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1 Introduction

Many recent applications of the AdS/CFT correspondence (in QCD or condensed matter

theory) entail the analysis of an effective holographic theory (EHT), namely a classical

theory of gravity coupled to a set of matter fields, e.g. Einstein theory coupled to a set

of real or complex scalar fields and a set of gauge fields. Such an approach is the core

of bottom-up approaches to holographic problems. It was advocated in [1, 2] that this

– 1 –



J
H
E
P
0
8
(
2
0
1
2
)
1
6
4

approach is well suited to study the IR asymptotics of holographic theories and a host of

new (generalized) classes of quantum criticality were found at finite density. It is also in

accord with alternative setups for the holographic flow in the IR, [3–5].

The choice of interactions between the fields in the Lagrangian is limitless in bottom-up

approaches, and the usual strategy involves the choice of a specific well-motivated subset

of generic interactions parametrized by a number of arbitrary functions. For instance, the

minimal set of a single real or complex scalar field with a U(1) gauge field has been the

standard paradigm in constructions of phenomenological models of YM [6–11] and s-wave

superconductors at finite temperature and charge density, [12, 13].

One of the central objects of interest in such systems is the free energy, which can

be computed using standard methods by evaluating the on-shell gravitational action. This

quantity, as a function of external sources, is related by a Legendre transform to the effective

action of the theory. The effective action contains all the information needed to determine

the vacuum structure and other generic correlation functions. An important part of the ef-

fective action is the (quantum) effective potential. It is an important ingredient in deciding

spontaneous symmetry breaking and superfluidity (or superconductivity) at finite density.

Solving the full non-linear set of gravitational equations at finite temperature T and

charge density ρ (in generic systems of the type outlined above) is a highly non-trivial

task that typically requires numerical work. The purpose of this paper is to give compact

expressions for the quantum effective potential in holographic theories in a form that facil-

itates further numerical computation in concrete models. This is achieved by generalizing

methods applied previously to zero temperature and zero charge density solutions [14–16].

We introduce a properly defined superpotential function W and use it to reduce the sec-

ond order differential equations to first order. This reduction simplifies the differential

equations that determine the background solution. The quantum effective potential of the

theory (which is determined from the on-shell gravitational action) can be expressed com-

pactly in terms of W and the entropy function. We demonstrate how finite temperature

and charge density effects enter into this expression.

Perhaps the most appropriate way to think about the superpotential function is within

the context of the Hamilton-Jacobi treatment of holographic renormalization [14–16]. In

this framework, the on-shell gravitational action coincides with Hamilton’s principal func-

tion SH which obeys a first order differential equation, the so-called Hamilton-Jacobi equa-

tion. A solution of the Hamilton-Jacobi equation determines a set of first order flow

equations that specify the background solution. In this context, the superpotential func-

tion W is the potential term in SH , and for static and homogeneous solutions the first

order equations are simply the Hamilton-Jacobi equation for W and the corresponding

Hamilton-Jacobi flow equations for the fields.

This elegant reformulation of the second order equations of motion is generic and ap-

plies also to finite-(T , ρ) solutions. The practically difficult part of the implementation of

this formalism in this case is to determine the appropriate solution of the Hamilton-Jacobi

equation. Unfortunately, a generic ansatz for SH that captures finite temperature and den-

sity solutions, even static and homogeneous ones, is not known and it is not obvious how to

find it. For that reason, in the present paper we propose a different less ambitious approach.

– 2 –
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The approach that we adopt keeps the zero-(T , ρ) first order flow equations in terms

of a function W intact. With this ansatz we examine the extent to which the second or-

der equations reduce to a first order system and find that a full reduction to a first order

system is possible for finite T , but zero ρ. In the more general case of arbitrary T and

ρ some equations remain second order. The function W that we define in this manner is

the standard superpotential that coincides with Hamilton’s principal function SH in the

T = ρ = 0 case. For general T, ρ, however, it does not coincide with SH and the relation

between the W that we define and SH is less straightforward.

Summary of main results and structure of the paper. We apply the above strategy

to a rather general class of Einstein-Maxwell-dilaton theories captured by the action (2.1).

These theories are relevant in holographic descriptions of strange metals and other non-

Fermi liquids and phenomenological models of the glue sector in holographic QCD. The

reduction of the second order equations of motion is discussed in section 2 and the resulting

equations are summarized in eqs. (2.21a)–(2.21c). A compact general expression of the free

energy at a general renormalization (RG) scale M in terms of the function W is derived in

section 3.2 (eq. (3.8)). This equation is one of the main results of the paper.

The removal of M by taking M → ∞ and the analysis of the corresponding diver-

gences is performed in sections 5, 6 providing compact expressions for the UV quantum

effective potential. We use this result in section 7.1 to determine the critical temperature

Tc at ρ = 0 that separates a normal phase without a scalar condensate from an ordered

phase with a condensate. A general expression for the critical temperature at any charge

density is presented in section 7.2. It is known [17] that this system can exhibit a quantum

critical point, i.e. a critical point with Tc = 0. We determine this point and related scaling

exponents analytically.

The case of Einstein-abelian Higgs actions with a complex scalar field, which are rel-

evant in discussions of s-wave holographic superconductors [12, 13] is more complicated.

We have included the pertinent formulae in appendix A.

As a preliminary illustration of a qualitatively different set of theories we consider

analogous computations in Einstein gravity coupled to a scalar field with a non-linear

DBI-inspired action (see eq. (D.1)). Similar actions appear in discussions of the flavor

sector in models of holographic QCD [18–21]. A novelty in this case is the presence of mul-

tiple branches for the superpotential function W . The relevant discussion, which focuses

exclusively on zero temperature, appears in appendix D.

The detailed analysis of applications of this formalism is beyond the scope of the present

paper. A brief discussion of potential applications appears in the concluding section 8.

Additional useful technical details are relegated to the appendices B, C.

2 Reduction of the equations of motion

In this section we describe the reduction of the second order gravitational equations for a

generic Einstein-Maxwell-dilaton model. We consider solutions at finite temperature and

charge density.
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2.1 First order equations

Our first example is provided by the following Einstein-Maxwell-dilaton action in d + 1

spacetime dimensions

I = Md−1
P

∫

M

dd+1x
√−g

[
R− Z(φ)

4
F 2 − 1

2
(∂φ)2 + V (φ)

]
+ IGH ,

IGH = 2Md−1
P

∫

∂M

ddx
√
hK .

(2.1)

This action describes the dynamics of a U(1) gauge field Aµ (with field strength F = dA)

and a real scalar field φ coupled to Einstein gravity. The boundary term IGH is the standard

Gibbons-Hawking term needed to make the variational problem well-defined. As such this

action describes the grand canonical ensemble. The Lagrangian is parameterized by two

functions (Z, V ) of the scalar field φ. We assume that these functions have the following

expansion around φ = 0

Z(φ) = 1 +
∞∑

n=1

znφ
2n , V (φ) =

∞∑

n=0

vnφ
2n . (2.2)

We are interested in solutions that asymptote to AdSd+1. In the asymptotic region

where φ → 0 the first few coefficients of the expansion of the potential V are

v0 = d(d− 1) , v1 =
m2

2
(2.3)

in units where the AdS radius is set to one. m denotes the mass of the scalar field φ. The

standard AdS/CFT dictionary implies that the bulk scalar field φ maps to a real scalar

single-trace operator on the boundary with UV scaling dimension ∆ such that

m2 = ∆(d−∆) . (2.4)

For m2 in the range (d
2

4 − 1, d
2

4 ) there are two sensible values of ∆ that obey this equation,

∆± (by convention ∆− = d−∆+ < ∆+). In all other cases, only ∆+ is allowed.

Since we are interested in solutions with finite temperature and chemical potential

we set

ds2 = e2A(u)
(
−f(u)dt2 + dxidxi

)
+

du2

f(u)
, A = At(u)dt , φ = φ(u) . (2.5)

We are working in domain wall frame coordinates where the AdS solution has

A(u) = −u , f(u) = 1 , At(u) = 0 , φ(u) = 0 . (2.6)

In general asymptotically AdS solutions the UV AdS boundary lies at u → −∞.

In this frame the second order equations of motion reduce to the following set of

differential equations

d

du

(
e(d−2)AZȦt

)
= 0 , (2.7a)

2(d− 1)Ä+ φ̇2 = 0 , (2.7b)
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f̈ + dȦḟ − e−2AZȦ2
t = 0 , (2.7c)

(d− 1)Ȧḟ +

(
d(d− 1)Ȧ2 − 1

2
φ̇2

)
f − V +

1

2
Ze−2AȦ2

t = 0 . (2.7d)

We use the convention

˙ =
d

du
. (2.8)

The first equation (2.7a) can be solved trivially to obtain

Ȧt =
ρ

e(d−2)AZ
. (2.9)

The integration constant ρ is the charge density for the U(1) gauge field.

By introducing a function W such that

φ̇ = W ′(φ) , ′ :=
d

dφ
(2.10)

we notice that the second equation (2.7b) is solved by setting

Ȧ = − W (φ)

2(d− 1)
. (2.11)

Equivalently,

A(φ) = A0 −
1

2(d− 1)

∫ φ

φ0

dφ̃
W (φ̃)

W ′(φ̃)
, u = u0 +

∫ φ

φ0

dφ̃

W ′(φ̃)
(2.12)

where A0 = A(φ0).

A0 is an arbitrary value of the scale factor at an intermediate position in the radial

direction. Its choice corresponds to the definition of an RG scale M = eA0 at which the

scalar operator is defined. Therefore φ0 is the effective “source” field at the RG scale

associated to A0.

The third equation (2.7c) takes the form

W ′(W ′f ′)′ − dWW ′

2(d− 1)
f ′ =

ρ2

e2(d−1)AZ
. (2.13)

This can be integrated once to obtain

W ′f ′ = e−dA

[
D + ρ2

∫ φ

φ0

dφ̃

e(d−2)AZW ′

]
. (2.14)

D is an integration constant that can be fixed in terms of the temperature T and the charge

density ρ by requiring regularity of the geometry at the horizon u = uh∣∣∣eAḟ
∣∣∣
u=uh

= 4πT . (2.15)

Choosing a negative sign for ḟ at the horizon we obtain φ as a monotonically increasing

function of u.1 With this choice eq. (2.15) translates to

D + ρ2
∫ φh

φ0

dφ̃

e(d−2)AZW ′
= −4πTS (2.16)

1In cases where we expand around an IR AdS solution it is appropriate to pick a positive sign for ḟ .

– 5 –
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where

S := e(d−1)A(φh) = e
(d−1)A0−

1
2

∫ φh
φ0

dφ̃ W
W ′ = e(d−1)A0 S , (φh := φ(uh)) (2.17)

is a quantity proportional to the entropy. Eq. (2.14) becomes

W ′f ′ = e−dA

[
−4πTS + ρ2

∫ φ

φh

dφ̃

e(d−2)AZW ′

]
. (2.18)

Integrating once (with the normalization condition2 f(φ0) = 1) we obtain

f(φ) = 1 +

∫ φ

φ0

dφ̃

W ′
e−dA

[
−4πTS + ρ2

∫ φ

φh

dφ̃

e(d−2)AZW ′

]
. (2.19)

Finally, the last equation (2.7d) becomes

(
dW 2

2(d− 1)
−W ′2

)
f −WW ′f ′ = 2V − ρ2

e2(d−1)AZ
. (2.20)

Summary of equations. The ansatz (2.10) has allowed us to reduce some of the sec-

ond order equations to a system of first order equations. A solution at finite temperature

and charge density can be found by solving (typically numerically) the system of coupled

equations

R′W ′ = RW , R := e−2(d−1)A (2.21a)

W ′(W ′f ′)′ − dWW ′

2(d− 1)
f ′ =

ρ2R
Z

(2.21b)

(
dW 2

2(d− 1)
−W ′2

)
f −WW ′f ′ = 2V − ρ2R

Z
(2.21c)

for the unknown functions R, f,W . The profile of the scalar field φ and gauge field com-

ponent At can then be determined from eqs. (2.9), (2.10).

2.2 Special cases and other comments

In the special case of zero charge density, but arbitrary temperature, the second equa-

tion (2.21b) can be replaced by the first order differential equation (2.14)

W ′f ′ = De−dA . (2.22)

In this case we reduce the full set of equations to a set of first order equations.

Moreover, at zero temperature and charge density f = 1 and the full solution can be

determined by solving a single first order equation for the function W

dW 2

2(d− 1)
−W ′2 = 2V . (2.23)

2This condition imposes that the metric at the RG scale is the standard flat Minkowski metric.
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W is the standard superpotential function in this case, the potential (derivative-

independent) term in Hamilton’s principal function. In this language eq. (2.23) is the

Hamilton-Jacobi equation for static and homogeneous configurations.

In the more general case of non-zero temperature and charge density, the function W ,

as defined here, does not express the full potential contribution to Hamilton’s principal

function. Solving the Hamilton-Jacobi equation for static and homogeneous configurations

at finite temperature and charge density remains an interesting open problem.

Finally, a more general case of considerable interest for applications is the case of the

Einstein-abelian Higgs model expressed by the action

I=Md−1
P

∫
dd+1x

√−g

[
R−Z(φ)

4
F 2− 1

2
(∂φ)2−J(φ)(∂θ−qA)2+V (φ)

]
+IGH . (2.24)

This action describes the dynamics of a U(1) gauge field Aµ (with field strength F = dA)

and a complex scalar field Φ := φeiθ (θ ∈ [0, 2π)) coupled to Einstein gravity. The constant

q denotes the U(1) charge of the scalar field Φ.

For solutions with a constant profile for the angular field θ we can consistently set

∂µθ = 0 into the action to obtain

I = Md−1
P

∫
dd+1x

√−g

[
R− Z(φ)

4
F 2 − 1

2
(∂φ)2 − q2J(φ)A2 + V (φ)

]
+ IGH (2.25)

which introduces a new set of interaction terms into the action (2.1). The equations of

motion of this action and the first order reduction for solutions at finite temperature and

charge density in the approach of the previous subsection are summarized in appendix A.

3 General expressions for the holographic effective potential

3.1 Introductory comments

We are now in position to compute the effective potential. In order to fix the notation let

us recall first a few standard facts.

On the field theory side the free energy is defined, as a function of the sources, with

a path integral of the form

Z[J ] = e−F [J ] =

∫
e−

∫
ddx (L+JO) (3.1)

where L is the field theory Lagrangian. For concreteness, we focus here on a single scalar

operator O and its source J . The vev of the operator O is obtained from a functional

derivative of the free energy F as follows

〈O〉J =
δF
δJ

. (3.2)

The effective action Γ, which is a function of the vev 〈O〉, is the Legendre transform

of the free energy F
Γ[〈O〉J ] = F [J ]−

∫
ddxJ(x)〈O(x)〉J (3.3)

– 7 –
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in terms of which the source can be expressed as

J = − δΓ

δ〈O〉J
. (3.4)

On the gravity side, and the standard ‘quantization’3 of the dual scalar field φ, the

free energy F [J ] is computed by evaluating the on-shell gravitational action Ion−shell.

The Legendre transform must then be implemented to obtain the effective action Γ. In

the alternative ‘quantization’, which is possible in the mass range m2 ∈ (d
2

4 − 1, d
2

4 ), the

on-shell gravitational action is automatically a function of the vev 〈O〉 and expresses

directly the effective action Γ.

For static and homogeneous configurations the effective action Γ is proportional to

the effective potential Veff

Γ[〈O〉] = −βVd−1Veff(〈O〉) (3.5)

where β is the period of the Wick rotated time direction and Vd−1 is the volume of the

d− 1 spatial directions. The vacua of the theory are easily determined by extremizing the

effective potential, namely by solving the equations

dΓ

d〈O〉 = 0 . (3.6)

A vacuum is stable if and only if it is a minimum of the effective potential.

In the rest of this section we use the language of the previous section to find general

expressions of the on-shell gravitational action at finite temperature and charge density.

3.2 Free energy from gravity

The on-shell gravitational action I has a bulk contribution IE and a boundary contribution

IGH from the Gibbons-Hawking term. Here we evaluate with a UV cutoff at u = u0. A

standard computation gives the free energy

F = Ion−shell = Md−1
P βVd−1

(
−W + ḟ

)
u=u0

edA0 . (3.7)

Implementing the equations (2.14) and (2.16) we obtain the following expressions, which

will play a central role in this paper,

F̂ :=
F

Md−1
P βVd−1

= −edA0W (φ0) +D , (3.8)

or equivalently,

F̂ = −edA0W (φ0)− 4πTS + ρ2
∫ φ0

φh

dφ̃

e(d−2)AZW ′
. (3.9)

By taking the RG scale M = eA0 → ∞ we recover the free energy as a function of

the source (in the case of the standard quantization) or directly the effective potential as a

function of the vev (in the case of the alternative quantization). This step and the resulting

expressions will be discussed in sections 5 and 6.

3The so-called standard ‘quantization’ corresponds to the situation where the scalar operator O has

UV scaling dimension ∆+ in the notation below eq. (2.4). In the alternative ‘quantization’ the operator O

has UV scaling dimension ∆−.

– 8 –
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4 Renormalization group invariance

Holography provides a direct way of accessing the concept of RG running, [14], and the

analogue of β-functions, [6–9]. In our case the β function for the scalar coupling φ can be

obtained from (2.10), (2.11) to be

dφ

d logM
:=

dφ

dA
= β(φ) , β(φ) = −2(d− 1)∂φ logW (φ) (4.1)

where we identified A, in the standard manner, as the logarithm of the RG scale.

The effective potential for the sources, evaluated at u = u0, is a function of the RG

scale M = eA0 and the sources φ0, but does not depend explicitly on u0, namely

∂F̂
∂u0

= 0 . (4.2)

The RG running of the effective potential is controlled by the β-functions (4.1)

dF̂
dA0

=
∂F̂
∂A0

+
∂F̂
∂φ0

β(φ0) (4.3)

which can be expressed further in terms of the superpotential function W .

For instance, in the zero-temperature case

− dF̂
dA0

=
d

dA0

[
edA0W (φ0)

]
= edA0

[
dW +W ′ dφ0

dA0

]
= edA0

[
dW − 2(d− 1)

W ′2

W

]
. (4.4)

The superpotential equation (2.20) becomes at zero temperature and density

dW − 2(d− 1)
W ′2

W
= 4(d− 1)

V

W
. (4.5)

Consequently,

dF̂
dA0

= −4(d− 1)edA0
V

W
. (4.6)

5 Vanishing charge density

The case of zero temperature and density is well studied. Expressions for the effective

action in this case can be found for example in [15, 16, 22, 23]. By setting T = ρ = 0 in

the general equation (3.9) we find

F̂ = −edA0W (5.1)

which expresses the free energy directly in terms of the ‘superpotential’ function W , [14–

16, 24]. In this section, we proceed to generalize this result at finite temperature keeping

the charge density ρ zero. At a finite cutoff u0 the general relation (3.9) becomes

F̂ = −edA0W (φ0)− 4πTS(φ0) . (5.2)

– 9 –



J
H
E
P
0
8
(
2
0
1
2
)
1
6
4

The temperature enters in this expression in two ways. First, it enters as a trivial overall

factor in front of the second term in the r.h.s. Second, it enters non-trivially through φh

(the value of the scalar field on the horizon), which appears explicitly in the definition of

S in eq. (2.17).

Furthermore, one can derive the following useful identities between φh, T , α, and the

constant D. By differentiating and combining the equations of motion (specifically, the

equations (5.13a), (5.13b) and (5.13c)) one can express the function f as

f =
2V +WDe−dA

dW 2

2(d−1) −W ′2
. (5.3)

Consequently, at the horizon we find that the following equation must hold

2Vh +WhDe−dAh = 0 , (5.4)

where we have defined

Vh := V (φh) , Wh := W (φh) , Ah := A(φh) . (5.5)

Now we can use eq. (5.4) together with the relation

D = −4πTe(d−1)Ah (5.6)

to eliminate eAh

eAh = 2πT
Wh

Vh
(5.7)

and express D in the computationally more convenient form

D = −2(2πT )d
(
Wh

Vh

)d−1

. (5.8)

This allows us to recast eq. (3.8) (or (5.2)) into the form

F̂ = −edA0W (φ0)− 2(2πT )d
(
Wh

Vh

)d−1

. (5.9)

The above equations express the free energy at a finite cutoff u0 where φ = φ0. In

order to remove the cutoff and make contact with the boundary QFT data, J and 〈O〉, we
should scale u0 → −∞ and A0 → +∞. At the asymptotic boundary, where u → −∞, the

leading order terms in the expansion of the scalar field φ are

φ = α eu∆− + . . .+ ζ eu∆+ + . . . . (5.10)

Then, in the case of the standard quantization, the holographic dictionary dictates the

relation

α = J , ζ = 〈O〉 (5.11)

and, according to the general relations (3.2), the asymptotic coefficients α, ζ obey the

equations

ζ =
dF̂
dα

or equivalently α = −dΓ

dζ
. (5.12)

– 10 –
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This relation together with a UV boundary condition, that provides an additional

equation between α and ζ, determines the vacuum of the theory (and the full bulk

solution) completely.

In the case of the alternative quantization the roles of leading and subleading coeffi-

cients is exchanged. We proceed assuming the standard quantization.

5.1 UV expansions

In the case at hand, a solution of the bulk equations is determined by solving the system

of first order equations4

(
dW 2

2(d− 1)
−W ′2

)
f −WW ′f ′ = 2V , (5.13a)

W ′f ′ = De−dA , (5.13b)

A = A0 −
1

2(d− 1)

∫ φ

φ0

dφ̃
W

W ′
. (5.13c)

Useful information can be obtained by solving these equations perturbatively near

φ = 0 in the UV AdS asymptotic region. Given the expansion (2.2) we set

W =
∞∑

n=0

Wn(φ) , f = 1 +
∞∑

n=1

fn(φ) , e−pA = e−pA0

∞∑

n=1

gn(φ) (5.14)

where Wn, fn, gn have a separate expansion of the form

Wn, fn, gn = φnδ
∞∑

m=0

An,mφm . (5.15)

Later we will fix δ = d
∆−

. We have assumed ∆− < d
2 . In the special case where ∆− =

∆+ = d
2 the latter expansion is performed in powers of log φ instead of φ. We will not

consider explicitly this case here (see, however, [26] for a related discussion).

Up to next-to-leading order we obtain

dW 2
0

2(d− 1)
−W ′

0
2
= 2V , (5.16a)

W ′
0f

′
1 = De−dA0g1 , (5.16b)

d

d− 1
W0W1 − 2W ′

0W
′
1 + 2V f1 −W0W

′
0f

′
1 = 0 . (5.16c)

The solution to the first equation, W0, is the same as W in the zero temperature

case. Soon we will see that W0 is the term that controls the UV divergences. In that

respect, (5.16a) is in agreement with the fact that UV divergences are insensitive to the

4There is another class of potentials with exponential asymptotics related to decompactification limits

in string theory, [1, 2]. The superpotential for such asymptotics was analyzed in detail at finite temperature

in [25] and at finite temperature and density in [1, 2].
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temperature. It is known that there are two separate solutions to (5.16a) with perturbative

expansion

W
(±)
0 = 2(d− 1) +

∆±

2
φ2 +

(
v4

d− 4∆±

− d∆2
±

16(d− 1)(d− 4∆±)

)
φ4 +O(φ6) . (5.17)

It is also known [15, 16, 22] that the W
(+)
0 solutions do not allow for non-zero sources,

whereas the W
(−)
0 ones do. Hence, in what follows we will restrict our discussion to the

W
(−)
0 solutions and will drop the superscript (−).

The next order correction W1 takes the form

W1 = W
(T=0)
1 + g1

∫ φ

φ0

dφ̃

(
V

W ′
0

f1

g1
−De−dA0

W0

2W ′
0

)
. (5.18)

The first term on the r.h.s. of this equation, W
(T=0)
1 , is the zero-temperature value of W1

W
(T=0)
1 = Cφ

d
∆−

[
1 +

(
d(d− 2∆−)

4(d− 1)(d− 4∆−)
− 2dv4

∆2
−(d− 4∆−)

)
φ2 +O(φ4)

]
(5.19)

and the second term a temperature-dependent contribution whose explicit form is deter-

mined in appendix B.1. In (5.19) C is a constant fixed by infrared regularity to a particular

model-dependent value that we will denote as C∗.

5.2 The UV region A0 → +∞ and renormalization

As u0 → −∞, φ0 behaves at leading order as (see eq. (5.10))

φ0 = α eu0∆− + . . . . (5.20)

At the same time, in order to have a regular limit for

eA = eA0

(
φ0

φ

) 1
∆−

(1 + . . .) = eA0+u0

(
α

φ

) 1
∆−

(1 + . . .) (5.21)

we require A0 = −u0 → +∞.

Then, one can check the following limits

lim
u0→−∞

edA0W0 = ∞ , (5.22a)

lim
u0→−∞

edA0W1 = C∗α
d

∆− − d− 1

d
D , (5.22b)

lim
u0→−∞

edA0Wn>1 = 0 . (5.22c)

The divergence in the free energy arises solely from the first term (5.22a) that can be

removed by subtracting the zero-temperature superpotential, WC

∣∣
T=0

, for arbitrary

constant C. This subtraction removes the divergent piece and shifts the constant C of the

α
d

∆− term in W1. Therefore the renormalized superpotential is

WR(φ, T ) = W (C∗, T, φ)−W0(C, 0, φ) (5.23)
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Note that the renormalized superpotential WR depends on the arbitrary parameter C

used in the subtraction. This is a standard “scheme dependence” as in renormalized QFT.

Using the expansion (B.2) we find that as we remove the cutoff the function

S = e
−

1
2

∫ φh
φ0

dφ̃ W
W ′ takes the form

S = φ

d−1
∆−

0 φ
−

d−1
∆−

h eP(φh) (5.24)

where P(φ) is a function with an analytic expansion in powers of φ. Then,

e−dAh = e−dA0S
−

d
d−1 → α

−
d

∆− φ

d
∆−

h e
−

d
d−1

P(φh) (5.25)

and eq. (5.4) becomes

2πTα
−

1
∆− = φ

−
1

∆−

h e
1

d−1
P(φh) Vh

Wh
. (5.26)

The significance of this relation is the following. By inverting it we establish that φh is a

function of the dimensionally proper combination 2πTα
−

1
∆− .

We conclude that when we send A0 → +∞ (and subtract the divergence) the free

energy (5.9) at finite temperature (expressed in terms of bare UV variables) takes the form

F̂(α) = (C − C∗)α
d

∆− − 2(2d− 1)

d
(2πT )d

(
Wh

Vh

)d−1

. (5.27)

Hence, in the standard quantization the effective potential Veff(ζ) can be determined from

the Legendre transform

Veff(ζ) = −(C − C∗)α
d

∆− +
2(2d− 1)

d
(2πT )d

(
Wh

Vh

)d−1

+ αζ , (5.28a)

ζ =
dF̂
dα

. (5.28b)

In the alternative quantization α represents the vev of the dual operator and the r.h.s. of

eq. (5.27) expresses directly the effective potential. These expressions are one of the main

results of this paper.

Notice that the T = 0 part of the free energy (5.27), proportional to α
d

∆− , follows

also from the scale invariance of the planar boost-invariant solution and agrees with the

expressions in [23]. We will discuss the temperature dependence further in section 7.

6 Finite temperature at finite density

In this section we extend the discussion to arbitrary temperature and charge density.

We are now solving the more complicated system of first and second order differential

equations (2.21a)–(2.21c). The expansions (5.14) have a slightly more involved form which

is presented in appendix B.2 along with the corresponding expansion of the equations of

motion.
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One can show that the analog of eq. (5.3) is

f =
2V − µ2

e2(d−1)AZ
+ e−dAW

(
D + ρ2

∫ φ

φ0

1
e(d−2)AZW ′

)

dW 2

2(d−1) −W ′2
. (6.1)

Hence, at the horizon f(uh) = 0 implies

2Vh −
ρ2

e2(d−1)AhZh

+ e−dAhWh

(
D + ρ2

∫ φh

φ0

1

e(p−2)AZW ′

)
= 0 . (6.2)

Implementing eq. (2.16) we obtain

2Vh −
ρ2

e2(d−1)AhZh

− 4πTSe−dAhWh = 0 . (6.3)

Finally, with the use of eqs. (2.17), (5.20), (5.24) we find

2Vh −
1

Zh
ρ2α

−
2(d−1)
∆− φ

2(d−1)
∆−

h e−2P(φh) − 4πTα
−

1
∆− φ

1
∆−

h e
−

P(φh)

d−1 Wh = 0 . (6.4)

P(φ) is not identical to the function defined in eq. (5.24) for ρ = 0, but is defined in the

same way. Equation (6.4) is the generalization of eq. (5.26). We conclude that φh is now

a function of the combinations

Tα
−

1
∆− , ρ2α

−
2(d−1)
∆− . (6.5)

The free energy is given by eq. (3.9)

F̂ = −W (φ0)e
pA0 − 4πTS + ρ2

∫ φ0

φh

1

e(p−2)AZW ′
. (6.6)

As we remove the cutoff by taking A0 → +∞, and appropriately regulate the divergences

by subtraction as in the zero-charge case, we obtain

− lim
A0→∞

W (φ0)e
dA0 = (C − C∗)α

d
∆− +

d− 1

d
D . (6.7)

The sole contribution comes from W1 (see eq. (B.9a)) as in the ρ = 0 case. Recall, however,

that D is now given in terms of the temperature by eq. (2.16). Hence, we obtain

F̂ = (C − C∗)α
p

∆− − 2d− 1

d
4πTS − 2d− 1

d
ρ2
∫ φ0

φh

1

e(d−2)AZW ′
. (6.8)

Using eq. (5.24) and defining for convenience the function

F•(φh) :=

∫ φ0

φh

1

e(d−2)AZW ′
(6.9)

we find the expression

F̂ = (C − C∗)α
p

∆− − 2d− 1

d
4πTα

d−1
∆− φ

−
d−1
∆−

h eP(φh) − 2d− 1

d
ρ2F•(φh) . (6.10)

The functions P, F• are in general complicated model-dependent functions that can be

determined with the use of numerical methods.
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7 Scaling asymptotics and phase transitions

The unwieldy model-dependent behavior of the general expression (6.10) simplifies and

reveals universal information in the vicinity of critical points. In this section we discuss

transitions that involve the ‘normal’ phase with vanishing scalar condensate. For simplicity,

we consider the case of the alternative quantization in which α captures the vev of the dual

operator and the equations (5.27), (6.10) express Veff directly as a function of α.

7.1 Vanishing charge density

As an interesting warmup exercise we first consider the case of vanishing charge density.

Solutions with everywhere small values of the scalar field φ are big black holes with

horizon in the UV region, namely φh ≪ 1. For such solutions the UV perturbative

expansions of subsection 5.1 are valid for the whole solution outside the horizon and one

can use them to evaluate perturbatively the r.h.s. of eq. (5.27).

First, inverting the relation (5.26) we find at leading order

φh =

(
4πT

d

)−∆−

α+ . . . . (7.1)

The dots indicate subleading terms in inverse powers of Tα
−

1
∆− . From this expression

we learn that in general φh ≪ 1 can be interpreted either as the small vev limit at finite

temperature or as the high temperature limit at fixed vev.

Inserting (7.1) into the expression for the effective potential and expanding up to

quadratic order we find

Veff = −Cα
d

∆− − (2d− 1)

(
4πT

d

)d

− (2d− 1)∆−(d− 2∆−)

4d

(
4πT

d

)d−2∆−

α2 + . . . (7.2)

where, compared to previous formulae, we have replaced the constant C → C + C∗. In

the second, O(α0), term we recognize the standard T d free energy of a d-dimensional

conformal field theory.

In the presence of a double-trace deformation on the field theory side

δL ∼ gO2 (7.3)

the effective potential at zero temperature becomes [23]

Veff(α)
∣∣
T=0

= gα2 − Cα
d

∆− . (7.4)

Hence, assuming for concreteness C < 0, we learn that the normal vacuum at α = 0 is

unstable when g < 0 and a stable symmetry-breaking vacuum exists with vev

α =

(
2g∆−

dC

) ∆−

d−2∆−

. (7.5)
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Adding temperature in the presence of the double-trace deformation we obtain the

effective potential

Veff(α) = −Cα
d

∆− − ET d + geffα
2 + . . . (7.6)

where geff is the temperature-shifted effective double-trace coupling

geff = g +GT d−2∆− (7.7)

and E, G are positive (α, T )-independent constants that can be read off eq. (7.2).

The stability of the normal state at α = 0 can be determined immediately from the

sign of geff . In particular, the normal vacuum becomes unstable when geff < 0. The critical

temperature Tc that separates the stable from the unstable regime is obtained by setting

geff = 0 ⇔ Tc =
(
− g

G

) 1
d−2∆− . (7.8)

This formula is in agreement with the result obtained in a different manner in [17].

7.2 Finite temperature at finite density

A similar analysis of the stability of the normal phase can be performed in the more

general case of finite temperature and density using the formulae of section 6. Expanding

the effective potential up to quadratic order O(α2) (in the presence of a double-trace

deformation) we obtain a formula analogous to (7.6) with a more complicated effective

double-trace coupling. The explicit formula appears in eq. (C.9) of appendix C.

A finite-temperature transition at fixed ρ can be determined again by setting geff = 0.

This transition occurs at a quantum critical point when the equation geff = 0 can be

solved for T = 0. This is possible at the critical double-trace coupling

gc(ρ) =
2d− 1

d
ρ2C1A

d−2
∆−

1 (ρ)

(
C2A

2
1(ρ) +

d− 2

∆−

A2(ρ)

)
, (7.9)

whose explicit ρ-dependence, and the constants C1, C2 are determined in appendix C. To

the best of our knowledge this analytic expression is new. In the vicinity of the quantum

critical point we observe the following scaling of the vev

〈O〉 ∼ (gc − g)
∆−

d−2∆− . (7.10)

8 Outlook

In quantum field theory the effective action contains all the information needed to determine

the vacuum structure and generic correlation functions of the theory. This information can

be used, for example, to identify critical points and phase transitions at finite temperature

and/or finite density, and as such it is very useful for descriptions of real world systems in

high energy physics or condensed matter. Unfortunately, the direct computation of the full

effective action of interacting QFTs is typically an almost impossible task. As a result, the

available effective theories are limited to descriptions of the vicinity of special points in pa-

rameter space. For instance, once a critical point and an order parameter that characterizes
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the corresponding transition is identified, a Landau-Ginzburg description can be employed

to describe the properties of this order parameter in the vicinity of the critical point.

Theories with a weakly curved dual gravitational description allow us to go beyond

these limitations and derive (with specific rules) the effective action of an order parameter

in generic regimes of parameters. In this work we have initiated a systematic study of

the effective action of theories with a dual description that involves a class of Einstein-

Maxwell-dilaton theories. We focused on spacetime-homogeneous configurations and the

corresponding effective potential at finite temperature and charge density. The resulting

formulae extend the usual Landau-Ginzburg treatments away from critical points and allow

us to probe the full off-critical behavior of the system. The latter is a rather complicated

model-dependent function of the parameters. As expected, the behavior simplifies near crit-

ical points where we can recover specific critical exponents and other data of the transition.

There are several interesting extensions of this work that are worth exploring further.

First, it would be useful to explore the relation of our approach with the more systematic

Hamilton-Jacobi study of holographic renormalization [14–16]. For example, a more

thorough understanding of the precise relation between the superpotential function W

that we introduced and Hamilton’s principal function at finite temperature and density

would be useful.

Second, for many applications it is useful to know the full effective action including

derivative interactions, a subject interesting for applications both to finite density systems

and cosmology. Work in this direction using the Hamilton-Jacobi formalism has appeared

in [15, 16, 22], where explicit expressions at zero-temperature and density are provided.

In this work we focused on effective potentials for scalar order parameters, but more

generally effective actions for generic tensor order parameters (e.g. vectors) are of intrinsic

interest in various applications.

The Einstein-Maxwell-dilaton theories in this paper have appeared in numerous appli-

cations of the holographic duality to QCD and condensed matter theory. A class of these

applications in condensed matter theory refers to holographic superconductors [17] and

holographic models of magnetism [27]. The effective potential that we analyzed above can

be used to study the vacuum structure of these, and more general, systems. These systems

can also be used as basic building blocks in the construction of corresponding Josephson

junction networks within the framework of designer multi-gravity theories [28]. Applying

the results obtained above to this context we can determine the effective potential of corre-

sponding network theories and use it to study their finite temperature and density physics.
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A The Einstein-abelian-Higgs model

As explained in section 2.2 the action of the Einstein-abelian-Higgs model (2.24) reduces

to the action (2.25)

I = Md−1
P

∫
dd+1x

√−g

[
R− Z(φ)

4
F 2 − 1

2
(∂φ)2 − q2J(φ)A2 + V (φ)

]
+ IGH (A.1)

by setting ∂µθ = 0. φ is a real scalar field that represents the modulus of the complex scalar

field with U(1) charge q of the Einstein-abelian-Higgs model. In the present appendix we

summarize the equations of motion of the action A.1 and the form they take when a

superpotential function W is introduced as in section 2.1.

In the domain wall frame

ds2 = e2A(u)
(
−f(u)dt2 + dxidxi

)
+

du2

f(u)
, A = At(u)dt , φ = φ(u) (A.2)

we obtain the following independent set of second order differential equations

d

du

(
e(d−2)AZȦt

)
− 2q2e(d−2)AJ

f
At = 0 , (A.3a)

2(d− 1)Ä+ φ̇2 + 2q2e−2A J

f2
A2

t = 0 , (A.3b)

f̈ + dȦḟ − e−2AZȦ2
t − 2q2e−2AJ

f
A2

t = 0 , (A.3c)

(d− 1)Ȧḟ +

(
d(d− 1)Ȧ2 − 1

2
φ̇2

)
f − V +

1

2
Ze−2AȦ2

t − q2Je−2Af−1A2
t = 0 . (A.3d)

We introduce the function W by requiring the flow equation

φ̇ = W ′ . (A.4)

Then, eq. (A.3b) gives

Ȧ = − 1

2(d− 1)

(
W + 2q2

∫ φ

φ0

dφ̃ e−2A JA2
t

f2W ′

)
(A.5)

where we have chosen a particular integration constant that fixes the definition of W .

Eq. (A.3c) becomes

W ′(W ′f ′)′− d

2(d− 1)

(
W + 2q2

∫ φ

φ0

e−2AJ

f2W ′
A2

t

)
W ′f ′−e−2AZȦ2

t−2q2e−2AJ

f
A2

t = 0 (A.6)

and eq. (A.3d)

−
(
W + 2q2

∫ φ

φ0

dφ̃ e−2A JA2
t

f2W ′

)
W ′f ′

+

(
d

2(d− 1)

(
W + 2q2

∫ φ

φ0

dφ̃ e−2A JA2
t

f2W ′

)2

−W ′2

)
f − 2V

+Ze−2AȦ2
t − 2q2Je−2Af−1A2

t = 0 . (A.7)
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Eq. (A.6) can be integrated to obtain the expression

W ′f ′ = e−dA


D + edAH

∫ φ

φ0

dφ̃
e−2A

(
ZȦ2

t +
2q2J
f

A2
t

)

HW ′


 , (A.8)

where H(φ) is the function that solves the differential equation

H ′ =
d

2(d− 1)

W + 2q2
∫ φ

φ0
dφ̃e−2A J

f2W ′A
2
t

W ′
H (A.9)

and D is an integration constant. Using the horizon regularity condition
∣∣∣eAḟ

∣∣∣
u=uh

= 4πT (A.10)

we determine D as follows

D + edA(uh)H(uh)

∫ φh

φ0

e−2A(ZȦ2
t +

2q2J
f

A2
t )

HW ′
= −4πTe(p−1)A(uh) = −4πTS . (A.11)

The free energy takes the ‘universal’ form (3.8)

F
Md−1

P βVd−1

= −edA0W (φ0) +D . (A.12)

B UV expansions

B.1 UV expansions for vanishing charge density

In this appendix we consider in more detail the solution of the equations (5.16b), (5.16c)

W ′
0f

′
1 = De−dA0g1 , (B.1a)

d

d− 1
W0W1 − 2W ′

0W
′
1 + 2V f1 −W0W

′
0f

′
1 = 0 . (B.1b)

From eq. (5.13c) and the expansion

d

2(d− 1)

∫ φ

φ0

dφ̃
W

W ′
=

=
d

2(d− 1)

∫ φ

φ0

dφ̃
W0

W ′
0

[
1 +

(
W1

W0
− W ′

1

W ′
0

)
+

(
W2

W0
− W ′

2

W ′
0

+
W ′

1
2

W ′
0
2

)
+ . . .

]
=

= log g1 +
g2

g1
+

g3

g1
− g22

2g21
+ . . . (B.2)

we obtain

g1 = e
d

2(d−1)

∫ φ

φ0
dφ̃

W0
W ′

0 , (B.3a)

g2 =
d

2(d− 1)
g1

∫ φ

φ0

dφ̃
W0

W ′
0

(
W1

W0
− W ′

1

W ′
0

)
, etc. (B.3b)
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W0 is a solution of eq. (5.16a) with the (−) expansion in (5.17).

We can integrate eq. (5.16b) to find f1

f1 = De−dA0

∫ φ

φ0

dφ̃
g1

W ′
0

. (B.4)

Then eq. (5.16c) becomes

W ′
1 −

d

2(d− 1)

W0

W ′
0

W1 =
V

W ′
0

f1 −
W0

2
f ′
1 (B.5)

with solution

W1 = W
(T=0)
1 + g1

∫ φ

φ0

dφ̃

(
V

W ′
0

f1

g1
−De−dA0

W0

2W ′
0

)
(B.6)

where W
(T=0)
1 is the zero-temperature value of W1

W
(T=0)
1 = Cφ

d
∆−

[
1 +

(
d(d− 2∆−)

4(d− 1)(d− 4∆−)
− 2dv4

∆2
−(d− 4∆−)

)
φ2 +O(φ4)

]
. (B.7)

As was commented in the main text, C is a constant fixed by infrared regularity to a

particular model-dependent value that we denote as C∗.

B.2 UV expansions at finite charge density

At finite charge density we are solving the more complicated system of first and second order

differential equations (2.21a)–(2.21c). The expansions (5.14) are slightly more involved

h =
∑

n,m

hn,m(φ)φ
dn+2m(d−1)

∆− , hn,m(φ) =
∞∑

ℓ=0

hn,m,ℓφ
ℓ , for h = (W, f,R) . (B.8)

For the first few orders

W = W0 +W1 + W̃1 + . . . , W1 = φ
d

∆−

∞∑

n=0

W1,nφ
n , W̃1 = φ

2(d−1)
∆−

∞∑

n=0

W̃1,nφ
n , (B.9a)

R = R0 +R1 + R̃1 + . . . , R1 = φ
d

∆−

∞∑

n=0

R1,nφ
n , R̃1 = φ

2(d−1)
∆−

∞∑

n=0

R̃1,nφ
n , (B.9b)

f = f0 + f1 + f̃1 + . . . , f1 = φ
d

∆−

∞∑

n=0

f1,nφ
n , f̃1 = φ

2(d−1)
∆−

∞∑

n=0

f̃1,nφ
n . (B.9c)

The form of the equations and the corresponding solution at ρ = 0 suggests setting

R0 = R1 = 0 , f0 = 1 . (B.10)

Inserting these expansions into the equations of motion (2.21a)–(2.21c) we find that

the functions W0,W1, f1 are the same as in the ρ = 0 case and

R̃1 = e
−2(d−1)A0+

∫ φ

φ0

W0
W ′

0 , (B.11a)
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f̃ ′
1 =

µ2g1

W ′
0

∫ φ

φ0

R̃1

g1ZW ′
0

, (B.11b)

W̃1 = g1

∫ φ

φ∗

1

g1

(
V

W ′
0

f̃1 −
W0

2
f̃ ′
1 +

µ2R̃1

2ZW ′
0

)
, (B.11c)

where g1 is the function that appears in eq. (5.14) and φ∗ is an integration constant.

C Small-φh expansion details

In the regime φh ≪ 1 we have the following expansion

φh = A1α(1 +A2α
2 + . . .) , (C.1)

P(φh) = B1φ
2
h + . . . , (C.2)

F•(φh) = C1α
−

p−2
∆− φ

p−2
∆−

h

(
1 + C2φ

2
h + . . .

)
(C.3)

B1 can be determined from the definition (5.24)

B1 = − d− 16∆−

32(d− 4∆−)
. (C.4)

The coefficients A1, A2 are determined by expanding eq. (6.4) in φh. More specifically,

A1 is determined by solving the algebraic equation

ρ2A

2(d−1)
∆−

1 + 8π(d− 1)TA
1

∆−

1 − 2d(d− 1) = 0 . (C.5)

A2 is determined in terms of A1 as follows

A2 =
∆−

2(d− 1)
× (C.6)

×(2d(d−1)z1+m2)A2
1+2B1ρ

2A

2(d−1)
∆−

+2

1 −2πTA
1

∆−
+2

1 (4(d−1)z1+(∆−−4B1))

ρ2A

2(d−1)
∆−

1 + 4πTA
1

∆−

1

.

Finally, the coefficients C1, C2 are determined by expanding the expression (6.9) and

taking the φ0 → 0 limit. We find

C1 = − 1

d− 2
, (C.7)

C2 =
1

16

d− 16∆−

d− 4∆−

− z1 −
3

∆−(d− 4∆−)

(
v4 −

d∆2
−

16(d− 1)

)
. (C.8)

Expanding the effective potential up to quadratic order O(α2) (in the presence of a

double-trace deformation) we obtain a formula analogous to (7.6) with a more complicated

effective double-trace coupling

geff = g − 2d− 1

d

[
(4πT )d




2(d− 1)

2d(d− 1)− ρ2A

2(d−1)
∆−

1




d−1
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×



∆−A

2
1

4
− (d− 1)

m2A2
1 − ρ2A

2(d−1)
∆−

1

(
2(d−1)A2

∆−
− z1A

2
1 − 2B1A

2
1

)

2d(d− 1)− ρ2A

2(d−1)
∆−

1




+ρ2C1A

d−2
∆−

1

(
C2A

2
1 +

d− 2

∆−

A2

)]
. (C.9)

D Non-linear Einstein-scalar actions

As a qualitatively different example, in this appendix we consider actions of the general form

I = Md−1
P

∫
dd+1x

√−g
[
R+ V (φ)F

(
(∂φ)2

)]
+ IGH . (D.1)

φ is a real scalar field. For the function F (x) we demand F (0) = 1, F ′(0) = − ξ2

2 < 0 so

that in the long-wavelength limit we obtain the canonical scalar field action

I = Md−1
P

∫
dd+1x

√−g

[
R+ V̂ (χ)− 1

2
(∂χ)2 + . . .

]
+ IGH

χ = ξ

∫ φ

0
dx
√

V (x) , V̂ (χ) := V (φ(χ)) . (D.2)

A commonly encountered example is the DBI case with

FDBI(x) =
√
1− x . (D.3)

In what follows we describe how the equations of motion of this system can be reduced

to a first order system for zero-temperature solutions. A general treatment of the finite

temperature case lies outside the immediate scope of this paper. It can be performed

along the lines of the previous subsection. Another interesting generalization suggested

by the DBI case would be to include a U(1) gauge field.

Working again in the domain wall frame we set

ds2 = e2A(u)(−dt2 + dxidxi) + du2 , φ = φ(u) . (D.4)

The equations of motion reduce to the following set of independent differential equations

for the unknown functions A(u), φ(u)

(d− 1)Ä = V F̊ φ̇2 , (D.5a)

d(d− 1)Ȧ2 − V F + 2V F̊ φ̇2 = 0 . (D.5b)

V is a function of φ, F a function of φ̇2 and we are using the notation

˙ :=
d

du
, F̊ (x) :=

dF

dx
. (D.6)

In this case the superpotential ansatz (2.10), (2.11) is generalized to

φ̇ = W̃ (φ) , Ȧ = − W (φ)

2(d− 1)
. (D.7)
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Inserting this ansatz into the equations of motion (D.5a), (D.5b) we obtain the first order

system

d

4(d− 1)
W 2 − W̊W̃ − FV = 0 , (D.8a)

W̊ = −2V F̊ W̃ . (D.8b)

As an illustrating example consider the DBI case (D.3). One can solve explicitly the

second equation (D.8b) to obtain

W̃ =
ǫW̊√

V 2 + W̊ 2
, FDBI =

V√
V 2 + W̊ 2

, ǫ = ±1 . (D.9)

Substituting into the first equation (D.8a) we find a single non-linear first order equation

for W

ǫW̊ 2 + V 2 =
d

4(d− 1)
W 2

√
V 2 + W̊ 2 . (D.10)

One of the novelties of the non-linear case is the presence of multiple branches of solutions

parametrized by the free parameter ǫ = ±1.

The same results are obtained easily with the use of the Hamilton-Jacobi formalism.

For static and homogeneous configurations Hamilton’s function is

SH = −Md−1
P

∫

u=u0

ddx
√−gW (φ) = −Md−1

P βVd−1e
dA0W (φ0) . (D.11)

Eq. (D.8a) is the Hamilton-Jacobi equation and eq. (D.8b) is the first order flow equation

for the scalar field φ.

The formula (D.11) in the Hamilton-Jacobi formalism implies that the (rescaled) free

energy is

F̂ = −edA0W (φ0) , (D.12)

a result that can also be verified easily by direct computation.
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