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Abstract: A perturbative QCD based jet tomographic Monte Carlo model, CUJET2.0,

is presented to predict jet quenching observables in relativistic heavy ion collisions at

RHIC/BNL and LHC/CERN energies. This model generalizes the DGLV theory of fla-

vor dependent radiative energy loss by including multi-scale running strong coupling ef-

fects. It generalizes CUJET1.0 by computing jet path integrations though more realistic

2+1D transverse and longitudinally expanding viscous hydrodynamical fields contrained

by fits to low pT flow data. The CUJET2.0 output depends on three control parameters,

(αmax, fE , fM ), corresponding to an assumed upper bound on the vacuum running cou-

pling in the infrared and two chromo-electric and magnetic QGP screening mass scales

(fEµ(T ), fMµ(T )) where µ(T ) is the 1-loop Debye mass. We compare numerical re-

sults as a function of αmax for pure and deformed HTL dynamically enhanced scattering

cases corresponding to (fE = 1, 2, fM = 0) to data of the nuclear modification factor,

RfAA(pT , φ;
√
s, b) for jet fragment flavors f = π,D,B, e at

√
s = 0.2 − 2.76 ATeV c.m.

energies per nucleon pair and with impact parameter b = 2.4, 7.5 fm. A χ2 analysis is

presented and shows that RπAA data from RHIC and LHC are consistent with CUJET2.0

at the χ2/d.o.f < 2 level for αmax = 0.23−0.30. The corresponding q̂(Ejet, T )/T 3 effective

jet transport coefficient field of this model is computed to facilitate comparison to other jet

tomographic models in the literature. The predicted elliptic asymmetry, v2(pT ;
√
s, b) is,

however, found to significantly underestimated relative to RHIC and LHC data. We find

the χ2
v2

analysis shows that v2 is very sensitive to allowing even as little as 10% variations

of the path averaged αmax along in and out of reaction plane paths.
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1 Introduction

Recent experimental data of jet quenching and collective flow in relativistic heavy ion

collisions at the Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC)

on Pb+Pb at
√
sNN = 2.76 TeV in ALICE [1–3], ATLAS [4], CMS [5, 6] detectors, and

Au+Au at
√
sNN = 200 GeV in PHENIX [7–10], STAR [11, 12] detectors have provided

unique new opportunities to probe the dynamical properties of deconfined QCD matter

called the Quark Gluon Plasma (QGP) [13]. The interpretation of those new data requires

the development of more powerful quantitative theory to enable prediction of observables

in nuclear collisions covering a wide range of energy
√
sNN = 0.02 − 2.76 TeV, centrality

b = 1−10 fm, transverse momentum pT = 5−200 GeV/c scales, and rapidity |∆η| < 10. In

addition, consistency of predictions with the all quark mass/flavor M = 0.2− 4.5 GeV/c2

is essential [14]. We focus on tomographic jet probes of the strongly interacting Quark

Gluon Plasma (QGP) using perturbative QCD (pQCD) based tomographic models [15–

34]. An important parallel effort based on string theory inspired gravity dual holographic

models [35–42] will not be considered here.

In the pQCD framework, radiative energy loss is assumed to be the dominant dynam-

ical mechanism along with elastic energy loss for jet-medium interactions. In the past two

decades, a wide range of jet quenching models have been formulated and applied to explain
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or predict high transverse momentum pT measurements at RHIC and LHC. These models

are based on different medium property assumptions. BDMPS-Z [15–17] and ASW [18–22]

multiple soft scattering models are assumed to describe the medium as a series of static

color scattering centers, the incoming parton is subject to Brownian motion due to multiple

soft scatterings with the medium, and a constant jet transport coefficient q̂ is presumed

to characterize adequately the jet-medium interaction process; Higher twist (HT) [23–25]

models formulate the medium in terms of matrix elements of gauge field operators, and

the properties of the plasma are specified through the entropy density s; AMY [26–28]

characterizes the medium as a thermally equilibrated plasma, and describe it in the con-

text of finite temperature field theory using the Hard Thermal Loop (HTL) rate equation

approximations with all properties of the plasma specified by its local temperature T and

baryonchemical potential µB fields.

CUJET2.0 is the most recent extension of the opacity series formalism of Gyulassy-

Levai-Vitev (GLV) [29–31, 43, 44] for applications to jet tomography of the QGP produced

at RHIC and LHC. Jet tomography assumes that initial production of hard jets occurs be-

fore QGP formation and is reliably predicted via collinear factorized pQCD. The depletion

or quenching of the intial rates jet fragments as a function of (pT , y, A, b,
√
s,M) can be used

to probe the dynamical properties of QGP at short wavelengths under the assumption that

jet medium interactions can be calculated via perturbative QCD multiple collision theory.

In GLV theory, high energy jet energy loss is formulated as an expansion in the number of

parton-medium scatterings and is found to be dominated by the first hard contribution in

a medium in kinematic regions involving coherence of the long formation time compared

to the size of the medium. If the QGP medium is well described by a quasi-parton Hard

Thermal Loop plasma then the density of scattering centers ρ and the Debye screening

mass µ as well as the plasmon mass, mg, can all be computed as a function of only the

temperature T and the effective thermal coupling αs(4T
2). By relaxing the assumptions

of HTL approximation, different non-perturbative models of the QGP can be tested.

The GLV theory correctly predicted in 2002 the general form of the
√
s evolution of the

high pT pion nuclear modification factorRAA(pT , η = 0;
√
s, b) = dNAA→π/ (TAA(b)dNpp→π)

from SPS, RHIC to LHC energies. GLV was generalized to DGLV [32] to include the

kinematic effects due to thermal masses and extend to charm and beauty quark flavors.

However, it was found that DGLV radiative energy loss significantly underpredicted the

quenching of non-photonic electrons from charm and bottom quark jets. This led to the

WHDG [33] generalization of DGLV theory to include elastic scattering as well as more

realistic jet path length fluctuations. Those effects were found to be insufficient to solve

the “heavy quark puzzle”. This led Djordjevic [45] to develop a dynamical generalization

of DGLV, replacing the Gyulassy-Wang (GW) [29] static color electric scattering poten-

tial with dynamical color magnetic interaction included potential through the HTL weakly

coupled QGP ansatz. Including the above generalizations of DGLV/WHDG approach,

a powerful numerical code, CUJET1.0, was developed by Buzzatti [34, 46], that finally

solved the “heavy quark puzzle” and predicted a novel quark flavor inversion of the normal

nuclear modification factor hierarchy as a unique signature of perturbative QCD based jet

tomography models, which is not shared by the jet holography counterpart.
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The CUJET1.0 [34, 46] Monte Carlo code developed by Buzzatti implemented numer-

ically the dynamical DGLV opacity series and featured (1) an interaction potential that

could interpolate between the pure HTL dynamically screened color magnetic limit and

static Debye color electric screening limit; (2) the ability to calculate high order opacity

corrections to radiative energy loss up to 9th order; (3) explicit integration over jet path in

diffuse nuclear geometries including Bjorken longitudinal expanding HTL QGP; (4) inclu-

sion of fluctuating elastic energy loss; (5) the evaluation of the convolution over numerical

tables of pQCD
√
s dependent initial jet production spectra of all flavors; and (6) the final

convolution over jet fragmentation functions and evaluation of semi-leptonic final decay

into non-photonic electrons.

CUJET1.0 was found to explain for the first time [34] the anomalous high quenching

of non-photonic electrons (“heavy quark puzzle”) within a pure HTL QGP paradigm as

due to the enhanced dynamical magnetic scattering effects proposed by Djordjevic. It also

predicted a novel inversion of the π < D < e− < B flavor ordering of RfAA at high pT
that has yet to be tested at RHIC and LHC. However, the “surprising transparency” [47]

of QGP produced at LHC severely challenged the fixed coupling version of the CUJET1.0

inherited the failure of the fixed coupling approximation used in the WHDG extrapolation

from RHIC to LHC.

This led to the present extension of the dynamic DGLV/WHDG theory called here

CUJET2.0. This Monte-Carlo code generalizes CUJET1.0 to include multi-scale running

coupling effects as well as full 2+1D transverse and longitudinal expanding medium which

azimuthal tomography is very sensitive to. Both versions of CUJET were developed as

part of the ongoing DOE Topical JET Collaboration Project [48] with the mission to de-

velop more quantitative jet quenching codes coupled to state of the art bulk observable

constrained viscous hydrodynamic fields. First results with this code for azimuthally aver-

aged RπAA and the χ2 determination the jet transport coefficient q̂/T 3 from fits to RHIC

and LHC data, as well as comparison to other JET collaboration model approaches were

recently reported in [49]. This long write up aims to document the physics and numerical

details of the current CUJET2.0 model as well as present a systematic χ2 comparison not

only to azimuthal averaged RπAA but also to its elliptic azimuthal moment v2(pT ) that

remains an open problem at this time. In addition, the quark flavor dependence of the

above observables in this latest version is also presented.

Motivated by the high energy kinematic regions being probed presently at LHC and the

complex reaction vertices involved in the jet-medium processes, in CUJET2.0 we introduce

a physically motivated multi-scale running of strong coupling factors αs(Q
2
i (x,k, T )) in

the DGLV opacity expansion, where αs is the vacuum QCD running coupling bounded

by an upper limit αmax coupling strength. In addition, we explore the sensitivity to non-

perturbative color magnetic and color electric screening mass deformations by varying

multiplicative screening parameters (fE , fM ). (The perturbative HTL QGP limit is (1, 0).)

The three control parameters (αmax, fE , fM ) define the dynamical model in this running

coupling extension of DGLV.

An especially important new feature of CUJET2.0 is its ability to adaptively read in

a variety of 2+1D viscous hydrodynamic temperature T (x, y, τ) evolution grids to be used

– 3 –



J
H
E
P
0
8
(
2
0
1
4
)
0
6
3

to perform jet path opacity integrations. Thus far we have used only the VISH2+1 event

averaged grids available from the JET Collaboration depository. Future applications to

event by event fluctuating hydro grids are planned.

This paper is organized as follows: first, we postpone many of the technical details and

development of both CUJET 1.0 and 2.0 models to a series of appendices. See appendix B

for a review of the fundamental ingredients of CUJET. In this appendix, dynamical DGLV

opacity expansion, elastic energy loss, path length and energy loss fluctuation, convolution

of energy loss probability distribution over initial production spectra and fragmentation

functions will be discussed.

In section 2, we discuss the choice of scales in the multi-scale running strong coupling

extension of DGLV. We quantify the CUJET running coupling effects on jet energy loss

in terms of a phenomenological “abc” power law energy loss model [50–55]. We introduce

an effective jet medium interaction potential which is able to interpolate color electric and

magnetic screening effect, as well as extrapolate to non-HTL scenarios.

Section 3 presents the main numerical results obtained with CUJET2.0 including pion

nuclear modification factor RπAA at RHIC and LHC central and semi-peripheral A+A

collisions; χ2/d.o.f. analysis and discussions on the consistency of the model in various

collision configurations; jet transport coefficient q̂/T 3 and its variation with temperature

and jet energy; flavor dependent suppression pattern for pion, D meson, B meson and non-

photonic electron and the mass ordering in RAA; jet quenching with respect to reaction

planes and single particle azimuthal anisotropy v2.

As a further exploration with CUJET2.0, in section 4, we study the thermaliza-

tion time’s effect on pion suppression factor, and non-HTL scenario’s implication of non-

perturbative near Tc physics in the CUJET2.0 framework. Finally, we summarize our main

results and conclusions, and discuss possible future works, improvements and tests on CU-

JET2.0 in section 5.

2 The CUJET2.0 framework

2.1 Running strong coupling effects

Recent data from the LHC showed a significantly steeper rise of RAA with pT in the range

of 5 − 100 GeV/c [3, 5] than predicted by fixed coupling extrapolation from RHIC via

WHDG [47]. This indicated a “surprising transparency” of the QGP at LHC to high energy

jets as compared to bulk multiplicity scaling (by a factor (dNLHC/dy)/(dNRHIC/dy) ≈
2.2) of the QGP opacity assumed in WHDG. The fixed coupling version of CUJET1.0 also

encountered the same difficulty [56]. A generic dE/dx model analysis [51, 52] also found

that effective jet medium κ ∝ α3
s coupling required to fit the slope and magnitude of central

RAA(pT ) at both RHIC and LHC is ∼ 30% less at LHC than at RHIC.

The above problem motivated us to study whether UV running coupling effect could

account for the relatively greater transparency of the QGP at LHC with CUJET2.0.

– 4 –
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2.1.1 Multi-scale running coupling for radiative and elastic energy loss

Earlier estimates of running coupling effects were made by Zakharov [57, 58]. In CUJET2.0

model, we follow a similar scheme using the 1-loop pQCD running coupling that is cutoff

in the infrared when the coupling reaches a certain maximum saturation value αmax for

Q ≤ Qmin:

αs −→ αs(Q
2) =

αmax if Q ≤ Qmin ,
2 π

9 log(Q/ΛQCD)
if Q > Qmin .

(2.1)

where the saturation scale Qmin is fixed by αmax as Qmin = ΛQCD exp{ 2π
9αmax

} .

The choice of the αmax parameter is not obvious and is regarded here as a key infrared

control parameter of the CUJET2.0 model. In principle, it can also depend on the local

temperature field. At T = 0, the αmax ≈ 0.7 estimate arose historically from the analysis

of the heavy quark production in the vacuum [59]. However, in a QGP, suppression of αs
at scales ∼ T is also expected. Lattice QCD qq̄ potential studies [60] found the effective

thermal αs(T ) coupling decreases monotonically from 0.5 at T ∼ 175 MeV to 0.35 at

T ∼ 400 MeV. More generally, the effective running coupling αs(Q,T ) depends on the

relevant Q of an observable as well as on T .

In the dynamical case of CGC gluon production the generalization of fixed coupling

rates in [61, 62] led to intricate multi-scale running coupling modifications of the fixed

coupling formulae. A corresponding generalization of DGLV to running coupling remains

a challenging and open problem because virtualities in radiative amplitudes depend on

multiple kinematic (x+,k,q)1 as well as temperature dependent infrared screening scales

and plasmon masses.

We explore in CUJET2.0 the running coupling effects using physics motivated ansatz

for relevant virtuality scales. At leading opacity order, we can identify in the fixed coupling

DGLV forumla (see eq. (B.17)), three distinct scales Qi(i = 1, 2, 3) controlling the strength

of different aspects of the physics:

1. Two powers α2
s(Q

2) clearly originate from the jet-medium interaction vertices from

the exchanged transverse momentum q, and so for these we simply take Q2
1 = q2.

2. One power αs(Q
2) originates from the radiated gluon vertex. The off-shellness in the

intermediate quark propagator for one of the three amplitudes where the gluon is

emitted after the scattering is

Q2
2 = q2 −M2 =

k2

x+(1− x+)
+
x+M

2

1− x+
+
m2
g

x+
. (2.2)

Where k is the transverse momentum of the radiated gluon, M is the mass of on-

shell quark and mg is the plasmon mass of gluon. An ambiguity arises from other

amplitudes for example if the radiated glue scatters with q instead of the quark. In

the limit when k � q and mass effects are negligible

Q2
2 ≈

k2

x+(1− x+)
, (2.3)

as in DGLAP radiative splitting.

1See appendix A for notations and conventions.
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3. Running thermal couplings can arise from the Debye mass µ(αs(Q
2);T ) and plasmon

mass. We allow these to run with scale Q2
3 = (2T )2.2

Note in the above choices of running scales there is no explicit dependence on the

jet energy, which comes instead from the kinematic limits of the q and k integrations.

kMAX
⊥ = xEE and qMAX

⊥ =
√

4ET .

With the above scheme, the running coupling DGLV inclusive radiative fractional

energy loss distribution at first order in opacity is then given by (the notation is as defined

in appendix A and B):

xE
dNn=1

g

dxE
(x0, φ) =

18CR
π2

4 + nf
16 + 9nf

∫
dτ ρ(z)

∫
dk

∫
dq

× αs(
k2

x+(1− x+)
)

×
α2
s(q

2)(f2
E − f2

M )

(q2 + f2
Eµ

2(z))(q2 + f2
Mµ

2(z))

× −2(k− q)

(k− q)2 + χ2(z)

(
k

k2 + χ2(z)
− (k− q)

(k− q)2 + χ2(z)

)
×
(

1− cos

(
(k− q)2 + χ2(z)

2x+E
τ

))
×
(
xE
x+

)
J(x+(xE)) .

(2.4)

where CR is the quadratic Casimir of the jet (CF = 4/3 for quark jets, CA = 3 for

gluon jets); z = (x0 + τ cosφ, y0 + τ sinφ; τ) is the path of the jet created at (x0, y0) in

the production plane along azimuthal angle φ; ρ(z) and T (z) is the number density and

temperature evolution profile of the medium; χ2(z) = M2x2
+ +m2

g(z)(1− x+) controls the

“dead cone” and Landau-Pomeranchuck-Migdal (LPM) destructive interference, squared

gluon plasmon mass m2
g(z) = f2

Eµ
2(z)/2, HTL Debye mass µ(z) = g(z)T (z)

√
1 + nf/6,

g(z) =
√

4πα (4T 2(z)); integration limit 0 6 |q| 6 min(|k|,
√

4ET(z)), 0 6 |k| 6 xEE.

x+(xE) and J(x+(xE)) are defined in eq. (B.2) and (B.3) respectively.

We further include running coupling effects in the elastic portion of the energy loss

following the work of Peigné and Peshier [65]: both powers of αs in eq. (F.1) run with t̂,

and when integrated over dt̂ in eq. (F.2), we obtain

α2
s

∫ 4ET

µ2

dt̂

t̂
−→

∫ 4ET

µ2

dt̂

t̂
α2
s(t̂) , (2.5)

α2
s log

4ET

µ2
−→ αs(µ

2)αs(4ET ) log
4ET

µ2(αs(4T 2);T )
. (2.6)

Here the limits of t̂ are chosen according to the Bjorken computation of elastic energy losses.

In CUJET model, the argument of the logarithm is modified according to eq. (B.29). All

2Djordjevic proposed a more elaborate self-consistent equation for the thermal scale [63, 64].
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Figure 1. Fixed and running coupling pion RAA results are compared side to side at RHIC (left)

and LHC (right) in CUJET with Glauber static transverse plus Bjorken longitudinal expanding

background. The gray opaque curves use a fixed coupling with αs = 0.3, while the black curves

use a running coupling with αmax = 0.4. The difference is notable, especially in the higher energy

range available at the LHC, while RHIC results are left almost unchanged. The sensitivity to the

variation of running scales Qi (cf. eq. (2.1) and following) is measured by the red curves: on one

side we decrease the value of all scales Qi by 50% and lower αmax to 0.3 (red dashed), on the other

we increase all scales Qi by 25% and increase at the same time αmax to 0.6 (red dotted). αmax is

constrained to fit Rπ,LHCAA (pT ≈ 30 GeV) = 0.35.

after, in running coupling CUJET, eq. (B.30) and (B.32) is modified to

dE(z)

dτ
=− CRπ [α(µ(z))α(E(z)T (z))]T (z)2

(
1 +

nf
6

)
× log

 4T (z)
√
E(z)2 −M2(

E(z)−
√
E(z)2 −M2 + 4T (z)

)
µ(z)

 , (2.7)

and

N̄c =

∫ τmax

0
dτ

[
α(µ(z))α(E(z)T (z))

µ(z)2

] [
18ζ(3)

π
(4 + nf )T (z)3

]
. (2.8)

respectively. Note in the running coupling scenario, the calculation of average number of

collisions involves recursively solving the E(z) integral equation.

The choice of running scales Qi is of course subject to significant uncertainties at

present. To estimate the systematic uncertainties on the nuclear modification due to the

variation of running scale we increase or decrease the running scales Qi by 25 or 50 percent

respectively, and refit the fixed reference point at pT = 30 GeV by changing the free

αmax parameter. The results are shown in figure 1.

With a static Glauber transverse background in CUJET, to compensate 50% decreased

running scales Qi, αmax needs to be 25% lower; while to compensate 25% increased run-

ning scales Qi, αmax needs to be 50% higher. Since the radiative energy loss depends on

αmax with approximately a cubic law according to eq. (2.4), making the running scales

– 7 –
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fixed coupling

running coupling
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0.4
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0.6

E �GeV�

In
de

x
a�
E�

Figure 2. Energy loss index a(E) (cf. eq. (2.9)) for different assumptions of the running coupling in

CUJET: fixed effective αs = 0.3 (black), only thermal coupling running (dashed red), only α2
s(q

2)

running (purple), only α2
s(k

2/(x(1 − x))) running (magenta), all couplings running (pink). The

saturated αmax value is chosen to be equal to 0.4, which corresponds to approximately Q0 ∼ 1 GeV.

The plot shows the energy loss of a light quark (M = 0.2 GeV) traveling from the origin of the

transverse plane and through a gluonic plasma (nf = 0) of size L = 5 fm, whose density profile is

generated from Glauber model and resembles the medium created in a Pb+Pb
√
sNN = 2.76 TeV

b = 0 fm collision.

Qi smaller by 50% or greater by 25% can result in approximately 5% decrease or 10%

increase in RAA. The systematic error bar coming from varying running scales is there-

fore significantly smaller than the experimental errors at this time, indicating the relative

insensitivity of CUJET to the precise choice of running scales.

2.1.2 Generic abc model quantification of running coupling effect

We quantify the impact that the running coupling has on jet quenching by using a phe-

nomenological “abc” energy loss model introduced in [47, 50–55].

dP

dτ
= −κP aτ bT 2−a+b , (2.9)

where P (τ) corresponds to the momentum of a massless jet passing though a plasma char-

acterized by a local temperature T . The power of T is constrained by simple dimensional

analysis, and the index a and b are set by the asymptotic LPM behavior of the GLV model.

In the fixed coupling case,
∆E

E
∝ T 3L2 log(E/T )

E
. (2.10)

For the range of energies of interest, log (E/T )/E ∼ Ea, with a ∼ 1/3− 1/4.

In figure 2 we show the value of the index a as a function of the jet energy E, for five

different cases: αs fixed, only αs(4T
2) running, only α2

s(q
2) running, only αs(k

2/(x(1 −

– 8 –
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x)) running and finally all couplings running. In this example, we use a non-uniform

density profile generated from Glauber model with Bjorken expansion that approximates

the thermal medium formed in a Pb+Pb central collision at LHC. The results are insightful:

• As expected, the fixed case shows a ∼ 1/3− 1/4.

• By introducing the thermal coupling, only the absolute value of the energy loss is af-

fected and the energy dependence of the index remains unaltered. The scale at which

the thermal αs is evaluated is in fact independent of E. Not noticeable in this plot,

at very high temperatures the reduced thermal coupling causes a stronger quenching

compared to the fixed coupling case, since the smaller Debye mass diminishes the

screening in the plasma. This running effect is however small: for most of the tem-

perature ranges, αs is in fact equal to the saturated value αmax (with Q0 ∼ 1 GeV,

T needs to be greater than 0.6 GeV to start feeling the running effects).

• The couplings α2
s(q

2) and αs(k
2/(x(1−x)) sensibly reduce the dependence of ∆E/E

on E, and as a consequence the value of the index a gets smaller and closer to 0. The

α2
s(q

2) contribution is smaller since the q distribution is peaked at small values of

q⊥, as opposed to the αs(k
2/(x(1− x)) contribution which is larger due to the high

tails of the k distribution.

• The all-running case shows almost no dependence of ∆E/E on E, and a(E) ≈ 0.

According to figure 2, the running coupling drastically alters the jet energy dependence

of the energy loss, making ∆E/E approximately independent of E. This naively implies

less quenching at high energies and an increase in the RAA slope. Figure 1 in fact proves

our assertions. What is remarkable is the fact that the change in the slope of RAA cannot

be mimic by a rescaling of the fixed coupling αs: this measurement constitutes a potentially

clear signature of running coupling effects.

2.2 Bulk evolution profile

The evolution profile of the bulk is encoded in CUJET as local density of scattering centers

ρ(z) and local temperature T (z), in both the radiative energy loss eq. (2.4) and elastic en-

ergy loss eq. (B.27). To gain meaningful information about the parton medium interaction

mechanism from comparing predicted jet quenching observables with experimental mea-

surements, QGP evolution profile plays an essential role, and carefully constrain it with

for example bulk low pT flow data is critical. In CUJET1.0, a static transverse geometry

is generated from Glauber model, and longitudinally a Bjorken expansion is applied. In

CUJET2.0, this picture is replaced with more realistic fluid fields generated from 2+1D

viscous hydrodynamics, and the medium has dynamical expansion both transversely and

longitudinally.

2.2.1 CUJET1.0: Glauber initial with 1+1D Bjorken expansion

In CUJET1.0, Glauber model [66] is used to generate the geometry of the collision, the

plasma density profile and the jet production point distribution. Time evolution of the
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A R (fm) a (fm) σin (mb)

Au 197 6.37 0.535 42

Pb 207 6.48 0.535 63

Table 1. Woods-Saxon parameters used in CUJET. A is the mass number of the nucleus, R is the

nuclear radius, a is the surface thickness and σin is the inelastic nucleon-nucleon cross section.

plasma density ρQGP is given by the Bjorken picture. A simple analytical expression is

obtained by making few assumptions: (1) the system expands only longitudinally, along

the beam direction (1+1D expanding plasma); (2) the plasma is a perfect fluid; (3) the

computation is carried out in a relativistic hydrodynamical framework.

In particular, the following steps are implemented in the model calculation: firstly,

Density profile of nucleus A is generated with Woods-Saxon parametrization

ρA(r) =
NA

1 + exp((r −R)/a)
. (2.11)

This density is normalized to mass number A. R is the nuclear radius and a represents the

surface thickness. Subsequently, the thickness function of the nucleus A is defined as

TA(x) =

∫
dz ρA(z,x) . (2.12)

After acquired the corresponding thickness functions, the distribution of participants

in a collision between two nuclei A and B that collide with impact parameter b is then

given by

ρpart(x, b) = TA(x)
(

1− e−σinTB(x−b)
)

+ TB(x− b)
(

1− e−σinTA(x)
)

Npart(b) =

∫
dx ρpart(x, b) ,

(2.13)

where σin is the inelastic nucleon-nucleon cross section. The A,R, a, σin parameters chosen

for Au+Au (RHIC) and Pb+Pb (LHC) collisions in eq. (2.11) (2.13) (2.16) are listed in

table 1.

In determining the proper time τ (=
√
t2 − z2) dependence of QGP density profile,

which is characterized by longitudinal boost invariance, for practical applications, we con-

centrate on the mid-rapidity region of the collision (y = 1
2 log

(
t+z
t−z

)
= 0). The QGP

density field ρQGP,0(x, τ ; b) in the azimuthal direction is given by:

ρQGP (x, b, τ)|y=0 =
1

τ0

ρpart(x, b)

Npart(b)

dNg

dy

∣∣∣∣
y=0

f(τ/τ0) , (2.14)

where dNg/dy represents the gluon rapidity density, it is proportional to the measured

charged hadrons rapidity distribution dNch/dy, with dNg/dy = (3/2)dNch/dy. Thermal-

ization time τ0 is chosen to be τ0 = 1 fm/c in CUJET1.0. We introduce f(τ/τ0) to
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characterize the pre-thermal stage and the evolution profile after the medium is fully ther-

malized. In absence of a clear theoretical answer to the way high energy jet couples to the

medium before thermalization, we make such phenomenological assumptions:

f(τ/τ0) =

{
τ/τ0 if τ ≤ τ0,

τ0/τ if τ > τ0.
(2.15)

The density “seen” by the jet grows linearly until thermalization time τ0 is reached, there-

after it decreases as 1/τ , converges to the Bjorken expansion picture. Note different

parametrizations for the temporal evolution of the system exist, and by choosing the lin-

ear thermalization scheme systematic uncertainties are inevitably introduced. A detailed

discussion about the choice of thermalizing schemes and associated errors can be found in

appendix I.

The jet production points are distributed according to the binary collision distribution,

which is given by

ρbinary(x, b) = σin TA(x)TB(x− b) ,

Nbinary(b) =

∫
dx ρbinary(x, b) .

(2.16)

The ability of CUJET to perform a full jet path integration allows us to parametrize

the evolution of the system in different ways, and we can perform comparisons with exper-

imental measurements and draw insightful conclusions on the physics of the collision. See

appendix I for a comprehensive analysis of thermalization phase effects on jet quenching

physics.

2.2.2 CUJET2.0: viscous hydrodynamics

In appendix I’s figure 28, we show a smooth temperature profile of a symmetric plasma.

The shape of the region of interest takes the form of a perfect circle when the impact

parameter is null, or an almond when b 6= 0.

The reality is however different. Nuclear matter is very granular at short distances,

and the nucleons are not distributed in a perfectly symmetrical way. The naive picture of a

circle or an almond is an idealization of the collision geometry in most situations, and the

identification of a reaction plane determined by the orientation of the impact parameter is

often a hard experimental task. The average over multiple collisions might lead to a smooth

temperature profile, but this is not the case on an event-by-event basis, where fluctuations

of initial conditions might lead to considerably different results.

Therefore, the full three-dimensional hydrodynamic expansion may differ substantially

from the Bjorken ideal 1+1D hydrodynamic evolution in CUJET1.0. A complete descrip-

tion of the system must include not only transverse expansion, but also viscous corrections

to the perfect fluid. And furthermore, effects such as initial condition fluctuation or jet

energy deposition into the medium should be considered. We hence adapt the grid of QGP

fluids in CUJET2.0 to encompass more realistic 2+1D viscous hydrodynamical fields, in-

corporating a dynamical medium expanding both transversely and longitudinally. This is
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for the first time the DGLV opacity series is fully coupled to viscous hydro fields, and the

combination of strongly coupled bulk dynamics and weakly coupled pQCD energy loss the-

ory generates rather indicative results of quenching observables computed from CUJET2.0

under RHIC and LHC conditions. The numerical analysis of CUJET2.0 output in RHIC

and LHC nuclear collisions will be presented in section 3.

In principle, the present CUJET2.0 framework can be coupled to virtually any complex

geometries and plasma evolution profiles. A wide range of flow fields generated by external

hydrodynamical code can be applied, e.g. transverse blast wave model [67, 68], viscous RL

hydro [69, 70], VISH2+1 [71–73], etc. At present stage, we have used only the VISH2+1

event averaged evolution profile available from the JET Collaboration depository to study

the azimuthal angle and transverse momentum dependence of high-pT light to heavy fla-

vor quenching pattern, incorporating event by event fluctuating hydro fields is a work in

progress.

VISH2+1 [71–73] utilizes viscous hydrodynamics to describe the fireball evolution. In

the version adapted by CUJET2.0, MC-Glauber initial conditions are used to sidestep

issues related with hypothetical early non-equilibrium evolution; using Cooper-Frye algo-

rithm [74] along a hypersurface of constant temperature Tf = 120MeV, a sharp transition

from viscous fluid to free-streaming particles is generated to describe hadronic rescatter-

ing and kinetic freeze-out; the s95p-PCE (partial chemical equilibrium) equation of state

(EOS) is constructed according to [75], which matches Lattice QCD data at high tem-

perature and recovers the hadron resonance gas at low temperature. The various input

parameters are adjusted to fit final hadron spectra and elliptic flow in low transverse mo-

mentum pT < 1.5(2.5) GeV/c region in [72]. In particular, experimental data of pion and

proton spectra in 200AGeV Au+Au central collisions (0-5% centrality, b=2.33 fm), pion,

proton and charged hadron elliptic flow v2(pT ) in semi-peripheral collisions (20-30% cen-

trality, b=7.5 fm) are compared. With MC-Glauber initial conditions, s95p-PCE EOS and

120MeV freeze-out temperature, for a QGP with number of quarkonic flavor nf = 2.5, the

starting time τ0 at which the system is sufficiently close to local thermal equilibrium for

viscous hydrodynamics to be applicable is calculated to be τ0 = 0.6 fm/c,3 and the key

QGP transport parameter, shear viscosity η/s (the ratio between shear viscosity η and

entropy density s), is phenomenologically extracted to be η/s = 0.08.

For initial jet production distributions, presumably binary distributions generated from

corresponding viscous hydro should be used. However, in CUJET2.0 the binaries are given

according to eq. (2.16), because the spacing of the VISH2+1 x-y grid in CUJET2.0 is 0.5 fm

while in computing final jet spectra the initial jet production points have a uniform 1.0 fm

step in the radial direction. Systematic uncertainties resulting from binary distributions

are therefore negligible. Nevertheless, this is a potentially interesting case if the quenching

of jet occurs mostly at the edge of the medium, under which circumstance the fineness of

the grid will play an important role. This topic will be explored in future studies with

CUJET.

3In CUJET2.0 calculations we set τ0 = 0.6 fm/c in the model to match the orginal hydro setting. For

pre-thermal stage we use the linear scheme, systematic uncertainties resulted from the choosing different

thermalization parametrizations can be found in appendix I.
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3 CUJET2.0 results at RHIC and LHC

In this section, CUJET2.0 is applied to RHIC Au+Au 200AGeV and LHC Pb+Pb 2.76ATeV

collisions. Impact parameter b=2.4fm and 7.5fm is used to simulate 0-10% and 10-30%

centrality respectively. For radiative energy loss, the DGLV opacity series is calculated

to first order because of the computational efficiency of the Monte Carlo algorithm. The

convergence of the DGLV expansion is discussed in detail in appendix C, from there we see,

since CUJET2.0 concentrates on high energy jet suppression and averages over all possible

path lengths in a realistic heavy ion collision, the first order in opacity can be regarded

as a good approximation to the series. If to impose an artificial systematic uncertainty on

higher order contributions, in terms of inclusive π, D, B, e− RAA, one can estimate the

associated variation to be less than 15% (cf. appendix C.2).

We implement CUJET2.0 to study jet quenching observables, in particular RAA and

v2 in the high transverse momentum pT > 5 GeV/c region where eikonal and soft ap-

proximation are applicable. RHIC inclusive neutral pion suppression factor RπAA(pT =

15GeV/c) = 0.3 at Au+Au 200AGeV 0-5% centrality is set as a reference point to fix

the maximum coupling constant αmax. We then extrapolate our calculation to pT = 5 ∼
20 GeV/c region at RHIC, and pT = 5 ∼ 100 GeV/c region at LHC central to semi-

peripheral collisions for pion, D meson, B meson and non-photonic electron RAA and v2.

Rigorous χ2/d.o.f. study is conducted for inclusive pion spectra, and comprehensive az-

imuthal tomography is applied to pion single particle anisotropy v2 in A+A collisions at

both RHIC and LHC.

To elucidate our theoretical predication of quenching observables, we choose to plot

RAA curves without adding error bands, and we will for completeness list the known sys-

tematic uncertainties which contribute to hadron spectra for CUJET at present stage in

the next paragraph, besides the error from first order DGLV opacity calculation which has

been discussed above. The uncertainties associated with elliptic flow v2 can only be par-

tially interpreted from errors in RAA because v2 depends on more complex factors such as

fluctuation, anisotropy, inhomogeneity, etc. Systematically induced variation of azimuthal

anisotropy in our model is subject to future exploration.

A list of systematic uncertainties in CUJET:4

• Running scale variation. Increase the running scale by 50% generates approximately

5% enhancement of RAA, while decrease the scale by 25% leads to about 10% lower

RAA, cf. section 2.1.

• Kinematic limits for k⊥ integration in eq. (B.17) and (2.4). Depending on the in-

terpretation of energy fraction xE or light-cone x+ in the DGLV formula, and the

treatment of large angle emissions which break down the collinear approximation,

fractional energy loss varies. The coupling constant needs to be tuned accordingly

±10% at most, cf. appendix D.1.

4Other theoretical and numerical systematic uncertainties may still exist, cf. for instance [76, 77].
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• Number of quarkonic flavors nf for the medium. A rescaling of coupling constant by

6% perfectly reconciles the scenario of nf = 0 and nf = 2.5, cf appendix E.

• Fragmentation temperature Tf . In terms of RAA, lower Tf to be below freeze-out

temperature, typically around 100 MeV, by about 50% has no significant influence.

But increase it by approximately 100% effectively generates a 20% weaker coupling,

cf. appendix E.

• Initial rapidity density dN/dy. In CUJET1.0, the variation of rapidity density signif-

icantly changes the magnitude of RAA, but the shape of suppression curves remains

semi-stable, thus one can rescale the coupling constant to balance this effect, cf. ap-

pendix E. However, the results presented in the following sections are calculated from

CUJET2.0, within which framework the bulk is assumed to be properly modeled by

the 2+1D viscous hydrodynamical fields, therefore variations coming from dN/dy are

beyond the scope of CUJET2.0.

• Thermalization scheme. Fixing initial time τ0, divergent and free streaming pre-

thermal scenario creates approximately an effective 10% larger and 7% smaller cou-

pling constant comparing to linear scheme. For heavy flavor RAA, the scheme varia-

tion slightly affects the slope of the quenching pattern, however this change is minor

when juxtaposed with experimental error bars, cf. appendix I.

• Energy loss fluctuations. The assumed Poisson distribution for radiative energy loss

has negligible effects on RAA, but it may significantly influence v2, cf. appendix G.

• Partonic pp spectra variations. Error bands from NLO and FONLL initial cross

sections span 5% at partonic RAA level, being insignificant to a certain extent. Ab-

solute normalizations of the spectra drop out when calculating ratios such as RAA,

but steepnesses matter. Relative steepness between production spectra has influence

on the calculation of pion and non-photonic electron spectrum, which is fragmented

from gluons and light quarks, and charms and bottoms receptively, cf. appendix H.

3.1 Pion nuclear modification factor

Nuclear modification factor RAA is a key observable at RHIC and LHC relativistic heavy-

ion collisions, it describes the relative magnitude of jet quenching. RAA is defined as the

ratio of the quenched A+A spectrum to the unquenched p+p spectrum, scaled according

to the number of binary collisions Nbinary:

RAA(pT ) =

dσAA

dpT
(pT )

Nbinary
dσpp

dpT
(pT )

. (3.1)

We have suppressed the explicit dependence on rapidity y and c.m. energy
√
s in eq. (3.1).

Here the RAA is understood as azimuthally averaged, and azimuthal angle φ is integrated

out.
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3.1.1 Pion suppression

We calculate in CUJET2.0 the inclusive pion RAA at RHIC Au+Au 200AGeV and LHC

Pb+Pb 2.76ATeV, central (b = 2.4 fm) and semi-peripheral (b = 7.5 fm) collisions, the

results are illustrated in figure 3. Theoretical RAA curves are compared side by side with

corresponding experimental measurements of charged hadron suppression factor at AL-

ICE [3] and CMS [5], and neutral pion suppression factor at PHENIX [10]. In the radiative

energy loss sector, DGLV opacity series is calculated to first order, with fE = 1, fM = 0

in eq. (2.4) interpolating the pure dynamical scattering potential in the hard thermal loop

scenario. Maximum coupling constant αmax is adjusted to αmax = 0.26 to fit the RAA ref-

erence point at RHIC central collision.

After adjusting αmax = 0.26 to match the calculated pion nuclear modification factor

from CUJET2.0 with the pT = 15GeV/c reference point of experimentally measured in-

clusive neutral pion suppression factor from PHENIX 2012 [10] Au+Au 200AGeV central

collisions, the rest of the RAA curve in the range of pT = 5 ∼ 20GeV/c shows reasonable

compatibility with both PHENIX 2008 and 2012 data. More importantly, when move on

to simulate RHIC 20-30% centrality collisions by changing solely the impact parameter

to b = 7.5 fm and fixing all other parameters in CUJET2.0, the theoretical RAA result

demonstrates even better agreement with experimental data.

When switch to LHC after constrained all CUJET model parameters with RHIC data,

fixed coupling CUJET1.0 used to encounter difficulties explaining the surprising trans-

parency of the QGP at LHC high pT region [34], though this problem is eased by running

coupling CUJET1.0 which has effectively reduced coupling strength at high energies, the

pion RAA’s steep rising and successive flattening pattern at LHC remains only partially

explained [56]. This issue is fully solved in CUJET2.0 which has a more realistic bulk

evolution profile. As shown in figure 3(c)(d), at both ALICE and CMS, both central and

semi-peripheral collisions, the CUJET inclusive pion RAA curves seamlessly simulate both

the low pT steep rising and high pT saturating behavior of π0 or h± nuclear suppression

factor.

One of the most appreciable signatures of CUJET2.0 which has 2+1D viscous hydro-

dynamic background is the drastic reduction of the strong coupling constant compared to

CUJET1.0 where transversely a static Glauber medium is assumed. In running coupling

CUJET2.0 calculations, the maximum coupling strength αmax is adjusted to αmax = 0.26

to fit inclusive pion RAA’s at both RHIC and LHC, central and mid-central A+A collisions,

this value is distinguishably smaller than running coupling CUJET1.0’s αmax = 0.4. Com-

pared to CUJET1.0’s static Glauber bulk, CUJET2.0’s average medium density is reduced

because of the transversely expanding hydro fluids, and one would intuitively expect less

quenching in such a medium. However, the fact that the effective strong coupling constant

demands a tremendous reduction in itself to generate the same hadron suppression fac-

tor in CUJET2.0 as in CUJET1.0 indicates that there is another factor contributes more

remarkably to jet quenching and in fact dominates the modification of parton shower in

the expanding medium. This key contributor can only be the path length of propagating

jet in QGP. The longer jet path length generated from 2+1D viscous hydro fields in CU-
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(d) Pb+Pb √sNN=2.76TeV b=7.5fm

ALICE h± 20-30%
CMS h± 10-30%

CUJET2.0 π (0.26,1,0) b=7.5fm

Figure 3. CUJET2.0 inclusive pion nuclear modification factor RAA versus transverse mo-

mentum pT , comparing with PHENIX [7, 10] and STAR [12] π0RAA for Au+Au collisions at

200AGeV and (a) 0-5%(PHENIX)/0-20%(STAR), (b) 20-30%(PHENIX)/20-40%(STAR) central-

ity; with ALICE [3] and CMS [5] h±RAA for Pb+Pb collisions at 2.76ATeV and (c) 0-5%, (d)

20-30%(ALICE)/10-30%(CMS) centrality. The RAA is calculated at leading n=1 order in opac-

ity, and the maximum coupling constant αmax is constrained by fitting to central RHIC Au+Au

data at a reference point RπAA(pT = 15GeV/c) = 0.3, setting αmax = 0.26. For the effective po-

tential in eq. (2.4), the parameters are set to be fE = 1, fM = 0, i.e. dynamical QCD medium

with HTL approximation. Impact parameter b=2.4 and 7.5 fm is used in CUJET2.0 to simulate

the central and semi-peripheral collisions respectively. The 2+1D viscous hydro grid is generated

from VISH2+1 [71–73], with τ0 = 0.6 fm/c, η/s = 0.08, 120 MeV freeze-out temperature, MC-

Glauber initial conditions and Lattice QCD s95p-PCE EOS at both RHIC and LHC. Compared

to CUJET1.0 [56] which has a static transverse profile, with an transversely expanding medium in

CUJET2.0, pion RAA flattens out more clearly at high pT region at LHC. The strong coupling

however decreases from αmax = 0.4 in running coupling CUJET1.0 to αmax = 0.26 in CUJET2.0,

indicating longer path length of jet in a transversely expanding medium overrides the reduction of

density, and contribute to overall enhanced quenching.
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JET2.0 plays a decisive role on parton energy loss, it overrides the effect of less quenching

resulted from diminished medium density, and induces an overall more strongly quenched

jet spectra in relativistic heavy ion collisions.

More comments about the small value of best fit αmax(= 0.26) in the CUJET2.0

HTL model. We list in the beginning of section 3.1 factors that may contribute to the

systematic uncertainties of our calculation, for example, the default choice of freeze-out

temperature Tf = 120 MeV (which can in fact contribute 10% enhancement of αmax if

increased from hadronic freeze-out to critical temperature 160 MeV, a detailed discussion

about this effect is included in Appx. E) and the computation of DGLV opacity series

to the first order (in a small region of phase space where gluon’s energy fraction x and

transverse momentum kT are small, calculate n=1 may lead to overestimation of radiative

energy loss, detailed discussions are in Appx. C). However, given a wide range of origins of

systematic uncertainties, the absolute value of αmax itself makes physical sense only semi-

quantitatively. But the relative value of αmax, e.g. between CUJET1.0 and CUJET2.0,

does enable quantitative physical statements. Significantly decreased coupling strength

is observed in a transverse expanding medium (CUJET2.0) compared to the transversely

static case (CUJET1.0), and we can therefore conclude the longer jet path length in 2+1D

viscous hydro fluids is dominating, it overrides the reduced medium density and contribute

overall more energy loss.

3.1.2 Chi square per degree of freedom

Calculating relative variance per degree of freedom χ2/d.o.f. is one of the best quantita-

tive methods to test to what extent the theoretical RAA results are in agreement with

experimental measurements. This quantity is the average of relative variance, which is the

ratio of squared difference between experimental data point and its theoretical counterpart

to the quadratic sum of all theoretical and experimental statistical and systematic errors

associated with that point, over all selected data. It is defined as follows:

χ2/d.o.f. =
N∑
i=1

[(Vth − Vexp)2∑
t σ

2
t

]
i

/
N . (3.2)

Where Vth is the theoretical value, Vexp is the experimental value,
∑

t σ
2
t stands for the

quadratic sum over all types of errors that one chosen point has, and N is the number of

data points selected.

We vary the maximum coupling constant αmax in CUJET2.0 from 0.20 to 0.35 with

0.01 steps, and maintain the dynamical HTL scenario by fixing fE = 1, fM = 0, to study

the most compatible CUJET2.0 one parameter (αmax) fit at RHIC and LHC, and test

the consistency of the model at different
√
sNN ’s. Figure 4 shows the pion RAA curves

with those different αmax values at RHIC Au+Au 200AGeV and LHC Pb+Pb 2.76ATeV

central (b = 2.4 fm) and semi-peripheral (b = 7.5 fm) collisions. The experimental data

being compared with are PHENIX 2008 [7], 2012 [10] and STAR [12] π0 RAA at RHIC;

and ALICE [3] and CMS [5] h± RAA at LHC.

In all four panels of figure 4, focusing on pT < 40 GeV region, the magnitude of in-

clusive hadron suppression has near uniform increment with an uniformly increasing max-
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Figure 4. CUJET2.0 results for pion nuclear modification factor RAA versus pT , with max-

imum coupling strength αmax = 0.20 ∼ 0.35 in the dynamical HTL scenario, at RHIC Au+Au

200AGeV (top panels) and LHC Pb+Pb 2.76ATeV (bottom panels), central (b=2.4fm, left pan-

els) and semi-peripheral (b=7.5fm, right panels) collisions. Experimental references are: PHENIX

2008 [7] and 2012 [10] Au+Au 200AGeV π0RAA with 0-5% (top left) and 20-30% (top right) central-

ity; STAR [12] Au+Au 200AGeV π0RAA with 0-20% (top left) and 20-40% (top right) centrality;

ALICE [3] Pb+Pb 2.76ATeV h±RAA with 0-5% (bottom left) and 20-30% (bottom right) central-

ity; CMS Pb+Pb 2.76ATeV h±RAA with 0-5% (bottom left) and 10-30% (bottom right) centrality.

The hydro grid being used is the same as in figure 3. Despite the existence of multi-scale running

coupling, the magnitude of jet quenching monotonically enhances with increasing αmax in both

central and semi-peripheral collisions at both RHIC and LHC.
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imum coupling αmax, with exception at relatively large αmax’s where the spacing between

RAA curves becomes smaller, but the monotonic lowering of RAA proceeds. Since the

saturation scale Qmin for the running coupling depends solely on the maximum coupling

constant αmax, i.e., Qmin = ΛQCDExp{2π/9αmax}. Take αmax = 0.20, 0.25, 0.30 and 0.35

for example, the saturation scale Qmin = 6.56, 3.26, 2.05 and 1.47GeV respectively. At

relatively low αmax, because of the large saturation scale, the strong coupling recovers

asymptotically the fixed coupling scenario up to a relatively high energy, this explains the

near uniform increment in the panels. The influence of running coupling is substantial at

relative high αmax where the minimum running scale is low, in that situation the logarith-

mic decay of coupling strength resulted from vacuum running shrinks the spacing of RAA’s

more effectively.

A significant phenomenon shows up in the bottom panels of figure 4 — the flattening

pattern (slope) of RAA in high pT (pT > 50 GeV) region at LHC is almost independent of

the choice of αmax, this implies the relative insensitivity of RAA saturation to the running

coupling effect, and we can therefore exclude to a certain extent the influence of running

on the saturation of RAA for ultra-high energy jet. Note in [56], the previous calcula-

tion of multi-scale running coupling combined CUJET1.0, whose medium assumes static

Glauber transverse profile plus 1+1D Bjorken longitudinal expansion, did not exhibit a

clear signature of RAA flattening. Therefore, evident RAA saturation comes largely from

the kinematics in a medium with both transverse and longitudinal expansion, which fea-

ture distinguishes CUJET2.0 from running coupling CUJET1.0. A dynamically transverse

expanding medium, for instance a 2+1D viscous hydro fluid, plays a very important role

in the RAA flattening of high pT jet in ultra-relativistic heavy ion collisions, and shall re-

ceive more attention in predicting jet quenching observables in A+A collisions from pQCD

energy loss models.

The essential eikonal and soft approximation in dynamical DGLV opacity expansion

may break down at low pT region, hence for the purpose of χ2/d.o.f. we choose exper-

imental results in the range of pT > 8 GeV to compare with CUJET2.0 RAA curves.

Note χ2/d.o.f.(αmax) < 2 is an indicative signature of model consistency, and the con-

strained αmax range should be independent of whether pT > 5 GeV or pT > 8 GeV is

chosen as long as the minimum pT is sufficient for preserving basic assumptions of the

CUJET2.0 model and number of points being selected at high pT is large enough. Hence

for safer comparison we choose pT > 8 GeV, and figure 5 shows χ2/d.o.f. vs αmax at

RHIC (PHENIX08+12+STAR [7, 10, 12]) and LHC (ALICE+CMS [3, 5]), in both cen-

tral (b = 2.4 fm) and semi-peripheral (b = 7.5 fm) collisions. And for better analyz-

ing χ2/d.o.f. curves in figure 5, we list detailed αmax ranges with χ̃2 < 1 and χ̃2 < 2

(χ̃2 ≡ χ2/d.o.f.) at RHIC and LHC in table 2.

The combination of figure 5 and table 2 provides quantitative information about the

consistency of CUJET2.0 HTL model in various A+A collision configurations. We see that

if strictly constrain χ̃2 to be less than 1, for b = 2.4 fm central collisions, CUJET2.0 results

at RHIC and LHC have 0.01 offset in αmax, and for b = 7.5 fm semi-peripheral collisions,

the results are in perfect agreements with RHIC and LHC at αmax = 0.23 − 0.25 range.

We also notice the averaged best fit αmax value at RHIC and LHC in semi-peripheral
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Figure 5. χ2/d.o.f. versus αmax calculated from figure 4 at RHIC (red) and LHC (blue), central

(b = 2.4 fm, left panel) and semi-peripheral (b = 7.5 fm, right panel) collisions. The average over all

four χ2/d.o.f.’s is plotted as a reference in both panels (dashed black). Data from pT > 8 GeV is used

for safer preservation of DGLV’s basic eikonal and soft approximations. At RHIC, PHENIX 2008,

2012 and STAR data [7, 10, 12], at LHC, ALICE and CMS data [3, 5] are compared respectively.

The αmax ranges for χ̃2 < 1 and χ̃2 < 2 (χ̃2 ≡ χ2/d.o.f.) at RHIC and LHC are shown in table 2.

If allow 1.5 standard deviations per d.o.f., interpreting from the average curve, the most consistent

CUJET2.0 HTL model at both RHIC and LHC has αmax = 0.25−0.27. If let average χ2/d.o.f. < 2,

then αmax = 0.23− 0.30. The small value of the strong coupling constant is partially caused by the

dominating longer jet path length in the transverse expanding medium, as discussed in section 3.1.1.

αmax RHIC χ̃2 < 1 LHC χ̃2 < 1 RHIC χ̃2 < 2 LHC χ̃2 < 2

b = 2.4 fm 0.28-0.32 0.24-0.27 0.26-0.35 0.23-0.28

b = 7.5 fm 0.23-0.29 0.23-0.25 0.22-0.31 0.22-0.27

Table 2. The ranges of αmax with χ̃2 < 1 and χ̃2 < 2 (χ̃2 ≡ χ2/d.o.f.) for the curves shown in

figure 5. If strictly limit χ̃2 to be less than 1, at b = 2.4 fm central collisions, CUJET2.0 results

for RHIC and LHC have 0.01 offset in αmax, while at b = 7.5 fm semi-peripheral collisions, the

results are perfect consistent in αmax = 0.23−0.25 range at RHIC and LHC. Notice also the RHIC

and LHC averaged best fit αmax value at semi-peripheral collisions is approximately 0.03 lower than

central collisions, and at either centrality LHC best fit αmax is about 0.03 lower than RHIC. If allow

χ̃2 < 2, one can find that the intersection region of αmax for all four collisions, i.e. RHIC Au+Au

200AGeV and LHC Pb+Pb 2.76ATeV combining b = 2.4 fm and b = 7.5 fm, is αmax = 0.26− 0.27.

This range of αmax (0.26−0.27) coincides almost perfectly with the range interpreted from χ̃2 < 1.5

for the average curve in figure 5 (αmax = 0.25− 0.27).
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collisions is around 0.03 lower than central collisions, and at either centrality the best fit

LHC αmax is approximately 0.03 lower than RHIC. These observations will trigger useful

analysis in section 3.3.

At present stage, in the CUJET2.0 HTL scenario, if restrict separate maximum χ̃2 to

be 2, we find that the intersecting αmax range for all four collisions at RHIC and LHC,

i.e. Au+Au 200AGeV and Pb+Pb 2.76ATeV mix with b = 2.4 fm and b = 7.5 fm, is

αmax = 0.26 − 0.27. This range of αmax (0.26 − 0.27) coincides almost ideally with the

range interpreted from χ̃2 < 1.5 for the average curve in figure 5 (αmax = 0.25 − 0.27),

indicating CUJET2.0 model’s rigorous consistency at varied A+A collisions, spanning a

broad range of
√
s and b.5

Based on all the above discussions, we conclude that from testing CUJET2.0 HTL sce-

nario’s agreement with centrality dependent neutral pion and charged hadron suppression

factors at RHIC and LHC in the mid-rapidity region, the maximum coupling constant in

the model is constrained to αmax = 0.25 − 0.27, in which range the averaged χ2/d.o.f. is

strictly less than 1.5; if allow average χ2/d.o.f. < 2, then αmax = 0.23− 0.30. As discussed

in section 3.1.1, the small αmax value itself can be attributed to the dominating longer jet

path length feature for the parton shower modification in a transversely expanding medium.

Notice in the calculation of χ2/d.o.f., we did not include in it any intrinsic CUJET2.0 sys-

tematic uncertainties which were discussed at the beginning of section 3, this suggests the

best fit αmax region can in fact be broadened after taking those factors into account and by

the mean time maintain the stringent χ2/d.o.f. limit. Given the complexity of estimating

the complete systematic errors in the model, we will use αmax = 0.25− 0.27 to extract the

effective jet transport coefficient in section 3.1.3, and stick to αmax = 0.26 to extrapolate

the suppression pattern of open heavy flavors and heavy flavor leptons in section 3.2.

3.1.3 Jet transport coefficient

The suppression of hadrons at large pT is understood to be caused by scatterings of the

leading parton with color charges in the near thermal QGP. This process can be character-

ized by the jet transport coefficient q̂, which is defined as the squared average transverse

momentum exchange per unit path length. CUJET2.0 treats thermal excitations in the

assumed homogeneous QCD medium as partonic quasi-particles, and the transport pa-

rameter q̂ in CUJET2.0 is related to the effective partonic differential cross section by the

relation:

q̂(E, T ;αmax, fE , fM ) = ρ(T )

∫ 4ET

0
dq2q2dσeff

dq2
, (3.3)

where the energy E and temperature T dependence comes in naturally from the partonic

kinematics and plasma density. In CUJET2.0, q̂ depends also on the maximum strong

coupling constant αmax, as well as electric and magnetic screening mass deformation pa-

rameters (fE , fM ), all of which originate from the effective cross section of the quark-gluon

5Note furthermore the similar curvature of the RHIC and LHC χ2/d.o.f.(αmax) parabolas at both cen-

tralities, this is a circumstantial evidence of the consistency of CUJET2.0.
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Figure 6. The absolute jet transport coefficient q̂/T 3 calculated in CUJET2.0 according to

eq. (3.3)(3.4) with parameters αmax = 0.25 − 0.27, fE = 1, fM = 0, which set of parameters

generates consistent fits to neutral pion and charged hadron suppression factor RAA at both RHIC

and LHC both central and semi-peripheral A+A collisions. q̂/T 3 versus QGP temperature T at

fixed incoming jet energy E is plotted on the left panel; the right panel shows q̂/T 3 versus E at fixed

T. When E is fixed, the decrease of q̂/T 3 with the increasing T follows approximately a logarithmic

law, indicating q̂ itself gains slightly slower than medium density with rising T in CUJET2.0. This

feature however still suggests there is more transverse momentum transfer per mean free path at

higher temperature, as intuitively expected. When T is fixed, the logarithmic E dependence of

q̂/T 3 at high energy region comes naturally from the kinematic limit of the exchanged transverse

momentum.

process:

dσeff

dq2
=

α2
s (q2)(f2

E − f2
M )

(q2+f2
Eµ

2(T ))(q2+f2
Mµ

2(T ))
, (3.4)

with the Debye mass µ(T ) = T
√

4παs(4T 2)(1 + nf/6). Note here the temperature is non-

local. Eq. (3.4) differs from the effective scattering potential in eq. (2.4) where the same

cross section form appears but varies with local temperature T (z). We assume ρ ∼ 2T 3

for an idealized uniform thermal equilibrated medium, and calculate the CUJET2.0 jet

transport coefficient q̂ according to eq. (3.3)(3.4), with αmax = 0.25 ∼ 0.27 in the HTL fE =

1, fM = 0 approximation, which parameters are derived in section 3.1.2 through rigorous

χ2/d.o.f. consistency tests at various A+A collision configurations. The variations of the

absolute jet transport parameter q̂/T 3 with energy E and temperature T are illustrated in

figure 6.

In the left panel of figure 6, it is shown for an initial quark jet with energy E = 10 GeV,

in the typical temperature range reached by RHIC for most central Au+Au collisions, i.e.

180 ∼ 370 MeV, CUJET2.0 has q̂/T 3 ≈ 3.8; in the typical temperature range reached by

LHC for most central Pb+Pb collisions, i.e. 300 ∼ 470 MeV, CUJET2.0 has q̂/T 3 ≈ 3.5.

Both values are consistent with not only LO pQCD estimates, but also the jet transport
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parameters extracted from HT-BW, HT-M, MARTINI and McGill-AMY models fitting to

the same set of experimental hadron suppression factors at RHIC and LHC A+A central

collisions [49]. At various initial jet energies, the reduction of q̂/T 3 with rising T invari-

antly follows an approximate logarithmic law. Since ρ ∼ 2T 3, this logarithm indicates q̂

grows slightly slower than medium density with increasing T, but there is still more elastic

transverse momentum transfer per mean free path at higher temperature, as intuitively

expected.

For an idealized static equilibrium QGP with fixed temperature T, as illustrated in the

right panel of figure 6, the transverse momentum transfer between the quark jet and dynam-

ical scattering centers shows logarithmic dependence on initial jet energy if the T 3 contri-

bution from the medium density is factored out. This is expected from the kinematic limit

of transverse momentum exchange, i.e. (q2)max = 4ET in eq. (3.3). On the other hand, for

quark jet with fixed initial energy E, the absolute jet transport coefficient q̂/T 3 drops at

an diminished rate when temperature grows and reaches high T region. This is expected

from the Debye mass µ’s temperature dependence, i.e. µ(T ) = T
√

4παs(4T 2)(1 + nf/6).

The thermal coupling has negligible contribution until when T is high, at that time the

logarithmic decay of the coupling strength will weaken the linear increase of the Debye

mass with rising temperature.

The QGP produced in heavy ion collisions is interpreted as strongly interacting medium [13],

whose collective flow is known to be well described by relativistic hydrodynamics with a

negligible shear viscosity, and effective perturbation theory may not be applicable to study

interactions in a medium which is not dominated by quasi-particles. In [78], the authors

derived a general expression relating the jet quenching parameter q̂ with the shear viscosity

η of a weakly coupled QGP, and the deviation from this relation is conjectured to be a

more broadly valid measure of “strong coupling” of the medium than considering solely

the shear viscosity divide by entropy density η/s. The relation is expressed as follows:

η

s

{
≈ 1.25T 3/q̂ for weak coupling ,

� 1.25T 3/q̂ for strong coupling .
(3.5)

In high energy region where the QCD coupling is supposed to be weak, the simplified

CUJET2.0 q̂ calculation from eq. (3.3) and (3.3) shows q̂/T 3 ≈ 3.7 for typical temperatures

reached by RHIC and LHC, and 1.25T 3/q̂ ≈ 4.2/4π. This value is larger than the quantum

limit η/s = 1/4π, or the MC-Glauber VISH2+1’s η/s = 0.08 which is extracted from fitting

to hadron spectra and harmonics at low pT .

One way to reconcile the discrepancy is proposed in [49], where the authors suggest

lattice calculation indicates that the non-perturbative soft modes in the collision kernel can

double the value of the NLO pQCD result for the q̂ [79, 80]. And there are also recent formal

pQCD calculations showing that NLO corrections can result in more than 50% increase

in q̂ [81–85]. Another possibility is that the present q̂ calculation in CUJET2.0 is over-

idealized by disregarding anisotropy and heterogeneity/inhomogeneity, both factors can

influence the jet-medium interaction significantly and require more careful considerations

in both the bulk evolution sector and the energy loss sector.
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We briefly summarize section 3.1 here: CUJET2.0 inclusive pion RAA calculated with

maximum coupling constant αmax = 0.25 − 0.27 in a dynamical QCD medium with HTL

scenario is strictly consistent with both RHIC Au+Au 200AGeV π0RAA and LHC Pb+Pb

2.76ATeV h±RAA in both central and semi-peripheral collisions. Rigorous χ2/d.o.f. calcu-

lation indicates this parameter fit has averaged χ2/d.o.f. being stringently less than 1.5.

And if allow average χ2/d.o.f. < 2, then αmax = 0.23 − 0.30. The combined effect of

multi-scale running coupling and transverse expanding medium give rise to the steep rising

and subsequent flattening of inclusive hadron RAA at LHC. The small value of αmax it-

self implies that longer jet path length in a transverse expanding medium overrides the

reduction of density and contribute to enhanced overall quenching. Idealized CUJET2.0

effective jet transport coefficient q̂/T 3 is consistent with not only LO pQCD estimates, but

also the q̂/T 3’s extracted from HT-BW, HT-M, MARTINI and McGill-AMY models [49]

by fitting to the same set of experimental hadron suppression factors at RHIC and LHC

A+A central collisions.

3.2 D meson, B meson and non-photonic electron

We apply CUJET2.0 to study the suppression pattern of not only neutral pions or charged

hadrons, but also D mesons, B mesons and non-photonic electrons at RHIC and LHC.

The open heavy flavor and heavy flavor lepton nuclear modification factors calculated from

CUJET2.0 (αmax, fE , fM ) = (0.26, 1, 0) HTL model are shown in figure 7. Inclusive non-

photonic electron RAA’s in central and semi-peripheral A+A collisions are compared with

experimental data at PHENIX [8] and STAR [11], and D meson RAA’s are compared with

measurements at ALICE [1].

Both running coupling CUJET2.0 and fixed coupling CUJET1.0 [34] predict a novel

crossing pattern of pT dependent π, D, B, e− nuclear suppression factors. Compare the left

panels of figure 7 to figure 1 in [34], one finds that regardless of the inclusion of multi-scale

running coupling and dynamical viscous hydro fields in CUJET2.0, and the crossings of π,

D, B, e− RAA’s in CUJET2.0 constantly occur at about same pT as in CUJET1.0. For

example, at RHIC Au+Au 200AGeV central collisions, pion RAA intersects D meson, non-

photonic electron, B meson at pT ≈ 9, 19, 24 GeV, and at LHC Pb+Pb 2.76ATeV central

collisions, pion RAA intersects D meson, B meson at pT ≈ 23, 33 GeV. Note all these

pT ’s are within the range of pT < 40 GeV where, as discussed in section 3.1.1 and 3.1.2,

running coupling effect contributes significantly to a steeper rising RAA. The running

coupling induced change of slope emerges from pion, D meson and B meson RAA in a

similar manner, this is as expected, because when considering the gluon radiation vertex for

running coupling, the mass scale is small comparing to kinetic terms hence being dropped,

cf. eq. (2.2) and (2.3). The robust pT interval of RAA crossings in CUJET also suggests the

mass ordering of π, D, B, e− suppression pattern comes intrinsically from the DGLV gluon

radiation spectrum and TG elastic energy loss formula, and the bulk evolution profile has

limited effect on this mass hierarchy.

Figure 7 displays an interesting crossover between pion and B meson RAA, at pT '
25GeV for RHIC and pT ' 35GeV for LHC, which signature is also noticed in fixed coupling

CUJET1.0 [34]. Generally speaking, the quenched hadron (h) spectrum in an AA collision
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Figure 7. CUJET2.0 predictions of the suppression pattern of open heavy flavors and heavy

flavor leptons. The mass hierarchy is illustrated as the level crossing pattern of RAA versus pT for

pion (black), D meson (red), B Meson (green) and non-photonic electron (blue) fragments from

quenched gluon, light, charm, bottom quark jets. Parameter (αmax, fE , fM ) = (0.26, 1, 0) models a

dynamical QCD medium in the HTL scenario, the bulk evolution profile being used is the same as in

figure 3. Au+Au
√
sNN = 200 GeV central and semi-peripheral collisions are simulated respectively

with impact parameter (a) b=2.4fm and (b) 7.5fm at RHIC conditions; Pb+Pb
√
sNN = 2.76 TeV

collisions are simulated respectively with (c) b=2.4fm and (d) 7.5fm at LHC conditions. The flavor

dependent jet quenching results at RHIC are compared to PHENIX [8] and STAR [11] non-photonic

electron RAA with (a) 0-5%(STAR)/0-10%(PHENIX), (b) 10-40%(STAR)/20-40%(PHENIX) cen-

trality; results at LHC are compared to ALICE average prompt D [1] RAA with (c) 0-20%. The

same ALICE D RAA is also plotted in panel (d) for reference since impact parameter b=7.5fm

typically reproduces 10-30% centrality. The level crossings in running coupling CUJET2.0 which

has a transversely expanding medium occur at almost the same pT as in fixed coupling CUJET1.0

which has a transversely static Glauber profile [34]. The RAA’s low pT B > e > D ordering evolves

into e > B > D at high pT at LHC.
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is calculated with

Edσ̄AA→h

d3p
≡ 1

Nbin

EdσAA→h

d3p
=
Eidσ

pp→q

d3pi
⊗ P (Ei(pi)→ Ef (pf ))⊗D(q → h) , (3.6)

where dσpp→q/d3pi is the initial partonic pp spectrum, P is the energy loss probability

distribution which linked to ∆E/E(E), and D is the fragmentation function from parton

q to hadron h. It is of great importance to study which one of the three factors plays

the most critical role in maintaining the robust level crossing pattern for pion and B

meson. Comparing figure 7 with the middle and right panel of figure 20, we note that

fragmentation functions alter the pT dependent quenching pattern of light and bottom

quark only limitedly, i.e. Rlight
AA (pT ) ∼ Rpion

AA (pT ) and Rbottom
AA (pT ) ∼ RB

AA(pT ). At partonic

level the crossing between light and bottom RAA(pT ) already occurred at pT ' 25GeV

for RHIC and pT ' 35GeV for LHC, this fact suggests the near-negligible contribution

of fragmentation functions to the intersection of RπAA(pT ) and RBAA(pT ). Furthermore, we

notice in the bottom left panel of figure 22 and bottom middle panel of figure 23 that at

fixed L the ∆E/E(E) for light and bottom do not intersect each other until pT = 50GeV,

meaning the influence of partonic energy loss on the crossing pattern is less decisive than

initial pp spectra. Indeed, we observe similar slopes of dσ/dpT (pT ) for light and bottom

quark in the pT range of 10 − 15 GeV at RHIC and 20 − 30 GeV at LHC. It indicates

the combined effect of partonic energy loss and initial spectra results in the crossing of

RπAA(pT ) and RBAA(pT ), and among these two factors the latter is apparently more critical.

A detailed study regarding the physical reason of the robust RAA(pT ) crossing pattern will

be presented in [86].

Notice also the quenching pattern of non-photonic electron at Au+Au 200AGeV colli-

sions calculated from both CUJET1.0 [34] and CUJET2.0 figure 7(a)(b) are in agreement

with the RHIC data for central and semi-peripheral centralities. This clearly indicates the

solution to “heavy quark puzzle”6 is built intrinsically in the structure of CUJET energy

loss framework. As discussed in appendix F.2, the combination of dynamical medium effect

and elastic energy loss first significantly brings down the light to heavy quark energy loss

ratio. Secondly, appropriately weighing path length fluctuations of initial jet production

coordinates plays a pivotal role, in CUJET this is realized by cutting off the DGLV inte-

gral at a dynamical T (z)|τmax = Tf hypersurface which is parametrized by fragmentation

temperature Tf .7 The third factor is the Poisson distribution assumption for inelastic en-

ergy loss, since one has noticed appendix C.2 the variation of opacity can alter the gluon

radiation spectrum for light and heavy quark jet differently.

Concentrating on the flavor dependent suppression pattern prediction from CUJET2.0,

it is not only a revolution of [34] with multi-scale running coupling and transverse expand-

ing medium effect, but also a critical supplementary with comprehensive semi-peripheral

A+A predications and decisive non-photonic RAA at LHC. We can make several observa-

tions about the flavor dependent quenching scenarios in figure 7: firstly, RAA for inclusive

D meson and pion tangles together at low pT at both RHIC and LHC. We notice in

6Explanations about the “heavy quark puzzle” can be found in [64, 87–89].
7Also noted in section B.1 and appendix I.2.
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appendix G the radiative energy loss probability distribution for charm and light quark

almost overlap when jet has reasonably low initial energy, the similar suppression pattern

of D meson and pion in this region would suggest comparable elastic energy loss probability

distribution for them, and the D meson A+A production spectrum is expected to have a

steeper slope than pion at low pT (cf. also appendix H).

Secondly, CUJET2.0 predicts in figure 7 that in low pT region the inclusive leading B

meson is significantly less quenched than pion and D meson, whose RAA tangles together.

This prediction indicates measurements of open beauty spectra at soft regime can post

decisive constraints on a wide range of pQCD energy loss models. Finally, at LHC, the

RAA B > e > D mass ordering8 at low pT evolves into e > B > D at pT ≈ 23 GeV, and

RHIC seems to have the same inversion at slightly larger pT but less discernible than LHC.

This mass ordering comes from a complex interplay between total energy loss probability

distribution, and initial production spectra for charm and bottom jets, and fragmentation

functions in the hadronization processes. Since non-photonic electron spectrum is the

combination of B → e, D → e, and B → D → e channels, the change in mass hierarchy

can partially be attributed to a significant enhancement in the B → D → e channel in

certain pT range, this range occurs at lower pT at LHC which has larger multiplicity density

and higher temperature than RHIC, and a semi-exclusive measurement of non-photonic

electron production in AA can thus be a crucial benchmark.

One final comment about the flavor dependent suppression pattern from CUJET2.0

calculations is the theoretical agreement with ALICE [1] average prompt D RAA. Note

impact parameter b = 2.4 fm in CUJET typically simulates 0-10% centrality, and b =

7.5 fm is applicable for 10-30% centrality, the integrated 0-20% centrality experimental D

RAA should be within the b = 2.4 fm and b = 7.5 fm CUJET2.0 D meson RAAcurves, and

this feature shows up explicitly in figure 7 (c) and (d).

This brings us to a mini-summary of section 3.2. We conclude that the robust cross-

ing pattern of π, D, B, e− RAA’s is rigorously encoded in the flavor dependent energy

loss structure of DGLV opacity expansion combined with TG elastic, and a transverse

expanding medium has minor effect on the mass hierarchy; solutions to the “heavy quark

puzzle” are intrinsically integrated in the framework of CUJET; and CUJET2.0 pre-

dicts a decisively less quenched B meson RAA which is well above D meson and pion

at 5 GeV < pT < 15 GeV, as well as a critical alternation of low pT RAA’s mass ordering

from B > e > D to e > B > D at pT ∼ 25 GeV.

3.3 Azimuthal flow

Anisotropic collective flow is a key observable in relativistic heavy ion collisions, it relates

directly to the formation of QGP. With a large impact parameter for A+A event, the region

of interest gains an increasingly asymmetric shape. And in a strongly coupled medium, the

pressure gradients due to this initial azimuthal anisotropy are effectively transferred into

the collective flow of its components. The different types of collective flows are quantified

8This phenomenon is also noted in [90] besides CUJET1.0 [34].
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in terms of Fourier components of the azimuthal angle distribution [91]:

dNh

dypTdpTdφ
(
√
s, b) =

1

2π

dNh

dypTdpT
(
√
s, b)

(
1 + 2

∞∑
n=1

vn(y, pT ;
√
s, b;h) cos

(
n(φ−Ψh

n)
))

.

(3.7)

Here dNh/dydpTdφ represents the number of hadrons of species h observed at rapidity

y, with transverse momentum pT and azimuthal angle φ. Both dNh
dydpT

and the Fourier

coefficients vn depend on the initial rapidity density dNi/dy. And dNi/dy is a function of

the energy
√
s and centrality b of the collision.

Generally speaking, in the transverse plane with respect to the beam axis, the collective

flow generated from non-central A+A collisions is centrosymmetric if there is no fluctuation,

and odd number Fourier components drop out. Thus among all collective flow harmonics,

elliptic flow v2 is of the most significance, and by the mean time being least sensitive to

fluctuations. Therefore, a comprehensive study of single particle v2 can provide critical

information about the azimuthal anisotropy, as well as useful information about the jet

medium interaction mechanism.

3.3.1 Pion production with respect to reaction plane

Simultaneously fit particle suppression pattern and azimuthal flow asymmetry is a decisive

benchmark for all jet tomography models.9 To visualize this simultaneity more clearly, one

can calculate the RAA with respect to reaction plane. The typical choice of azimuthal angle

set is the in plane φ = 0 and out of plane φ = π/2, and consequent nuclear suppression

factors Rin
AA and Rout

AA are defined as:
Rin
AA(y, pT ) =

dNAA
h

dydpT dφ
|φ=0

Nbinary
dNpp

h
dydpT dφ

|φ=0

=

dNAA
h

dydpT
1

2π (1 + 2v1 + 2v2 + · · ·)

Nbinary
dNpp

h
dydpT dφ

|φ=0

,

Rout
AA(y, pT ) =

dNAA
h

dydpT dφ
|φ=π

2

Nbinary
dNpp

h
dydpT dφ

|φ=π
2

=

dNAA
h

dydpT
1

2π (1− 2v2 − · · ·)

Nbinary
dNpp

h
dydpT dφ

|φ=π
2

.

(3.8)

The AA, pp superscript and Nbinary has the same meaning as in eq. (3.1). Since the p+p

collision is presumably central, and generally no azimuthal anisotropy is expected, we have
dNpp

h
dydpT dφ

|φ=0 =
dNpp

h
dydpT dφ

|φ=π
2
, and

dNpp
h

dydpT
≡
∫ 2π

0 dφ
dNpp

h
dydpT dφ

= 2π
dNpp

h
dydpT dφ

|φ=φ0 , where φ0 is an

arbitrary azimuthal angle. In terms of rapidity y, the region we are interested in has y ≈ 0,

hence we short-write
dNpp

h
dydpT

|y=0 as
dNpp

h
dpT

. Neglecting fluctuations by setting odd number

harmonics to zero, in the mid-rapidity region, we get
Rin
AA(pT ) ≈

dNAA
h

dydpT
(1 + 2v2 + 2v4 · · ·)

Nbinary
dNpp

h
dydpT

= RhAA (1 + 2v2 + 2v4 · · ·) ,

Rout
AA(pT ) =

dNAA
h

dydpT
(1− 2v2 − 2v4 · · ·)

Nbinary
dNpp

h
dydpT

= RhAA (1− 2v2 − 2v4 · · ·) .

(3.9)

9Previous attempts for simultaneously fitting RAA and v2 in the a-b-c model and semi-DGLV frameworks

can be found in [50–55, 92].
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Figure 8. CUJET2.0 pion Rin
AA (∆φ = 0◦, dashed curves) and Rout

AA (∆φ = 90◦, solid curves)

versus pT for Au+Au 200AGeV b = 2.4 fm (left panel) and b = 7.5 fm (right panel) calculated in the

HTL (fE , fM ) = (1, 0) scenario with maximum coupling constant αmax varies from 0.20 to 0.35 in

0.03 steps. The bulk evolution profile being used is the same as in figure 3. Theoretical results are

compared with PHENIX [10] π0RAA in Au+Au collisions at
√
sNN = 200 GeV with centrality 0-10%

and reaction plane ∆φ = 0− 15◦ (left panel, dashed black), 0-10% and ∆φ = 75− 90◦ (left panel,

solid black), 20-30% and ∆φ = 0−15◦ (right panel, dashed black), 20-30% and ∆φ = 75−90◦ (right

panel, solid black). In both central and semi-peripheral collisions, the Rin
AA and Rout

AA for αmax = 0.26

(the most consistent HTL fit to pion RAA’s in a variety of A+A collision configurations based on

rigorous χ2/d.o.f. calculations in section 3.1.2) have a compatible mean value with experimental

results, but they do not yield a comparable gap. Nevertheless, allow at most 10% variations in

αmax and choose αmax = 0.26 Rin
AA and αmax = 0.29 Rout

AA for b = 2.4 fm, αmax = 0.23 Rin
AA and

αmax = 0.26 Rout
AA for b = 7.5 fm can generate a compatible reaction plane dependent suppression

pattern for pion, and all these αmax values fall within respective χ2/d.o.f.< 1 and χ2/d.o.f.< 2

entries in table 2.

We calculate pion’s Rin
AA and Rout

AA in mid-rapidity region for pT up to 18 GeV/c in CU-

JET2.0, for Au+Au 200AGeV central and semi-peripheral collisions, and compare with

corresponding PHENIX [10] data.10 The results are shown in figure 8.

In section 3.1.2, we have constrained the maximum coupling constant αmax in the

CUJET2.0 HTL scenario to be 0.25 − 0.27, this range of αmax renders the most con-

sistent pion RAA at RHIC Au+Au 200AGeV and LHC Pb+Pb 2.76ATeV central and

semi-peripheral collisions through stringent χ2/d.o.f. calculations. However, the Rin
AA and

Rout
AA for αmax = 0.26 in both panels of figure 8 have smaller gaps than the PHENIX mea-

surements, indicating over-isotropized high pT single inclusive pion spectra in the model,

despite mean values of them are in agreement.

Nevertheless, we note in section 3.1.2 that, figure 5 and table 2 suggest even if strictly

limit χ2/d.o.f. to be less than 1, αmax maintains a non-negligible range which varies for

10In principle, better comparison with experiments can be achieved by integrating over the same ∆φ

window of measurements of RAA with respective to reaction planes. However, due to limited computing

power, we have to stay with the faster way of computing RAA in-plane/out-plane, i.e. evaluating the spectra

at φ = 0, π/2. The effect of window size will be explored in future works, on an event-by-event basis, it

may contribute non-trivially.
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Figure 9. χ2/d.o.f. versus αmax calculated from figure 8 at RHIC Au+Au 200AGeV central

b = 2.4 fm (left panel) and semi-peripheral b = 7.5 fm (right panel) collisions. PHENIX [10] π0RAA
with reaction plane ∆φ = 0− 15◦ (red) and ∆φ = 75− 90◦ (blue), and centrality 0-10% (left) and

20-30% (right) are the experimental references. For safer preservation of DGLV’s basic eikonal and

soft approximations, data from pT > 8 GeV are used for the χ2/d.o.f. calculation.

different collisions. Using this flexibility, CUJET2.0 may create reaction plane dependent

pion quenching patterns which are compatible with experiment measurements. To be

rigorous, we first plot the χ2/d.o.f. vs αmax for the Rin
AA and Rout

AA in figure 8 using pT >

8 GeV, which pT range matches the choice in section 3.1.2, the results are shown in figure 9.

We find that in the left panel of figure 9, for b = 2.4 fm central collisions at RHIC, in

the CUJET 2.0 HTL scenario Rin
AA is best fitted by αmax = 0.26− 0.27, while Rout

AA is best

fitted by αmax = 0.28− 0.30. In the right panel of figure 9, for b = 7.5 fm semi-peripheral

collisions at RHIC, Rin
AA is best fitted by αmax = 0.23 − 0.25, while Rout

AA is best fitted by

αmax = 0.26− 0.27.

If we choose αmax = 0.26 Rin
AA and αmax = 0.29 Rout

AA for b = 2.4 fm, αmax = 0.23

Rin
AA and αmax = 0.26 Rout

AA for b = 7.5 fm, the CUJET2.0 results are able to be perfectly

consistent with RHIC Rin
AA and Rout

AA date. Since we have RAA = (Rin
AA + Rout

AA)/2, this

set of αmax’s effectively generates RAA with αmax = 0.275 at b = 2.4 fm and αmax = 0.245

at b = 7.5 fm. Based on figure 5 and table 2, we see that the χ2/d.o.f. for the average

RAA resulting from this αmax sequence is: RHIC b = 2.4 fm, χ2/d.o.f. < 1.5; RHIC

b = 7.5 fm, χ2/d.o.f. < 1; LHC b = 2.4 fm, χ2/d.o.f. < 1.5; LHC b = 7.5 fm, χ2/d.o.f. < 1

— the χ2/d.o.f. for average RAA with these αmax’s in the CUJET2.0 HTL scenario is strictly

less than 1.5 in all four collisions. It means this modest variation in αmax is intrinsically

allowed by our model without jeopardizing its consistency for averaged hadron RAA at a

variety of collision configurations.

Notice among this set of αmax parameters, for both b = 2.4 fm and b = 7.5 fm, the

difference in αmax for Rin
AA and Rout

AA is 0.03. And for either Rin
AA or Rout

AA, the variance in

αmax for b = 2.4 fm and b = 7.5 fm is 0.03 (which surprisingly coincides with the RHIC

and LHC averaged αmax gap discussed in section 3.1.2). The maximumly 10% αmax de-
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viations in Rin
AA and Rout

AA, b = 2.4 fm and b = 7.5 fm imply that the anisotropic path

averaged effective coupling strengths can be originated from local effects. For instance, lat-

tice QCD simulation [93] shows that the qq̄ potential has both distance r and temperature

T dependence. The spacing r Fourier transforms into momentum Q, suggests that a com-

plete running coupling should have both Q and T dependence, i.e. αs → α(Q,T (x0⊥, φ)).

Presently our running has only Q dependence, therefore the T (x0⊥, φ) dependence can be

intrinsically transformed into local coordinate and azimuthal angle dependence of αmax,

i.e. αmax → αmax(x0⊥, φ). On the other hand, the azimuthal sensitivity of jet quenching

may strongly depend on the detailed edge geometry which varies in different hydro profiles

and is yet to be studied in the CUJET2.0 framework. Both the dual running of αs and the

hydro sensitivity of high pT single particle v2 are work in progress.

In addition, the ordering of αmax in terms of averaged path length is noteworthy: at τ0,

the length of the medium in b = 2.4 fm and b = 7.5 fm collisions along φ = 0◦ and φ = 90◦

direction can be approximately ordered as 7.5 fm + 0◦ < 7.5 fm + 90◦ ≈ 2.4 fm + 0◦ <

2.4 fm+90◦, and the best fit αmax in corresponding situations is 0.23 < 0.26 = 0.26 < 0.29.

It means that within CUJET2.0, longer path length requires stronger coupling in order to

predict the correct high pT single particle v2.

After constrained the azimuthal anisotropy in CUJET2.0 at RHIC, our next step is

to test the model consistency with Rin
AA and Rout

AA for Pb+Pb 2.76ATeV at LHC central

and semi-peripheral collisions. Because of the absence of published reaction plane depen-

dent neutral pion or charged hadron suppression data at LHC, we turn to compare the

CUJET2.0 results of v2 with experimental elliptic flow measurements, which comparison is

more sensitive to fluctuations from the theoretical point of view. And we will discuss this

in detail in section 3.3.2.

3.3.2 Elliptic flow

If presuming no fluctuations in the azimuthal plane, recall eq. (3.9) suggests that Rin
AA and

Rout
AA depend solely on even harmonics. If further drop higher order components assuming

they have much smaller magnitude comparing to v2, we get{
Rin
AA(pT ) ≈ RhAA (1 + 2v2) ,

Rout
AA(pT ) ≈ RhAA (1− 2v2) ,

(3.10)

in this limit. And the elliptic flow v2 follows from Rin
AA and Rout

AA via

v2(pT ) =
1

2

Rin
AA(pT )−Rout

AA(pT )

Rin
AA(pT ) +Rout

AA(pT )
. (3.11)

We compute in CUJET2.0 pion v2’s using eq. (3.11) for RHIC Au+Au 200AGeV and LHC

Pb+Pb 2.76ATeV, central b = 2.4 fm and semi-peripheral b = 7.5 fm collisions. The results

are shown in figure 10, and corresponding ALICE [2], ATLAS [4], CMS [6], and PHENIX [9]

data are compared.

Figure 10 shows that if varying solely the maximum coupling constant αmax from 0.20

to 0.35 with 0.01 steps in the CUJET2.0 HTL scenario, none of the theoretical curves
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Figure 10. CUJET2.0 pion single particle anisotropy v2 versus pT in RHIC Au+Au 200AGeV

(top panels) and LHC Pb+Pb 2.76ATeV (bottom panels), central (b = 2.4 fm, left panels) and

semi-peripheral (b = 7.5 fm, left panels) collisions. The theoretical calculations are compared with

PHENIX [9] Au+Au 200AGeV π0v2 with 0-10% (top left) and 20-30% (top right) centrality, and

ALICE (v2{4}, |η| < 0.8) [2], ATLAS (|η| < 1) [4] and CMS (|η| < 1) [6] Pb+Pb 2.76ATeV h±v2
with 0-10%(ATLAS,CMS)/5-10%(ALICE) (bottom left) and 20-30% (bottom right) centrality. The

hydro profile being used is the same as in figure 3. The maximum coupling constant αmax is varied

from 0.20 to 0.35 with 0.01 steps in the CUJET2.0 HTL scenario, but as already noted in figure 8,

none would be in perfect agreement with experimental data. Nevertheless, by taking into account at

most 10% αmax azimuthal variation which is discussed in section 3.3.1, after constraining CUJET2.0

HTL model at RHIC with αmax = 0.26 for Rin
AA and αmax = 0.29 for Rout

AA when b = 2.4 fm,

αmax = 0.23 for Rin
AA and αmax = 0.26 for Rout

AA when b = 7.5 fm, the CUJET2.0 theoretical

v2’s (dashed black) are excellently consistent with LHC measurements in both central and semi-

peripheral collisions.
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χ2/d.o.f. (b = 7.5 fm) v2, RHIC v2, LHC RAA, RHIC RAA, LHC

αin
max = 0.23, αout

max = 0.23 3.72 43.03 0.93 0.73

αin
max = 0.26, αout

max = 0.26 2.06 24.89 0.23 1.06

αin
max = 0.23, αout

max = 0.26 0.50 4.92 0.42 0.54

Table 3. χ2/d.o.f. for v2 and azimuthally averaged RAA in semi-peripheral b = 7.5 fm collisions at

RHIC Au+Au 200AGeV and LHC Pb+Pb 2.76ATeV, with different choices of αmax values for Rin
AA

(αin
max) and Rout

AA (αout
max) in the CUJET2.0 HTL scenario. Reference curves are shown in figure 4,

figure 8, and figure 10. The pT > 8 GeV range is chosen for both RHIC RAA and LHC RAA for

safer preservation of eikonal and soft approximations, pT > 8 GeV and pT > 12 GeV range is chosen

for RHIC v2 and LHC v2 to avoid the avalanche region. The choice of αin
max = 0.23, αout

max = 0.26

significantly reduces the χ2/d.o.f. for v2 at both RHIC and LHC, especially the latter one. By the

mean time, this set of αmax parameters maintains almost perfect agreement with both RHIC and

LHC for azimuthally averaged RAA.

matches the single pion v2 at both Au+Au 200AGeV and Pb+Pb 2.76ATeV, central

and semi-peripheral collisions. Nevertheless, as already noted in section 3.3.1, due to the

non-negligible influence that anisotropy and heterogeneity/inhomogeneity have on the jet-

medium interaction, local effects can alter the CUJET2.0 framework significantly. Under

present circumstances that the strong coupling running has no simultaneous energy and

local temperature dependence, these effects can effectively generate azimuthally anisotropic

path averaged αmax.

By choosing αmax = 0.26 Rin
AA and αmax = 0.29 Rout

AA for b = 2.4 fm, αmax = 0.23 Rin
AA

and αmax = 0.26 Rout
AA for b = 7.5 fm in the CUJET2.0 HTL scenario, we effectively con-

strained our model at RHIC with assumed azimuthal αmax anisotropy caused by possible

local temperature field effects. The top panels of figure 10 show the consequential single

pion v2’s at RHIC central and semi-peripheral collisions are compatible with respective

experimental measurements, as expected. More importantly, if extrapolate the same CU-

JET2.0 framework (with azimuthal dependence of αmax) to LHC and calculate the single

particle v2 using the same αmax parameter set, theoretical results show even better agree-

ments with ALICE, ATLAS and CMS data, in both central and semi-peripheral collisions

(particularly the latter, cf. table 3).

The consistency, of the open heavy flavor and heavy flavor lepton’s single particle

azimuthal anisotropy calculated in the same CUJET2.0 framework (with azimuthal varia-

tions), with experimental measurements can shed light on the underlying physics for this

azimuthal variation of path averaged coupling strength.11

A mini-summary of section 3.3: by allowing the maximum coupling constant αmax to

vary by even less than 10% in respective reaction plane at central and semi-peripheral

collisions, we can gain in CUJET2.0 the simultaneous compatibility with not only mea-

11Note by allowing azimuthal variation of the coupling strength, the prediction power of CUJET2.0 model

is not jeopardized. We have shown that by fixing αmax for in-plane/out-of-plane at RHIC, the extrapolation

of R
in/out
AA (pT ) to LHC is in agreement with data. It means that we can use CUJET2.0 to fit RHIC at a

particular centrality, then extrapolate it to predict LHC, or vice versa. Moreover, provided the built-in mass

hierarchy in the CUJET2.0 model, we can extrapolate vπ2 (pT ) to predict vD,B,e
−

2 (pT ) at various centralities

at both RHIC and LHC. This will be presented in [86].
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surements of Rin
AA and Rout

AA at RHIC, but also effective Rin
AA and Rout

AA (measurements of

v2 and averaged RAA) at LHC, while maintaining χ2/d.o.f. < 1.5 for azimuthally averaged

RAA in both central and semi-peripheral collisions at RHIC and LHC.

4 Further discussion

4.1 Thermalization time

At very early time of relativistic heavy-ion collisions, the matter created during the colli-

sion is characterized by extremely high energy densities. While it expands, and the gluon

density decreases, the strength of interaction among particles increases, facilitating the

thermalization process into quark gluon plasma. The time scale over which the thermal-

ization process takes place is generally referred to as τ0 and is assumed to be approximately

equal to 0.5 ∼ 1 fm/c.

Once the plasma has reached the thermalized stage, the system can be approximated by

a fluid and its evolution can be computed in the framework of relativistic hydrodynamics.

The fundamental equations of energy-momentum and baryon number conservation are

assumed to hold.

In CUJET2.0, the initial time τ0 is set to be 0.6 fm/c to match the choice of VISH2+1,

which generates 2+1D viscous hydrodynamical fields as a bulk background in the parton

shower modification. Additionally, the temporal evolution of the system is parametrized

in such a way that the density “seen” by the jet grows linearly until the full thermalization

is reached, and decreases as 1/τ thereafter (cf. eq. (2.15) and appendix I).

In a recent paper by Song et al. [94], the authors found in VISHNU, where a UrQMD

hadronic afterburner is coupled to VISH2+1, that to simultaneous fit RHIC and LHC par-

ticle production spectrum and all order collective flow harmonics, the initial time needs

to be increased to 0.9 fm/c. We are therefore motivated to explore the effect of longer

thermalization time, and to do so we modify the initial time τ0 to be 0.9 fm/c at LHC con-

ditions in CUJET2.0. The theoretical results compared with corresponding experimental

data are shown in the bottom left and bottom right panel of figure 11.

As illustrated in the bottom left panel of figure 11, with this increase in initial time,

the suppression of pion at LHC slightly diminishes, which is understood by the fact that

longer thermalization time in the linear scheme (cf. appendix I) will create dilutely dis-

tributed scattering centers. Meanwhile, in the bottom right panel of figure 11, the best fit

CUJET2.0 HTL αmax for LHC Pb+Pb 2.76ATeV central collisions gains by 0.02 because

of the prolonged τ0. Since the typical temperature range reached by LHC is higher than by

RHIC, one would expect there is more reduction of density because of the τ0 growth at LHC

than at RHIC. Therefore, to maintain the same quenching magnitude with τ0 = 0.9 GeV/c

the increase of αmax at RHIC will be smaller than LHC. This τ0 effect can hence result

in a lessened gap between the best fit value of CUJET2.0 HTL αmax at RHIC and LHC

central collisions.

However, if adding the hadronic afterburner to VISH2+1 as in VISHNU, the bulk

evolution profile would be significantly different, which may or may not invalidate the

above argument. Therefore a thorough test with a complete VISHNU code coupled to

CUJET shall be conducted before drawing any positive conclusions.
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Figure 11. (top panels) CUJET2.0 pion RAA with non-HTL fE = 2, fM = 0 and maximum

coupling strength αmax = 0.30 ∼ 0.60 in central b = 2.4 fm collisions compared with PHENIX [7,

10] π0RAA in Au+Au collisions at 200AGeV with 0-5% centrality (top left), and ALICE [3] and

CMS [5] h±RAA in Pb+Pb collisions at 2.76ATeV with 0-5% centrality (top right). (Bottom Left)

CUJET2.0 results of inclusive pion RAA with initial time τ0 = 0.6 fm/c (solid curves) and 0.9 fm/c

(dashed curves), scattering potential parameter fE = 1, fM = 0, and maximum coupling strength

αmax = 0.24 ∼ 0.30 in central b = 2.4 fm collisions with LHC conditions comparing with ALICE [3]

and CMS [5] h±RAA in Pb+Pb collisions at 2.76ATeV with 0-5% centrality. (Bottom Right)

exp(−χ2/d.o.f.) calculated from the non-HTL model, the longer initial time scenario, as well as

HTL models as a function of αmax values at RHIC and LHC. Data from pT > 8GeV/c are used.

All hydro evolution profiles being used are the same as in figure 3, however calculations in this

figure has fragmentation temperature Tf = 100 MeV. The experimental results prefer the HTL

picture, and larger initial time can improve the model consistency at RHIC and LHC.
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4.2 Non-HTL scenario

Experimental RAA data favors maximum running strong coupling αmax = 0.25 − 0.27 in

the CUJET pQCD model with dynamical QCD medium and 1-loop HTL gluon propaga-

tor, i.e. a thermal gluon with mass mg = (fE)
(
gT
√

1 + nf/6
)
/
√

2 and fE = 1. However,

lattice QCD calculation suggests this approximation breaks down in the non-perturbative

region [93]. We therefore vary the HTL deformation parameters (fE , fM ) in CUJET2.0

from HTL (1, 0) to a non-HTL (2, 0) to explore this effect. The consequential pion RAA re-

sults are shown in the top left, top right, and χ2/d.o.f. are shown in the bottom right panel

of figure 11.

With dynamical scattering potential and doubled thermal plasmon gluon mass in CU-

JET2.0, a novel inversion of RAA for pion suppression pattern appears: when increase

αmaxfrom 0.30 to 0.60, pion RAA first decreases then increases, with the strongest quench-

ing occurs at αmax=0.4, which is also the best fit to experimental data. This inversion is

generated from a complex interplay between the reduced differential scattering cross sec-

tion with an enlarged gluon mass and the variation of running coupling saturation scale

Qmin with αmax (Qmin = ΛQCDExp{2π/9αmax}). And at present stage there is no simple

asymptotic analytical formula to track this non-HTL scenario in CUJET2.0.

On the other hand, concentrating on the χ2/d.o.f. fit of this non-HTL scenario whose

gluon mass is doubled, in the bottom right panel of figure 11 the best fit non-HTL αmax=0.4

still has a large χ2/d.o.f., implying the necessity to explore more complicated combination

of HTL deformation parameters in CUJET2.0, e.g. fE = 2, fM = 0.6. In fact, a realistic

non-HTL scenario would eventually have an effective running coupling and a effective

scattering potential extracted from lattice QCD data on non-perturbative qq̄ potential

V (r, T ). And a comprehensive test of whether lattice QCD predicts the correct jet medium

physics in the near Tc non-perturbative region can be conducted in the CUJET framework.

This is a work in progress.

5 Summary and outlook

We presented in this paper the basic features of CUJET2.0 pQCD azimuthal jet flavor

tomography model, which features DGLV opacity series with multi-scale running coupling

and 2+1D viscous hydrodynamical fields, as well as the TG elastic energy loss; geometry,

radiative energy loss and elastic energy loss fluctuations; and the convolutions of energy

loss probablity distributions with initial production spectra and fragmentation functions.

We list our main results and conclusions with CUJET2.0, derived through focusing on

CUJET2.0 itself, or through cross comparison with CUJET1.0, as follows:

1. Rigorous χ2/d.o.f. analysis indicates CUJET2.0 inclusive pion RAA calculated with

maximum coupling constant αmax = 0.25 − 0.27 in a dynamical QCD medium with

HTL approximation is strictly consistent with both RHIC Au+Au 200AGeV π0RAA
and LHC Pb+Pb 2.76ATeV h±RAA in both central and semi-peripheral collisions at

the level of average χ2/d.o.f. < 1.5. If limit average χ2/d.o.f. < 2, αmax = 0.23−0.30.
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2. The effect of the multi-scale running strong coupling and the transverse expanding

medium in CUJET2.0 combined to give rise to better agreement between theoretical

results and LHC experimental charged hadron RAA’s steep rising and subsequent

flattening signatures.

3. The small value of best fit αmax in the CUJET2.0 HTL scenario implies that longer

jet path length in a transversely expanding medium overrides the reduction of density

and contributes to overall enhanced quenching.

4. CUJET2.0 effective jet transport coefficient q̂/T 3 is consistent with not only LO

pQCD estimates, but also the q̂/T 3’s extracted from HT-BW, HT-M, MARTINI

and McGill-AMY models fitting to the same set of experimental hadron suppression

factors at RHIC and LHC A+A central collisions [49].

5. The robust crossing pattern of π, D, B, e− RAA’s is rigorously encoded in the flavor

dependent energy loss structure of DGLV opacity expansion combined with TG elastic

sector, and a transverse expanding medium has minor effect on this mass hierarchy.

6. Solutions to the “heavy quark puzzle” are intrinsically integrated in the framework of

CUJET, through the inclusion of elastic energy loss, dynamical QCD medium effect,

realistic geometry fluctuation, and energy loss fluctuations.

7. CUJET2.0 predicts a decisively less quenched B meson RAA which is well above D

meson and pion at 5 GeV < pT < 15 GeV, as well as a critical alternation of RAA’s

mass ordering from B > e− > D at pT < 15 GeV to e− > B > D at pT & 25 GeV.

8. We explored the effect of allowing αmax to vary minimally in different azimuthal

directions. We find that even a less than 10% variation in the averaged coupling

strength along in and out of plane paths reduces dramatically the χ2/d.o.f. for the

v2 fit at both RHIC and LHC, and at the same time, azimuthally averaged RAA re-

sults are consistently in agreement with experimental measurements at the level of

χ2/d.o.f. < 1.5. The underlying physics responsible for this local effect is subject to

feature explorations.

Future work of, improvement on and more thorough test with CUJET2.0 can be made

in the following aspects:

• Calculate the open heavy flavor and heavy flavor lepton’s single particle azimuthal

anisotropy in the azimuthal dependency included CUJET2.0 framework and compare

with existent experimental results to explore the underlying physics responsible for

azimuthal αmax variations.

• Extrapolate an effective running coupling and an effective scattering potential from

lattice QCD qq̄ free energy [93] to replace the corresponding running strong coupling

and differential cross section in CUJET2.0 to explore non-perturbative jet medium

physics near Tc.
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• Integrate Shuryak and Liao’s model [95–97] of near Tc enhancement of jet-medium

interactions in CUJET2.0 to explore non-perturbative local effect. Enhancement of

coupling strength originating from non-perturbative structures, created by the color-

electric jet passing a plasma of color-magnetic monopoles, dominate the near-Tc

matter and could contribute to significant azimuthal variation of αmax.

• Replace the presently assumed Poisson multiple gluon emission distribution with

other radiative energy loss fluctuation patterns to explore the role that fluctuations

play on jet quenching pattern and azimuthal anisotropy.

• Consider more carefully the effects that running scale variations have on hadron

spectra and collective flow harmonics. Introduce effective running coupling for each

interference term in the summation of current amplitude in the DGLV opacity ex-

pansion.

• Calculate RAA and v2 in CUJET2.0 with other hydro evolution profiles such as Luzum

and Romatschke hydro [69, 70], VISHNU [94] and 3+1D idea hydro.

• Improve the structure and algorithm of the CUJET2.0 Monte-Carlo code to realize

the calculation of jet-hardron correlation observables [98–100]. Constrain the hydro

ambiguity and gain comprehensive information about the parton-medium interaction

mechanism through azimuthal jet flavor tomography.
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A Notations and conventions

We adopt the following notations and conventions throughout this paper, unless otherwise

footnoted:

When considering experimental observables in an A+A collision, for example hadron

suppression and/or azimuthal anisotropy, z-axis is chosen along the beam direction, and

azimuthal plane refers to the plane transverse to the beam axis. In particular, we always

define pT as the transverse momentum perpendicular to the beam direction. Besides pT ,
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physical quantities or concepts involving such coordinates include rapidity/pseudorapidity,

bulk evolution profile, jet production distribution, etc.

When considering properties of a single jet, such as quenching in QGP, we choose the

jet propagation direction as the “z-axis” and define the transverse plane accordingly. This

coordinate system applies most importantly to the calculation of radiative and elastic en-

ergy loss. Take the scattering with a parton in a particular rapidity frame with a transverse

momentum exchange q as an example, we denote q as four vector qµ, ~q as q’s 3D space

components, and q as ~q’s transverse components with respect to the z-axis, i.e. the jet

propagation direction. q ≡ qµ = (q0, ~q) = (q0, qz,q), and q⊥ ≡ |q|. Similar notations are

also applied to kµ, εµ, Jµ, etc.

Our discussions and calculations are within 4D Minkovski spacetime with signature

(+,−,−,−). The spacetime coordinates are ordered as (x0, x1, x2, x3) = (t, z, x, y). We

use light-cone coordinates with metric ds2 = dx+dx− − δijdxidxj , where i, j = 2, 3, and

x+ = x0 + x1, x− = x0 − x1.

B Review of fixed coupling DGLV

The DGLV opacity expansion [30–32, 101] is a theory encompassing inelastic parton-

medium interactions and describing gluon radiations in the pQCD framework. As in

the WHDG [33] generalization of DGLV, CUJET1.0 and 2.0 supplement the radiative

jet-medium interactions with TG [102] elastic collisional energy loss in the color medium

(section B.2).

The main computational task performed in CUJET via Monte-Carlo integration is

to evaluate the number of radiated gluons per energy fraction dNg/dx for each initial jet

production coordinates (x0, n̂).12 After that the average inclusive gluon radiation dis-

tribution is calculated, fluctuations due to multiple gluon emission is computed via nu-

merical convolution assuming uncorrelated Poisson ansatz, and the normalized radiation

probability, Prad(∆Erad, E0; x0, n̂)) is evaluated via fast Fourier transform including delta

function end point singularities (section B.3.1). Normalized elastic energy loss probabil-

ity, Pel(∆Eel, E0; x0, n̂)) is also computed with Gaussian multiple collision fluctuations

(section B.3.2). The final total energy loss probability distribution is the convolution of

radiative and elastic sector, Prad ⊗ Pel (section B.4.1), it is then folded over the initial

quark jet spectrum dNpp/d
2pTdη (section B.4.2). Finally CUJET averages over inital jet

configurations via
∫
d2xdn̂TA(x + b/2)TA(x−b/2) and fragments jets into different flavor

hadrons or leptons to compare with data (section B.4.3).

B.1 Radiative energy loss in fixed coupling dynamical scattering DGLV

The GLV opacity expansion model was developed by Gyulassy, Levai and Vitev [30, 31],

built upon the foundations of the Gyulassy-Wang (GW) potential [29], it expresses the

partonic energy loss as a series in powers of the opacity L/λ, where L indicates the size of

the plasma and λ the mean free path of the parton. At nth order in opacity, one considers n

12This is the 2D azimuthal plane with respect to the beam axis.
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scatterings between the parton and the medium. This is often referred to as a thin plasma

approximation, which is valid for small values of opacity, as opposed to the thick plasma

limit where multiple soft scatterings apply.

The interaction between parton and medium is modeled according to a GW [29] Debye

screened potential with screening mass µ. µ is considered a fundamental property of the

plasma along with the medium density ρ. Both of them are expressed as functions of the

local temperature T in the system. GLV model includes the power-law tail of the scattering

cross section, thus scatterings with large momentum transfer (hard) are taken into account.

There are three major kinematic assumptions made in the GLV theory: soft eikonal

approximation, collinear radiation and discrete scattering centers. Details of them are

listed below:

• Eikonal approximation: both the parton energy E and the emitted gluon energy ω

are much larger than the transverse momentum exchanged with the medium q⊥ ≡ |q|:
E � q⊥ and ω � q⊥. Soft approximation assumes ω � E.

• Collinear radiation: gluons are emitted at small angles with respect to the parent

parton: ω � k⊥, where k⊥ ≡ |k| represents the transverse momentum of the gluon.

• Discrete scattering centers: the mean free path λ is much larger than the Debye

screening length 1/µ, λ� 1/µ.

Under the soft eikonal approximation, the parent parton has sufficiently high energy such

that its path is approximately straight. The gluon, which is radiated at small angles, does

not carry away a significant portion of the original parton energy, and consequently the jet

energy is not dynamically updated during the multiple scattering process.

The most remarkable features of the gluon radiation spectra in the GLV opacity ex-

pansion theory comprise the interference effects between production (vertex) radiation and

induced radiation, and the interference effects among subsequent scatterings of the radi-

ated gluon in the plasma (quantum cascade). These effects lead to an expression for the

double-differential gluon multiplicity distribution in x (fractional gluon energy) and k⊥
(gluon transverse momentum), which is later integrated to give rise to the energy loss of

the parent parton assuming no further exchange of energy with the medium takes place.

An extension of the GLV model to include massive quarks kinematic effects as well as

plasmon mass for the gluons was developed by Djordjevic and Gyulassy in [32] (DGLV).

The full derivations can be found in the original papers [30–32]. Here we will only show

the main results and provide their physical interpretations.

In the soft eikonal approximation used to derive DGLV, the incoming jet, gluon and

exchanged four momenta read

p = (E,E, 0) = [2E, 0, 0] ,

k = (ω = xEE,
√

(xEE)2 − k,k) = [x+E
+, k2

x+E+ ,k] ,

q = (q0, qz,q) ,

(B.1)
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where parenthesis and square brackets denotes Minkowski spacetime and light-cone coordi-

nates respectively. In the above expressions we have suppressed the effective gluon plasmon

mass mg = µ/
√

2 as well as the the parton mass M . In the static scattering center approx-

imation q0 ∼ qz � |q|. The gluon fractional energy xE and fractional plus-momentum x+

are related via

x+(xE) =
1

2
xE

1 +

√
1−

(
k⊥
xEE

)2
 . (B.2)

In the pure collinear limit, they coincide. Corrections need to be made for finite emission

angles, which involve variations in the upper kinematic integration limit and the Jacobian

of the transformation x+ → xE :

J(x+(xE)) ≡ dx+

dxE
=

1

2

1 +

(
1−

(
k⊥
xEE

)2
)−1

 . (B.3)

A detailed discussion about this issue can be found in appendix D.

The double-differential gluon multiplicity distribution in x+ and k, for DGLV opacity

order n = 1, i.e. the case that the hard parton scatters one single time with weakly-coupled

static quasi-particles in the deconfined thermal medium, is given by

dNn=1
g

dx+dk
=
CRαs
π2

1

x+

(
L

λg

)∫
dq |v̄(q)|2

× −2(k− q)

(k− q)2 + χ2

(
k

k2 + χ2
− (k− q)

(k− q)2 + χ2

)
×
(

1− cos

(
(k− q)2 + χ2

2x+E
∆z1

))
,

(B.4)

with the normalized modular squared scattering potential in a static QCD medium being

|v̄(q)|2 =
µ2

π(q2 + µ2)2
. (B.5)

Here CR is the quadratic Casimir of the jet (CF = 4/3 for quark jets, CA = 3 for gluon jets),

αs = g2/4π is the strong coupling constant, and L is the jet path length. Note that the

opacity is written in terms of the gluon rather than the jet mean free path, λg, because of a

simplification in the color algebra known as “color triviality” [31]. χ2 = M2x2
++m2

g(1−x+)

controls the “dead cone” (cf. appendix D) and LPM destructive interference effects due to

both the finite quark current, M , and the thermal gluon massmg = µ(T )/
√

2. ∆z1 = z1−z0

represents the distance between the scattering points z1 and z0 (production vertex).

The DGLV all-orders result expresses an arbitrary opacity order in a closed form, for

an arbitrary collision probability along the jet path. It is applicable for both coherent and
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incoherent geometries (cf. appendix C). The gluon multiplicity distribution takes the form:

dNn
g

dx+dk
=
CRαs
π2

1

x+

1

n!

(
L

λg

)n ∫ n∏
i=1

(
dqi

(
|v̄i(qi)|2 − δ2(qi)

))
× −2 C(1···n) ·

n∑
m=1

B(m+1···n)(m···n)

×

(
cos

(
m∑
k=2

Ω(k···n)∆zk

)
− cos

(
m∑
k=1

Ω(k···n)∆zk

))
,

(B.6)

and the normalized modular squared potential for ith static scattering center is

|v̄i(qi)|2 =
µ2
i

π(q2
i + µ2

i )
2
. (B.7)

This interacting potential has the form of the Debye screened Gyulassy-Wang potential

(cf. [29]), and forward scattering unitarity correction δ2(qi) is subtracted from it. ∆zk =

zk − zk−1 represents the distance between adjacent scattering points zk and zk−1. The

kinematic current amplitudes in eq. (B.6) are modified versions of the Hard, Gluon-Bertsch

and Cascade terms in GLV theory (cf. [31]), for finite masses:

C(1···n) =
k− q1 − · · · − qn

(k− q1 − · · · − qn)2 + χ2

H =
k

k2 + χ2

B(i) = H−C(i)

B(1···m)(1···n) = C(1···m) −C(1···n) ,

(B.8)

with χ2 = M2x2
+ + m2

g(1 − x+) and mg = µ(T )/
√

2.
∑1

2 ≡ 0 and B(n+1···n)(n) ≡ B(n) is

understood. The inverse of formation time Ω is given by

Ωm···n =
(k− qm − · · · − qn)2 + χ2

2x+E
, (B.9)

which regulates the LPM phase of color currents.

In principle, the opacity series should be calculated to sufficiently high order to generate

the “exact” prediction of experimental observables. However, the numerical power required

to drive the computation at such high levels of precision might prove to be insufficient to

calculate more complex observables than the simple energy loss for one specific plasma

setup. A limitation of this kind would indisputably hinder the capabilities of our algorithm

and limit its predictive power. Thus one has to quantify the error introduced by eventually

limiting the computations to lower orders in opacity, and in appendix C we conduct such

a systematic study of the convergence of the DGLV opacity series. There we demonstrate

that despite another set of observables might scale differently with the opacity, for the

purpose of computing the energy loss of different quark flavors, truncating the series at

first order already does not add a relevant source of systematic uncertainty. Therefore,

unless otherwise stated, all the calculations presented in this paper will be at n = 1 order.
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After computed the differential gluon multiplicity distribution according to eq. (B.4),

we then want to integrate over k to get the gluon radiation spectrum xEdNg/dxE via

xE
dNg

dxE
=

∫
dk

(
x+

dNg

dx+dk
(k, x+(xE))

)(
xE

x+(xE)

)
J(x+(xE)) , (B.10)

where x+(xE) and J(x+(xE)) are defined in eq. (B.2) and (B.3) respectively. The lower

integration limit for k⊥(≡ |k|) is kMIN
⊥ = 0. The upper kinematic limit kMAX

⊥ is restricted

by forward gluon emission and varies with the interpretation of x. We set kMAX
⊥ = xEE,

and leave the discussion of systematic uncertainties relevant to this kinematic boundary to

appendix D.

To account for generic space-time dependent plasma geometries in eq. (B.4) and (B.6),

consider a jet created at x0 ≡ (x0,y0) pointing along n̂ ≡ (cosφ, sinφ) direction in the

transverse azimuthal plane with respect to the beam axis, we define

z ≡ (x0 + n̂(φ)τ ; τ) = (x0 + τ cosφ, y0 + τ sinφ; τ) (B.11)

as its coordinates after traveled time τ . The medium seen by the jet has number density

ρ(z). Since jet travels at approximately the speed of light, in a static medium, the opacity

can be expressed as
L

λg
−→

∫ L

0
dτ ρ(z)σel(z) , (B.12)

and at higher orders,

1

n!

(
L

λg

)n
−→

∫ L

0
dτ1 ρ(z1)σel(z1) · · ·

∫ L

τn−1

dτn ρ(zn)σel(zn) . (B.13)

Here the elastic cross section for gluon σel(z) can be expanded into gluon-quark and gluon-

gluon terms, i.e.

1

λg
= σgq(z)ρq(z) + σgg(z)ρg(z) =

2π α2
s

µ2(z)
ρq(z) +

9

4

2π α2
s

µ2(z)
ρg(z) , (B.14)

where µ2(z) = g2T (z)2 (1 + nf/6) = 4παsT (z)2 (1 + nf/6) is the squared local HTL color

electric Debye screening mass in a plasma with number of flavors nf and local temperature

T (z) ∝ ρ(z)1/3 along the jet path z through the plasma. Assuming ideal gas conditions,

from the boson/fermions statistics we obtain the number density of quark ρq(z) and gluon

ρg(z) is respectively

ρq(z) =
9nfζ(3)

π2
T 3(z) ,

ρg(z) =
16ζ(3)

π2
T 3(z) .

(B.15)

Combining eq. (B.14) and (B.15), we have

1

λg
= 18

π α2
s

µ2(z)

4 + nf
16 + 9nf

ρ(z) = 3αs T (z)

(
6
ζ(3)

π2

1 + nf/4

1 + nf/6

)
, (B.16)

with ρ(z) = ρq(z) + ρg(z).
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To get the DGLV gluon radiation spectrum at the first order in opacity, combine

eq. (B.4), (B.10), (B.12), and (B.16) together, we get

xE
dNn=1

g

dxE
(x0, φ) =

18CRα
3
s

π2

4 + nf
16 + 9nf

∫
dτ ρ(z)

∫
dk

∫
dq |ṽ(q)|2

× −2(k− q)

(k− q)2 + χ2(z)

(
k

k2 + χ2(z)
− (k− q)

(k− q)2 + χ2(z)

)
×
(

1− cos

(
(k− q)2 + χ2(z)

2x+E
τ

))
×
(
xE
x+

)
J(x+(xE)) .

(B.17)

This is the DGLV n = 1 kernal in fixed coupling CUJET. Recall CR is the quadratic

Casimir of the jet (CF = 4/3 for quark jets, CA = 3 for gluon jets). Local χ2(z) =

M2x2
++m2

g(z)(1−x+), with M being the mass of the parton, gluon mass mg(z) = µ(z)/
√

2,

and Debye mass

µ2(z) = g2T (z)2 (1 + nf/6) = 4παsT (z)2 (1 + nf/6) . (B.18)

For a static QCD medium, |ṽ(q)|2 is defined via13

|ṽ(q)|2 =
1

(q2 + µ2)2
. (B.19)

The total energy ∆E carried away by the emitted gluons is obtained by integrating the

radiation spectrum, eq. (B.17). Assuming no further interaction between jet and medium,

this can readily been interpreted as the energy loss that the jet suffers when propagates

through a hot deconfined plasma

∆E

E
=

∫
dxE xE

dNn=1
g

dxE
. (B.20)

If there are no kinematic boundaries on the dq and dk integrations, for a plasma with fixed

size L and constant gluon mean free path λg, a straightforward analytic computation for

this first order in opacity leads to the asymptotic result

∆E

E
=
CRαs

4

L2µ2

λg

1

E
log

E

µ
. (B.21)

We immediately notice the L2 dependence of the energy loss, this is the characteristic of

the LPM region, which differs from the incoherent limit whose dependence on L is linear.

However, as discussed previously, kinematic boundaries exist not only for the k⊥
integration (kMIN

⊥ = 0 and kMAX
⊥ = xEE), but also for the integration of transverse

momentum transfer q⊥(≡ |q|), for which we choose qMIN
⊥ = 0 and set the upper limit

qMAX
⊥ = min

(
k⊥,

√
4ET (z)

)
.

13Note we define |ṽ(q)|2 as the normalized squared scattering potential from now on, distinguish from

|v̄(q)|2 which is defined via eq. (B.7).
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The (x0, φ) dependence of xEdN
n=1
g /dxE in eq. (B.17) comes from the z coordinates

(eq. (B.11)), and strictly speaking,

xE
dNn=1

g

dxE
= xE

dNn=1
g

dxE
(xE ; x0, φ;M,E;αs;L, nf ) . (B.22)

i.e. the radiated gluon spectrum for a quark/gluon jet with mass M and energy E(≡
E0) created at x0 position in the transverse plane along azimuthal angle φ has explicit

dependence on the strong coupling constant αs, jet path length L and number of quarkonic

flavors nf .14 In CUJET calculation, we take into account fluctuations of the geometry by

cutoff the dτ integral at τMAX , with T (z)|τMAX = Tf . By doing so the L dependence turns

into a fragmentation temperature Tf dependence. We leave the discussion of the systematic

uncertainties associated with varying Tf and nf to appendix E. There we show the variation

of jet quenching spectra originating from both of them can be fully absorbed into a simple

rescaling of αs. This makes αs
15 the only free parameter of CUJET calculation in a static

QCD medium, in which case the radiative energy loss reads

∆Erad(x0, φ;M,E0;αs) =

∫ 1

0
dxExE

dNn=1
g

dxE
(xE ; x0, φ;M,E;αs) . (B.23)

However, in such a deconfined medium consisting of randomly distributed static scat-

tering centers, the collisional energy loss is exactly zero. This contradicts recent calculations

which show elastic collisional contribution is important and comparable to the radiative

energy loss [33]. Therefore, the natural improvement on the DGLV opacity expansion is to

consider a dynamically screened QCD medium. The inclusion of these dynamical effects

is achieved by computing the scattering QCD diagrams in a finite temperature field the-

ory framework, using Hard Thermal Loop resumed propagators for all gluons. The quark

gluon plasma is assumed to be thermalized at temperature T and has zero baryon density.

Details of the computations can be found in original papers [45, 103–106].

The dynamical QCD medium brings two major corrections to the DGLV radiated

gluon number distribution eq. (B.17): firstly, the effective dynamical mean free path for

gluon λdyn, which is defined as λ−1
dyn ≡ 3αsT , will replace its static counterpart λg(≡ λstat)

in eq. (B.4). According to eq. (B.16), they are related via

λdyn = c(nf )λstat =

(
6
ζ(3)

π2

1 + nf/4

1 + nf/6

)
λstat , (B.24)

with nf the number of effective quark flavors in equilibrium with the gluons in the plasma.

However, in CUJET calculations we degenerate this mean free path effect on δE/E by a

rescaling of the effective strong coupling constant, because the coefficient c(nf ) varies from

c(0) = 0.73 to c(∞) = 1.09, and does not contribute much to the energy loss compared to

the magnetically enhanced potential which will soon be discussed.

14As well as other plasma parameters such as the formation time and thermalization scheme, which are

discussed extensively in section 2.2, section 4.1 and appendix I.
15In the case of running coupling CUJET which is discussed in section 2.1, this parameter is the maximum

strong coupling constant αmax.
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Secondly and most importantly, the dynamical recoiling of color electric scattering

centers induces an effective color magnetic screening mass which is smaller than the Debye

mass, and the interaction potential

|ṽ(q)|2 =
1

q2(q2 + µ2)
. (B.25)

The implications of these changes are profound: the absence of the µ2 screening for soft

momenta exchanges q makes the potential diverges and the mean free path vanishes. In

the limit of q → 0, each individual Feynman diagram diverges logarithmically. These

singularities however cancel out after all the contributing diagrams to the energy loss are

summed over, making the gluon multiplicity finite.

The combined effect of the enhanced cross section and reduced mean free path con-

tributes to a remarkable increase for the magnitude of total energy loss and the ratio of

heavy to light quark energy loss in the dynamical framework, systematic studies of this

effect can be found in [105] and [107].

In the CUJET model, motivated by lattice QCD qq̄ potential data, we introduce an

effective interaction potential with deformation parameters (fE , fM ), it reads16

|ṽ(q)|2 =
f2
E − f2

M

(q2 + f2
Eµ

2)(q2 + f2
Mµ

2)
. (B.26)

Here the HTL deformation parameters (fE , fM ) are used to vary the chromo-electric and

chromo-magnetic screening scales relative to HTL. In principle, HTL deformations could

also change mg(T ). The default HTL plasma is (1, 0), but we also consider a deformed

(2, 0) non-HTL plasma model which will be discussed in section 4.2. (αs,
17 fE , fM ) are

therefore our main model space control parameters.

B.2 Elastic energy loss

The assumption that pQCD elastic energy loss is negligible compared to radiative one is

questionable. In [109, 110], the authors found that radiative and elastic average energy

losses for heavy quarks were in fact comparable over a very wide kinematic range accessible

at the RHIC. In [33], the authors confirm these previous findings and extend them to the

light quark sector, showing that elastic contributions to the total energy loss can be of the

same order of magnitude of radiative ones.

It is then clear that quantitative tomographic predictions cannot ignore such large

contributions to jet quenching, and elastic effects need to be included in CUJET as well.

We use Thoma-Gyulassy (TG) model [102] in our calculation of the elastic energy

loss. Their work was based on Bjorken’s estimation of elastic energy loss in QGP (cf.

appendix F). By using the hard thermal loop gluon propagators to provide a more natural

infrared regulator, the TG computation leads to the following leading log result:

dE

dx
= −CRπα2

sT
2

(
1 +

2

6

)(
1

v
+
v2 − 1

2v2
log

1 + v

1− v

)
log

(
kmax

µ

)
. (B.27)

16A similar effective potential is proposed by authors in [88, 108].
17In the case of running coupling CUJET which will be discussed in section 2.1, this parameter is the

maximum strong coupling αmax.
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Where x is the jet path. For ultra-relativistic particles, the velocity v can be approximated

to 1 and the v-dependent factor in parenthesis becomes approximately 1. The integral over

k is infrared finite due to the Debye screening mass in the denominator, but a maximal

momentum kmax must be set in order to screen the otherwise ultraviolet divergent log-

arithm. Assuming that the maximal momentum transfer comes from forward scattering

against target particles with average momenta q ≈ 2T is much smaller than the projectile

momentum, the value of kmax is 4Tp/(E − p+ 4T ), with p =
√
E2 −M2.

We immediately see that this model yields a result very similar to the Bjorken com-

putation, eq. (F.6), i.e.

dE

dx
= −CRπα2

sT
2
(

1 +
nf
6

)
logB , (B.28)

with a different Coulomb log that reflects the more natural cutoffs which are being used

now:

log

(
kmax

µD

)
≡ log

(
4Tp

(E − p+ 4T )µ

)
. (B.29)

For the elastic energy loss sector in CUJET, assuming jet travels at the speed of light,

combining eq. (B.27), (B.28) and (B.29), we get the following equation to account for

collisional effects:

dE(z)

dτ
= −CRπα2

sT (z)2
(

1 +
nf
6

)
log

 4T (z)
√
E(z)2 −M2(

E(z)−
√
E(z)2 −M2 + 4T (z)

)
µ(z)

 . (B.30)

Here CR is the quadratic Casimir of the jet (CF = 4/3 for quark jets, CA = 3 for gluon

jets). z and µ(z) are defined according to eq. (B.11) and (B.18) respectively. T (z) is

temperature profile of the medium. To compute elastic energy loss in CUJET, we solve

recursively eq. (B.30), with initial condition E(z)|τ=0 = E0 and evolve τ to a cutoff τmax

which is related to the fragmentation temperature Tf via T (z)|τ=τmax = Tf , i.e.

∆Eel(x0, φ;M,E0;αs) = E(τ ; x0, φ;M,E0;αs)|τ=τmax
τ=0 =

∫ τmax

0
dτ
dE(z)

dτ
. (B.31)

Note similar to radiative energy loss, the nf and Tf dependence of elastic energy loss is

absorbed into the αs degree of freedom. The recursive scheme is stopped when E(z) drops

below M and returns maximum energy loss ∆Emax = E0 −M , even if τ does not reach

τmax. If local temperature T (z)|τ=τ0 = 0 for some τ0, the scheme will skip computing

dE/dx and keep evolving τ .

Despite its improvement over the Bjorken result, the TG model leaves the ultraviolet

region unbounded, because the classical calculation has no knowledge about the particle

nature of the medium and particle recoil, which becomes important when the momentum

transfer q is large. The hard momentum transfer contribution is more naturally taken

into account by Braaten and Thoma in [111, 112], but relevant analysis shows that the

differences in practical applications are almost negligible.

We include here for clarity the calculation of average number of collisions N̄c, which

plays an important role calculating the elastic energy loss fluctuations in section B.3.2.
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Recall eq. (B.14), (B.15) and (B.16), N̄c reads

N̄c =

∫ τmax

0
dτλ−1(z) =

∫ τmax

0
dτ

(
α2
s

µ(z)2

)(
18ζ(3)

π
(4 + nf )T (z)3

)
. (B.32)

Numerical results for elastic energy loss, especially its effects on the ratio of light to

heavy quark suppression magnitude, is discussed in appendix F.

B.3 Fluctuations

The radiative energy loss calculated from eq. (B.17)(B.26)(B.23) and elastic energy loss

calculated from eq. (B.30)(B.31) both perform full jet path integration.18 The non-uniform

medium’s fluctuating geometry due to expanding and cooling is properly embedded in the

local plasma density ρ(z) and the cutoff fragmentation temperature Tf . This jet path

integration provides a platform to quantify the effects of complicated heavy ion collision

configurations in predicting experimental observables in the pQCD framework.

Besides the geometry, fluctuations originating from multiple gluon emissions in the ra-

diative sector and multiple partonic collisions in the elastic sector also play important roles

in jet quenching, and they may significantly influence the results of hadron multiplicity and

azimuthal flow. We dedicate this section to introduce the quantification and computation

of them in CUJET.

B.3.1 Radiative energy loss fluctuation

The DGLV integrals, eq. (B.4), (B.6), (B.17) and (2.4), are constructed starting from

diagrams with only one external gluon line; multiple gluon emission can be calculated by

repeating the single gluon emission kernel in an incoherent fashion.

The simplest assumption for multiple gluon emission is the Poisson ansatz, where the

number of emitted gluons follows a Poisson distribution, with the mean number Ng given

by the integral of the gluon emission spectrum

Ng =

∫ 1

0
dxE

dNn=1
g

dxE
(xE) . (B.33)

The gluon radiation can be thought of as a stochastic event, and it makes sense to speak of

a probability distribution Prad(ε) of radiating a certain amount of energy ε ≡ ∆Erad/E0:

Prad(ε) = P null
r δ(ε) + Pr(ε) + P fullr δ(ε− εmax) , (B.34)

where the maximum energy loss ratio εmax = 1 −M/E0. For simplicity, in the discus-

sion below we suppress the n = 1 superscript of Nn=1
g and E subscript of xE and write

them as Ng and x respectively. The probability distribution eq. (B.34) is split into three

components:

The first term corresponds to the probability of zero radiation, P null
r = e−Ng .

18This is the fixed coupling case, for running coupling CUJET, radiative energy loss is calculated from

eq. (2.4)(B.23), while elastic energy loss is calculated according to eq. (2.7)(B.31).
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The second term is given by

Pr(ε) =
∞∑
n=1

Pn(ε) , (B.35)

with
P0(ε) = Pnull(ε) = e−Ng ,

P1(ε) = P0
dNg

dx
(x = ε) ,

(B.36)

and

Pn+1(ε) =
1

n+ 1

∫ 1

0
dxnPn(ε− xn)

dNg

dx
(xn) . (B.37)

We use fast Fourier transform techniques to solve this equation numerically. Denote P̃i(k)

and Pi(ε),
˜dNg
dk (k) and

dNg
dx (x) as the Fourier integral pairs, i.e.

P̃i(k) =
∫
dε eikε Pi(ε) ,

˜dNg
dk (k) =

∫
dx eikx dNg

dx (x) ,
(B.38)

we immediately get from eq. (B.35) (B.37) that

P̃r(k) =

∞∑
n=1

P̃n(k) , (B.39)

and

P̃n(k) =
1

n!

(
˜dNg

dk
(k)

)n
P0 . (B.40)

Plug eq. (B.40) into eq. (B.39), we get

P̃r(k) = P0

(
exp

(
˜dNg

dk
(k)

)
− 1

)
. (B.41)

Fourier transform back, we have

Pr(ε) =
e−Ng

2π

∫
dk e−ikε

(
exp

(∫
dx eikx dNg

dx
(x)

)
− 1

)
. (B.42)

Practically, the numerical evaluation of eq. (B.42) uses finite discrete ki and xj series, for

example, ki = −1000 + i (i = 0, 1, · · · , 2000) and xj = jσ (j = 0, 1, · · · , σ−1;σ = 0.0025),

meaning the Fourier transform in the exp(. . .) of eq. (B.42) is in fact∫
dx eikx dNg

dx
(x)→

∑
j

eikixj
dNg

dx
(xj) σ . (B.43)

The
dNg
dx (x) itself is fluctuating because of limited computing power to implement Monte-

Carlo iterations. At large |ki|, this fluctuation is worsened with the highly oscillating

eikixj , and will generate unphysical variations in Pr(ε). However, if take the
∫
dk e−ikε
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in eq. (B.42) into account, one sees components with larger |k| will have less weight in

the evaluation of Pr(ε). Therefore, we smoothfy the exp(. . .) in eq. (B.42) by adding a

Gaussian smoother with proper width, put more weight on small k Fourier components,

and modify eq. (B.42) to

Pr(ε) =
e−Ng

2π

∫
dk e−ikε

exp

∑
j

eikxj
dNg

dx
(xj) σ e−

k2σ2

2

− 1

 . (B.44)

with xj = jσ (j = 0, 1, · · · , σ−1). In CUJET, Pr(0) = 0, we use eq. (B.44) to calculate

Pr(ε) in the range of 0 < ε ≤ εmax, as well as in the range of εmax < ε ≤ εleak = 1.75 for

numerical purposes.

The third and last term in eq. (B.34) represents instead the probability of total quench-

ing. In the soft approximation, the radiated energy ω is assumed much smaller than the

initial jet energy E, and x � 1. Consequently, the energy of the outgoing parton E′ is

approximately equal to E. When the {xn} are integrated up to the kinematic limit xn = 1,

a “leakage” error into the unphysical region Pr(ε > εmax) 6= 0 occurs, and this error is

calculated in P fullr =
∫∞
εmax

dε Pr(ε).
19

For the normalization of Prad(ε) we keep the weight of the physical zero quenching

probability Pnull unchanged, and rescale the probability distribution as follows: firstly,

we calculate the norm Nrad from Nrad =
∫ εmax

0 Prad(ε). When doing this integral, the

Delta functions at both boundaries are included. Secondly, we rescale the complete Prad(ε)

according to Prad(ε) → 1−e−N̄g
Nrad

Prad(ε). And finally we replace the coefficient of δ(ε) in

Prad(ε) with zero radiation probability, i.e. 1−e−N̄g
Nrad

Pnull → e−N̄g . Through this procedure

we maintain
∫ εmax

0 Prad(ε) = 1, and the δ(ε) at the ε = 0 boundary has weight e−N̄g . If

N̄g = 0, Prad(ε) = δ(ε).

The effects of multiple gluon emission on the ratio of light to heavy quark energy loss is

a topic of appendix G. Note Prad(ε) inherits all the jet production coordinates, parton mass

and energy, and model parameter dependencies from
dNg
dx . And we write down explicitly

those dependencies as:

Prad(ε) = Prad(ε = ∆Erad/E0; x0, φ;M,E0;αs, fE , fM ) . (B.45)

B.3.2 Elastic energy loss fluctuation

Fluctuations of the elastic energy loss around the mean were addressed in [33] and [113].

Using a framework generally applied to diffusive processes that are characterized by a

large number of soft collisions, the probability distribution to lose the collisional energy

ε ≡ ∆Eel/E0 is represented by a Gaussian centered around the average ∆Eel, with variance

σ2 = 2Tε/E0. Here ε ≡ ∆Eel/E0, and the average elastic energy loss ∆Eel is calculated

according to eq. (B.31),

∆Eel = E(τ ; x0, φ;M,E0;αs)|τ=τmax
τ=0 , (B.46)

19In the numerical evaluation, the upper bound is εleak = 1.75 instead of infinity.
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with T (z)|τ=τmax = Tf , and E(z) is solved recursively from eq. (B.30) given E(z)|τ=0 = E0.

The average temperature along the jet path is

T =
1

τmax

∫ τmax

0
dτ T (z) . (B.47)

The collisional energy loss probability distribution reads

Pel(ε) = e−Ncδ(ε) +
N√
2πσ2

e−
(ε−ε)2

2σ2 . (B.48)

The first term represents the probability of no collisions, with the average number of

collisions N c calculated according to eq. (B.32) (or eq. (2.8) in running coupling CUJET).

The second term is the normalized Gaussian distribution centered around ε, with N =

1 − e−Nc . The Gaussian distribution reaches unphysical regions ε < 0 and ε > εmax, we

absorb those “leaks” into the Delta function at respective boundaries, and rewrite Pel(ε) as

Pel(ε) = P null
e δ(ε) + Pe(ε) + P fulle δ(ε− εmax) . (B.49)

which resembles the definition of Prad(ε) eq. (B.34). Here

P null
e = e−Nc +

∫ 0
−∞ dε

N√
2πσ2

e−
(ε−ε)2

2σ2 ,

P fulle =
∫∞
εmax

dε N√
2πσ2

e−
(ε−ε)2

2σ2 ,
(B.50)

and

Pe(ε) =
N√
2πσ2

e−
(ε−ε)2

2σ2 , (B.51)

here 0 ≤ ε ≤ εmax. For numerical purposes we also calculate Pe(ε) in the range of εmax ≤ ε ≤
εleak = 1.75 according to eq. (B.51). Note integrate Pel(ε) over 0 ≤ ε ≤ εmax automatically

gives unity. The rearrangement of eq. (B.49) provides great conveniences for the convolution

of radiative and elastic energy loss probability distributions, which will be studied in the

following section.

Similar to section B.3.1, inherited from ∆Eel and N c, the elastic energy loss probability

distribution has jet production coordinates, parton mass and energy, and model parameter

dependency. We write down all those dependencies for Pel(ε) as:

Pel(ε) = Pel(ε = ∆Eel/E0; x0, φ;M,E0;αs, fE , fM ) . (B.52)

B.4 Convolutions

In the CUJET framework, after calculated the radiative energy loss probability distribu-

tion Prad(ε) from eq. (B.34) and elastic energy loss probability distribution Prad(ε) from

eq. (B.49), we convolute the their contributions to get the total energy loss probability

distribution Ptot(ε) (section B.4.1). Then integrate Ptot(ε = ∆Etot/E0, E0,x0, φ;M) with

the pQCD p+p parton (M) spectrum and binary distribution to get the quenched A+A

parton (M) spectrum (section B.4.2). Finally, we fragment this parton spectrum to get the

transverse momentum and azimuthal angle dependent production spectrum for inclusive

π, D, B and e− in A+A collisions (section B.4.3).
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B.4.1 Total energy loss probability distribution

To get the total energy loss probability distribution Ptot(ε), we convolute the radiative

sector Prad(ε) (eq. (B.34)) and the elastic sector Pel(ε) (cf. eq. (B.49)):

Ptot(ε) =

∫ ε

0
dx Prad(x)Pel(ε− x) . (B.53)

Technically, in CUJET, when computing the convolution for total suppression, we keep

the δ function at 0 in each sector while let Pr(ε) and Pe(ε) spread over 0 ≤ ε ≤ εleak = 1.75,

then absorb the convoluted leak to the δ function at εmax. Step by step, first we rewrite

Prad(ε) and Pel(ε) as

Prad(ε) = e−Ngδ(ε) + Pr(ε) , (B.54)

Pel(ε) = e−Ncδ(ε) + Pe(ε) . (B.55)

with Pr(ε) and Pe(ε) calculated over 0 ≤ ε ≤ εleak = 1.75. Then multiply them both

according to eq. (B.53), we get

Ptot(ε) =

∫ ε

0
dx
(
e−Ngδ(x) + Pr(x)

)(
e−Ncδ(ε− x) + Pe(ε− x)

)
= e−(Ng+Nc)δ(ε) + e−NgPe(ε) + e−NcPr(ε) +

∫ ε

0
dx Pr(x)Pe(ε− x) .

(B.56)

We define
P null
t = e−(Ng+Nc) ,

P fullt =
∫ εleak

εmax
dε
∫ ε

0 dx Pr(x)Pe(ε− x) ,

Pt(ε) = e−NgPe(ε) + e−NcPr(ε) +
∫ ε

0 dxPr(x)Pe(ε− x) ,

(B.57)

and rewrite Ptot(ε) as

Ptot(ε) = P null
t δ(ε) + Pt(ε) + P fullt δ(ε− εmax) , (B.58)

here 0 ≤ ε ≤ εmax. The normalization of Ptot(ε) is conducted in the normal way to ensure∫ εmax

0 dε Ptot(ε) = 1.

Strictly speaking, Ptot(ε) depends on other parameters such as parton masses which

are inherited from Prad(ε) and Pel(ε), and explicitly,

Ptot(ε) = Ptot(ε = ∆Etot/E0; x0, φ;M,E0;αs, fE , fM ) . (B.59)

For simplicity, throughout the paper we will suppress the “tot” subscript.

B.4.2 Jet quenching spectrum

CUJET computes the quenched partonic AA spectrum by convolute the total energy loss

probability distribution P (ε) calculated from eq. (B.58) and (B.57) with partonic produc-

tion cross section in p+p collisions. This is a critical improvement of CUJET over its

predecessor WHDG [33], which assumes instead a simple and slowly varying power law

distribution for the p+p spectra (spectral index approximation) and makes considerable
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simplifications in the computation of the nuclear modification factor. Given the sensitivity

of the results to the details of the production cross sections, and the complex interplay

between the latter and the energy loss mechanism, it is essential that no approximations

are carried out in this delicate step of the computation.

The partonic pp spectra for CUJET are generated from pQCD calculations. For the

light sector, production is based on a leading order (LO) calculation scaled by a simple

K-factor and computed from the LO pQCD CTEQ5 code of X.N. Wang [114]. For the

heavy jet sector, both next-to-leading order [115] and fixed-order plus next-to-leading-

log (FONLL) [116, 117] computations are used. In addition to including the full NLO

result [118–120], the FONLL calculation re-sums large perturbative terms with next-to-

leading logarithmic accuracy [121]. Details about the partonic spectra used in CUJET can

be found in appendix H.

It is clear at this point, that the input and output of CUJET are: the model is

given a parametrization of the plasma and a jet spectrum, and it returns a quenched

spectrum after computing the energy loss of the jets in the medium. In this process, no

approximations are made: each jet is evolved individually and its final momentum, or

better momentum probability distribution, is stored along with the direction it came from

(angular distribution).

This is how CUJET performs the computation of quenched partonic spectra:

1. The algorithm starts from a jet created at x0 in the azimuthal plane (with respect to

the beam axis) with azimuthal angle φ and mass M . The distribution of jets in the

transverse plane in A+A collisions is given by ρbinary (cf. section 2.2.1). The initial

transverse momentum probability distribution P0(pi)
20 of the partons is proportional

to the production cross section:

P0(pi) ∝
dσpp→q

dpi
(pi) , (B.60)

Here dσpp→q/dpi represents a generic p+p partonic production spectrum. A range

of discrete transverse momenta [pmin
i , pmax

i ] needs to be defined for the numerical

computation.

2. For each initial transverse momentum pi in the range [pmin
i , pmax

i ], CUJET computes

the energy loss according to eq. (B.17)(B.30) (or eq. (2.4)(2.7) in the running coupling

case). This is the most resource- and time-consuming process, where the full jet path

Monte Carlo integral is evaluated over the expanding plasma and the medium-induced

gluon radiation spectrum as well as elastic collisional energy loss are computed. All

the dynamical properties of the plasma can be specified and their contributions to

the energy loss — radiative and/or elastic — should be considered. Once fluctuations

effects are taken into account — eq. (B.34), (B.49) — the output takes the form of

a distribution function which represents the probability of losing the relative energy

20pi ≡ (pT )i. We suppress the “T” (transverse) subscript in this section, and all pi’s and pf ’s are

understood as transverse momentum.
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ε (ε = 1 − Ef/Ei, E2
i,f = p2

i,f + M2) given the initial transverse momentum pi (pi =√
E2
i −M2) (cf. eq. (B.58)):

P (ε; pi; x0, φ) = P null
t (pi)δ(ε) + Pt(ε; pi) + P fullt (pi)δ(ε− εmax) , (B.61)

with

εmax = 1− M√
p2
i +M2

. (B.62)

3. Once all the {pi} in the range specified have been computed, the {P (ε; pi)} are

converted into a two-dimensional distribution map that represents the probability of

a jet with initial transverse momentum pi to leave the plasma with final transverse

momentum pf :

P (pf , pi) = P (ε; pi)
dε

dpf

= P null
t (pi)δ(pf − pi) + Pt(ε(pf , pi); pi)

pf
EfEi

+ P fullt (pi)δ(pf ) ,
(B.63)

with

ε(pf , pi) = 1−
Ef
Ei

, Ef =
√
p2
f +M2 , Ei =

√
p2
i +M2 . (B.64)

The normalization is such that∫ pi

0
dpf P (pf , pi) = 1 , (B.65)

which is automatically ensured by
∫ εmax

0 dεP (ε; pi) = 1. In eq. (B.63) we dropped the

explicit dependence on the jet coordinates x0 and φ.

4. CUJET then integrates over the production spectrum, eq. (B.60), to obtain the

“quenched” partonic p+p spectra dσ′pp→q

dpfdφ
:

dσ′pp→q

dpfdφ
(pf ; x0, φ) =

∫ pmax
i

pmin
i

dpi P (pf , pi; x0, φ)
dσpp→q

dpi
(pi) . (B.66)

5. At last, the quenched partonic A+A spectra as a function of the observed transverse

momentum pf (≡ pT ) and azimuthal angle φ are obtained by integrating over the jet

transverse distribution:

dσAA→q

dpfdφ
(pf ;φ) =

∫
dx0 ρbinary(x0)

dσ′pp→q

dpfdφ
(pf ; x0, φ) . (B.67)
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B.4.3 Fragmentation functions

Partonic spectra can provide useful information about jet quenching mechanism, neverthe-

less, comparison with data can only be carried out at the hadronic level. The quenched

partonic spectra, eq. (B.67), need to be convoluted with a set of fragmentation functions

(FF’s).

The process that leads to the fragmentation of partons in the medium is not the-

oretically well understood, especially for heavy quarks: dissociation and recombination

theories [122, 123] assume that heavy D and B mesons can be formed within the plasma

and lose additional energy through collisional dissociation, in a similar fashion to what

has been suggested for heavy quarkonium states [124]. This, however, seems to contradict

more recent lattice results [125], which indicate the complete melting of open heavy flavors

occurs at temperature T & 220 MeV.

Since we are dealing with high pT partons, hadronization via recombination processes

is suppressed compared to fragmentation. We will assume that fragmentation takes place

in vacuum, on a hypersurface parametrized by µ(x, τf ) = ΛQCD, and our results do not

show a particular sensitivity on the precise choice of fragmentation temperature Tf (cf.

appendix E).

The convolution of partonic spectra over appropriate FF’s takes the form

dσh

dp
(p) =

∑
i

∫ 1

p/pmax

dx
dσi

dp
(
p

x
) Di→h(x;

p

x
)

=
∑
i

∫ 1

p/pmax

dx
1

x

dσi

d px
(
p

x
) Di→h(x;

p

x
) .

(B.68)

Here Di→h(y;Q) represents the probability that a parton i fragments into a hadron h which

carries a fraction y of the parton energy. Q is the scale at which the FF is evaluated, here it

is given by the energy of the parton. Eq. (B.68) is summed over all species i that fragment

into h.

For light quarks and gluons fragmenting into pions, we use leading order KKP func-

tions [126]. For heavy quarks fragmenting into D and B mesons (c → D and b → B),

we use instead the Peterson [127] function with εc = 0.06 and εb = 0.006, as done also

in [128]. While the Peterson FF does not couple well with the FONLL production cross

section [129], it was shown in [128] that similar results are produced anyway even using a

more accurate fragmentation description. Finally for the decay of the heavy mesons into

non-photonic electrons (c→ D → e and b→ B → e), we use the same functions as in [129].

The secondary decay D → B → e is also accounted for.

C Convergence of DGLV opacity series

C.1 Uncorrelated geometry

The DGLV opacity expansion integrand in eq. (B.6) is a function of the distance between

scattering centers ∆zk. Their distribution is connected to the mean free path λ, which in
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the case of a non-uniform plasma is itself a function of z, i.e. λ(z). To see the average over

the target coordinates in a smooth background more clearly, we write

1

n!

(
L

λg

)n ∫ n∏
i=1

(
dqi

(
|v̄i(qi)|2 − δ2(qi)

))
→
∫ L

0
dz1 · · ·

∫ L

zn−1

dzn

∫ n∏
i=1

(
dqi
|v̄i(qi)|2 − δ2(qi)

λ(zi)

) (C.1)

The λ(zi) dependence significantly complicates the DGLV integral, especially at higher

order in opacity n. To study the behavior of higher order opacities more efficiently, we apply

an “uncorrelated geometry” for quick DGLV evaluations. In this configuration, we neglect

the interconnection between the location of the scattering centers and the mean free path,

as well as the mutual dependence of the spacing of collisions.

The simplest medium one can study is an uncorrelated brick of uniform density, con-

stant temperature T and limited length L. This configuration is realized by changing

eq. (C.1) to

1

n!

(
L

λg

)n ∫ n∏
i=1

(
dqi

(
|v̄i(qi)|2 − δ2(qi)

))
→ Ln

n!

∫ L

0
dz1 · · ·

∫ L

0
dznρ̄(z1, · · · , zn)

∫ n∏
i=1

(
dqi
|v̄i(qi)|2 − δ2(qi)

λ(T )

)
,

(C.2)

where the normalized distribution for scattering centers

ρ̄(z1, · · · , zn) =
n!

Ln
θ(L− zn)θ(zn − zn−1) · · · θ(z2 − z1)θ(z1 − z0) . (C.3)

Note z0 = 0 is the position of the production vertex. Since the 0 and L boundaries are

already contained in the integration limits, one can drop either θ(L − zn) or θ(z1 − z0)

or both in the above equation. Due to the LPM phase oscillation in eq. (B.6), a pure

brick would easily create fluctuating gluon radiation spectra. We thus make a further

generalization of the brick geometry by assuming an exponential distribution of scattering

centers, i.e.

ρ̄(z1, · · · , zn) =

n∏
l=1

θ(∆zl)

Le(n)
e−∆zl/Le(n) , (C.4)

with ∆zl = zl − zl−1. This converts the oscillating LPM phases in eq. (B.6) into simple

Lorentzian factors assuming L sufficiently large,∫
dρ̄ cos

 m∑
k=j

ω(k,··· ,n)∆zk

 = Re
m∏
k=j

1

1 + iω(k,··· ,n)Le(n)
. (C.5)

In order to fix Le(n), we require that 〈zk − z0〉 = kL/(n + 1). This constrains Le(n) =

L/(n+ 1).

In the discussion within this paper, unless otherwise stated, if referring to a “brick”, we

mean an uncorrelated brick with an exponential distribution, defined by eq. (C.2) and (C.4).
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C.2 Convergence of DGLV

The DGLV opacity series approach builds upon the Bertch-Gunion (GB) incoherent radi-

ation and includes multiple coherent scatterings, interference with the production vertex

radiation and gluon cascading. The LPM effect and the interplay between the cosine factors

in the DGLV integral determine how fast the series converges to its asymptotic limit.

To recapitulate, the induced gluon radiation spectrum in static QCD medium at first

order in opacity takes the form

dNn=1
g

dx+dk
=
CRαs
π2

1

x+

L

λ

∫
dz ρ̄(z)

∫
dq

µ2

π(q2 + µ2)2

× −2(k− q)

(k− q)2 + χ2

(
k

k2 + χ2
− (k− q)

(k− q)2 + χ2

)
×
(

1− cos

(
(k− q)2 + χ2

2x+E
∆z

))
,

(C.6)

with ρ̄(z) a normalized distribution. The relevant terms in (C.6) are: (1) the opacity L
λ ;

(2) the effective interaction potential µ2

π(q2+µ2)2 ; (3) the radiation antenna k−q
(k−q)2+χ2 · (. . .);

(4) the LPM phases
[
1− cos

(
(k−q)2+χ2

2x+E
∆z
)]

.

To understand the convergence of the DGLV opacity series quantitatively, we need to

study details about the LPM phases, and the interplay between the formation time τf and

mean free path λ. Generally speaking, if denote the size of the medium as L (L > λ),

the interference (coherent) effects are dominant in the region λ < τf < L, whereas the

Gunion-Bertsch incoherent limit (cf. eq. (C.8)) and factorization limit is obtained in the

region τf < λ < L and λ < L < τf respectively.

Formation time τf is the time gluon spends to become on-shell, it is approximately

equal to

τf ≈
2ω

(k− q)2 + χ2
, (C.7)

with ω = xEE the energy of the radiated gluon. (In principle, only in the strict collinear

limit xE and x+ coincide. For simplicity, we set x+ = xE ≡ x in this section. And we will

discuss this issue in appendix D.) If there are many momentum kicks from the medium

within a coherence length, then q →
∑

i qi; however, for a qualitative estimate, we can

assume k � q and τf ≈ 2ω/k2. In reality, the interplay between k and q makes the

estimation of the real formation time difficult, and once the mass of a heavy quark is taken

into account, the χ2 = M2x2 +m2
g(1− x) factor starts playing a relevant role by reducing

the formation time and by pushing the radiation back into the incoherent regime.

Mean free path λ plays an important role in determining the effects of coherence

physics. In the uncorrelated geometry assumption, the relation between λ and the dis-

tribution of scattering centers looses, while in reality they are interconnected. Coherence

effects are dominant when λ < τf , and are analytically determined by the magnitude of

the LPM phases ∆z/τf : larger phases are responsible for the oscillatory behavior char-

acteristic of the incoherent limit, while smaller phases cause an approximate cancellation
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Figure 12. Comparison between the DGLV n = 1 gluon transverse momentum distribution (solid

black) and the Gunion-Bertsch (GB) incoherent limit (dashed black), as well as higher order DGLV

corrections added up to n = 3 (solid purple), n = 5 (solid magenta) and n = 7 (solid pink),

for different plasma sizes. On the left, we use a brick of size L = 5 fm; on the right, the length

L = 50 fm. The energy of the incoming light quark (M = 0.2 GeV) jet is E = 50 GeV, and

the radiated gluon energy ω = 5 GeV. Compare n = 1 and GB, notice the suppression of the

induced radiation for short path lengths due to interference with the creation radiation. Such effect

vanishes in the L→∞ limit, as expected, where the average distance between the creation vertex

and the scattering center becomes larger (∆z = L/2). The higher order DGLV opacity series is

shown to converge already at n = 5, with the first order result still giving the biggest contribution

to the suppression. The opacity expansion, valid at the intermediate opacities characteristic of

nuclear collisions (L = 5 fm, left), breaks down for plasmas of the size of tens of fermi (L = 50 fm,

right): in this case the radiation spectrum is replaced by the multiple soft scattering approximation

(dashed red). Parameters used in the simulation are: λ = 1.16 fm, µ = 0.5 GeV, mg = 0.356 GeV,

T = 0.258 GeV, nf = 0, αs = 0.3.

among the cosine terms, typical result of coherence physics. For instance, for n = 1 and

large formation times, the LPM term cos(∆z/τf ) approaches unity, giving rise to a neat

cancellation.

In order to understand how the convergence of the opacity series is related to the

coherent or incoherent radiation regime, we first compare the DGLV n = 1 result with the

Gunion-Bertsch incoherent limit:

dNg

dx+dk
=
CRαs
π2

1

x+

L

λ

∫
dq

µ2

π(q2 + µ2)2

q2

(k2 + χ2)((q− k)2 + χ2)
. (C.8)

At first order, the opacity series only includes interference effects between the creation and

the induced radiation vertex. By plotting the gluon transverse momentum distribution for

different brick sizes L, we demonstrate in figure 12 the suppression of the induced radiation

due to such interference effects.

Comparing solid and dashed black curve in figure 12, we see that this coherence effect

vanishes when the size of the medium is large, as expected. To move on, we add higher order
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corrections to the results, shown as purple, magenta and pink curves in figure 12. Regardless

of all these higher order modifications, the dominant contribution to the suppression of the

induced radiation still comes from the the n = 1 term.

In the left panel of figure 12, we observe that for L = 5 fm, at n = L/λ ≈ 5 the opacity

series already converges to its asymptotic value, making further corrections negligible. This

can be understood by assuming the probability of hitting a given number of scattering

centers follows a Poisson distribution, its average equals the opacity, and we would expect

the GLV series to peak around n = L/λ.

But this convergence is only valid for short path lengths, because the interference

with formation radiation is the dominant effect, on top of which the corrections due to

multiple scatterings in the medium are small. As L increases, this is no longer true and

the resummed result is expected to asymptotically converge to the multiple soft scattering

limit, as shown in the right panel of figure 12.

The above analysis is restricted to a particular choice of E = 50 GeV and ω = 5 GeV.

To be general, we perform a systematic study of the properties of the series, by analyzing its

convergence for several coherent and incoherent regimes, varying all relevant parameters.

Our goal is to understand if there is an optimal order at which the series can be truncated

for most of the practical needs, and quantify the error which is eventually made.

For different sets of (E, ω and L), we compute in figure 13 the radiation spectrum up

to ninth order in opacity.

As shown in figure 13, the coherent radiation is associated with faster convergence: the

large formation time suppresses the magnitude of the LPM phases, leading to an approxi-

mate cancellation of the cosine terms in (B.6). On the other hand, the oscillatory behavior

of incoherent emission results in slower convergence of the opacity series. Interestingly, the

transverse momentum distribution seems to depend significantly on the gluon energy ω,

rather than the original jet energy E. Finally, the convergence is improved by the reduced

medium size L, as expected from the assumption of Poisson distributed scatterings.

For completeness, in figure 14, we show the same simulation for a heavy quark jet

in a plasma of thickness L = 5 fm: the convergence rate is almost unchanged despite the

dependence of the gluon formation time on the mass of the incoming quark, manifested in

the term χ2 = M2x2 +m2
g(1− x).

The increase of M is in fact compensated by the small value of x for ω � 1 GeV.

However, compare with the light jet results of figure 13, now the suppression of the radiated

gluon multiplicity depends jet energy E as well. This is because of the presence of a χ2

term in the denominator of the DGLV radiation antenna.

Generally speaking, in a very limited phase space region where x and kT are small,

compute DGLV opacity series to 1st order may lead to overestimation of radiative energy

loss, and hence numerically less strong coupling constant. However, since the entire phase

space is integrated over in eq. (C.6), we conclude that except when the emission mecha-

nism is clearly incoherent, a satisfactory result can already be obtained by truncating the

expansion at third order. Furthermore, when average over all possible path lengths in a

realistic nuclear collision, 2 . L . 5 fm, even the first order in opacity might be regarded

as a good approximation to the series (figure 13).
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Figure 13. Gluon transverse momentum distribution xdNg/dxdk generated by a light quark

(M = 0.2 GeV) jet traversing a brick plasma of thickness L = 5 fm (top panels) and L = 2 fm

(bottom panels). Several orders in opacity up to n = 9 are shown in all figures, plotted as black

(n = 1), blue (n = 3), green (n = 5), orange (n = 7) and red (n = 9) solid curves. The incoherent

or coherent regime of the radiation is determined by the value of ω: incoherent (ω = 0.5 GeV),

intermediate (ω = 5 GeV), coherent (ω = 50 GeV). Note the faster convergence of the series

for larger values of the gluon energy ω, i.e. longer formation times, determined by the reciprocal

cancellation of the oscillating LPM factors. In addition, the transverse momentum distribution

depends mostly on the value of the gluon energy ω, rather than the original energy of the jet

E (four figures in the middle). And as intuitively expected, the convergence is improved by the

reduced medium size L. Other parameters used in the simulation are: λ = 1.16 fm, µ = 0.5 GeV,

mg = 0.356 GeV, T = 0.258 GeV, nf = 0, αs = 0.3.

D Transverse momentum distribution of radiated gluon

In this section we concentrate on the dependence of the gluon spectrum on the transverse

momentum k⊥, and we will see that the k⊥ functions non-trivially on various aspects of

the radiative jet energy loss.

In appendix C we observed that ω determines how fast the series converges to its

asymptotic limit. However, we did not take into account the fact that the convergence

appears to be faster for larger values of the transverse momentum k⊥, despite the shorter

formation time proportional to 1/k2. For instance, in figure 13, with E = 100 GeV, ω =

5 GeV and L = 5 fm, the first order is already a good approximation for k ≥ 4 GeV, whereas

between 2 ≤ k ≤ 4 GeV the fifth order is needed; below k = 2 GeV, only n = 7 is a good

approximation to the series. The reason can be found in the radiation antenna term of

eq. (C.6), which determines the shape of the momentum distribution: its 1/k3 ∼ 1/k4

asymptotic behavior suppresses high momentum corrections and dwarfs the contribution

of higher orders in opacity. This effect is very similar to what we observed for heavy quarks

jets in figure 14, where the large contribution of χ2 in the denominator of the antenna term

offsets the increased oscillatory behavior of the integral due to shorter gluon formation

times.
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Figure 14. Gluon transverse momentum distribution xdNg/dxdk generated by a heavy quark

jet traversing a plasma of thickness L = 5 fm. The mass of the quark M = 4.75 GeV. All other

parameters are the same as in figure 13. DGLV opacity series calculated up to n = 1, n = 3, n = 5,

n = 7 and n = 9 is plotted as black, blue, green, orange and red solid curve. The effect of the

quark mass in the expression for the formation time, which intuitively would slow the convergence

of the series. However, this effect is balanced by the x dependence of χ2 = M2x2 +m2
g(1− x): for

small x, the results do not differ much from their light quark jet counterpart. On the contrary to

light quark jet results, we observe a remarkable splitting between radiation distributions with same

gluon energy ω but different heavy jet energy E (top-right and bottom-left figures), due to the

presence of the same x dependent χ2 in the denominator of the antenna term in eq. (C.6), which

further suppresses radiation at large x.
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Figure 15. Radiated gluon transverse momentum distribution for a heavy quark jet with energy

E = 20 GeV traversing a brick plasma of size L = 5 fm emitting a gluon with energy ω = 5 GeV.

The mass of the quark M = 4.75 GeV. The DGLV opacity series calculated up to n=1 (black), 3

(blue), 5 (green), 7 (orange), 9 (red) are shown in the figure. The opacity expansion computed up

to ninth order is shown to converge to the ASW multiple soft scattering limit (maroon, dashed)

for small k⊥ . q̂L ≈ 1 GeV. At large k⊥, differs from the ASW limit, DGLV has a robust Laudau

tail. Other parameters used in the simulation are: λ = 1.16 fm, µ = 0.5 GeV, mg = 0.356 GeV,

T = 0.258 GeV, nf = 0, αs = 0.3.

The DGLV opacity expansion has the ability to interpolate between single hard scat-

tering and multiple soft scattering limit. The latter is derived assuming the radiated gluon

experiences Gaussian diffusion in the transverse momentum space: for small gluon emission

angles, i.e. k⊥ . q̂L, the momentum distribution derived from the DGLV series approaches

this limit. This effect is shown in figure 15 for a heavy quark jet. We see that at small k⊥
the series converges to the multiple soft scattering limit quickly. However for large k⊥, i.e.

large angle radiation which is treated poorly in the multiple soft scattering approximation,

differs from ASW, the DGLV opacity expansion includes the hard power-law Landau tails

of the radiation, reproduces the gluon multiplicity more accurately.

D.1 Integration and kinematic limits

The hard 1/k3 ∼ 1/k4 tails of the DGLV distribution offer a relevant contribution to

the total emitted radiation and become a source of concern once finite kinematic limits

are taken into account. If the integrand in (C.6) were exact, the result would vanish

for unphysical values of k⊥, and there is no need for worrying about integration limits.

In reality, however, the model is derived assuming collinear approximation (k⊥ � ω),

therefore kinematic limits need to be imposed to enforce physicality. The integral, for

consistency, should not be sensitive to the particular choice of UV k⊥ cutoffs, but given

the hard tails of the distribution, we will see that this is not always going to be the case.

The choice of upper bounds in the k⊥ integration depends on the particular interpreta-

tion of x in the expression for the gluon energy ω = xE: x as the fractional energy carried
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away by the radiated gluon (x ≡ xE , ω = xEE), or x as the fraction of plus-momentum in

light-cone coordinates, in which case x ≡ x+ and ω ≈ x+E
+/2.21 In the strictly collinear

limit in which the DGLV integral is derived, the two definitions coincide:

x+ =
1

2
xE

1 +

√
1−

(
k⊥
xEE

)2
 . (D.1)

Equation (D.1) can be easily derived by writing explicitly the gluon four-momentum in

Minkowski and light-cone coordinates, denoted respectively by parenthesis and square

brackets:

k = (xEE,
√

(xEE)2 − k,k) = [x+E
+,

k2

x+E+
,k] . (D.2)

Depending on the interpretation of x, the upper kinematic limit on k⊥ will vary: in

the case of x+, in order to ensure forward gluon emission we need to set kMAX
⊥ = x+E

+,

whereas in the case of xE , to keep k⊥ real we must set kMAX
⊥ ≈ xE sin θ, where θ is the

angle between the radiated gluon and the propagating parton.22 In figure 16, we plot the k⊥
integrated gluon number distribution x

dNg
dx , for both interpretations of x and two different

cutoff angles θ; to compare apples to apples, we add the Jacobian of the transformation

x+ → xE to the x+ curve and integrate up to kMAX
⊥ = xE sin θ:

xE
dNg

dxE
=

∫ xEE sin(θ)

0
dk

(
x+

dNg

dx+dk
(k, x+(xE))

)(
xE

x+(xE)

)
J(xE) , (D.3)

J(xE) ≡ dx+

dxE
=

1

2

1 +

(
1−

(
k⊥
xEE

)2
)−1

 . (D.4)

The differences are notable, and even more prominent in the small x region, which

dominates the gluon spectrum. The question of how we are going to quantify the error

introduced by this systematic source of theoretical uncertainty arises immediately, and

an answer will be given shortly. In the discussion above, we followed closely an in-depth

analysis performed by Horowitz and Cole [130].

D.1.1 Systematic uncertainties

We approach the problem of quantifying the systematic uncertainties caused by the choice

of the k⊥ integration limits in a way which will be iterated several times throughout the

construction of the CUJET model. The idea is to isolate those sources of uncertainty

that have a clear impact on the observables we are going to compute from other sources

whose effect is hindered by the simple rescaling of a free parameter such as strong coupling

constant.

In the context of the k⊥ integration, we ask in table 4 what is the sensitivity of the

energy loss ∆E/E to the particular choice of integration limits, provided the freedom to

adjust a free parameter identified as the coupling constant αs.

21Assuming the incoming parton four-momentum is (E,E,0), then E+ = 2E
22In both cases, we neglect corrections due to the recoil of scattering centers in the medium.
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Figure 16. k⊥ integrated, n = 1 gluon number distribution generated by a E = 20 GeV light quark

(M = 0.2 GeV) jet traversing a brick plasma of thickness L = 5 fm. The two interpretations of x as

gluon fractional energy (xE) or gluon fractional plus-momentum (x+) lead to remarkably different

results, especially in the soft x� 1 region. The uncertainty due to the choice of θMAX is noticeable

but less prominent. Other parameters used in the simulation are: λ = 1.16 fm, µ = 0.5 GeV,

mg = 0.356 GeV, T = 0.258 GeV, nf = 0, αs = 0.3.

Curve ε ≡ ∆E
E αε=0.32

s αε=0.24
s

xE(x+) 0.32 0.3 0.27

xE(x+)θ=60◦ 0.27 0.32 0.29

xE 0.24 0.33 0.3

xθ=60◦
E 0.23 0.33 0.30

Table 4. Fractional energy loss ∆E/E integrated from xEdNg/dxE for the curves shown in fig-

ure 16. The results are indicated in the second column and range from 0.23 to 0.32. In the two

rightmost columns are listed the values of the effective parameter αεs needed to obtain the energy

loss specified in ε. The free parameter αs needs to be tuned at most ±10%.

Given the interest in the ratio of light to heavy quark energy loss, we can immedi-

ately construct an error band which offers a quantitative measurement of the uncertainty

generated by the choice of k⊥ limits. In this way, αs is factored out and the results

are independent of the rescaling of the free parameter. Figure 17 shows the scaling of

∆Elight/∆Eheavy with the jet energy E and the plasma size L, for two distinct assumptions

x ≡ xE and x ≡ x+.

The conclusion is evident: the choice of k⊥ limits has a relevant impact at small

energies E ≤ 15 GeV and long path lengths L ≥ 5 fm. Further theoretical steps to address

large angle radiation and relax the collinear approximation need to be taken. Until then,

in the development of the CUJET model we adhere to the collinear derivation of GLV and

interpret x ≡ x+. When the gluon number distribution was needed as a differential in xE ,

namely xEdNg/dxE , we added the Jacobian of the transformation x+ → xE to (C.6), and
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Figure 17. Energy loss ratio between light (Ml = 0.2 GeV) and heavy quark (Mb = 4.75 GeV)

jets in a brick, for different interpretations of x as in figure 16. Here αs = 0.3, L = 5 fm (left),

E = 20 GeV (right) and the energy loss has been computed at first order n = 1 in opacity. An error

of approximately ∼ 25% is introduced for sufficiently small energies and large plasma sizes. Other

parameters used in the simulation are: λ = 1.16 fm, µ = 0.5 GeV, mg = 0.356 GeV, T = 0.258 GeV,

nf = 0.

integrated k⊥ up to kMAX
⊥ = xE. However, given the restricted size of such phase space,

we will take our preferred assumption of k⊥ limits and ignore the source of error coming

from the x interpretation, especially when studying results in the high energy range of

LHC.

D.2 Dead cone

The ability to determine the quark flavor dependence of any physical observable is not

only a interesting characteristic of the DLGV integral, but also an invaluable tool used to

compare predictions with data. Computing the energy loss for charm and bottom quarks

within the same consistent framework, in fact allows us to put additional constraints on

the model and therefore gain more insights about the nature of the quark gluon plasma.

In this section we want to check the effects that the parton mass has on the transverse

momentum distribution of gluon radiation.

The mass term M appears to have only a minor impact on the convergence of the

series (figure 14), if nothing else by even improving it for certain combinations of E and ω.

For very soft gluons (x� 1), the heavy quark jet radiation spectrum does not differ much

from its light quark counterpart, while for large values of x the radiation seems highly

suppressed. The strong x dependence of the magnitude and shape of dNg/dxdk, as seen

in figure 14, breaks the scaling with ω for typical gluon radiation from light quark jet.

Another effect is the filling of the “dead cone” characteristic of the vacuum spectrum.
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Figure 18. Radiation spectrum for charm (left) and bottom (right) quarks traversing a brick

of thickness L = 5 fm, with E = 20 GeV and ω = 5 GeV (x = 0.25). The masses are assumed

Mc = 1.2 GeV and Mb = 4.75 GeV. The dashed curves represent the spectrum of a light jet

of mass Ml = 0.2 GeV. Notice the similarity between the light and charm spectra, as opposed

to the bottom one. The vacuum spectrum radiation is added to the plot (gray curve), showing

the radiation dead cone for respective quark jets. Other parameters used in the calculation are:

λ = 1.16 fm, µ = 0.5 GeV, mg = 0.356 GeV, T = 0.258 GeV, nf = 0, αs = 0.3.

In vacuum, the transverse momentum distribution takes the form

x
dN0

g

dxdk
∼ k2

(k2 + χ2)2
, (D.5)

and the depletion of radiation takes place at angles

θ < χ/ω =
√
M2x2 +m2

g(1− x)/(xE) . (D.6)

We compare in the right panel of figure 18 the radiation spectrum of a heavy quark at

different orders in opacity with the reference vacuum spectrum radiation, one notice im-

mediately that the induced radiation fills in the dead cone already at first order in opacity.

Since the dead cone region constitutes only a small fraction of the available phase space,

the energy loss experienced by a heavy quark remains smaller than that of a light jet.

The left panel of figure 18 shows instead a striking feature: despite its non-vanishing

mass equal to 1.2 GeV, the charm quark leads to a radiation spectrum very similar to the

one of light quarks: not only the dead cone is absent and the vacuum spectrum almost

divergent for k⊥ → 0, but even the spectra have approximately the same shape and mag-

nitude. This critical feature has vast phenomenological implications in the prediction of

physical observables.

E Systematic uncertainties associated with nf , Tf and dN/dy

In this section we analyze the sensitivity of CUJET to three of those parameters that

govern the evolution of the medium: the number of quarkonic flavors nf , the fragmentation
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Figure 19. Fixed coupling CUJET1.0 results for light quark (M = 0.2 GeV) RAA in Au+Au

200AGeV central collisions (b=0 fm), with nf = 0 and αs = 0.3 (solid line), nf = 2.5 and αs = 0.3

(dashed line), nf = 2.5 and αs = 0.32 (dotted line). The fragmentation temperature Tf = 100 MeV.

QGP’s pre-thermal stage is linear and initial time τ0 = 1 fm/c, after thermalization Glauber +

Bjorken evolution is assumed. The scenario of pure gluonic plasma and the scenario of equilibrated

QGP with a 6% increased coupling constant are indistinguishable.

temperature Tf , and the initial rapidity density dN/dy.23 As usual, eventually we will

hinder their effects to the rescaling fixed or running coupling constant, and consider αs
or αmax the only free parameter of CUJET, which will be constrained by a specific set of

experimental data, typically pion RAA at a given value of transverse momentum and center

of mass collision energy. Therefore, it is of great interest to show how RAA changes for

different plasma assumptions, and observe if its functional form is modified once a proper

rescaling of the coupling has been performed.

In figure 19 we change the value of nf from 0 (pure gluonic matter), to 2.5 (mix of

gluonic and quarkonic degrees of freedom in chemical equilibrium). We can easily observe

that a simple rescaling of αs of approximately 6% leads to a perfect agreement between the

two scenarios. In [57], Zakharov reaches a similar conclusion starting from a path integral

approach to the energy loss and using a running strong coupling. This simple analysis

demonstrates the substantial insensitivity of CUJET to the detailed composition of the

quark gluon plasma.

We now focus on the late phase of plasma evolution and measure the sensitivity of

RAA to the jet hadronization temperature Tf . In the left panel of figure 20, the CUJET1.0

partonic nuclear modification factor is shown for light and heavy quarks, for the default

Tf = 100 MeV and αs = 0.3 parameters, Tf = 50 MeV and αs = 0.3, and finally Tf =

200 MeV and αs rescaled to 0.35. We observe that jet quenching is “saturated” already at

Tf = 100 MeV: even if we let the jets interact until T drops to the (unphysical) value of

50 MeV, no significant changes occur in RAA. On the contrary, restricting the interaction

23In principle, formation time and thermalization scheme also affect CUJET calculation. This issue is a

topic of appendix I.
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Figure 20. (LEFT panel) Fixed coupling CUJET1.0 results for light quark (blue, M = 0.2 GeV)

and heavy quark (orange, M = 4.75 GeV) RAA in Au+Au 200AGeV central collisions (b=0 fm),

assuming Tf = 100 MeV and αs = 0.3 (solid), Tf = 50 MeV and αs = 0.3 (dashed), Tf = 200 MeV

and αs = 0.35 (dotted). The number of quarkonic flavors nf = 0. QGP’s pre-thermal stage is

linear and initial time τ0 = 1 fm/c, after thermalization Glauber + Bjorken evolution is assumed.

(MIDDLE panel) Running coupling CUJET2.0 results for light (blue, M = 0.2 GeV), charm (red,

M = 1.2 GeV), bottom quark (orange, M = 4.75 GeV) and gluon (green, M = 0 GeV) RAA(pT ) in

Au+Au 200AGeV central collisions (b=2.4 fm), assuming Tf = 120 MeV and αmax = 0.26 (solid),

Tf = 50 MeV and αmax = 0.26 (dashed), Tf = 160 MeV and αmax = 0.28 (dotdashed). The number

of quarkonic flavors nf = 2.5. The bulk evolution profile is the same VISH2+1 as in figure 3. The

HTL deformation parameter fE = 1 and fM = 0. Note the pT dependent suppression patterns of π0

and non-photonic e− fragmented from partonic RAA(pT ) with (αmax, fE , fM ) = (0.26, 1, 0) (solid

curves) are consistent with experimental measurements of multiple collision configurations at the

level of χ2/d.o.f. < 1.5, cf. section 3.1 and section 3.2. At partonic level, the RAA(pT ) of light and

bottom quark cross each other at pT ' 25 GeV, which transverse momentum surprisingly coincides

with the crossing of RπAA(pT ) and RBAA(pT ). Increase Tf from hadronic freeze-out temperature

120 MeV to critical temperature 160 MeV requires an enhancement of αmax from 0.26 to 0.28 for

maintaining the same partonic RAA level, suggesting by choosing Tf = 120 MeV the quenching

effect is not significantly overestimated, and it causes less than 10% under-prediction of αmax.

(RIGHT panel) The same CUJET2.0 model applied to LHC Pb+Pb 2.76ATeV b=2.4fm. Notice

again the intersection of Rlight
AA (pT ) and Rbottom

AA (pT ) at pT ' 35 GeV, and the relative insensitivity

of RAA(pT ) to Tf variation and αmax rescaling.

region to T > 200 MeV alters significantly the results and a moderate ∼ 20% rescaling of

the coupling constant is needed in order to reproduce the the original curve. But given the

freedom to fit the coupling constant, CUJET1.0 can be regarded being insensitive to this

source of theoretical uncertainty.

In the middle and right panel of figure 20, the CUJET2.0 HTL (fE = 1, fM = 0) par-

tonic RAA is shown for gluon and light, charm, bottom quarks at RHIC Au+Au 200AGeV

and LHC Pb+Pb 2.76ATeV central collision (b=2.4fm) respectively, with Tf = 120 MeV

and αmax = 0.26, Tf = 160 MeV and αmax = 0.28, and Tf = 50 MeV and αmax = 0.26.

We observe that Rlight
AA (pT ) and Rbottom

AA (pT ) intersect at pT ' 25 GeV for RHIC and

pT ' 35 GeV for LHC, both transverse momenta overlap with the crossing point of RπAA(pT )

and Rbottom
B (pT ). The physical reason for this robust level crossing has been explained

semi-quantitatively in section 3.2, and will be explored in more detail in [86]. Notice that
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RAA(pT ) of π0/h±, D and non-photonic e− computed within the CUJET2.0 model of

(αmax, fE , fM ) = (0.26, 1, 0) and Tf = 120 MeV consistently agrees with data at average

χ2/d.o.f. < 1.5 level for both RHIC and LHC, the solid orange curve in the middle and

right panel of figure 20 is therefore the CUJET2.0 prediction for b-jet or non-prompt J/ψ

for Au+Au
√
sNN = 200 GeV and

√
sNN = 2.76 TeV at 0-10% centrality respectively.

The relative insensitivity of RAA(pT ) to Tf variation and αmax rescaling appears again

in CUJET2.0. The middle and right panel of figure 20 shows that fixing αmax and decreasing

the default Tf = 120 MeV by approximately 60% to 50 MeV generates 10% enhancement

in the quenching of partons, and the latter magnitude is much less than the former, which

suggests the “saturation” effect observed in CUJET1.0 occurs again in CUJET2.0. The

two figures also display that a shift of αmax from 0.26 to 0.28 can compensate the increase

of Tf from hadronic freeze-out temperature 120 MeV to critical temperature 160 MeV and

thereby maintain the original partonic RAA(pT ). This fact indicates that choosing freeze-

out rather than critical temperature does not significantly overestimated the quenching

effect, and it leads to less than 10% under-prediction of αmax.

However, regarding Tf , the study of experimental observables that are sensitive to the

azimuthal anisotropy of the plasma and the angular distribution of jets would prove to

be more insightful, because the fragmentation region generally resides in the outer shell

(corona) of the plasma, and is more sensitive to the geometry of the collision, i.e. impact

parameter, and the transverse expansion.

Finally, we study in CUJET1.0 the sensitivity of RAA to the initial rapidity density

dNg/dy. This parameter is constrained by experimental observations, it fixes the initial

density and temperature of the plasma according to eq. (2.14). Intuitively, we expect the

quenching to be higher for denser plasma, resulting in an increased suppression of RAA for

collisions observed at the LHC. Our expectations are confirmed in figure 21.

Note in CUJET2.0 the medium information has been encoded in the 2+1D viscous

hydrodynamic fields which presumably fit properly the hadron production spectra and

bulk harmonics in the soft region, the systematic uncertainties associated with initial ra-

pidity density dN/dy and the number of quarkonic flavor nf are therefore irrelevant in the

CUJET2.0 = rcDGLV + elastic + VISH2+1 framework.

F Elastic energy loss

F.1 Bjorken’s formula

The first estimation for collisional energy loss in a quark gluon plasma was made by

Bjorken [131], and his work still constitutes the benchmark against which any computation

of this kind should be compared. Here we briefly outline his derivation.

In the limit E � k, where k the momentum of the target particle in the medium, we

can approximate the quark-quark, quark-gluon and gluon-gluon elastic cross sections as

dσi,j

dt̂
=

2πα2

t̂2
ci,j , (F.1)
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Figure 21. Fixed coupling CUJET1.0 RAA for light (blue, M = 0.2 GeV) and heavy (orange

M = 4.75 GeV) quarks in Au+Au 200AGeV central collisions. RHIC production spectra (left panel

of figure 24) are used in this plot, as well as RHIC collision parameters. However, the initial rapidity

density dNg/dy is increased from 1000 (opaque lines) to 2200 (solid lines). The increased dNg/dy

is responsible for the suppression of RAA. Other parameters used in the simulation are: αs = 0.3,

nf = 0, Tf = 100 MeV, linear thermalization with initial time τ0 = 1 fm/c.

where ci,j is a numerical factor equal to 4/9, 1, 9/4 for {i, j} = {q, q}, {q, g} or {g, g}
respectively. The energy loss per unit length can be written as

dE

dx
=

∫
d3k ρi(k)Φ

∫ t̂MAX

t̂MIN

dt̂
dσi,j

dt̂
· (E − E′) . (F.2)

Here E −E′ represents the energy lost in the collision, ρi(k) is the quark or gluon number

density, and Φ is the flux factor that accounts for the relative orientation of the target and

projectile. Defining θ as the angle between the incoming parton and the target,

E − E′ = − t̂

2k(1− cos θ)
Φ = 1− cos θ .

(F.3)

Integrating (F.2) over dt̂, we obtain

dE

dx
=

∫
d3k ρi(k)

(
−πα

2

k
ci,j logB

)
, (F.4)

where B is defined by the integration limits t̂MAX and t̂MIN . If assuming B is independent

of k for simplicity, we can set t̂MAX ≈ 2 〈k〉E ≈ 4TE and t̂MIN = µ2, with µ being the

Debye screening mass of the plasma.

If we further write the quark and gluon number densities as

ρq(k) =
12nf
(2π)3

1

eβk + 1

ρg(k) =
16

(2π)3

1

eβk − 1
,

(F.5)
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we can perform the last integration over all momenta d3k and finally get to the Bjorken

energy loss formula
dE

dx
= −πCR

α2

β2

(
1 +

nf
6

)
logB . (F.6)

In order to derive this short analytic result, several approximations were made in the way

that infrared and ultraviolet divergences are regulated, i.e. t̂MIN and t̂MAX . Such diver-

gences are physically related to the absence of collective medium effects (soft scattering)

and recoil (hard scattering) in the derivation of the theory.

F.2 Numerical effects

In the left panels of figure 22 we observe a gain in ∆E/E after elastic collisions are taken

into account. We notice three main features: (1) the energy loss is increased by up to

20%; (2) elastic losses almost do not distinguish between light and heavy quarks; (3) For

sufficiently large L, ∆E/E shows signs of saturation, indicating complete quenching of the

jets.

The partial contribution of radiative and elastic losses to the total ∆E is given in the

middle panels of figure 22, assuming a dynamical medium. Here we immediately appreciate

the difference between light and bottom quarks: while the relative elastic contribution

diminishes with L and is approximately constant with E in the case of light partons, the

exact opposite behavior is observed for heavy quarks. This has a remarkable impact on the

phenomenology: the ratio ∆Elight/∆Eheavy, shown in the right panels of figure 22, drops

by almost 25% in the large L and small E regions.

The inclusion of dynamical effects first, and elastic collisions later, has brought the

light to heavy quark energy loss ratio down from a factor of more than 2x to about 1.5x, in

the range of energies E ∼ 10−30 GeV and path lengths L ∼ 4−6 fm. These improvements

constitute a promising step toward closing the gap between theoretical models and exper-

imental data, which is shown at RHIC as a surprising similarity between the quenching of

light and heavy quark jets.

G Radiative energy loss probability distribution and fluctuations

We dedicate this section to discuss the flavor dependent energy loss probability distribution

and fluctuation effect. The energy loss is computed by integrating
∫
dε ε P (ε) over the range

[0, εMAX ]. In the top left panel of figure 23 we show the radiative energy loss probability

distribution P (ε) for different quark flavors that propagate in a plasma of size L. The

integrated radiative energy loss ∆E/E is shown in the middle panels of figure 23, alongside

a comparison with the same quantity obtained without the inclusion of fluctuation effects,

i.e. obtained by simply integrating the gluon spectrum
∫
dx xdN/dx. We see typical energy

loss probability distribution peaks at small ε for all flavors, and light and charm have almost

negligible difference in terms of P (ε), both of them lose more energy than the bottom quark.

The inclusion of fluctuation effects appears to alter only minimally the result.

The total energy loss of the jet as a function of E and L is presented in right panels

of figure 23. The same features observed in the context of DGLV are also present in the

– 71 –



J
H
E
P
0
8
(
2
0
1
4
)
0
6
3

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

L �fm�

��
E�

E�

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

L �fm�

�
E r

ad
,e
l�
�
E r

ad
�
el

Rad � El

Rad

1 2 3 4 5 6
0.5

1.0

1.5

2.0

2.5

3.0

L �fm�

�
E l

ig
ht
��

E h
ea
vy

light
charm
bottom

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

E �GeV�

��
E�

E�

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

E �GeV�

�
E r

ad
,e
l�
�
E r

ad
�
el

Rad � El

Rad

20 40 60 80 100
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E �GeV�

�
E l

ig
ht
��

E h
ea
vy

Figure 22. (LEFT panels) Radiative (dashed), elastic (dotted) and total (solid) energy loss for

light (blue, M = 0.2 GeV), charm (red, M = 1.2 GeV) and bottom (orange, M = 4.75 GeV) quarks

in a dynamical brick plasma of size L. The plasma is thermalized at temperature T = 0.258 GeV

and characterized by only gluonic degrees of freedom (nf = 0). Poisson fluctuations for the radiative

sector and Gaussian fluctuations for the elastic sector are taken into account. The total energy loss

is calculated from the convolution of both sectors. TOP: the quark jet energy is set to E = 20 GeV.

BOTTOM: L = 4 fm. (MIDDLE panels) Ratio ∆Erad/∆Erad+el (dashed lines) and ∆Eel/∆Erad+el
(dotted lines), for light (blue) and bottom (orange) quarks. ∆Erad+el denotes the total energy loss.

The ratios are computed from the results in the left panels. The dominant contribution to the total

energy loss comes from inelastic collisions. (RIGHT panels) Light to bottom quark energy loss

ratio, for radiative only (dashed) and total (solid) energy loss. The curves are obtained from the

same data plotted in the left panels. Other parameters used in the calculations are: λ = 1.16 fm,

µ = 0.5 GeV, mg = 0.356 GeV, αs = 0.3.

dynamical scenario, from the coherence physics that determines the quadratic or linear L

dependence of ∆E/E, to the similarity between light and charm quark jets across a broad

range of energies and path lengths.

H Partonic pp and AA spectra

In the section we will first show the pp spectra being used in CUJET at RHIC and LHC

energies — for light sector, LO CTEQ5 production spectra [114]; for heavy sector, both

numerical NLO and FONLL initial cross sections [129], and we will estimate the error band

associated with this source of systematic uncertainty.

In figure 24, we illustrate the initial partonic production spectra for gluon, light, charm

and bottom quark at RHIC and LHC energies.
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Figure 23. (LEFT panels) Top: normalized radiative energy probability distribution P (ε) for light

(blue, M = 0.2 GeV), charm (red, M = 1.2 GeV) and bottom (orange, M = 4.75 GeV) quark jet.

The initial energy of the jet is E = 20 GeV and the size of the brick is L = 5 fm. All results are

computed at n = 1 in the opacity series. The markers on the left represent the probability of zero

gluon emission (ε = 0, no energy loss), whereas the markers on the right represent the probability

of complete quenching (ε = 1 − M/E). Notice again how bottom quarks consistently lose less

energy than light ones. Bottom: the gluon spectrum xdNg/dx used to compute the distribution

on the top via eq. (B.37) is shown for reference. Other parameters used in the calculation are:

λ = 1.16 fm, µ = 0.5 GeV, mg = 0.356 GeV, T = 0.258 GeV, nf = 0, αs = 0.3. (MIDDLE panels)

Radiative energy loss ∆E/E for light (blue), charm (red) and bottom (orange) quark jet traversing

a dynamical QCD brick medium of thickness L, with (solid lines) or without (opaque lines) the

inclusion of fluctuation effects. DGLV is computed at first order in opacity. The former are obtained

by integrating εP (ε), the latter by integrating xdN/dx. We show the dependence of ∆E/E on L

fixing E = 20 GeV (top), and on E fixing L = 4 fm (bottom). Other model parameters used in

the simulation are the same as those in the left panels. (RIGHT panels) Total energy loss ∆E/E

for light (blue), charm (red) and bottom (orange) quark jet, computed in the same configuration

as the middle panels. Solid lines are results with fluctuation effects, while opaque curves represent

the same dynamical computation without fluctuation effects. Dashed curves represent the results

in the middle panels.
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Figure 24. pQCD p+p production spectra at
√
sNN = 200 GeV (RHIC, left) and

√
sNN =

2.76 TeV (LHC, right). Notice how steeper the RHIC spectra are compared to LHC ones. The light

spectra are computed from the LO pQCD CTEQ5 code provided in [114]. Numerical computations

of the NLO and FONLL initial cross sections for the heavy sector are provided in [129].
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Figure 25. LHC production spectra are used in conjunction with dNg/dy = 2200 to show the

sensitivity of partonic RAA to the steepness of the p+p partonic cross sections in fixed coupling

CUJET1.0. The results for light (blue, M = 0.2 GeV) and heavy (orange, M = 4.75 GeV) quark

RAA are presented as solid curves. Both of them are superimposed on the plot of figure 21 (opaque

curves), where either a combination of RHIC spectra with RHIC initial rapidity density dNg/dy =

1000 (upper opaque curves) or RHIC spectra with LHC dNg/dy = 2200 (lower opaque curves)

is used. Other parameters used in the simulation are: αs = 0.3, nf = 0, Tf = 100 MeV, linear

thermalization with initial time τ0 = 1 fm/c.

To compare spectrum variations from RHIC to LHC, in CUJET1.0, we use separate

initial rapidity density dNg/dy and production spectra for RHIC and LHC. The theoretical

curves are shown in 25, superimposed on figure 21: the impact on RAA is large, and two

separate effects can be noticed: (1) softer LHC spectra cause a vertical lift in RAA that
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Figure 26. Fixed coupling CUJET1.0 calculation of charm (red, M = 1.2 GeV) and bottom (or-

ange, M = 4.75 GeV) quark RAA, at RHIC Au+Au 200AGeV (left) and LHC Pb+Pb 2.76ATeV

(right) central collisions. Only the uncertainty in the slope of the spectra matters, since the un-

certainty in the absolute normalization is canceled when the RAA ratio is taken. Other parameters

used in the simulation are: αs = 0.3, nf = 0, Tf = 100 MeV, linear thermalization with initial time

τ0 = 1 fm/c.

completely counters the suppression generated by the increased density; (2) pion RAA rises

faster with pT , due to the particular shape of the light quark spectra at LHC.

The uncertainties that arise from the choice of NLO or FONLL schemes for heavy

quark initial spectra are shown in figure 26. The error bands shown in the figure are

relatively small, and we estimate that to be 5% in RAA at most. At the partonic level, in

fact, any uncertainty in the normalization of the production spectra is factored out: RAA
is only sensitive to changes in the slope.

Depending on what physical observables we are interested to compute, different fea-

tures of the partonic spectra may or may not assume a relevant role. Since RAA is defined

as a ratio of particles yields, the absolute value of the cross section matters little and the

normalization drops out in the definition of the observable. What influences the computa-

tion is rather the slope of the cross section, as well as the relative normalization between

different flavors.

An insightful example comes from the pion yield in p+p events at LHC, figure 27,

which is computed by convoluting the production spectra of quarks and gluons with the

appropriate fragmentation functions (more details in section B.4.3). We can make two

observations: (1) Since gluons and light quark contributions are summed together to get the

pion yield, the relative normalization between the two matters. The absolute normalization,

on the other hand, drops out once the nuclear modification factor ratio is taken. (2)

Despite the high production of gluons at low pT , the gluon distribution is much steeper

than the quark one. As a consequence, once fragmentation is taken into account, the

gluonic contribution to the total number of pions produced sinks below the quarkonic one

already at pT & 25 GeV. It is then reasonable to expect RAA to depend on the light quark

sector only for sufficiently high transverse momentum.
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Figure 27. left : p+p gluon and light quark production spectra, same as figure 24. right : p+p

pion spectra from gluon only contribution (green), quark only contribution (blue), and total gluon

plus quark contribution (black), assuming no “cold” nuclear effects. The pion spectra are computed

using KKP fragmentation functions.

Another example where only the relative steepness between production spectra matters

is given by the comparison between the (unphysical) partonic yields of light and charm

quarks. In previous appendices we saw that light and charm quarks approximately lose

the same amount of energy when they propagate through a deconfined medium, however

the production spectrum of charm quarks is much steeper than the one of light quarks

(cf. figure 24). The immediate consequence is that the partonic yield for charm quark is

suppressed in AA collisions compared to the other, regardless of the separate normalization

of the production spectra.

A similar effect applies when we compare RHIC (steeper) and LHC (flatter) spectra:

the expected energy loss increase at LHC with respect to RHIC due to higher densities

and temperatures, which itself would drive the particle yields down, is going to be partly

compensated by the flatter production cross-sections, which in turn drive the yields up.

Finally, a comment on heavy jet quenching: the measurement of heavy flavors has often

been limited to the experimental analysis of non-photonic electrons, produced mainly in

the secondary decays c → D → e and b → B → e (where D and B refer to the D and B

meson respectively). In such case, the relative norm between charm and bottom spectra

plays a critical role, in the same way that both gluon and light quarks contribute to pion

RAA. Unfortunately, the uncertainties are more significant in the heavy flavor scenario

than in the pion scenario, therefore a direct measurement of the intermediate mesons

would undoubtedly provide a much cleaner and insightful measurement to be compared to

CUJET predictions.
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I Thermalization schemes

I.1 Pre-thermal stages

In section 2.2.1, we briefly mentioned that the linear thermalization scheme for the plasma

(cf. eq. (2.14) (2.15)) is a phenomenological assumption, because of the absence of a clear

theoretical answer to the way high energy jets couple to the system before thermalization.

Different temporal evolution profiles exist and hence induce systematic uncertainties.

The ability of CUJET to perform a full jet path integration allows us to parametrize the

evolution of the system in different ways, and we can therefore draw insightful conclusions

on the physics of the collision. In the discussions followed, we characterize the pre-thermal

stage and the evolution profile after the medium been fully thermalized by varying f(τ/τ0)

in eq. (2.14) using three different methods:

1. The plasma takes a proper time τ0 to thermalize, and the density “seen” by the jet

grows linearly until thermalization is reached. The density decreases as 1/τ there-

after. Referring to eq. (2.15),

f(τ/τ0) =

{
τ/τ0 if τ ≤ τ0 ,

τ0/τ if τ > τ0 .
(I.1)

2. The jet “sees” a divergent density at τ = 0 that decreases with 1/τ (instant thermal-

ization):

f(τ/τ0) =
τ0

τ
. (I.2)

3. The jet doesn’t couple with the medium until the plasma has thermalized (free

streaming):

f(τ/τ0) =

{
0 if τ ≤ τ0 ,

τ0/τ if τ > τ0 .
(I.3)

Note in all three schemes f(τ/τ0) = τ0/τ after thermalization time τ0, which recovers the

Bjorken idea 1+1D hydro profile, i.e. the choice for CUJET1.0 bulk evolution. Therefore,

strictly speaking, our discussion about the temporal evolution parametrization here is

applicable only to CUJET1.0 which has Glauber + Bjorken profile. However, since the

variation of pre-thermal stage dominates the deformation of medium profile, the systematic

uncertainty analysis here is partially applicable to CUJET2.0 as well. In CUJET1.0, our

standard choice for τ0 is τ0 = 1 fm/c. We name the three schemes listed above as “linear”,

“divergent” and “free streaming” respectively, and illustrate the time evolution of QGP

temperature in these schemes in figure 28.

I.2 Systematic uncertainties

We show in figure 29 how differently light and heavy quarks lose energy due to elastic and

inelastic collisions are during different early stages of the plasma longitudinal expansion.

For jets produced in central Au+Au events, the differential d < ∆E/E > /dz indicates the
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Figure 28. Temperature profile of the QGP in a central (b = 0) collision at RHIC energies. The

density is constrained by the observed dN/dy = 1000. The black curve represents the temperature

at constant τ0 = 1 fm/c for a radial section of plasma. The red curves represents the 1/τ1/3

temperature probed by a quark that is created at r = 0 and propagates outward along z ≡ r (with

the solid, dotted and dashed curves representing the linear, divergent and free streaming cases

respectively). The dashed black T ≈ 100 MeV line corresponds to the fragmentation temperature

of the jet.

fractional energy loss during the first fm’s of the jet evolution. Heavy quarks lose a larger

percentage of their energy via radiative processes and its radiative energy loss rate follows

the medium thermalization.

The mass-dependent jet behavior observed in figure 29 could be used as a phenomeno-

logical indicator of the thermalization mechanism. For different parametrizations of f(τ/τ0),

one could expect a different relative yield between light and heavy quark jets. We can in

fact expect that once the free parameters of the model (αs or αmax) are fixed by a compar-

ison of the light sector with data, each assumptions of f(τ/τ0) will yield a different result

for the heavy sector. This fact is portrayed in figure 30, where the ratio ∆Elight/∆Ebottom

is given as a function of L for all possible temporal envelopes.

Next, we study the hadron suppression factor’s sensitivity to the thermalization phase

of the plasma. The results from CUJET1.0 calculations for RHIC Au+Au 200AGeV and

LHC Pb+Pb 2.76ATeV central collisions are shown in figure 31.

We see a great sensitivity of pion RAA to the pre-thermalization phase of the evolu-

tion in figure 31, which however can be counter-balanced by an adequate rescaling of the

coupling constant αs, i.e. varying αs in divergent or free streaming scheme down or up

by 10% recovers the linear scenario. If we constrain αs to fit a specific pT point of pion

RAA at RHIC initial conditions, in figure 31 left, we observe a complete overlap — or “de-

generacy” — among the linear, divergent and free streaming scenarios. The constrained

fit extrapolated to LHC energies in figure 31 right, shows on the other hand a moderate

“splitting” at high pT among the same curves. Although the difference is too small to

be measured experimentally, in theory this effect can be studied to discriminate among

pre-thermalization phenomenological models.
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Figure 29. Differential d < ∆E/E > /dz for light (left) and heavy (right) quarks, in a QGP

defined by dN/dy = 1000, τ0 = 1 fm/c and nf = 0. The initial energy of the quarks is 20 GeV.

Blue and orange colors refer to radiative losses, whereas purple and brown to elastic ones. Notice

how quickly d < ∆E/E > /dz drops for heavy quarks compared to light jets. LPM interference

effects are responsible for the finite value of the energy loss at very short z in the divergent plasma

scenario. Results are calculated within the framework of fixed coupling CUJET1.0 with αs=0.3.
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Figure 30. Energy loss ratio ∆Elight/∆Eheavy as a function of L between light and bottom quarks,

for the three linear (solid), divergent (dotted) and free streaming (dashed) initial conditions. The

energy loss is obtained by integrating the curves in figure 29 up to z = L. For sufficiently long path

lengths, the relative difference between the three approximations reaches approximately 10%.
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Figure 31. Pion RAA for three distinct plasma thermalization scenarios, with and without rescaling

of the coupling constant: linear with αs = 0.3 (solid black); divergent with αs = 0.3 (dotted black)

or αs = 0.27 (dotted red); free streaming with αs = 0.3 (dashed black) or αs = 0.32 (dashed red).

The coupling constant is rescaled to fit Rπ,RHICAA (pT = 10 GeV/c) = 0.2 (left), and the constrained

extrapolation to LHC is shown on the right. Results are calculated within the framework of fixed

coupling CUJET1.0.
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Figure 32. Flavor RAA at RHIC (left) and LHC (right). In black the pions, in purple the D

mesons, in brown the B mesons. Thick lines correspond to the linear thermalization model with

αs = 0.3, thin lines represent both the divergent and free streaming models with αs = 0.27, 0.32

respectively. Results are calculated within the framework of fixed coupling CUJET1.0.
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The same effect is visible in figure 32, where pions, D and B meson RAA is plotted

assuming RHIC (left) and LHC (right) initial conditions. The curves are constrained by the

same RHIC fit of figure 31 left. We observe a moderate “splitting” of B meson RAA across

all pT , which is a signature of the differences between the light and heavy quark quenching

mechanism during the early evolution of the plasma (cf. figure 29). The splitting in the

nuclear modification factor is less than 10% in figure 32, and it is difficult experimentally

resolve this splitting in the near future. Nevertheless, what we have observed here is a

clear indication of the importance of making simultaneous constrained fits to as many

“orthogonal” observables as possible, and it implies that the flavor dependent quenching

pattern and single particle azimuthal anisotropy are key observables of interest for refining

the phase space of CUJET pQCD tomographic model.
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