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Abstract: We study conformal field theory with the symmetry algebra A(2, p) =

ĝl(n)2/ĝl(n − p)2. In order to support the conjecture that this algebra acts on the mod-

uli space of instantons on C2/Zp, we calculate the characters of its representations and

check their coincidence with the generating functions of the fixed points of the moduli

space of instantons.

We show that the algebra A(2, p) can be realized in two ways. The first realization is

connected with the cross-product of p Virasoro and p Heisenberg algebras: Hp×Virp. The

second realization is connected with: Hp × ŝl(p)2 × (ŝl(2)p × ŝl(2)n−p/ŝl(2)n). The equiva-

lence of these two realizations provides the non-trivial identity for the characters of A(2, p).

The moduli space of instantons on C2/Zp admits two different compactifications. This

leads to two different bases for the representations of A(2, p). We use this fact to explain

the existence of two forms of the instanton pure partition functions.
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1 Introduction

In recent years the remarkable relation between two dimensional conformal field theories

and four dimensional N = 2 supersymmetric Yang-Mills theories experienced a consider-

able development. The original so-called AGT relation proposed in [1] states the equality

between the correlation functions in the Liouville field theory and the partition function

of the N = 2 supersymmetric Yang-Mills theory with the SU(2) gauge group (for the

generalizations of the AGT correspondence for the other gauge groups and conformal field

theories see [2–12]). The partition function of the N = 2 supersymmetric gauge theory

can be calculated as the integral over the moduli space of instantons M. With the proper

regularization, this integral was computed explicitly [13]. This was achieved using the lo-

calization theorem, which shows that the integral is fully determined by the fixed points

of some abelian group (torus) acting on the moduli space M [14].
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In the present work we consider the U(r) instantons on C2/Zp — the solutions of the

self-duality equation, with the additional condition for the gauge field:

Aµ(z1, z2) = Aµ(ωz1, ω
−1z2), ωp = 1. (1.1)

The nontrivial fact about the moduli space of instantons M is that one can construct the

action of some symmetry algebra A on the equivariant cohomologies of the moduli space

M. The first examples of such action were given by Nakajima in [15, 16] for the cases

of Heisenberg and Kac-Moody algebras. In [17] it was shown that the basis in the space

of the equivariant cohomologies can be labelled by the fixed points of the torus acting on

the moduli space. Therefore it is natural to assume the existence of the special basis of

the geometrical origin in the representation of A, elements of which being in one to one

correspondence with the torus fixed points on the moduli space. This basis has a number

of remarkable properties, which are listed in [18].

In the work [8] it was suggested that the instanton moduli space of the N = 2 su-

persymmetric U(r) gauge theory on C2/Zp is connected to the algebra A(r, p), which is

realized by the coset

A(r, p)
def
=

ĝl(n)r

ĝl(n− p)r
, (1.2)

where n is related to the equivariant parameters (to learn more details about this corre-

spondence see [18]). In other words there exists the special basis in the representation of

A(r, p), whose elements are in one to one correspondence with the fixed points of the torus

acting on the instanton moduli space M. On the other hand these fixed points can be

enumerated by the r-tuples of the Young diagrams painted in p colors. Therefore we can

associate the specific r-tuple of colored Young diagrams to each element of this geometrical

basis. Such bases were explicitly constructed for r = 2 and p = 1 in [19] and for r = 2 and

p = 2 in [18] and for r = 1, 2 and p = 2 in [20].

The present work can be considered as the continuation of the line of studies started

in [9–11, 18, 20]. The main goal of this work is to find nontrivial evidence in support

of the conjectured correspondence between the algebra A(2, p) and the moduli space of

U(2) instantons on C2/Zp, which we denote by
⊔

N M(2,N)Zp . Namely, we check the

correspondence between the fixed points on the moduli space of U(2) instantons on C2/Zp

and the vectors in the representation of the algebra A(2, p), by comparing the generating

functions of the fixed points and the characters of the representations.

Using the level-rank duality the algebra A(2, p) can be represented in two ways

⊔
N M(2,N)Zp ✲✛ A(2, p)

�
�✒

❅
❅❘

(H×Vir(1))× . . .× (H×Vir(p))

ŝl(2)p×ŝl(2)n−p

ŝl(2)n
×M(3/4)× . . .×M(p+ 1/p+ 2)×Hp

✻
❄

1
2

3

4

(1.3)
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where Vir(σ), σ = 1, . . . , p are the Virasoro algebras with the special central charges cσ, H

is the Heisenberg algebra, M(m/m+1) is the Minimal model1 and ŝl(2)p× ŝl(2)n−p/ŝl(2)n
is the coset algebra. In this paper we study the connections (1.3) in detail.

In the section 2 we find the generating function for the fixed points of the moduli

space. In the section 3 we study the first realization of A(2, p) depicted by the arrow 2

on (1.3) and elaborate on the characters of the representation of A(2, p) in this realization

and compare them with the generating functions of the fixed points of the moduli space. In

the section 4 we study the second realization of A(2, p) represented by the arrow 3 on (1.3).

Also we find the coincidence of the characters of the first and second realizations of A(2, p)

(arrow 4 on (1.3)). In the section 5 we find the equalities between the instanton partition

functions of the N = 2 supersymmetric U(2) pure gauge theory on C2/Zp calculated for

the different compactifications of the moduli space.

2 Counting of the torus fixed points on the moduli space of instantons

In this section we concentrate on the counting of the fixed points of the moduli space. Let

us consider the compactification of the moduli space, where the action of the Zp is lifted to

the moduli space of instantons on C2. In this case it is convenient to label the fixed points

by the r-tuples of Young diagrams with p colors. We are going to introduce the generating

functions of such Young diagrams and study the properties of such generating functions.

2.1 Fixed points on the moduli space of U(2) instantons on C2/Zp

Here we confine ourselves to the case of r = 2, which means that we consider the U(2)

instantons on C2/Zp, whose moduli space is
⊔

N M(2,N)Zp . It is convenient to numerate

the torus fixed points in this case by the pairs of Young diagrams colored in p colors. The

coloring goes as follows. We ascribe the color r from 0 to p− 1 to the corner cell and the

colors r + i − j mod p to the cell with the coordinates (i, j). For example, the diagram

with r = 3 and p = 4
3 0 1 2 3 0
2 3 0 1
1 2 3 0
0 1
3

In this section we count these fixed points. Because the number of the pairs of Young

diagrams colored in p colors is infinite, we need to introduce the grading of these diagrams.

One possible way to do that is to count the pairs of Young diagrams with the fixed common

size, fixed colors of the corner cells r1, r2 and differences km between the number of cells

with the color m > 0 and the number of cells with the color 0 in both diagrams. We will

call the set of numbers r1, r2 and k1, . . . , kp−1 (k0 = 0 by definition) as the coloring of

the Young diagrams. Thus, we determine the generating function of the pair of Young

diagrams as follows

χr1,r2(k1, . . . , kp−1|q) =
∑

(Y1,Y2)∈▽

q
|Y1|+|Y2|

p , (2.1)

1Here we have already used another level-rank duality, which gives ŝl(p)2 = M(3/4)×. . .×M(p+1/p+2).
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where

▽ = {(Y1, Y2)|
r1

,
r2

, ♯(m)− ♯( 0 ) = km} , (2.2)

and |Y | is the number of the boxes in the Young diagram Y .

It should be noted here that the coloring parameters of the Young diagrams are con-

nected with the topological characteristics of the instantons corresponding to the fixed

points of torus action on the moduli space. Let c1(E) be the first Chern class of the gauge

bundle and c1(Tr) be the first Chern class of the vector bundle on the ALE space, then

c1(E) =

p−1∑

r=1

c(r)c1(Tr). (2.3)

Denoting the number of Young diagrams with the color of corner cell r by nr we get

c(r) = nr + kr+1 − 2kr + kr−1, r = 1, . . . , p− 1. (2.4)

Utilizing (2.4) one can pass from the description of the generating functions of the Young

diagrams in terms of colorings to the equivalent description in terms of Chern classes.

The generating function of the pair of colored Young diagrams can be constructed from

the generating function of one colored Young diagram, which can be extracted from [21].

Let r be the color of the corner cell, then for r = 0, . . . , p − 1 the generating function of

one colored Young diagram is defined as

χr(k1, . . . , kp−1|q)
def
=
∑

Y ∈♦

q
|Y |
p , (2.5)

where ♦ is the set of Young diagrams with the particular coloring

♦ = {Y |
r

, ♯(m)− ♯( 0 ) = km}, (2.6)

where the box with coordinates (i, j) has the color r + i − jmod p and ♯(m), ♯( 0 ) – the

numbers of the boxes with m and 0 colors respectively. For example we have

χ2(0, 1|q) = q
1
3 · ♯{ 2 }+ q

4
3 · ♯{ 2 0

1 2
, 2 0 1 2 ,

2
1
0
2

}+O(q
7
3 ) =

= q
1
3 + 3q

4
3 +O(q

7
3 ). (2.7)

Introducing a convenient notation for the character of the highest weight representation of

the Heisenberg algebra2 H

χB(q) =

∞∏

n=1

1

1− qn
, (2.8)

2The Heisenberg algebra consists of the elements ak without a0 and has the commutation relations

[an, am] = nδn+m,0. The highest weight representation of this algebra (Fock module) has the vacuum state

|0〉: an|0〉 = 0 for n > 0, and is spanned by the vectors a−n1
. . . a−nk

|0〉, n1 > n2 > . . . > nk.
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one can get for the generating function of one colored Young diagram (here we imply

k0 = kp = 0)

χr(k1, . . . , kp−1|q) = q
∑p−1

i=1 (k
2
i+

ki
p
−kiki+1)−kr · (χB(q))

p. (2.9)

It is straightforward to obtain the generating function of the pair of Young dia-

grams. The generating function of the pair of Young diagrams with the coloring r1, r2
and k1, . . . , kp−1 is equal to

χr1,r2(k1, . . . , kp−1|q) =
∑

mi+ni=ki
i=1,...,p−1

χr1(m1, . . . ,mp−1|q)χr2(n1, . . . , np−1|q). (2.10)

Then using the formula (2.9) one obtains

χr1,r2(k1, . . . , kp−1|q) =

= (χB(q))
2p

∑

m1,...,mp−1∈Z

q
1
2

∑p−1
i=1

(
(2mi−ki)

2−(2mi−ki)(2mi+1−ki+1)+k2i−kiki+1+
2ki
p

)
−mr1+mr2−kr2 .

(2.11)

And therefore we can obviously get

1∑

k1,...,kp−1=0

q
− 1

2

∑p−1
i=1 (k

2
i−kiki+1+

2ki
p

)+ 1
2
(kr1+kr2 )χr1,r2(k1, . . . , kp−1|q) =

= (χB(q))
2p

∑

n1,...,np−1∈Z

n0=np=0

q
1
2

∑p−1
σ=1(n

2
σ−nσnσ+1)+

1
2
(nr2−nr1 ). (2.12)

2.2 Counting of the non equivalent generating functions of the colored Young

diagrams

We call two generating functions equivalent if they differ only by the multiplication of q

to some power (by this definition all the generating functions (2.9) are equivalent). Below

we show that the whole infinite set of the generating functions (2.11) can be divided into

the finite number of classes of equivalence. From (2.11) we conclude that the generating

functions have the following symmetries:

• The invariance under the transformation km → km + 2:

χr1,r2(k1, . . . , km+2, . . . , kp−1|q)=q
2km−km+1−km−1+

2
p
+δm,r1+δm,r2χr1,r2(k1, . . . , kp−1|q),

(2.13)

where δm,n is the Kronecker delta.

• The invariance under the permutation r1 ↔ r2:

χr1,r2(k1, . . . , kp−1|q) = χr2,r1(k1, . . . , kp−1|q). (2.14)
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• The invariance under the change r1, r2 → r1 + 1, r2 + 1:

χr1+1,r2+1(k1, . . . , kp−1|q) =

= q
kr1−kr1+1−

r2−r1
p χr1,r2(k1, . . . , kr1+1+1, . . . , kr2+1, . . . , kp−1|q), (2.15)

where we assume that r1 6 r2.

Applying the symmetries (2.13)–(2.15) we conclude that an arbitrary generating func-

tion with the coloring r1, r2 and k1, . . . , kp−1 is equivalent to one of the generating functions

with r1 = 0 and all km’s equal to 0 or 1:

χ0,s(k1, . . . , kp−1|q), (2.16)

where s = 0, 1, . . . , p − 1. Therefore we can confine our consideration to the generating

functions of the form (2.16).

It can be shown (see appendix A) that for each s = 0, . . . , p − 1 the generating func-

tions (2.16) are divided into [s/2] + [(p − s)/2] + 1 classes of equivalence.3 The first class

of equivalence contains the generating functions equivalent to

χ0,s(0, . . . , 0|q), (2.17)

and its cardinality is
(
p
s

)
= p!

s!(p−s)! . For each of the next [s/2] classes of equivalence it is

convenient to choose the representative

χ0,s

(
0, . . . ,

s−2l+1
0, 1, 0 , 1, 0, . . . , 1, 0,

s
1, 0, 0, . . . , 0|q

)
, (2.18)

where l takes integer values from 1 to [s/2], and from ks−2l+1 to ks there are alternating 1

and 0 and all other ki = 0. The cardinality of the equivalence class with given l is
(

p
s−2l

)
.

And for each of the last [(p− s)/2] classes of equivalence we choose the representative

χ0,s

(
0, . . . ,

s
0, 0, 1, 0, 1, . . . , 0, 1,

s+2n−1
0, 1, 0 , . . . , 0|q

)
, (2.19)

where n takes the values from 1 to [(p−s)/2], and from ks to ks+2n−1 there are alternating

0 and 1 and all other ki = 0. One can easily check that the sum of the cardinalities of the

equivalence classes indeed equals to the number of generating functions (2.16) with given s

(
p

s

)
+

[s/2]∑

l=1

(
p

s− 2l

)
+

[(p−s)/2]∑

n=1

(
p

p− s− 2n

)
= 2p−1. (2.20)

3The symbol [. . . ] means integer part of a number, for example [3/2]=1.
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Now we see that arbitrary generating functions of the fixed points on the moduli space is

equivalent to one of the generating functions (2.17)–(2.19) and we obtain

1∑

k1,...,kp−1=0

q
− 1

2

∑p−1
i=1

(
k2i−kiki+1+

2ki
p

)
+ ks

2 χ0,s(k1, . . . , kp−1|q) =

(
p

s

)
χ0,s(0, . . . , 0|q)+

+

[s/2]∑

n=1

(
p

s− 2n

)
q
−n

2

(
1+ 2

p

)

χ0,s(0, . . . , 0,
s−2n+1
0, 1, 0 , . . . , 1, 0,

s
1, 0, 0, . . . , 0|q)+

+

[(p−s)/2]∑

n=1

(
p

s+ 2n

)
q
−n

2

(
1+ 2

p

)

χ0,s(0, . . . ,
s

0, 0, 1, 0, 1, . . . ,
s+2n−1
0, 1, 0 , 0, . . . , 0|q).

(2.21)

3 First realization of the algebra A(2, p)

In the present section we study the realization of the A(2, p) as the product of p models

with Virasoro symmetry. This realization is represented by the arrow 2 on the figure (1.3).

Let us start with the definition of A(r, p)

A(r, p) =
ĝl(n)r

ĝl(n− p)r
. (3.1)

One should notice that the definition (3.1) makes sense only for the positive integer values

of the parameter n, but the usage of the level-rank duality allows us to extend the definition

of A(r, p) to the case of arbitrary complex n. Formally multiplying and dividing (3.1) by

the algebras ĝl(n− σ + 1)r with σ = 1, . . . ., p we can write

A(r, p) ⊃
ĝl(n− p+ 1)r

ĝl(n− p)r
× . . .×

ĝl(n)r

ĝl(n− 1)r
. (3.2)

Multiplying and dividing each multiplier of (3.2) by ĝl(1)r, and using the level-rank duality4

we get

A(r, p) ⊃

(
H×

ŝl(r)1 × ŝl(r)n−p

ŝl(r)n−p+1

)
× . . .×

(
H×

ŝl(r)1 × ŝl(r)n−1

ŝl(r)n

)
. (3.3)

Note that the cosets ŝl(r)1× ŝl(r)n−σ/ŝl(r)n−σ+1 for σ = 1, . . . , p are the Wr theories with

the central charges

cσ = 1 +
(r2 − 1)(n− σ)

n− σ + r
−

(r2 − 1)(n− σ + 1)

n− σ + r + 1
. (3.4)

In the case of r = 2 we have for (3.3):

A(2, p) ⊃ Hp ×Vir(1) × . . .×Vir(p), (3.5)

4Here we used the following level-rank duality trick: ĝl(k)r

ĝl(1)r×ĝl(k−1)r
=

ŝl(r)1×ŝl(r)k−1

ŝl(r)k
and also the iso-

morphism ĝl(1)r ∼= H.

– 7 –
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where Hp = H × . . . × H and due to GKO correspondence [22] the cosets ŝl(2)1 ×

ŝl(2)n−σ/ŝl(2)n−σ+1 are the Virasoro algebras Vir(σ) with the following central charges

(see appendix B)

cσ = 1 +
3(n− σ)

n− σ + 2
−

3(n− σ + 1)

n− σ + 3
= 1 + 6(Qσ)

2, (3.6)

where Qσ = bσ + b−1
σ and b2σ = −n−σ+3

n−σ+2 is the parametrization, which will be useful in

what follows. It is easy to check that the parameters bσ satisfy the following relations

b2σ + b−2
σ+1 = −2, σ = 1, . . . , p− 1. (3.7)

Thus, we have p−1 equations for p variables. This means that we are able to express these

variables in terms of the only one variable b

b2σ =
(σ − 1)Q− pb

σQ− pb
, σ = 1, . . . , p. (3.8)

In the next subsection we enlarge the r.h.s. of (3.5) up to the full A(2, p) algebra. In

order to perform this we add the set of p − 1 holomorphic currents of spin 1/2 to the p

stress-energy tensors.

3.1 The p models with Virasoro symmetry

In the case when parameter n in A(2, p) = ĝl(n)2/ĝl(n−p)2 is a positive integer, the cosets

ŝl(2)1 × ŝl(2)n−σ/ŝl(2)n−σ+1 in (3.3) describe the Minimal models M(n− σ+1/n− σ+2)

and the arrow 4 of the scheme (1.3) exactly reproduces the correspondence between the

Minimal models, which was widely studied in [23]. In this section in the spirit of [23] we

construct the first realization of the algebra A(2, p).

We recall that Virasoro algebra consists of the infinite number of generators Ln, n ∈ Z

satisfying the following commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0, (3.9)

where c is the central charge parametrized as c = 1 + 6Q2 with Q = b + b−1. We denote

the highest weight state of this algebra by Vλ, which is annihilated by Ln with n > 0 and

has the conformal dimension

∆(λ) =
Q2

4
− λ2. (3.10)

The highest weight states of the degenerate representations of the Virasoro algebra are

denoted by Vm,n ≡ Vλm,n
, where

λm,n =
mb−1 + nb

2
(3.11)

and their dimension is

∆m,n =
Q2

4
− λ2

m,n. (3.12)
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In addition to p stress-energy tensors T (σ) we form the set of p−1 holomorphic currents

J (σ)(z)
def
= V

(σ)
1,2 (z)V

(σ+1)
2,1 (z), σ = 1, . . . , p− 1, (3.13)

where V
(σ)
m,n is the degenerate field primary with respect to T (σ). Due to the relation (3.7)

for bσ’s the left conformal dimension of the current J (σ)(z) is

∆J(σ) = ∆
(σ)
1,2 +∆

(σ+1)
2,1 =

1

2
, (3.14)

while the right conformal dimension is zero. It can be checked that the currents T (σ)(z)

and J (σ)(z) generate an associative chiral algebra [23, 24]. We call this algebra the first

realization of the A(2, p).

Now let us turn to the construction of the representations of the A(2, p). The first

requirement for the highest weight state of the algebra is that it has to be primary with

respect to p stress tensors T (σ). If V
(σ)
λσ

is the primary state of the σ-th stress tensor, then

evidently the state

V
(1)
λ1

V
(2)
λ2

. . . V
(p)
λp

(3.15)

is primary with respect to all stress tensors.

Consider the OPE of the currents J (σ)(z) with the state V
(1)
λ1

. . . V
(p)
λp

. From the fusion

rules it follows

J (σ)(z)V
(1)
λ1

(0) . . . V
(p)
λp

(0) =
∑

mσ ,mσ+1=±1

zmσλσbσ+mσ+1λσ+1b
−1
σ+1×

× C(σ)(mσ,mσ+1;λ1, . . . , λp)

[
V

(1)
λ1

. . . V
(σ)

λσ+
mσbσ

2

V
(σ+1)

λσ+1+
mσ+1
2bσ+1

. . . V
(p)
λp

]
, (3.16)

where C(σ)(mσ,mσ+1;λ1, . . . , λp) are the structure constants. To reach locality we have

to make the projection [23] and keep only two terms in the sum (3.16), say, with mσ =

mσ+1 = ±1 and also impose condition λσbσ+λσ+1b
−1
σ+1 ∈ Z or Z+1/2. Now modes of J (σ),

which act on the states of the representation, are correspondingly half-integer or integer

J (σ)(z)V
(1)
λ1

(0) . . . V
(p)
λp

(0)=
∑

n∈Z+ 1
2

zn−
1
2J (σ)

n V
(1)
λ1

(0) . . . V
(p)
λp

(0), if λσbσ+λσ+1b
−1
σ+1 ∈ Z,

J (σ)(z)V
(1)
λ1

(0) . . . V
(p)
λp

(0)=
∑

n∈Z

zn−
1
2J (σ)

n V
(1)
λ1

(0) . . . V
(p)
λp

(0), if λσbσ+!λσ+1b
−1
σ+1 ∈ Z+

1

2
.

The second requirement is that the state (3.15) is primary for the currents J (σ), i.e. it’s

annihilated by the modes of all currents J (σ)(z) with positive numbers

J (σ)
n V

(1)
λ1

(0) . . . V
(p)
λp

(0) = 0, n > 0, σ = 1, . . . , p− 1. (3.17)

This condition leads us to the following relation for the Liouville momenta λ1, λ2, . . . , λp:

λσbσ + λσ+1b
−1
σ+1 = 0, (3.18)
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if the modes of the σ-th current J (σ)(z) are half-integer and

λσbσ + λσ+1b
−1
σ+1 = ±

1

2
, (3.19)

if these modes are integer. In analogy with the representations of the NSR algebra let us

call the primary state to be Neveu-Schwarz with respect to the σ-th current, if (3.18) holds,

and call it to be Ramond with respect to the σ-th current, if (3.19) with plus or minus

sign holds. In what follows we will be interested in the representations, which are NS with

respect to all currents J (σ)(z), and in the representations, which are R with respect to one

of the currents and NS with respect to all remaining p− 2 currents J (σ)(z).

First we are going to consider the representation, which is NS with respect to all

p − 1 currents J (σ)(z). Let us use the following notation for the primary state of this

representation

V
(1)

λ0
1
V

(2)

λ0
2
. . . V

(p)
λ0
p
, (3.20)

where the notation λ0
σ means, that these Liouville momenta are subject to the conditions

λ0
σbσ + λ0

σ+1b
−1
σ+1 = 0, σ = 1, . . . , p− 1. (3.21)

Thus, we have p−1 equations for p variables. It means, that the only one of these variables

is independent and the representation can be labelled by the only one variable λ and it is

convenient to parametrize λ0
σ in the following way

λ0
σ =

λ√
(σQ− pb)(pb− (σ − 1)Q)

, σ = 1, . . . , p, (3.22)

which is automatically consistent with (3.21). It is easy now to calculate the conformal

dimension of the primary state (3.20):

∆p,0(λ) =
1

p

(
Q2

4
− λ2

)
. (3.23)

The OPEs of all the currents J (σ)(z) with the corresponding primary state are given by

J (σ)(z)V
(1)

λ0
1
(0) . . . V

(p)
λ0
p
(0) =

=
∑

m=±1

C(σ)(m,m;λ1, . . . , λp)

[
V

(1)

λ0
1
. . . V

(σ)

λ0
σ+

mbσ
2

V
(σ+1)

λ0
σ+1+

m
2bσ+1

. . . V
(p)
λ0
p

]
. (3.24)

Let us now consider the representations, which are R with respect to the s-th current

J (s)(z) (s = 1, . . . , p − 1) and NS with respect to all other currents. We denote the s-th

representation of this type as

V
(1)
λs
1
V

(2)
λs
2
. . . V

(p)
λs
p
, (3.25)

where

λs
σbσ + λs

σ+1b
−1
σ+1 =

{
0, σ 6= s,

−1
2 , σ = s.

(3.26)
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Of course, we can take +1
2 instead of −1

2 , but this will give us an equivalent representation.

Notice, that there exist therefore p − 1 representations, which are R with respect to the

only one of the currents.

For the s-th representation we again have p − 1 equations (3.26) on p variables λs
σ

and thus the representations of this type can be parametrized by the only one variable.

There exists a convenient parametrization of λs
σ in terms of λ0

σ (3.22), which automatically

satisfies (3.26). Introducing the new variables dsσ

dsσ =

{
1
pσ(p− s), if σ 6 s
1
ps(p− σ), if σ > s

, s = 0, . . . , p− 1, σ = 1, . . . , p (3.27)

we have for λs
σ:

λs
σ = λ0

σ + dsσ−1

b−1
σ

2
+ dsσ

bσ
2
, (3.28)

where λ0
σ are given by (3.22). The conformal dimension of the primary state (3.25) is

∆p,s(λ) =
1

p

(
Q2

4
− λ2

)
+

s(p− s)

4p
. (3.29)

The OPEs of the currents J (σ)(z) with the corresponding primary state are given by

J (σ)(z)V
(1)
λs
1
(0) . . . V

(p)
λs
p
(0) =

=
∑

m=±1

C(σ)(m,m;λ1, . . . , λp)

[
V

(1)
λs
1
. . . V

(σ)

λs
σ+

mbσ
2

V
(σ+1)
λs
σ+1+

m
2bσ+1

. . . V
(p)
λs
p

]
, σ 6= s,

J (s)(z)V
(1)
λs
1
(0) . . . V

(p)
λs
p
(0) =

=
∑

m=±1

z−
m
2 C(σ)(m,m;λ1, . . . , λp)

[
V

(1)
λs
1
. . . V

(σ)

λs
σ+

mbσ
2

V
(σ+1)
λs
σ+1+

m
2bσ+1

. . . V
(p)
λs
p

]
.

(3.30)

Now we are going to describe the structure of the considered representations and

calculate their characters. The states in all representations are generated by the p stress

tensors and p− 1 holomorphic currents. The structure of the OPEs of these currents with

the primary states (3.24) and (3.30) tells us that the representation besides the Virasoro

descendants of the primary state contains also the states, whose Liouville momenta of the

σ-th and σ+1-th fields are shifted by ±bσ/2 and ±b−1
σ+1/2 respectively and which are also

primary with respect to the p stress tensors. Thus, taking the OPE of the current J (σ)(z)

with these states with shifted momenta λσ and λσ+1 we will generate the infinite number of

states, which are primary with respect to the p stress tensors. For the s-th representation

these states are given by

V
(1)

λs
1+n1

b1
2

V
(2)

λs
2+n1

b
−1
2
2

+n2
b2
2

. . . V
(p)

λs
p+np−1

b
−1
p

2

, (3.31)

where nσ ∈ Z and n0 = np = 0. In addition, p stress tensors generate the Virasoro

submodules from each of (3.31). Therefore, the s-th representation of the first realization
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of A(2, p), which we denote by π1

p,s is given by the following expression

π1

p,s
def
=

⊕

n1,...,np−1∈Z

[
V

(1)

λs
1+n1

b1
2

]
×

[
V

(2)

λs
2+n1

b
−1
2
2

+n2
b2
2

]
× . . .×

[
V

(p)

λs
p+np−1

b
−1
p

2

]
, (3.32)

where s = 0, . . . , p− 1 and square brackets denote the Virasoro module.

The character of the representation π1

p,s can be now easily calculated. We have

χs
p(q) = tr

{
q
∑p

σ=1 L
(σ)
0

}
π1
p,s

, (3.33)

where L
(σ)
0 is the element of the Virasoro subalgebra generated by the stress tensor T (σ).

Thus,

χs
p(q) = (χB(q))

p
∑

n1,...,np−1∈Z

n0=np=0

q

∑p
σ=1 ∆

(σ)

(
λs
σ+nσ−1

b
−1
σ
2

+nσ
bσ
2

)

. (3.34)

Calculating the sum of conformal dimensions one gets

χs
p(q) = q∆p,s(λ)(χB(q))

p
∑

n1,...,np−1∈Z

n0=np=0

q
1
2

∑p−1
σ=1(n

2
σ−nσnσ+1)+

1
2
ns , (3.35)

where ∆p,s(λ) = (Q2/4− λ2)/p+ s(p− s)/(4p), and χB(q) is defined in (2.8).

3.2 Comparison with the generating functions of the colored Young diagrams

As it was argued in the Introduction, the reason for the AGT relation is the statement

that one can construct the action of the symmetry algebra A(2, p) on the equivariant

cohomologies of the moduli space of instantons
⊔

N M(2,N)Zp . Now we obviously see

from (2.12) and (3.35) the coincidence of the generating functions of the fixed points on

the moduli space and the characters of the first realization of A(2, p):

q−∆p,s(λ)(χB(q))
pχs

p(q)=
1∑

k1,...,kp−1=0

q
− 1

2

∑p−1
i=1

(
k2i−kiki+1+

2ki
p

)
+ ks

2 χ0,s(k1, . . . , kp−1|q),

(3.36)

where s = 0, . . . , p − 1 and the generating function χ0,s(k1, . . . , kp−1) is given in (2.11).

Note that the obtained identity establishes the correspondence between the characters

of the representations of the algebra A(2, p) in the first realization and the generating

functions of the fixed points of the moduli space labelled by the colored Young diagrams.

Below we illustrate the obtained identity by listing the examples for p = 2, 3, 4. Using the

formula (2.21) we find

The p = 2 case:

q−∆2,0(λ)(χB(q))
2χ0

2(q) = χ0,0(0|q) + q−1χ0,0(1|q) (3.37)

q−∆2,1(λ)(χB(q))
2χ1

2(q) = 2χ0,1(0|q).
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The p = 3 case:

q−∆3,0(λ)(χB(q))
3χ0

3(q) = χ0,0(0, 0|q) + 3q−
5
6χ0,0(1, 0|q), (3.38)

q−∆3,1(λ)(χB(q))
3χ1

3(q) = 3χ0,1(0, 0|q) + q−
5
6χ0,1(0, 1|q).

The p = 4 case:

q−∆4,0(λ)(χB(q))
4χ0

4(q) = χ0,0(0, 0, 0|q) + 6q−
3
4χ0,0(1, 0, 0|q) + q−

3
2χ0,0(1, 0, 1|q), (3.39)

q−∆4,1(λ)(χB(q))
4χ1

4(q) = 4χ0,1(0, 0, 0|q) + 4q−
3
4χ0,1(0, 0, 1|q),

q−∆4,2(λ)(χB(q))
4χ2

4(q) = 6χ0,2(0, 0, 0|q) + 2q−
3
4χ0,2(1, 0, 0|q).

4 Second realization of the algebra A(2, p)

The present section is devoted to the other realization of A(2, p) as the product of con-

secutive Minimal models and coset. This relalization is depicted by the arrow 3 on the

figure (1.3). Let us again start with the definition of the algebra A(r, p):

A(r, p) =
ĝl(n)r

ĝl(n− p)r
. (4.1)

The usage of the level-rank duality allows us to rewrite (4.1) in the following way

A(r, p) ⊃ H× ŝl(p)r ×
ŝl(r)p × ŝl(r)n−p

ŝl(r)n
. (4.2)

Utilizing the method of [23, 25], i.e. formally multiplying and dividing (4.2) by the algebras

ĝl(k)r with k = 2, . . . , p− 1 we have

A(r, p) ⊃ ĝl(1)r ×
ĝl(2)r

ĝl(1)r
× . . .×

ĝl(p)r

ĝl(p− 1)r
×

ŝl(r)p × ŝl(r)n−p

ŝl(r)n
. (4.3)

Then applying the level-rank duality as we did in (3.2) we get

A(r, p) ⊃ Hp ×
ŝl(r)1 × ŝl(r)1

ŝl(r)2
× . . .×

ŝl(r)1 × ŝl(r)p−1

ŝl(r)p
×

ŝl(r)p × ŝl(r)n−p

ŝl(r)n
. (4.4)

The cosets ŝl(r)1 × ŝl(r)m−1/ŝl(r)m with m = 2, . . . , p are the consecutive Minimal models

with the Wr-symmetry [26] and with the central charges

cMM
r,m = (r − 1)

(
1−

r(r + 1)

(m+ r − 1)(m+ r)

)
, m = 2, . . . , p, (4.5)

while the coset ŝl(r)p × ŝl(r)n−p/ŝl(r)p determines the conformal field theory with the

central charge

cWPF =
p(r2 − 1)

p+ r

(
1−

r(p+ r)

(n− p+ r)(n+ r)

)
. (4.6)
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In the case of A(2, p) or r = 2, the cosets ŝl(2)1 × ŝl(2)m−1/ŝl(2)m are isomorphic to the

symmetry algebras of the Minimal models M(m+ 1/m+ 2) [22, 27]. And we have5

A(2, p) ⊃
ŝl(2)p × ŝl(2)n−p

ŝl(2)n
×M(3/4)× . . .×M(p+ 1/p+ 2)×Hp. (4.7)

Further we will show that the character of a certain sum of the representations of the right

hand side of (4.7) coincides with the character of the representation of the first realization

of A(2, p), which means that two realizations of A(2, p) are consistent. Then, automatically

all characters will be equal to the sum of the generating functions of the pairs of colored

Young diagrams.

4.1 Representations of the coset ŝl(2)p × ŝl(2)n−p/ŝl(2)n

In this section we are going to review the representations of the coset ŝl(2)p ×

ŝl(2)n−p/ŝl(2)n [22, 27]. Let us denote the integrable representation of ŝl(2)p by πp,m
2
,

where 0 ≤ m ≤ p and the representation of ŝl(2)n−p by πn−p,j , where j is a continuous

parameter. The representation of the numerator πp,m
2
×πn−p,j is decomposed into the sum

of the irreducible representations of the product of the denominator and coset itself:

πp,m
2
⊗ πn−p,j = ⊕

s∈Z

m−s=0mod 2

πn,j+ s
2
⊗ V m

s (p, j), (4.8)

where πn,j+ s
2
is the representation of the denominator ŝl(2)n and V m

s (p, j) is the represen-

tation of the coset ŝl(2)p × ŝl(2)n−p/ŝl(2)n.

The characters cms (q) of the representations of ŝl(2)p× ŝl(2)n−p/ŝl(2)n are given by the

branching functions which can be found from the relation for the characters originating

from (4.8):

χ
sl(2)
p,m

2
(q, z)χ

sl(2)
n−p,j(q, z) =

∑

s∈Z

m−s=0mod 2

χ
sl(2)
n,j+ s

2
(q, z)cms (q). (4.9)

These characters are labelled by the integer parameters m and s and continuous parameter

j and are given by [30]:

cms (q) = qδ
m
s (j)χ3

B(q)

+∞∑

r,l=0

(−1)r+lq
l(l+1)

2
+

r(r+1)
2

+rl(p+1)×

×
(
ql

m−s
2

+rm+s
2 − qp+1−m+l(p+1−m−s

2
)+r(p+1−m+s

2
)
)
, (4.10)

where 0 6 m 6 p, m− s = 0mod 2, and

δms (j) =
j(j + 1)

n− p+ 2
+

m(m+ 2)

4(p+ 2)
−

(2j + s)(2j + s+ 2)

4(n+ 2)
. (4.11)

5The symmetry of the Zp parafermionic Liouville field theory is described by the coset ŝl(2)p ×

ŝl(2)n−p/ŝl(2)n [12, 28, 29].
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Using the formula (4.10) it can be shown that cms (q) admits the following symmetries

cm−s(q) = cms (q), (4.12)

cms+2p(q) = cms (q).

Thus, we can confine our consideration to s, which are integers from 0 to p.

Below we are going to pass to the different parametrization of the highest weight

state and of the character of the highest weight representation, which is convenient in our

calculations. So we pass from the parameters n and j to the b and µ as follows

b2 = −
n+ 2

n− p+ 2
, j =

1

Q

(
µ−

Q

2
−

s

2b

)
, Q = b+ b−1. (4.13)

And we denote the highest weight state of the coset by Ψm
s (µ) and its representation by

[Ψm
s (µ)]. The dimension of the highest weight state and the character of this representation

are given by

∆m
s (µ) =





1
p

(
Q2

4 − µ2
)
+ s(p−s)

2p(p+2) +
(m−s)(m+s+2)

4(p+2) , m ≥ s

1
p

(
Q2

4 − µ2
)
+ s(p−s)

2p(p+2) +
(s−m)(2p−m−s+2)

4(p+2) , m < s
(4.14)

cms (q) = qD
m
s (µ)χ3

B(q)
∞∑

r,l=0

(−1)r+lq
l(l+1)

2
+

r(r+1)
2

+rl(p+1)×

×
(
ql

m−s
2

+rm+s
2 − qp+1−m+l(p+1−m−s

2
)+r(p+1−m+s

2
)
)
, (4.15)

where 0 6 m, s 6 p, m− s = 0mod 2 and

Dm
s (µ) =

1

p

(
Q2

4
− µ2

)
+

s(p− s)

2p(p+ 2)
+

(m− s)(m+ s+ 2)

4(p+ 2)

for all m and s.

4.2 Product of consecutive Minimal models

The other main part of (4.7) is the product of the Minimal models. Minimal model

M(m/m + 1) has the central charge cMM
2,m = 1 − 6/(m(m + 1)) and has the finite set

of primary fields φ
(m)
r,s with r = 1, 2, . . .m − 1, and s = 1, 2, . . .m [31]. The dimensions of

these primary fields are given by the formula

h(m)
r,s =

((m+ 1)r −ms)2 − 1

4m(m+ 1)
. (4.16)

The following fields are identified with each other φ
(m)
r,s = φ

(m)
m−r,m+1−s. We will denote the

irreducible Virasoro representation, built from the highest weight state φ
(m)
r,s by M

(m)
r,s . The

character of such a representation equals to

χ(m)
r,s (q) = Tr(qL0)

∣∣
M

(m)
r,s

= ∆m
r,s(q)χB(q), (4.17)
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where

∆m
r,s(q)=

∑

k∈Z

(qα
m
r,s(k) − qα

m
r,−s(k)), αm

r,s(k)=
(2m(m+1)k−sm+r(m+1))2 − 1

4m(m+1)
. (4.18)

Consider the product of p − 1 Minimal models highest weight states φ
(3)
1k1

× φ
(4)
k1k2

×

. . . × φ
(p+1)
kp−2n

, where ki runs from 1 to i + 2 and n runs from 1 to p + 1. This composite

highest weight state has the dimension (hereafter we imply k0 = 1, kp−1 = n)

hn(k1, . . . , kp−2) =

p−1∑

i=1

h
(i+2)
ki−1ki

=
(n2 − 1)(p+ 1)

4(p+ 2)
+

1

2

p−2∑

i=0

(k2i − kiki+1). (4.19)

The irreducible representation which is built from this composite highest weight state is

denoted as M
(3)
1,k1

×M
(4)
k1,k2

× . . . . ×M
(p+1)
kp−2,n

. Below we will consider the following sum of

the representations

⊕

{k1,...,kp−2}
1≤ki≤i+2

M
(3)
1,k1

×M
(4)
k1,k2

× . . . .×M
(p+1)
kp−2,n

. (4.20)

Denote a character of this sum of the representations by

chn(q)
def
=

∑

{k1,...,kp−2}
1≤ki≤i+2,kp−1=n

p−1∏

i=1

χ
(i+2)
ki−1ki

(q). (4.21)

In the next subsection we will show that the characters of the product of consecutive

Minimal models and the coset coincide with the characters of the first realization of A(2, p).

4.3 Comparison with the first realization of A(2, p)

Let us start by considering the following sum of the representations of the coset and con-

secutive Minimal models

[Ψm
s (µ)]×

⊕

{k1,...,kp−2}
16ki6i+2

M
(3)
1,k1

×M
(4)
k1,k2

× . . . .×M
(p+1)
kp−2,n

, (4.22)

where 1 6 n 6 p + 1, 0 6 m, s 6 p with m − s = 0 mod 2. The character of such a

representation is equal to

cms (q)chn(q). (4.23)

Note, that the representation (4.22) is labelled by three integer parameters 0 ≤ m, s ≤ p,

m− s = 0 mod 2, 1 ≤ n ≤ p+ 1 and one continuous parameter µ. Remember that we are

looking for the sum of the representations of the form (4.22), character of which coincides

with the character χs
p(q) of the representation of the first realization of A(2, p), which is

labelled by the integer parameter 0 ≤ s ≤ p− 1 and continuous parameter λ.

The character (3.35) of the representation of p models χs
p(q) looks like q∆p,s(λ) multi-

plied by some series containing integer and half-integer powers of q and the character (4.23)
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is the sum over ki’s of q
∆m

s (λ)+hn(k1,...,kp−2) multiplied by the series containing integer pow-

ers. Because hn(k1, . . . , kp−2) − hn(k
′
1, . . . , k

′
p−2) ∈ Z/2, the necessary condition for the

characters to coincide will be

∆m
s (µ) + hn(k1, . . . , kp−2)−∆p,s(λ) ∈ Z/2 . (4.24)

Performing some algebra we get

λ2 − µ2

4p
+

(m+ 1)2 − n2

4(p+ 2)
−

s

4
+

1

2

p−2∑

i=0

(k2i − kiki+1) ∈ Z/2 . (4.25)

Because the left hand side of the expression must be half integer and must not depend

on any continuous parameter it is natural to assume µ = λ. This leads to the following

Diophantine equation

(m+ 1)2 − n2

4(p+ 2)
−

s

4
+

1

2

p−2∑

i=0

(k2i − kiki+1) ∈ Z/2 , (4.26)

from which it follows that

(m− n+ 1)(m+ n+ 1)

p+ 2
∈ Z . (4.27)

Because −p 6 m− n+ 1 6 p and 2 6 m+ n+ 1 6 p+ 2, there exist two possibilities

n = m+ 1, n = p−m+ 1. (4.28)

Therefore, taking into account (4.28), we conclude, that we should take only the represen-

tations of the coset and product of Minimal models, which have the form6

[Ψm
s (λ)]×

⊕

{k1,...,kp−2}
16ki6i+2

M
(3)
1,k1

×M
(4)
k1,k2

× . . . .×M
(p+1)
kp−2,m+1 ,

[Ψm
s (λ)]×

⊕

{k1,...,kp−2}
16ki6i+2

M
(3)
1,k1

×M
(4)
k1,k2

× . . . .×M
(p+1)
kp−2,p−m+1 . (4.29)

Therefore the representation of the algebra A(2, p) in the second realization is

π2

p,s =
⊕

06m6p

m−s=0 mod 2

[Ψm
s (λ)]×

⊕

{k1,...,kp−2}
16ki6i+2

M
(3)
1,k1

×M
(4)
k1,k2

× . . . .×
(
M

(p+1)
kp−2,m+1 ⊕M

(p+1)
kp−2,p−m+1

)
.

(4.30)

6These two solutions (4.28) for n lead to the following equations for ki’s

p−2∑

i=0

(ki+1 − ki)
2 =

{
s, if n = m+ 1

p+ s− 2m if n = p−m+ 1.
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The character of this representation is

∑

06m6p

m−s=0 mod 2

cms (q)(chm+1(q) + chp−m+1(q)). (4.31)

The conjecture that the representation π2

p,s is the another form of representation of A(2, p),

i.e.

π1

p,s
∼= π2

p,s, (4.32)

leads us to the following non-trivial identity:

∑

06m6p

m−s=0 mod 2

cms (q)(chm+1(q) + chp−m+1(q)) =

= q∆p,s(λ)(χB(q))
p

∑

n1,...,np−1∈Z

n0=np=0

q
1
2

∑p−1
σ=1(n

2
σ−nσnσ+1)+

1
2
ns , (4.33)

where expressions for the characters are given in (3.35), (4.15), (4.21). We have checked the

equality (4.33) for the cases p = 2, . . . , 8 order by order up to q6. The equality (4.33) proves

the consistence of the representations of the algebra A(2, p) in the first and secondrealiza-

tions. It should be noted that in [32] it was shown, that for the case when the equivariant

parameter n = 1 (and in principal for all n ∈ Z), the characters of the representations

of the second realization of A(2, p) can be rewritten as certain series using Generalized

Rogers-Ramanujan identities.

5 Comparison of the instanton partition functions

There exist two approaches to the calculation of the instanton partition functions in the

N = 2 supersymmetric gauge theory on C2/Zp. The difference in these approaches is in the

compactification of the instanton moduli space. As the result one gets different expressions

for the same instanton partition function. The first compactification of the moduli space

is related to the first realization of the algebra A(2, p). However, unfortunately, we are not

aware of any geometrical interpretation for the second realization of A(2, p).

5.1 First compactification

One approach to the calculation of the instanton partition function on C2/Zp is the

integration over the moduli space of instantons
⊔

N M(Xp, r,N) on the resolved space

Xp = C̃2/Zp. The partition function in this approach was calculated in [33, 34]:

Zp,s
inst(~a, ǫ1, ǫ2|Λ) = (5.1)

=
∑

n1,...,np−1∈Z

n0=np=0

Λ(ni+dsi )Cij(nj+dsj)

lvecp,s (a, n1, . . . , np−1)

p∏

σ=1

ZC2

inst(~a
(σ)
s , ǫ

(σ)
1 , ǫ

(σ)
2 |Λ), s=0, . . . , p−1,
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where ~a= (a,−a), ~a
(σ)
s = (a

(σ)
s ,−a

(σ)
s ), and a

(σ)
s = a+(nσ+1+dsσ+1)ǫ

(σ)
1 +(nσ+dsσ)ǫ

(σ)
2 , and

regularization parameters are ǫ
(σ)
1 = (p− σ)ǫ1 − σǫ2, ǫ

(σ)
2 = (σ + 1− p)ǫ1 + (σ + 1)ǫ2. The

shifts dsσ are given by the formula (3.27):

dsσ =

{
1
pσ(p− s), if σ 6 s
1
ps(p− σ), if σ > s

, s = 0, . . . , p− 1, σ = 1, . . . , p. (5.2)

And Cij is the (p− 1)× (p− 1) Cartan matrix of the simple Lie algebra Ap−1.

The SU(2) instanton partition function on C2 was calculated in [35]:

ZC2

inst(~a, ǫ1, ǫ2|Λ) =
∑

(Y1,Y2)

Λ|Y1|+|Y2|
2∏

i,j=1

∏

s∈Yi

1

EYi,Yj
(s|ai − aj)(ǫ1 + ǫ2 − EYi,Yj

(s|ai − aj))
,

(5.3)

where |Y | is the total number of the boxes in the Young diagram Y , s denotes a box in the

Young diagram Y , and

EY,W (a|s) = a− lW (s)ǫ1 + (aY (s) + 1)ǫ2, (5.4)

where aY (s) and lY (s) is the arm and leg length respectively, i.e. the number of boxes in

Y to the right and below of the box s ∈ Y .

The functions lvecp,s (a, n1, . . . , np−1) are called blow-up factors and were calculated by

geometrical methods in [34] and are given by

lvecp,s (a, n1, . . . , np−1) =

p−1∏

σ=0

g(σ)(2a(σ)s , ǫ
(σ)
1 , ǫ

(σ)
2 , nσ + dsσ, nσ+1 + dsσ+1)×

× g(σ)(−2a(σ)s , ǫ
(σ)
1 , ǫ

(σ)
2 ,−(nσ + dsσ),−(nσ+1 + dsσ+1)), (5.5)

where

g(σ)(a, e1, e2, µ, ν) =





∏
m>0,n6−1

σ(ν+m)6(σ+1)(µ+n)

(a+me1 + ne2), if σν < (σ + 1)µ

1, if σν = (σ + 1)µ∏
m6−1,n>0

σ(ν+m)>(σ+1)(µ+n)

(a+me1 + ne2), if σν > (σ + 1)µ

. (5.6)

5.2 Second compactification

The other compactification of the instanton moduli space is obtained by the lift of the

action of Zp group in C2/Zp to the moduli space
⊔

N M(2,N) on C2. The resulting moduli

space is denoted by
⊔

N M(2,N)Zp and its fixed points are labelled by the pairs of Young

diagrams with p colors. Thus, in the instanton partition function corresponding to this

compactification of the moduli space we take the sum only over these Young diagrams, and

also count only the special boxes of these Young diagrams. So as in the section 2 we take

the sum over set ♦ of the pairs of Young diagrams (Y1, Y2):

♦ = {(Y1, Y2)|
r1

,
r2

, ♯(m)− ♯( 0 ) = km}, (5.7)
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where the box in Y1 with the coordinates (i, j) has the color r1 + i− jmod p and the box

(i, j) in Y2 has the color r2 + i − jmod p and ♯(m), ♯( 0 ) — the numbers of the boxes in

(Y1, Y2) with m and 0 color respectively.

Also introduce the formula [14, 36, 37]

Zr1,r2(k1, . . . , kp−1|~a, ǫ1, ǫ2|Λ) =

=
∑

(Y1,Y2)∈♦

Λ
|Y1|+|Y2|

p

2∏

i,j=1

∏̃

s∈Yi

1

EYi,Yj
(s|ai − aj)(ǫ1 + ǫ2 − EYi,Yj

(s|ai − aj))
, (5.8)

where the product
∏̃

goes only through s ∈ Yi that satisfy lYj
(s)+aYi

(s)+1 ≡ rj−ri mod p.

After all the notations being introduced we can present the expression for the instanton

partition function in the second compactification:

Zp,s
inst(~a, ǫ1, ǫ2|Λ)=

1∑

k1,...,kp−1=0

Λ
− 1

2

∑p−1
i=1

(
k2i−kiki+1+

2ki
p

)
+ ks

2 Z0,s(k1, . . . , kp−1|~a, ǫ1, ǫ2|Λ).

(5.9)

The two expressions for the instanton partition functions (5.1) and (5.9) coincide, as it was

checked in [34, 38]. In the next subsection we give arguments in favor of this equality from

the conformal field theory point of view.

5.3 Bases in conformal field theories and the equality of instanton partition

functions

For the cases r = 2, p = 1 [39, 40] and r = 2, p = 2 [8] it was shown that the instanton

partition function of the N = 2 supersymmetric gauge theory without matter is equal to

the norm of the Whittaker vector. In the mentioned cases r = 2 and p = 1, 2 this Whittaker

vector is determined as the eigenvector of the upper nilpotent subalgebra of the symmetry

algebra (Virasoro in p = 1 case and Neveu-Schwarz-Ramond in p = 2 case). In a situation

with arbitrary p and r = 2 the analogue of the Virasoro and NSR algebras is the coset

ŝl(2)p × ŝl(2)n−p

ŝl(2)n
. (5.10)

Thus, let us assume that for arbitrary p the Whittaker vector is the eigenvector of the

upper nilpotent part of the coset (5.10). Note, that we suppose the remaining part of the

A(2, p) algebra to act by zero on this Whittaker vector. Thus, we assume that for general

p we can represent partition function as the norm of the Whittaker vector |W 〉

Zinst = 〈W |W 〉. (5.11)

As it was mentioned in Introduction, there exist two ways to construct the moduli

space of instantons for the N = 2 supersymmetric U(r) gauge theory on C2/Zp. And for

each way of compactification of the moduli space there is a basis of geometrical origin,

which is in one-to-one correspondence with the fixed points of the torus action. Thus,

to calculate the instanton partition function we can use the basis labelled by the colored
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Young diagram, which was constructed explicitly in [20] for the cases r = 1, 2 and p = 2,

or labelled by the p r-tuples of ordinary Young diagrams, which was constructed explicitly

in [8, 19] for r = 2 and p = 1, 2. Despite for r = 2 and arbitrary p the basis for both

compactifications of the moduli space was not constructed, we assume its existence.

Inserting the complete set of states in the norm of the Whittaker vector in each basis

we can establish the equality between the instanton partition functions for the pure gauge

theory calculated for the different compactifications of the moduli space. Note that we

have already established the correspondence between the fixed points of the moduli space

in different compactifications, or, equivalently, between the two bases of geometrical origin

corresponding to these compactifications. The form of this correspondence is given by the

identity (3.36). Thus, taking the basis vectors corresponding to the fixed points labelled by

the Young diagrams with p colors from one side and taking the basis vectors corresponding

to the fixed points in another compactification labelled by the p r-tuples of Young diagrams

and p− 1 r-dimensional vectors from the other side, after inserting the full set of states in

the norm of the Whittaker vector we obtain the formula connecting the instanton partition

functions in different compactifications.
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A Symmetries of the generating functions

The aim of the present appendix is to analyze the symmetries of the generating function of

Young diagrams χ0,s(k1, . . . , kp−1|q) with s = 0, 1, . . . , p− 1 and ki equal to 0 or 1. Let us

remember the formula (2.11) for the generating function and write it in a more convenient

form for the further considerations

χ0,s(k1, . . . , kp−1|q) = (χB(q))
2pq

1
2

∑p−1
i=1

(
k2i−kiki+1+

2ki
p

)
− 1

2
ks×

×
∑

{mi}∈Z

q
1
4

∑s−1
i=0 (2mi+1−2mi−ki+1+ki+1)2+ 1

4

∑p−1
i=s−1(2mi+1−2mi−ki+1+ki)

2− s
4 . (A.1)
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Taking some j 6= s and assuming kj = 0 and kj−1 = 0, kj+1 = 1, we make the substitution

of the summation variable mj in (A.1)

mj = mj+1 +mj−1 − m̃j , (A.2)

which effectively leads to kj = 0 → kj = 1. After some calculations, we have

χ0,s(. . . ,
j

0, 0, 1, . . . |q) = q
− 1

pχ0,s(. . . ,
j

0, 1, 1, . . . |q), j 6= s. (A.3)

The same substitution as in (A.2) proves that

χ0,s(. . . ,
j

1, 0, 0, . . . |q) = q
− 1

pχ0,s(. . . ,
j

1, 1, 0, . . . |q), j 6= s. (A.4)

Next we have to consider the situation when ks = 0. Assuming that ks−1 = 0 and ks+1 = 0,

we make the substitution for the summation variable ms in (A.1)

ms = ms+1 +ms−1 − m̃s (A.5)

which effectively leads to ks = 0 → ks = 1. After some calculations, we have

χ0,s(. . . ,
s

0, 0, 0, . . . |q) = q
− 1

pχ0,s(. . . ,
s

0, 1, 0, . . . |q). (A.6)

If ks−1 = 1 and ks+1 = 1 the suitable substitution would be

ms = ms+1 +ms−1 − m̃s − 1 (A.7)

which again effectively leads to ks = 0 → ks = 1. After some calculations, we have

χ0,s(. . . ,
s

1, 0, 1, . . . |q) = q
1− 1

pχ0,s(. . . ,
s

1, 1, 1, . . . |q). (A.8)

The next task is to determine the classes of inequivalent generating functions for each

s with ki equal to 0 or 1.

Let us start from the case s = 0. As we remember, the array of ki is a series of p− 1

zeros and unities. We can look at this array as on the islands of unities in the sea of

zeros. Then, one can easily see that the symmetries (A.3) and (A.4) forbid the islands to

merge (at least one 0 must be between them), but allows them to change their size. Thus,

the class of equivalence is determined by the number of islands n, which takes the values

0, 1, 2, . . . ,
[p
2

]
. It is convenient to choose the following representative of the n-th class

χ0,0(1, 0, 1, 0, . . . , 1,
2n−1
0, 1, 0, . . . , 0|q). (A.9)

Thus, for s = 0 the cardinality of the n-th class is equal to
(
p
2n

)
(the number of ways

to distribute 2n borders of the islands between p places).

Now we proceed with the same calculation for the case s > 0. Looking again onto the

array of ki, which consists of 0 and 1, we notice, that if there is an island of identities,

containing the position number s, we can destroy this island obtaining the generating

function equivalent to χ0,s. Then, due to the symmetries (A.6) and (A.8) we can annihilate
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the islands to left of the position s with the islands to the right of the position s. This

means, that at the end we will be left with some number of the islands on the one side

(left or right) only. This lead us to the conclusion that the class of equivalence in this case

is determined by the difference of the number of islands to the left and to the right of the

position s. Therefore, the number of the classes of equivalence is equal to

[s
2

]
+

[
p− s

2

]
+ 1. (A.10)

Let l be the difference of the number of islands to the left and to the right of s-th position.

Then, the number of the generating functions in the corresponding class of equivalence

with ks = 0 is given by
[ s2 ]−l∑

j=0

(
s

2n+ 2j

)(
p− s

2j

)
. (A.11)

The number of the generating functions in the same class with ks = 1 (which effectively

leads to the addition of one island border on the each side) is given by

[ s2 ]−l∑

j=0

(
s

2l + 2j + 1

)(
p− s

2j + 1

)
. (A.12)

Summing up both contributions, we obtain using the Vandermonde’s identity

[ s2 ]−n∑

j=0

((
s

2l + 2j

)(
p− s

2j

)
+

(
s

2l + 2j + 1

)(
p− s

2j + 1

))
=

(
p

s− 2l

)
. (A.13)

A convenient choice of the representative of the l-th class is

χ0,s

(
0, . . . ,

s−2l+1
0, 1, 0 , 1, 0, . . . , 1, 0,

s
1, 0, 0, . . . , 0

)
. (A.14)

The situation is the same when we have n islands on the right side, except for we

should replace s by p−s, which gives the cardinality
(

p
p−s−2n

)
. A convenient representative

would be

χ0,s

(
0, . . . ,

s
0, 0, 1, 0, 1, . . . 0, 1,

s+2n−1
0, 1, 0 , . . . , 0

)
. (A.15)

B Conformal field theories based on the coset

In the present appendix we give some information about the conformal field theories based

on the coset
ŝl(r)l1 × ŝl(r)l2

ŝl(r)l1+l2

. (B.1)

In the case of general integer r ≥ 2 and arbitrary complex l1 and l2 the coset (B.1) describes

the conformal field theory with the central charge

c(r, l1, l2) = (r2 − 1)

(
l1

r + l1
+

l2
r + l2

−
l1 + l2

r + l1 + l2

)
. (B.2)
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In the case l1 = 1 we have the conformal field theory with the central charge

c(r, 1, l2) = (r − 1)
l2(2r + l2 + 1)

(r + l2)(r + l2 + 1)
, (B.3)

which has the Wr-symmetry [41]. Then, if l2 is a positive integer, the central charge is given

by the same formula (B.3) and coset describes the Minimal Model with the Wr-symmetry.

Let us now consider the case of rank r = 2, which is studied in the present paper. The

coset (B.1) takes the form

ŝl(2)l1 × ŝl(2)l2

ŝl(2)l1+l2

. (B.4)

In the case of arbitrary complex l1 and l2 the coset (B.4) describes the conformal field

theory with the central charge

c(2, l1, l2) = 3

(
l1

l1 + 2
+

l2
l2 + 2

−
l1 + l2

l1 + l2 + 2

)
. (B.5)

In the case l1 = 1 we have the conformal field theory with the central charge

c(2, 1, l2) =
l2(l2 + 5)

(l2 + 2)(l2 + 3)
= 1−

6

(l2 + 2)(l2 + 3)
, (B.6)

which has the Virasoro symmetry. Then, if l2 is a positive integer, the central charge is

given by the same formula (B.6) and the coset describes the Minimal ModelM(l2+1/l2+2),

as it was shown in [22, 27].
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