)

The expansion in (4.7) above reduces to an expansion in terms of Legendre polynomials,

H(u, v;σ, τ) =
∑

0≤m≤n≤k−2

Anm(u, v)Y (0,0)
nm (σ, τ) . (4.32)

The leading twist of the exchanged operators in the OPE in a given su(4) channel is 2 + 2n

(hence p = 1 + n). The expansion (4.28) takes the form

H(u, v;σ, τ) = (u/v)
∑

0≤b23≤n≤k−2

σn−b23τ b23unv−b23Fn,b23(u, v) . (4.33)

Now we consider the first few values of k.
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2222. The case (2222) corresponds to the well-studied case of four stress-tensor multi-

plets. The one-loop and two-loop results were derived in [4, 39–42] and the OPE analysis

was performed in [35]. The form of the correlator in terms of three-loop integrals was ob-

tained in [5] and the asymptotics necessary for the leading twist OPE analysis were derived

in [43]. From these results the full two-variable kinematical dependence of the integrals

was reconstructed in [44]. From the expansion (4.32) we have only a single su(4) channel

whose leading twist is 2,

H(u, v;σ, τ) = A00(u, v) =
u

v
F{0,0,0,0,0,0}(u, v) , (4.34)

where the second equality comes from inserting the only allowed values of the {bij} =

{0, 0, 0, 0, 0, 0} into (4.26).

Expanding the above function for small u and keeping only the leading power in u

we have

A
(r)
00 (u, v) = u

r∑
s=0

(log u)sg
(r)
00,s(x) +O(u2) . (4.35)

The explicit forms of the g
(r)
00,s(x) may then be read off up to three loops from the ex-

plicit expression for the function F{0,0,0,0,0,0} in terms of the known integrals. The case

of leading twist equal to two is special in that there is only a single operator for each

spin l. The sum over operators labelled by I in the relations (4.21)–(4.25) may thus be

dropped. From the knowledge of the free theory three-point functions for two weight-

two protected operators and one twist-two long operator the anomalous dimensions and

normalisations may be constructed up to three loops. These have already been explicitly

worked out in [35, 43]. Following [43] we reorganise the final expansion in (4.19) to express

it as a00,l(λ) = ãl+2(λ), where

ãl(λ) = 2l−1

[
Γ(l + 1 + η̃l(λ))2

Γ(2l + 1 + 2η̃l(λ))

]
rational

×
[
1 + λc

(1)
2,l + λ2

(
c

(2)
4,l + ζ3c

(2)
1,l

)
+ λ3

(
c

(3)
6,l + ζ3c

(3)
3,l + ζ5c

(3)
1,l

)
+ . . .

]
. (4.36)

The subscript ‘rational’ on the first factor in brackets denotes the fact that one should

discard all zeta-value contributions arising from Taylor expanding the Gamma functions

in the η̃l(λ).

The quantity ãl(λ) in (4.36) corresponds the expression given in [43] for the squared

three-point functions of the two protected operators and one long operator in the [0, 2, 0]

representation. It is the same as our squared three-point function up to the shift by two

in the spin because the intermediate operator in the [0, 2, 0] considered in [43] is a super-

descendant of our superconformal primary operator which is in the [0, 0, 0] representation.

Similarly the quantity η̃l is related to our anomalous dimension simply via ηl(λ) = η̃l+2(λ).

– 29 –



J
H
E
P
0
8
(
2
0
1
6
)
0
5
3

Here let us note only the explicit expression of the quantities c and η̃ up to two loops,

η̃
(1)
l = 2h1 ,

η̃
(2)
l = 2h−2,1 − h−3 − 2h−2h1 − 2h1h2 − h3 ,

c
(1)
2,l = −h2 ,

c
(2)
1,l = 3h1 ,

c
(2)
4,l =

5

2
h−4 + h2

−2 + 2h−3h1 + h−2h2 + h2
2 + 2h1h3 +

5

2
h4 − 2h−3,1 − h−2,2 − 2h1,3 .

(4.37)

In the above equations we use the notation h to denote a harmonic sum with argument l.

We refer the reader to [43] for the explicit three-loop formulae.

3333. In the case (3333) we have three su(4) channels,

H(u, v;σ, τ) =
∑

0≤m≤n≤1

Anm(u, v)Ynm(σ, τ)

=
u

v

(
F{1,0,0,0,0,1} + σuF{0,1,0,0,1,0} + τ

u

v
F{0,0,1,1,0,0}

)
. (4.38)

The relations between the different expansions are given by

A00 =
u

v

(
F{1,0,0,0,0,1} +

u

6

(
F{0,1,0,0,1,0} +

1

v
F{0,0,1,1,0,0}

))
,

A10 =
1

6

u2

v

(
F{0,1,0,0,1,0} −

1

v
F{0,0,1,1,0,0}

)
,

A11 =
1

6

u2

v

(
F{0,1,0,0,1,0} +

1

v
F{0,0,1,1,0,0}

)
. (4.39)

The first channel A00 has leading twist two. To keep only the leading twist contribution

we keep only the first term in (4.39). From the explicit expression for F{1,0,0,0,0,1} up to

three loops we may then read off the normalisations a00,l(λ), corresponding to the squares

of the three-point functions for two weight-three protected operators and one twist-two long

operator up to three loops. We again write the perturbative expansion in the form (4.36)

and we note that the anomalous dimensions ηl are identical to the (2222) case because the

exchanged operators are the same.

At one loop the expression for c
(1)
2,l is identical to the weight 2 case given in (4.37).

This follows from the fact that there is only a single one-loop integral, namely g1234. At

two loops we find

c
(2)
1,l = 0 ,

c
(2)
4,l =

5

2
h−4 +

1

2
h2
−2 + 3h−3h1 + h−2h

2
1 + h−2h2 + h2

2 + 2h1h3 + 2h4 − h−3,1 − h1,3

− 2h−2,1,1 − 2h1,−2,1 . (4.40)

At three loops we have not found an expression valid for arbitrary l analogous to the ones

found in [43] for the weight 2 case. We expect that a relatively simple formula in terms
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of harmonic sums, similar to the one for the (2222) case, will reproduce the results we

have for each spin. However we may still check our results against the expressions found

in [19, 20] for the leading spins and we find perfect agreement with the predictions coming

from the integrability approach of [18]. In particular we reproduce15 the table at the top

of page 9 of [19]. The parameter η in that table should be set to 1
2 .

Let us now turn to the channel A11 which has leading twist four. In this case the

supermultiplets of twist four which are exchanged in the OPE contain super descendants

which are pure scalar operators in the sl2 sector studied in [15]. Thus, from this channel

we can compare to the predictions made in [15] for the small x expansions of the functions

g
(r)
11,s(x) defined in (4.20). We pull out some simple prefactors to aid comparison:

g
(1)
11,1(x) = − 1

3.2.4x4

(
8x4 + 16x5 +

74

3
x6 + 34x7 +

659

15
x8 + . . .

)
,

g
(1)
11,0(x) = − 1

3.4x4

(
−8x4 − 14x5 − 179

9
x6 − 155

6
x7 − 28663

900
x8 + . . .

)
,

g
(2)
11,2(x) =

1

3.22.4x4

(
24x4 + 48x5 +

712

9
x6 +

352

3
x7 +

72953

450
x8 + . . .

)
,

g
(2)
11,1(x) =

1

3.2.4x4

(
−64x4 − 116x5 − 1619

9
x6 − 2287

9
x7 − 9094423

27000
x8 + . . .

)
,

g
(3)
11,3(x) = − 1

3.23.4x4

(
160

3
x4 +

320

3
x5 +

15688

81
x6 +

8488

27
x7 +

4732363

10125
x8 + . . .

)
,

g
(3)
11,2(x) = − 1

3.22.4x4

(
−256x4 − 472x5 − 65954

81
x6 − 34132

27
x7 − 122032589

67500
x8 + . . .

)
.

(4.41)

The terms in the parentheses reproduce precisely16 the predicted expansion coming from

the conjectured form of the one-loop twist-four structure constants in [15].

Finally we note that we also have explicit data for the channel A10 which is also of

leading twist four.

4444. In the case (4444) we have six su(4) channels,

H(u, v;σ, τ) =
∑

0≤m≤n≤1

Anm(u, v)Ynm(σ, τ)

=
u

v

(
F{2,0,0,0,0,2} + σuF{1,1,0,0,1,1} + τ

u

v
F{1,0,1,1,0,1}

+ σ2u2F{0,2,0,0,2,0} + στ
u2

v
F{0,1,1,1,1,0} + τ2u

2

v2
F{0,0,2,2,0,0}

)
. (4.42)

15We need to rescale their coupling g2 by a factor of 4, i.e. g2|there = 4λ|here and rescale their coefficients

by a global factor of 1/4 to match our conventions.
16Apart from the third term in the final line in (4.41) which appears to be a simple typo in [15].
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The distinct su(4) channels are given by

A00 =
u

60v3
(3u2F{0,0,2,2,0,0} + u2vF{0,1,1,1,1,0} + 3u2v2F{0,2,0,0,2,0} + 10uvF{1,0,1,1,0,1}

+ 10uv2F{1,1,0,0,1,1} + 60v2F{2,0,0,0,0,2}) ,

A10 = − u2

12v3
(uF{0,0,2,2,0,0} − uv2F{0,2,0,0,2,0} + 2vF{1,0,1,1,0,1} − 2v2F{1,1,0,0,1,1}) ,

A11 =
u2

60v3
(6uF{0,0,2,2,0,0} + uvF{0,1,1,1,1,0} + 6uv2F{0,2,0,0,2,0} + 10vF{1,0,1,1,0,1}

+ 10v2F{1,1,0,0,1,1}) ,

A20 =
u3

60v3
(2F{0,0,2,2,0,0} − vF{0,1,1,1,1,0} + 2v2F{0,2,0,0,2,0}) ,

A21 =
u3

20v3
(−F{0,0,2,2,0,0} + v2F{0,2,0,0,2,0}) ,

A22 =
u3

60v3
(F{0,0,2,2,0,0} + vF{0,1,1,1,1,0} + v2F{0,2,0,0,2,0}) . (4.43)

The channel A00 again has leading twist two. If we keep only the leading twist contri-

butions, the only term which contributes is the last one on the r.h.s. of the first equation

in (4.43). Up to two loops the function F{2,0,0,0,0,2} is identical to F{1,0,0,0,0,1}. Thus the

results for a0,0,l(λ) are identical up to two loops with the (3333) case. At three loops we

may again compare with the results of [19, 20]. Again the relevant data is given in the

table on page 9 of [19]. This time we must set the variable η in that table to zero. We can

see that the variable η in table 9 of [19] is varying exactly in accordance with the coefficient

of the single integral L12;34, which is finite in the OPE limit x2
12 → 0.

We may also examine the channel A22 where the leading twist is six. Again we can

compare to the data presented in [15] in table 4 in appendix C. Expanding A22 in the

leading twist sector we find perfect agreement with the coefficients for leading spins detailed

in that table.

Higher k and wrapping corrections. We have previously noted that there is a uni-

formity of the functions F{bij} in that there is only one contributing integral, g1234 at one

loop while functions with any given bij ≥ 1 are identified at two loops and those with any

given bij ≥ 2 are identified at three loops. In particular the leading twist-two channel of

the correlator (kkkk) is of the form

A00(u, v) =
u

v
F{k−2,0,0,0,0,k−2} +O(u2) . (4.44)

We see that the uniform behaviour of the functions F{k−2,0,0,0,0,k−2} for all k at one loop,

k ≥ 3 at two loops17 and k ≥ 4 at three loops implies that the normalisations a00,l(λ) will

also exhibit such a uniform behaviour. Thus the normalisations a00,l(λ) in the cases (5555),

(6666) etc. will all be the same as those of (4444) up to three loops. This uniformity in

k is precisely what is expected from the nature of possible wrapping contributions to the

three-point functions of two protected operators and one twist-two long operator in the

approach of [18].

17This uniformity (called ‘degeneracy’) was first remarked in [10, 11].
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4.2 Weights (kkk′k′) and an averaging rule

Let us now consider correlation functions with weights (kkk′k′) for k and k′ not equal.

Note that by our assumptions on the ordering of the weights we have k′ > k. The bij are

related as follows,

b14 = b23 , b24 = b13 , b12 = k − 2− b13 − b23 , b34 = k′ − 2− b13 − b23 . (4.45)

The correlator simplifies to

Gkkk′k′ = G0
kkk′k′ + Ckkk′k′ (d12)k(d34)k

′S(u, v;σ, τ)H(u, v;σ, τ) . (4.46)

The expansion in (4.7) above reduces to an expansion in terms of Legendre polynomials

just as in the case of equal weights (4.32). The leading twist of the exchanged operators

in the OPE in a given su(4) channel is again 2 + 2n (hence p = 1 + n).

Since the normalisations anm,I,l are products of three-point functions we expect them

to obey

a
(kkk′k′)
nm,I,l =

√
a

(kkkk)
nm,I,la

(k′k′k′k′)
nm,I,l . (4.47)

Let us now focus on the case of the twist-two operators (where we can drop the additional

index I as there is no operator mixing). We know in this case that, in the free theory and

at one loop, the normalisations a
(kkkk)
00,l are in fact independent of k. We write this explicitly

as follows,

a
(kkkk)
00,l = a

(0)
00,l(1 + λb

(1)
l + λ2b

(2)
l,k + λ3b

(3)
l,k + . . .) . (4.48)

This means that if we perturbatively expand (4.47) we find

a
(kkk′k′)
00,l = a

(0)
00,l

(
1 + λb

(1)
l + λ2 1

2

(
b
(2)
l,k + b

(2)
l,k′
)

+ λ3 1

2

(
b
(3)
l,k + b

(3)
l,k

))
+ . . . (4.49)

In other words, to three loops, we find that the normalisations a00,l(λ) for the case (kkk′k′)

are the average of those for the cases (kkkk) and (k′k′k′k′). In particular this means that

the leading twist contributions to A
(r)
00 obey

A
(r),(kkk′k′)
00 =

1

2

(
A

(r),(kkkk)
00 +A

(r),(k′k′k′k′)
00

)
, r = 1, 2, 3 . (4.50)

Since the leading twist-two contributions to the A00 channels for the correlators (kkk′k′)

are all given by the functions (u/v)F{k−2,0,0,0,0,k′−2} we conclude that in the limit of small

u we have

F{k−2,0,0,0,0,k′−2} =
1

2

(
F{k−2,0,0,0,0,k−2} + F{k′−2,0,0,0,0,k′−2}

)
+O(u) (4.51)

up to three loops.

Of the integral functions appearing in the expansion (2.16) of correlators up to three

loops, the functions with coefficients c1
gg at two loops and c1

gh, c4
H , and c6

H at three loops

are all power-suppressed in the OPE limit x2
12 → 0. The remaining functions can all

contribute in the limit to the leading twist expansion of any given su(4) channel of a
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correlation function. Moreover, the remaining functions are all linearly independent in the

limit, as can be verified from their explicit expressions [44]. This means that, for those

functions which are not power suppressed, one may apply the averaging rule (4.51) directly

at the level of the individual integral coefficients.

In fact the only reason we have restricted ourselves to three loops in equation (4.50) is

the dependence on k in a
(kkkk)
00,l at two loops. However, as we have seen from the analysis

of the preceding section, this dependence is very mild indeed. In fact a
(kkkk)
00,l is again

independent of k at two loops as long as k ≥ 3 and even at three loops as long as k ≥ 4.

This means that we can actually extend our average rule beyond three loops in these cases.

This may prove a useful tool in higher loop explorations of the correlation functions of
1
2 -BPS operators.

4.3 General consistency checks

In fact we may use the OPE of the four-point correlation functions to cross-check many of

our results from tables 1 and 2. If we allow ourselves to make an ansatz in terms of the

known ladder integrals and, at three loops, the Easy and Hard integrals, we find that many

of their coefficients are fixed by consistency of the OPE expansion. The reason is that at

` loops the operators O(`)
nm,I,l,s appearing in (4.21) are explicitly known for s > 1 if all the

lower loop data a
(`′)
nm,I,l and η

(`′)
I,l are known for `′ < `. Moreover if η

(`)
I,l is known then one

also knows O(`)
nm,I,l,1. In the case of the exchange of twist-two operators these data may

be read off from the lower loop correlators themselves, while the anomalous dimensions to

the relevant order are well known. We find that matching such constraints from the form

of the OPE fixes many of the constants in the ansatz. As an example, for the correlator

(3333), such OPE consistency checks fix all but one coefficient, namely the coefficient c1
L in

an ansatz for F{1,0,0,0,0,1}. This final coefficient can then be determined from the averaging

rule we described above in section 4.2, assuming the correlator (2233) is known. The fact

that the coefficients obtained in tables 1 and 2 are all consistent with what is essentially an

independent check based on the forms of the actual integrated functions further increases

our confidence that the values are correct.

5 Conclusions

In this paper we have shown how to construct the four-point correlation functions of half-

BPS operators of arbitrary weights, in the planar limit and up to three loops. Our con-

struction uses only elementary properties of the integrand of the loop corrections, viewed

as a rational correlator at Born level. Knowing its symmetries and singularity structure,

we are able to write down a relatively concise ansatz in the planar limit. The unknown

coefficients are then determined from a chain of relations between correlators with different

weights, following from comparing their light-cone OPEs. Interestingly, we need to consider

the set of all such correlators and all the relations between them, in a kind of bootstrap

procedure.

We have used the known correlator G2222 as the starting point of the recursion. The

three-loop correlator G2222 was found in [5] with the help of another, exceptional property —

– 34 –



J
H
E
P
0
8
(
2
0
1
6
)
0
5
3

the hidden permutation symmetry between external and Lagrangian insertion points for the

operators O(2). We have also used the same symmetry in the present work, if one or more of

the four operators are of the type O(2). So, it may seem that this symmetry is an essential

ingredient of the whole construction of integrands. However, we have experimented with

a more general ansatz where the symmetry is not taken into account. Using the light-

cone OPE consistency conditions from this paper we were able to determine all but two

coefficients at two loops and seven at three loops. Then we applied the Minkowski and

Euclidean logarithmic divergence criteria from [6] and succeeded in fixing all the coefficients,

including those in the correlator G2222. So, the hidden symmetry of [5] may be very helpful

but is not indispensable, at least up to three loops.

We would like to emphasise the role of the planar limit in our construction. Not

only it greatly reduces the size of our ansatz for the integrand, but most importantly, it

is responsible for the universality property of the OPE structure constants discussed in

section 3.3. Without the OPE relation (3.15) that follows from this universality we would

not be able to go very far in the non-planar case. We interpret this as a sign of some new

type of integrability for the correlation functions of half-BPS operators.

To further elucidate the predictability (or integrability) of these correlators we have to

see what happens at higher loops. We have some preliminary encouraging results at four

loops. We hope that they can be useful for checking the recent integrability predictions

for the OPE structure constants [19, 20]. However, we can only provide the answer in

terms of four-loop conformal integrals, which will have to be evaluated by some modern

techniques [44, 45].

Ultimately, the goal would be to try to construct all correlators of half-BPS operators

with an arbitrary number of points and at arbitrary loop levels, using only basic properties

of the integrands. In case of success this can shed new and very nontrivial light on the

origin of the remarkable properties of scattering amplitudes/Wilson loops. The latter are

known to be light-like limits of correlation functions [46, 47]. This duality is most easily

seen at the level of their integrands [48–50].
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A Uniformity of the correlators

As discussed in section 3.2, the planarity of component terms is a powerful restriction on

the correlation functions. The light-cone OPE condition relating different correlators is

another powerful condition. In combination they are enough to determine all three-loop

correlation functions up to a single unfixed coefficient. However even before performing

the detailed analysis leading to this conclusion we can use the two restrictions to deduce a

uniform structure for correlation functions of sufficiently high weights.

More concretely, they combine to imply that at two loops

f2
{b12,b13,b14,b23,b24,b34} = f2

{1,b13,b14,b23,b24,b34} for all b12 ≥ 1, b13, . . . b34 ≥ 0 , (A.1)

and similarly at three loops

f3
{b12,b13,b14,b23,b24,b34} = f3

{2,b13,b14,b23,b24,b34} for all b12 ≥ 2, b13, . . . b34 ≥ 0 . (A.2)

The choice of b12 here is simply for convenience and similar equations apply for any other

bij . These equations imply that we can restrict our attention to the set bij ∈ {0, 1} at

two loops and bij ∈ {0, 1, 2} at three loops: all other cases will reduce to these cases. For

example the above equation implies that f3
{7,1,5,0,1,8} = f3

{2,1,2,0,1,2}.

To see where this comes from we first consider two loops. The light-cone OPE in

the form of (3.18) implies that P `{bij}|b12→b12+1 − P `{bij} = O(x2
12). Since at two loops the

numerator has the form (3.8), this means the difference between the two numerators has

only two unfixed terms:

P 2
{bij}|b12→b12+1 − P 2

{bij} = x2
12

(
a1x

2
34x

2
56 + a2(x2

35x
2
46 + x2

36x
2
45)
)
. (A.3)

We can then ask what values of a1 and a2 are consistent with planarity. Inserting P 2
{bij}

into the expression for the corresponding correlation function (3.5) and then replacing it

with the right-hand side of (A.3) we see that the constants a1, a2 appear as

I ×
∏
ij 6=12

d
bij
ij ×

x2
12

(
a1x

2
34x

2
56 + a2(x2

35x
2
46 + x2

36x
2
45)
)

(x2
12)b12

∏
1≤p<q≤6 x

2
pq

. (A.4)

If b12 ≥ 1 these terms are non-planar (since the x2
12 in the numerator does not cancel that

in the denominator). Thus planarity requires a1 = a2 = 0 and we deduce (A.1).

The three-loop proof is very similar, the difference being that the presence of the

additional power in the numerator at three loops (see (3.8)) delays the universal structure

by one level.

Now we briefly explain why (3.18) follows from (3.17) and planarity at two and three

loops. We will prove a more general statement from which this one follows. Consider the

equation

n∑
k=0

(x2
13x

2
24)k(x2

14x
2
23)n−kQk(x) = 0 (A.5)
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for a set of polynomials Qk(x) of the form (3.8) at two and three loops, correspondingly,

and n > 0. We assume that each contribution in (A.5) is planar, i.e. for each k the rational

function

Qk/
(
(x2

13x
2
24)n−k(x2

14x
2
23)k

∏
i<j

x2
ij

)
(A.6)

corresponds to a set of planar graphs. Then Qk = 0, k = 0, 1, . . . n, is the only solution

of (A.5).

Indeed, the different terms on the left-hand side of (A.5) can possibly cancel each other

only if Qk = x2
13x

2
24fk(x) + x2

14x
2
23gk(x) with some polynomials fk(x), gk(x). Substituting

this in (A.6), we see that all contributions correspond to nonplanar graphs according to the

argument around (A.4). Let us mention that this statement relies upon a special property

of the two-loop and three-loop planar graphs from (3.9): adding any further edge to either

of them makes them non-planar. This property is not valid at four loops and higher.

Finally we show that at two and three loops the strongest criterion (3.31) is a con-

sequence of (3.18) and planarity. At two loops (3.31) is equivalent to (3.18) if b12 = 0,

and if b12 ≥ 1 we can evoke the uniformity property formulated above. At three loops the

relationship between the two criteria is more involved. We need to show that P 3
{bij}|b12=2−

P 3
{bij}|b12=1 = O(x2

12) and planarity imply that P 3
{bij}|b12=2−P 3

{bij}|b12=1 = O(x4
12). Indeed,

let P 3
{bij}|b12=2 − P 3

{bij}|b12=1 = x2
12f(x) with a polynomial f(x) such that f(x)|x2

12=0 6= 0.

Then following the argument around (A.4) we conclude that

(x2
12f(x))/

(
(x2

12)b12
∏
i<j

x2
ij

)
(A.7)

with b12 = 1 necessarily produces nonplanar graphs. The reason is that the x2
12 in the

numerator cannot cancel the x4
12 in the denominator.

In conclusion, the three constraints — the weaker (3.17), the intermediate (3.18) and

the strongest (3.31), are in fact equivalent up to three loops if we assume planarity. This

is however not true starting from four loops.

B The superconformal OPE

In [30] a manifestly superconformal form for the OPE in N = 4 SYM was written down in

analytic superspace which has coordinates

XAA′ =

(
xαα̇ 0

0 yaa
′
.

)
. (B.1)

The indices A,A′ are superindices carrying representations of SL(2|2) and they split as

A = (α|a) and A′ = (α̇|a′) with α, α̇ carrying the left and right spinor representations of

the Lorentz group and a, a′ two different SU(2) subgroups of SU(4). We have dropped all

superspace coordinates whcih is why we have 0’s in the off-diagonal blocks in (B.1) but

these can be easily put back in.
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Then the OPE of two half BPS operators takes the form

Op(X1)Oq(X2) =
∑
O
CpqO(d12)

1
2

(p+q−L)(X12)AA
′
OLAA′(2) + . . . . (B.2)

Here the sum is over all operators in the theory, L = ∆−S is the twist of the operator and

the underlined index is a multi-index indicating a tensor in a representation determined

by the operator. The operators of most interest here are the semi-short operators whose

highest weight states have spin S, lie in the SU(4) representation space with Dynkin labels

[MNM ] and which have twist

L = 2M +N + 2 . (B.3)

For such operators the SL(2|2) representation which the indices A,A′ lie in is given by a

hook-shaped Young tableau with top row of length S + 2 and left column of height M + 1.

There are thus M + S + 2 boxes in total.

M

S

Since these are Young tableaux involving superindices, horizontal boxes correspond to

symmetrisation of α, β indices, but anti-symmetrisation of a, b indices, and vice versa for

vertical boxes. The HWS is obtained by filling as many of the boxes as possible with a

indices. Since the index only takes on 2 values, at most two a indices can be found in the

same row (more than two in a row would correspond to antisymetrising 3 indices and thus

vanish). So the HWS has the first two columns filled with a’s and all other columns filled

with α’s. Other index choices with fewer a’s and more αs correspond to acting with Qαa
on the HWS.

The primed indices follow a similar story (and are in the same representation as the

unprimed indices for a nonvanishing OPE of half BPS operators).

Let us consider a simple example, the Konishi operator has L = 2, S = M = N = 0 and

the corresponding Young tableau is simply the symmetric representation, so K(AB)(A′B′).

Writing out all bosonic terms we see that it decomposes into the bosonic terms

A a b ⊗ a′ b′

Bββ̇aa′ = QβaQ̄β̇a′A a β ⊗ a′ β̇

C = Q2
αβQ̄

2
α̇β̇
A α β ⊗ α̇ β̇ . (B.4)
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We would expect more terms where we make different choices for the two SL(2|2) reps.

However these are the only terms we will obtain when switching off the superspace variables

since in the OPE we contract with the block diagonal X given in (B.1), thus tying together

the primed and unprimed indices.

The general case is similar. Consider any operator with twist L = 2M + N + 2,

OAA′ . There are S + M + 2 unprimed superindices and S + M + 2 primed superindices,

symmetrised according to the above hook-shaped Young tableau. Splitting the superindices

into the SL(2) subgroups we obtain the following components

L−2M−N Component operator

2 A∆,S
[MNM ] = Obb′bb′α(S)α̇(S)a(M)a′(M)

0 B∆+1,S+1
[(M+1)N(M+1)] = Oα(S+1)α̇(S+1)a(M+1)a′(M+1)

2 B∆+1,S+1
[(M−1)(N+2)(M−1)] = Obb′bb′α(S+1)α̇(S+1)a(M−1)a′(M−1)

4 B∆+1,S−1
[(M−1)(N+2)(M−1)] = Oββ̇bb

′

ββ̇bb′α(S−1)α̇(S−1)a(M−1)a′(M−1)

 ∈ QQ̄A
∆,S
[MNM ]

0 C∆+2,S+2
[M(N+2)M ] = Oα(S+2)α̇(S+2)a(M)a′(M)

2 C∆+2,S
[M(N+2)M ] = Oββ̇

ββ̇α(S)α̇(S)a(M)a′(M)

4 C∆+2,S
[(M−2)(N+4)(M−2)] = Obb

′ββ̇

bb′ββ̇α(S)α̇(S)a(M−2)a′(M−2)

 ∈ Q
2Q̄2A∆,S

[MNM ]

2 D∆+3,S+1
[(M−1)(N+4)(M−1)] = Oββ̇

ββ̇α(S+1)α̇(S+1)a(M−1)a′(M−1) ∈ Q3Q̄3A∆,S
[MNM ] . (B.5)

These are all the components which occur in the free OPE. Writing out the super

OPE (B.2) in components we then get

Op(X1)Oq(X2) =
∑
O
CpqO(d12)

1
2

(p+q−L)(x12)α(S)α̇(S)(y12)a(M−1)a′(M−1)

×
(
y2

12y
aMa′M
12 Aα(S)α̇(S)a(M)a′(M)(2) + . . .

+ x2
12x

αS+1α̇S+1

12 Dα(S+1)α̇(S+1)a(M−1)a′(M−1)(2)

)
. (B.6)

However in the interacting theory the semi-short multiplet combines with three others

to form a long multiplet. In fact only one of these three multiplets contributes to the

OPE. This is another semi-short multiplet with highest weight state M → M + 1, S →
S−1, N → N , (A′)∆+1,S−1

[(M+1),N,(M+1)]. Whilst in the free theory A,A′ are both superconformal

primaries of independent multiplets, in the interacting theory A′ becomes a descendant of

A, (A′)∆+1,S−1
[(M+1),N,(M+1)] ∈ QQ̄A

∆,S
[M,N,M ]. In total therefore in the interacting theory we have
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the following components contributing to a long supermultiplet

L−2M−N Component operator

2 A∆,S
[MNM ]

0 B∆+1,S+1
[(M+1)N(M+1)]

2 B∆+1,S+1
[(M−1)(N+2)(M−1)]

4 B∆+1,S−1
[(M−1)(N+2)(M−1)]

2 (A′)∆+1,S−1
[(M+1)N(M+1)]

 ∈ QQ̄A
∆,S
[MNM ]

0 C∆+2,S+2
[M(N+2)M ]

2 C∆+2,S
[M(N+2)M ]

4 C∆+2,S
[(M−2)(N+4)(M−2)]

0 (B′)∆+2,S
[(M+2)N(M+2)]

2 (B′)∆+2,S
[M(N+2)M ]

4 (B′)∆+2,S−2
[M(N+2)M ]


∈ Q2Q̄2A∆,S

[MNM ]

2 D∆+3,S+1
[(M−1)(N+4)(M−1)]

0 (C′)∆+3,S+1
[(M+1)(N+2)(M+1)]

2 (C′)∆+3,S−1
[(M+1)(N+2)(M+1)]

4 (C′)∆+3,S−1
[(M−1)(N+4)(M−1)]

 ∈ Q
3Q̄3A∆,S

[MNM ]

2 (D′)∆+4,S
[M(N+4)M ] ∈ Q

4Q̄4A∆,S
[MNM ] . (B.7)

Writing out the full super OPE is now equivalent to summing two copies of the semi-

short OPE (B.6) with appropriate quantum numbers. In components we then get

Op(X1)Oq(X2) =
∑
O
CpqO(d12)

1
2

(p+q−L)(x12)α(S)α̇(S)(y12)a(M−1)a′(M−1)

× x2
12

y2
12

(
y4

12y
aMa′M
12 Aα(S)α̇(S)a(M)a′(M)(2) + . . .

+ x4
12x

αS α̇S
12 (D′)α(S)α̇(S)a(M)a′(M)(2)

)
. (B.8)

Note that this long OPE can also be derived directly using superindices rather than

by summing two semi-short OPEs as we have done here.

Note also that in the free theory one can write down explicit forms for the single trace

operators in question. They have the schematic form

OAA′ = Tr(∂a+s+2
AA′

WL) (B.9)

where the derivatives can act on any of the different W s and in general will be linear

combinations of such terms.

Finally in the main text we will be interested in considering this OPE in the limit in

which both x2
12 and y12 → 0 (but with the ratio fixed). In this limit only the operators

from the above list with L− 2M −N = 0 survive.
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