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1 Introduction and discussion

Fluid/gravity correspondence has become an interesting aspect of current theoretical physics
research after beginning of RHIC program in 2000. The experimental data implies that
the thermalized matter produced at RHIC are in a new state called the quark-gluon
plasma (QGP). The evolution of QGP and hadronic matter in this state can be described
by hydrodynamics. The temperature of the gas of quarks and gluons produced at RHIC
is approximately 170 MeV which is very close to the confinement temperature of QCD. At
this high temperature they are not in the weakly coupled regime of QCD. This new phase
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of nuclear matter is known as the the strongly coupled quark-gluon plasma (sQGP). Ob-
viously to study their properties the usual perturbation theory does not work. One needs
different approach to deal with these strongly coupled system.

The holographic hydrodynamics (or fluid/gravity correspondence) is an important tool
for understanding some properties of strongly coupled CFTs in terms of the dual AdS black
holes physics1 [1]–[25].

Low frequency (long wavelength) fluctuations of any interacting quantum field theory
should be described by hydrodynamics. Low energy behavior of strongly coupled field the-
ory (with gravity dual) is governed by a weakly coupled black hole space-time in one higher
dimension. On the other hand in classical theory of gravity the ”membrane-paradigm” ap-
proach of [26] tells us that a black hole has a fictitious fluid membrane (with hydrodynamic
characteristic) living on the horizon of the black hole. Therefore from UV/IR point of view
it would be interesting to understand the precise relation between the membrane fluid and
the low frequency description of strongly coupled field theory sitting at the boundary of
AdS black hole space-time.

One can read off the transport coefficients like shear-viscosity coefficients, of boundary
plasma from its retarded Green’s function of stress tensor

GRxy,xy(kµ) = −i
∫
dtdxeik·x〈[Txy(x), Txy(0)]〉 . (1.1)

The Green’s function for a fluid at finite temperature has a hydrodynamic expansion of
the form,2

GRxy,xy(kµ) = −iηω + ητπω
2 − κ

2
[(p− 2)ω2 + q2] +O(k3), (1.2)

where, p is spatial dimension and p ≥ 3 and

η : shear viscosity coefficient,

τπ : relaxation time for shear viscous stress,

κ : a new coefficient defined in Ref[9, 10]

and ω is frequency and q is spatial momentum (k = {ω, 0, 0, q}).
In [27] the author defined a response function χ̄(r, k) (eq. (2.13) in our case) it was

shown that, at low momentum (kµ → 0), the evolution of the response function is indepen-
dent of the radial direction and hence, it can be computed either at horizon or at boundary.
Computing the response function at black hole horizon one can show that the shear vis-
cosity coefficient, which is a first-order transport coefficient of the boundary plasma, can
be obtained from the low frequency characteristics of the membrane fluid. In [28–30], this
issue has been generalized for gravity theory with generic higher-derivative interactions in
arbitrary backgrounds. It has been proved that the membrane fluid does give the correct
shear-viscosity coefficient of the boundary plasma in arbitrary higher derivative gravity
and just the knowledge of near-horizon geometry of the dual AdS black hole is enough for
computing the shear-viscosity coefficient [31].

1QCD is approximately conformal at sufficiently large energies.
2Here we have dropped the frequency independent part of the Green’s function.
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Figure 1. Flow of Green’s function from horizon to boundary for two derivative gravity.
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Figure 2. Flow of Green’s function from Horizon to boundary for higher derivative gravity for
different values of ω and q.

To specify the boundary plasma completely one also needs to understand its higher-
order transport coefficients. For this one needs to move away from the low frequency
(kµ → 0) limit. In this case, the response functions flow non-trivially with the radial
direction and the flow depends on full black hole geometry. Although the boundary plasma
and the membrane fluid have same shear-viscosity coefficients, other transport coefficients
can certainly differ and it is not clear how the two are related. In figure 1 we plot the radial
evolution of response function for two derivative gravity.3 In zero frequency limit, the flow
of the response function χ̄ is trivial. Its real part is constant (the constant is one in our
scaling) and imaginary part is zero. For finite ω and q the response function (both real and
imaginary part) has a non-trivial evolution. But the horizon value of the function for non-
zero frequency is same as the horizon value of the function for zero frequency. Therefore we
conclude that for two derivative gravity dual, the full momentum response at the horizon
automatically corresponds to only the zero momentum limit of the boundary response.

However in presence of higher derivative terms in the action the situation is different.
The full momentum response at horizon depends on spatial momentum.4 We plot the flow
of response function for Weyl4 interaction in figure 2.

From this plot we see that in presence of higher-derivative interaction the horizon value
of the response function depends of kµ unlike two derivative theory.

3We define the response function χ̄ =
−GR

xy,xy(ω,q)

iω
.

4We will also see this analytically in sections 3.
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We also see that the imaginary part of χ̄ diverges at boundary. This is the usual UV
divergence. One has to add a counter term to cancel this divergence.

In this paper, we study the flow equations for retarded Green’s function (in fact re-
sponse function5) of boundary theory analytically and find higher order transport coeffi-
cients of the boundary plasma solving this equation. We generalize the analysis for generic
higher derivative gravity theory and also for R charge black holes. The flow equation for
Green’s function is a first order non-linear differential equation of Riccati type. Because
of its non-linear nature it is hard to solve this equation exactly. After a change of variable
one can reduce this non-linear equation to a second order linear homogeneous differential
equation. But to solve this we need to specify two boundary conditions. In this paper
we deal with the non-linear equation and specify the boundary condition at the horizon.
Therefore the hydrodynamic characteristic of the field theory at UV fix point is determined
by IR boundary condition.

For two derivative Einstein-Hilbert action the flow equation of retarded Green’s func-
tion has been derived in [27]. But it is not obvious how to generalize the flow equation for
higher derivative gravity. The derivation given in [27] was based on the canonical form of
graviton’s action. In this paper we have considered generic higher derivatives terms in the
bulk Lagrangian. Following the prescription given in [29] we construct an effective action
for transverse graviton which has the canonical form in presence of any higher derivative
terms in the bulk, and derive the flow equation for Green’s function. Solving this flow
equation perturbatively in ω and q we obtain second order transport coefficients namely
τπ (relaxation time) and κ of the dual plasma.6 In this way of computing the transport
coefficients has an advantage over usual Kubo approach. In Kubo approach, one has to
first find the transverse graviton by solving a second order differential equation and then
compute regarded Green’s function. Instead, the flow equation is a first order differential
equation (although non-linear). As we want a perturbative expansion of Green’s function
in powers of ω and q the equation turns out to be a linear first order differential equation.
Thus, technically, it is simpler to get results for causal hydrodynamics, particularly when
the dual bulk theory is complicated.

The paper is organized as follows. We have worked in five-dimensional bulk theory,
the dual gauge theory is four-dimensional. In section 2 we review the derivation of flow
equation of boundary Green’s function for two derivative gravity. Then solving this flow
equation we compute second order transport coefficients κ and τπ of boundary plasma.
Our results matches with previous computations of [9, 10]. In section 3 we present the
flow equation in presence of generic higher derivative interaction. We calculate the higher
derivative correction for τπ and κ in section 4. We concentrated mainly on Weyl4 and four
derivative correction. While our results for Weyl4 correction are in agreement with results

5The Green’s function, by definition, is independent of r. Therefore whenever we say flow of Green’s

function we mean the flow of the quantity defined in equation (2.12) before taking r → 0 limit (which is

defined to be response function up to a factor of iω).
6From Weyl invariance one can show that there are other transport coefficients in second order hydro-

dynamics [10]. However from the expansion of retarded Green’s function it is only possible to compute only

two of them.
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of [32], the four-derivative corrections are new results of this paper. We also compute the
effect of gauss-Bonnet to τπ and κ. From our results we obtain the bound on Gauss-Bonnet
coupling constant. In section 5 we consider R charge black hole in bulk and find the second
order transport coefficients in presence of finite chemical potential. We also find the higher
derivative effects on transport coefficients of field theory plasma dual to gauge supergravity
theory. Finally,we analyze the flow equation of Green’s function for boundary R current
in section 6. Appendix A and B compliments some discussions on boundary terms. In
appendix C, D and E, we have provided some long expressions.

2 Flow of retarded Green’s function of energy-momentum tensor

In this section we briefly review the work of Liu and Iqbal [27]. They considered leading
Einstein-Hilbert (E-H) action with a negative cosmological constant in 4+1 dimensions
and studied the motion of a transverse graviton in this background.7 The action is,

SEM =
1

16πG5

∫
d5x
√
−g (R+ 12) . (2.1)

The background has a black-brane solution as,

dS2 = gttdt
2 + grrdr

2 + gijdx
2dxj ,

gtt = −1− r2

r
, grr =

1
4r2(1− r2)

gij =
1
r
δij . (2.2)

The solution is asymptotically AdS and it has a boundary topology R × R3. The horizon
of the space-time is at r → 1 and asymptotic boundary is at r → 0.

We study the graviton’s fluctuation in this background,

gxy = g(0)
xy + hxy(r, x) = g(0)

xy [1 + εΦ(r, x)]. (2.3)

By plugging it in the action and keeping terms to order ε2, we obtain the following effective
action for the perturbation

S =
1

16πG5

∫
d4k

(2π)4
dr

2∑
p,q=0

Ap,q(r, k)φ(p)(r,−k)φ(q)(r, k). (2.4)

Here we use Fourier transform to work in the momentum space k = {−ω,~k},

Φ(r, x) =
∫

d4k

(2π)4
eik.xφ(r, k) (2.5)

and φ(p)(r, k) denotes the pth derivative of the field φ(r, k) with respect to r (p+ q ≤ 2).

7Here we restrict ourselves to five space-time dimensions, but the discussions are quite generic and can

be extended to arbitrary dimensions.
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Next, we integrate by parts to obtain the bulk action in the following form (up to some
total derivative terms)

S =
∫

d4k

(2π)4
dr(A1(r, k)φ′(r, k)φ′(r,−k) +A0(r, k)φ(r, k)φ(r,−k)), (2.6)

where,

A1(r, k) = −
1
2g
rr√−g

16πG5
,

A0(r, k) = −
1
2

√
−ggµνkµkν
16πG5

. (2.7)

From this action, we can find the conjugate momentum Π(r, kµ) of the transverse
graviton (for r-foliation) and the equation of motion,

Π(r, kµ) = 2A1(r, k)φ′(r, k) (2.8)

and
Π′(r, kµ)− 2 A0(r, k)φ(r, k) = 0 . (2.9)

The on-shell action reduces to the following surface term,8

S =
∑
r=0,1

∫
d4k

(2π)4
(A1(r, k)φ′(r, k)φ(r,−k)). (2.10)

Following the AdS/CFT prescription given in [5], the boundary retarded Green’s function
is given as,

GR(kµ) = lim
r→0

2A1(r, k)φ′(r, k)φ(r,−k)
φ0(k)φ0(−k)

, (2.11)

where, φ0(kµ) is the value of the graviton fluctuation at boundary. Full solution of the
graviton can be written as φ(r, kµ) = φ0(kµ)F (r, kµ), where F (r, kµ) goes to identity at the
boundary. We can rewrite the boundary retarded Green’s function as,

GR(kµ) = lim
r→0

Π(r, kµ)
φ(r, kµ)

. (2.12)

Let us define a response function of the boundary theory as,9

χ̄(kµ, r) =
Π(r, kµ)
iωφ(r, kµ)

(2.13)

where ω = k0. This function is defined for all r and kµ. Therefor the boundary Green’s
function is given by,

GR(kµ) = lim
r→0

iωχ̄(kµ, r). (2.14)

8We will discuss about other boundary terms in appendix B.
9We set the zero frequency part of G to zero, as it gives contact terms.
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We will study the radial evolution of the response function χ̄(kµ) from horizon to
boundary. Differentiating equation (2.13) and using the equations of motion (2.9) we get,

∂rχ̄(kµ, r) = iω

√
−grr
gtt

[
χ̄(kµ, r)2

Σ(r)
− Υ(r)

ω2

]
, (2.15)

where we define

Σ(r) = −2A1(r, kµ)
√
−grr
gtt

(2.16)

Υ(r) = 2A0(r, kµ)
√
− gtt
grr

. (2.17)

Putting values of A1 and A0 given in (2.7) we can easily recover the flow equation
given in [27].10 However for future requirements, here we present it directly in terms of the
coefficients of the graviton action.

As mentioned earlier, the flow equation in (2.15) is valid for any value of momentum.
This is a first order differential equation and we need to specify one boundary condition to
solve this equation. That naturally comes from the behavior of the equation at the horizon.
Demanding the solution to be regular at the horizon, we get the following condition,

χ̄(kµ, r)2

∣∣∣∣∣
r=1

=
Σ(r)Υ(r)

ω2

∣∣∣∣∣
r=1

. (2.18)

For two derivative gravity this boundary condition implies that,11

χ̄(kµ, 1) = −
√

Σ(1)Υ(1)
ω2

= − 1
16πG5

(2.19)

which is independent of kµ. Therefore the full momentum response at the horizon cor-
responds to only to the zero momentum limit of boundary response, χ̄(kµ, 1) = χ̄(kµ →
0, r → 0).12

With this boundary condition, one can integrate out the differential equation (2.15)
from horizon to asymptotic boundary and obtain the AdS/CFT response for all momentum
kµ. In particular, it is trivial to see that at (ω, ki)→ 0 limit, the flow is trivial

∂rχ̄(kµ, r) = 0 (2.20)

and using the boundary condition (2.18) we get the first order transport coefficient of
boundary fluid, i.e. the shear viscosity coefficient coefficients η = 1

16πG5
.

In this paper, we will go away from (ω, ki → 0) limit. As we have already mentioned,
it is possible to integrate the flow equation for any momentum (perturbatively) and we can
easily find the higher order transport coefficients. The usual Kubo approach to compute
these coefficients requires the full profile of the transverse graviton in black hole background
(solving a second order differential equation), where as, using the flow equation, one can
get these transport coefficients without explicit knowledge of the graviton’s profile.

10just notice that gtt there is negative of what we used here.
11We choose the negative brunch. The sign of the boundary condition 2.18 depends on the choice of

coordinate. In our coordinate the boundary is at r → 0 hence we need to choose the negative branch.
12 However, in higher derivative gravity we will see that the χ̄(kµ, 1) depends on spatial momentum.

– 7 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
1

2.1 A renormalized response function

When we solve the flow equation (2.15) to get the boundary response function in general
it involves divergence at the boundary (r → 0). These are usual UV divergences and to
remove them we need to re-normalize the response function properly.

We follow the holographic renormalization prescription of [34, 35]. As the graviton is
massless, we only need to add the following counterterm to the graviton’s action,

SC =
1

16πG5

∫
r=δ

d4x
√
−γ 1

4
Φ(ε, x)�Φ(ε, x). (2.21)

In momentum space,

SC =
1

64πG5

∫
r=δ

d4k

(2π)4

√
−γφ(δ, k)(gttω2 + kik

i)φ(δ,−k). (2.22)

Therefore the renormalized Green’s function is given by,

GR = lim
r→0

[
Π(r, kµ)
φ(r, kµ)

+
√
−γ

32πG5
(gttω2 + kik

i)
]
. (2.23)

However we will study the flow of un-renormalized response function defined in (2.13)
and we define our renormalized response function as,

χ̄Ren(r, kµ) = χ̄(r, kµ) +
1
iω

√
−γ(gttω2 + kik

i)
32πG5

. (2.24)

The counter term will cancel the UV divergences appearing in the expression of χ̄ and we
will get a finite result at the boundary, i.e. limr→0 χ̄

Ren(r, kµ) will be finite. From the above
analysis, we understand that one can get rid of the UV divergences appearing in the re-
sponse function by following the holographic renormalization technique. But, an important
observation is, this counter term does not add any finite contribution to the result it only
cancels out the divergences. Thus, one can study the flow of the un-renormalized response
function and ignore the divergences piece to get the finite contribution at the boundary.

2.2 Second order transport coefficients from flow equation

In this subsection, we compute the higher order transport coefficients by solving the flow
equation (2.15) perturbatively up to order ω2 and k2

i . This is a non-linear first order
differential equation. Now, the right hand side of this equation is proportional to ω. Hence,
to solve χ̄ to order ω2, we can replace the leading order solution for χ̄ in the right hand side
of equation (2.15). This simplifies the situation a lot as the non-linear equation becomes
linear. Now, to leading order, χ̄ = −η = − 1

16πG5
. Therefore up to order ω2, we get,

∂rχ̄(kµ, r) = iω

√
−grr
gtt

[
η2

Σ(r)
− Υ(r)

ω2

]
+O(ω2, k2

i ). (2.25)
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The integration constant for the equation can be fixed form the boundary condition (2.18).
Putting the value of the constant, the solution takes the form,

iωχ̄(kµ, 0) = lim
r→0
− 1

96πG5r

[
3q2(r − 1) + ω(3ω + r(ω(log(8)− 3) + 6i))

]
(2.26)

+O(qω2, ωq2, q3, ω3)

= −iω
(

1
16πG5

)
+ ω2

[
1
2

(1− ln 2)
(

1
16πG5

)]
− q2

2

(
1

16πG5

)
+O

(
1
r

)
.

Here we have chosen the four momentum in the following form

k = {ω, 0, 0, q} . (2.27)

This expression has divergence as r → 0 (UV divergence) and can be removed by
adding suitable counter term (as explained in the last section).

Comparing the finite piece of (2.26) at r → 0 with the generic expansion of the retarded
Green’s function (1.2),13 we get,

η =
T 3π3

16πG5
,

τπ =
2− ln 2

2πT
, κ =

η

πT
. (2.28)

Here T = 1
π . These results are in agreement with [10]. In appendix A we briefly outline

the Kubo method to get this result. Thus, we see that, studying the flow equation of the
response function we can compute the higher order transport coefficients perturbatively.
Here, we present the results for the second order transport coefficients, but, in general it
is possible to go beyond second order.

At this point, it is not clear why only considering the boundary term from action (2.6)
is enough to get the correct results. In usual Kubo approach, one needs to take into ac-
count the Gibbons-Hawking term also. But as the action (2.6) has well defined variational
principle, one does not need to add any Gibbons-Hawking term with it. In appendix B
we show that the boundary terms coming from the original action and the correspond-
ing Gibbons-Hawking action are exactly same as the boundary terms coming from the
action (2.6) up to terms proportional to φ2 and pure divergence terms. The φ2 terms do
not contribute to any transport coefficients.14 The divergent terms will get canceled by
the proper counterterms and hence are not important for finding the transport coefficients.
Thus it is clear that the effective action will give us the correct transport coefficients for
the boundary plasma. This observation also holds for higher derivative gravity theory.15

3 Higher derivative correction to flow equation

So far we have discussed the flow equation of two point correlation function of energy-
momentum tensor of boundary theory whose gravity dual is given by Einstein-Hilbert

13The overall sign depends on the choice of coordinate.
14They only contribute to pressure of the boundary theory.
15In appendix B, we have proved this explicitly for R(n) (contraction of n curvature tensors) gravity

theory.
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action (two derivative action). But it is not obvious how to generalize this for higher
derivative case. The proof given in [27] was based on the canonical form (2.6) of graviton’s
action. In presence of arbitrary higher derivative terms in the bulk, the general action for
the perturbation hxy does not have the above form (2.6). Rather it will have more than
two derivative (with respect to r) terms like φ′φ′′, φ′′2 etc. In presence of these terms it is
not possible to bring this action into a canonical form (up to some total derivative terms).
In this paper we consider generic higher derivatives terms in the bulk Lagrangian. We
follow the prescription of [29] to construct an effective action ”Seff” for transverse graviton
in canonical form in presence of generic higher derivative terms in the bulk. The effective
action and original action give same equation of motion perturbatively in the coupling of
the higher derivative terms.

Let us consider a gravity set-up with n derivative action.

I =
1

16πG5

∫
d5x
√
−g
[
R+ 12 + α′R(n)

]
(3.1)

where, R(n) is any n derivative Lagrangian. The metric in general is given by (assuming
planar symmetry),

ds2 = −(ht(r) + α′ h
(n)
t (r))dt2 +

dr2

hr(r) + α′ h
(n)
r (r)

+
1
r

(1 + α′ h(n)
s (r))d~x2 . (3.2)

Substituting the background metric with fluctuation (2.3) in action (3.1) (we call it general
action or original action) for the scalar field φ(r, k) we get,

I =
1

16πG5

∫
d4k

(2π)4
dr

n∑
p,q=0

Ap,q(r, k)φ(p)(r,−k)φ(q)(r, k) (3.3)

where, φ(p)(r, k) denotes the pth derivative of the field φ(r, k) with respect to r and p+ q ≤
n. The coefficients Ap,q(r, k) in general depends on the coupling constant α′. Ap,q with
p+ q ≥ 3 are proportional to α′ and vanishes in α′ → 0 limit , since the terms φ(p)φ(q) with
p+ q ≥ 3 appears as an effect of higher derivative terms in the action (3.1).

Up to some total derivative terms, the general action (2.6) can also be written as,

I =
1

16πG5

∫
d4k

(2π)4
dr

n/2∑
p=0

Ap(r, k)φ(p)(r,−k)φ(p)(r, k)

(for n even)

=
1

16πG5

∫
d4k

(2π)4
dr

n−1
2∑

p=0

Ap(r, k)φ(p)(r,−k)φ(p)(r, k)

(for n odd) . (3.4)

However this action does not have canonical form. We write an effective action for trans-
verse graviton in canonical form,

Seff =
1

16πG5

∫
d4k

(2π)4
dr

[
AHD

1 (r, k)φ′(r, k)φ′(r,−k) +AHD
0 (r, k)φ(r, k)φ(r,−k)

]
(3.5)
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with some unknown functions AHD1 and AHD0 . We fix these functions by demanding that
the equations of motion obtained from the effective action and the original action are same
perturbatively in α′.

The generalized canonical momentum and equation of motion are given by,

ΠHD(r, k) = 2AHD
1 (r, k)φ′(r, k)(

ΠHD(r, k)
)′

= 2AHD
0 (r, k)φ(r, k). (3.6)

Once we find the effective action for the graviton, we follow the procedure in the previous
section to obtain the flow equation for the boundary Green’s function in generic higher
derivative gravity.

The boundary Green’s function is given by,

GHD
R (kµ) = lim

r→0

2AHD
1 (r, k)φ′(r, k)φ(r,−k)

φ0(k)φ0(−k)
, (3.7)

which can be written using the definition of canonical momentum as,

GHD
R (kµ) = lim

r→0

ΠHD(r, kµ)
φ(r, kµ)

. (3.8)

Let us define a response function of the boundary theory in higher derivative theory as,

χ̄HD(kµ, r) =
ΠHD(r, kµ)
iωφ(r, kµ)

. (3.9)

Therefore the flow equation is given by,

∂rχ̄
HD(kµ, r) = iω

√
−grr
gtt

[
χ̄HD(kµ, r)2

ΣHD(r, k)
− ΥHD(r, k)

ω2

]
, (3.10)

where we define

ΣHD(r, k) = −2AHD
1 (r, kµ)

√
−grr
gtt

(3.11)

ΥHD(r, k) = 2AHD
0 (r, kµ)

√
− gtt
grr

. (3.12)

This is the flow equation for two point correlation function of energy-momentum tensor in
presence of generic higher derivative term in the bulk action. Therefore integrating this
equation from horizon to asymptotic boundary one can find the higher derivative correction
to the transport coefficients at any order in frequency/momentum.

Like two derivative case here also we need to provide a boundary condition to solve this
equation. The response function χ̄HD(kµ, r) should be well-defined at horizon. This implies,

χ̄HD(kµ, r)

∣∣∣∣∣
r=rh

=

√
ΣHD(r)ΥHD(r)

ω2

∣∣∣∣∣
r=rh

(3.13)

here the horizon is located at r = rh.
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One important point to mention here is that unlike two derivative gravity where
χ̄(kµ, rh) was independent of kµ, χ̄HD(kµ, rh) can in general depend on kµ. We will see
this explicitly in the next section. Therefore the full momentum response at the horizon
may not be able to correspond only to the zero momentum limit of boundary response in
higher derivative theory.

Like two derivative case, the response function in higher-derivative gravity theory also
contains UV divergences. We need to add proper counter term following the holographic
renormalization procedure to cancel these divergences. A little more thinking also says that
in presence of any higher-derivative term in the action the structure of the counterterm re-
mains same as (2.21). Only the overall normalization constant depends on higher-derivative
coupling. Thus, similar to the leading gravity, the counterterm in higher derivative gravity
also cancels out the divergence and does not add any finite contribution to the bound-
ary response function. One can study the flow equation of the un-renormalized response
function and read off the transport coefficients from its finite piece.

4 Examples: string theory corrections to flow equation

String theory predicts next to leading order corrections to Einstein-Hilbert action. These
corrections are relevant at a distance comparable with typical length scale of the theory
ls =

√
α′. The short distance corrections to this action is described by supplementing this

action by higher curvature terms. However, here we treat the stringy effects perturbatively
i.e the coupling of higher derivative terms to be small.

From the point of view of AdS/CFT the small α′ correction in supergravity corresponds
to 1

λ correction in strongly coupled gauge theory in planar limit where λ is the ’t Hooft
coupling. The precise dictionary between string length and ’t Hooft coupling is,

α′2 =
L4

4πλ
, L AdS radius. (4.1)

In this section, we will consider two examples of higher-derivative terms coming
from string theory and study their effects on flow equations and second order trans-
port coefficients.

4.1 Weyl4 term

We consider the well known Weyl4 term. This term appears in type II string theory.
Adding this term in the bulk action corresponds to 1

λ3/2 correction in dual large N the-
ory. The string theory correction to second order transport coefficients have already been
computed in [32] using usual Kubo formula. Here, we show that one can obtain the cor-
rect result by studying the first order flow equation in higher derivative gravity without
solving any second order differential equation for graviton.

The five dimensional bulk action is given by,

S =
1

16πG5

∫
d5x
√
−g
(
R+ 12 + γW (4)

)
(4.2)
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where, the coupling constant γ is given by,

γ =
1
8
ζ(3)α′3 (4.3)

and

W (4) = ChmnkCpmnqC
rsp
h Cqrsk +

1
2
ChkmnCpqmnC

rsp
h Cqrsk (4.4)

and the Weyl tensors Cabcd are given by,

Cabcd = Rabcd +
1
3

(gadRcb + gbcRad − gacRdb − gbdRca) +
1
12

(gacgbd − gadgcb)R . (4.5)

The background metric is given by [36, 37],16

ds2 = −

((
1− r2

)
r2

0

r
− 15r

(
3r6 − 8r4 + 5

)
γr2

0

)
dt2

+

(
1

4r2 − 4r4
+

(
−285r4 + 75r2 + 75

)
γ

4− 4r2

)
dr2 +

1
r
d~x2 . (4.6)

The temperature of this black hole is given by,

T =
r0

π
(1 + 15γ) . (4.7)

and the horizon is located at r = 1.
The effective action for transverse graviton has been computed in [29]. Here we will

only present the result. The effective action is given by,

Seff =
1

16πG5

∫
d4k

(2π)4
dr

[
AW 4

1 (r, k)φ′(r, k)φ′(r,−k) +AW 4

0 (r, k)φ(r, k)φ(r,−k)
]

(4.8)

where, AW 4

1 and AW 4

1 are given in appendix C.
Therefore the flow equation is given by,

∂rχ̄
W 4

(kµ, r) = iω

√
−grr
gtt

[
χ̄W

4
(kµ, r)2

ΣW 4(r, k)
− ΥW 4

(r, k)
ω2

]
, (4.9)

where,

ΣW 4
(r, k) = −2AW 4

1 (r, kµ)
√
−grr
gtt

(4.10)

ΥW 4
(r, k) = 2AW 4

0 (r, kµ)
√
− gtt
grr

. (4.11)

The explicit expressions for Σ and Υ can be obtained by using AW 4

1 and AW 4

1 .
16In this particular example we keep the extremality parameter r0 explicitly. It would help us to write

the relation between different transport coefficients. One can set r0 to be one by time re-scaling what we

have done in the next example.
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From the regularity of χ̄W
4
(kµ, r) at horizon we get,

χ̄W
4
(kµ, 1) =

√
ΣW 4(1)ΥW 4(1)

ω2

=
r3

0

16πG5
+

γr0

4πG5

(
45r2

0 + 11q2
)
.

(4.12)

Here, we see that unlike the two-derivative gravity, the horizon value of the response
function depends on spatial momenta q (see figure 2). With this boundary condition we
solve the flow equation up to order ω2 and q2 (ignoring O(ωq2) term). Here we write the
final result.17

iω χ̄W
4
(kµ, 0) = −i(1 + 180γ)

r3
0

16πG5
ω

+
[

1
2

(1− log(2)) +
5
4
γ(199− 66 log(2))

]
r2

0

16πG5
ω2

−1
2

(1 + 20γ)
r2

0

16πG5
q2 +O(qω2, ωq2, q3, ω3) . (4.13)

Comparing this result with (1.2) we get

η

π3T 3
= 1 + 135γ +O(γ2)

κ =
η

πT
(1− 145γ) +O(γ2)

τπT =
2− log(2)

2π
+

375γ
4π

+O(γ2) . (4.14)

These results are in agreement with [32]. It provides a non-trivial check to this approach
of obtaining higher order transport coefficients from the flow equation (2.15).

4.2 Four derivative term

In this section, we will concentrate on the generic four derivative corrections to Einstein-
Hilbert action. These terms arise in the effective action for the heterotic string theory. In
fact, the complete super-symmetrized R2 correction to effective Heterotic string theory is
known and one way to obtain it is the super-symmetrization of the Lorentz Chern-Simons
terms [38, 39]. This terms also arises in the context of Type IIB string theory [40, 41],
where the theory is on AdS5 ×X5, the compact space X5 being S5/Z2. The dual theory
is N = 2Sp(N)gauge theory with 4 fundamental and 1 antisymmetric traceless hyper-
multiplets. This super-conformal theories arises in the context of ND3-branes sitting inside
8 D7-branes coincident on an orientifold 7-plane. In this case, generic four derivative R2

correction comes form the DBI action of the branes.
Here we compute the generic four derivative correction to the second order transport

coefficients, the relaxation time τπ and κ. We can choose the coefficients of the higher
17k = {ω, 0, 0, q} and we ignore the UV divergence piece.
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derivative terms to be the four-dimensional Euler density and get pure Gauss-Bonnet cor-
rection to these coefficients.

The action is

I =
1

16πG5

∫
d5x
√
−g
[
R+ 12 + α′

(
β1R

2 + β2RµνρσR
µνρσ + β3RµνR

µν

)]
. (4.15)

In particular for Gauss-Bonnet correction, β1 = 1, β2 = 1, β3 = −4. One can get rid of
the Ricci2 and Scalar2 terms by a field redefinition and therefore all physical quantities
should depend on the coefficient β2 only. Here we prefer to work with the generic case as it
would be easier for us the get the results for pure Gauss-Bonnet combination at every step.

The background solution is given by [30],

ds2 = f(r)dt2 +
g(r)
4r3

dr2 +
1
r
d~x2 (4.16)

where f(r) and g(r) are given by,

f(r) = r − 1
r
− 2r

(
r2 − 1

)
β2α

′ (4.17)

and

g(r) =
r

1− r2
+

2r
(
10β1 + (1− 3r2)β2 + 2β3

)
α′

3(r2 − 1)
.

(4.18)

This is the background metric corrected up to order α′. We have fixed the integration
constant such that the boundary metric is Minkowskian and the horizon is located at
r = 1. The temperature of the black brane is given by,

T =
1
π

+
10β1 − 5β2 + 2β3

3π
α′. (4.19)

Similar to the Weyl4 case, we can write the following effective action for this model,

Seff =
1

16πG5

∫
d4k

(2π)4
dr

[
AGB1 (r, k)φ′(r, k)φ′(r,−k) +AGB0 (r, k)φ(r, k)φ(r,−k)

]
(4.20)

where, AGB1 and AGB0 are given in appendix D. Now, it is straightforward to write the flow
equation (2.15) corresponding to this case,

∂rχ̄
GB(kµ, r) = iω

√
−grr
gtt

[
χ̄GB(kµ, r)2

ΣGB(r, k)
− ΥGB(r, k)

ω2

]
, (4.21)

where we define

ΣGB(r, k) = −2AGB
1 (r, kµ)

√
−grr
gtt

(4.22)

ΥGB(r, k) = 2AGB
0 (r, kµ)

√
− gtt
grr

. (4.23)

– 15 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
1

Now, the boundary condition (2.18) takes the following form,

χ̄GB(kµ, 1) =
1

16πG5

[
1 +

((
q2 − 8

)
β3 − 40β1

)
α′
]
. (4.24)

As mentioned earlier, we see that even in this case, the boundary condition depends on
spatial momenta q through the coefficient β3. With this boundary condition, one can solve
the flow equation (4.21) and the solution is given by,

iωχ̄GB(kµ, 0) =
1

16πG5

[
− i(1− (40β1 + 8β3)α′)ω

+ω2

[
1
2

(1− log 2) +
α′

6
(130β1(log 2− 1)− β2(5 log 2− 2) + 26β3(log 2− 1))

]
−q

2

2

[
1− 1

3
(130β1 + 25β2 + 26β3)α′

]]
+O(qω2, ωq2, q3, ω3). (4.25)

From this expression we get the following transport coefficients,

η =
1

16πG5

(
1− 8 (5β1 + β3)α′

)
+O(α′2). (4.26)

This matches with results in [40, 42, 43]. The higher order coefficients are,

κ =
η

πT

(
1− 10β2α

′)+O(α′2)

τπT =
2− ln 2

2π
− 11β2

2π
α′ +O(α′2). (4.27)

As we can see, the physical quantities η/s, κ, τπT only depend on the coefficient β2. In
particular to Gauss-Bonnet combination, the corrections are,

κ =
η

πT

(
1− 10α′

)
+O(α′2)

τπT =
2− ln 2

2π
− 11

2π
α′ +O(α′2). (4.28)

(4.27) and (4.28) are new results of this paper.

4.2.1 Exact result for Gauss-Bonnet black hole

As we have done the above computation perturbatively, the above expressions are valid
only at order α′. But, one can consider the Gauss-Bonnet term exactly in coupling. For
pure Gauss-Bonnet combination the equations of motions remain second order differential
equations and hence it is easy to solve them exactly to find the background space-time.
We solve the flow equation in this background exactly in coupling constant, and find the
exact expressions for relaxation time τπ and κ. In this section we briefly outline the result.

The action and the solution is given by,

IGB =
1

16πG5

∫
d5x
√
−g
[
R+ 12 +

λgb
2

(
R2 +RµνρσR

µνρσ − 4RµνRµν
)]

ds2 = r2

(
−f(r)
f∞

dt2 + d~x2

)
+

dr2

r2f(r)
(4.29)
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where,

f± =
1

2λgb

[
1 +±

√
1− 4λgb

(
1− r4

0

r4

)]
(4.30)

and

f∞ = lim
r→∞

f(r) =
1−

√
1− 4λgb

2λgb
. (4.31)

In this coordinate the boundary metric is η. We also consider only the ′−′ branch of
f± which corresponds to a non-singular black hole solution with non-degenerate horizon.

The black hole temperature is given by,

T =
r0

πf∞
. (4.32)

With exact GB, the effective action for fluctuation has a canonical form. Therefore we
derive the flow equation for the response function (as we did in section 2) and solving this
equation we get,

η =
1

16πG5
(1− 4λgb)

κ =
η

πT

2λgb (8λgb − 1)(
1−

√
1− 4λgb

)
(4λgb − 1)

τπT =
1

4π(−1 + 4λgb)

[
− 8λ2

gb + 12
√

1− 4λgbλgb

+10λgb − 2
√

1− 4λgb − 4 log(2)λgb

+ (1− 4λgb) log
(
−4λgb +

√
1− 4λgb + 1

)
+ (4λgb − 1) log (1− 4λgb)− 2 + log(2)

]
. (4.33)

One can easily check that up to first order in λgb, the results in (4.33) reduces to the
one in (4.28). In [44] the authors obtained the relation between second order transport
coefficients and λgb numerically, however we are able to present the result exactly.

As we have mentioned in introduction that the flow equation is a first order non-linear
differential equation but one can reduce this equation to a second order linear differential
equation. This second order differential equation is related to the equation of motion for
transverse graviton (gauge invariant excitations). Therefore we can use this equation to
study causality violation in Gauss-Bonnet gravity. In [44, 45] it was found that to preserve
causality of a conformal fluid there exists a bound on second order transport coefficients,

τπT − 2
η

s
≥ 0 . (4.34)

In Fig 3 we plot τπT − 2ηs for our result and find the following bound on λgb which is in
agreement with [44].

− 0.711 ≤ λgb ≤ 0.113 . (4.35)
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Figure 3. Bound on λgb.

5 Flow equation for charged black holes

Electrically charged black holes in five dimensions have drawn a lot of interests in the
context of AdS/CFT. The electric charge of these black holes are mapped to the global
R-charge of the dual field theory. Because of the presence of the electric charges, the
thermodynamics and the phase structure of these black holes are rather complicated and
also interesting at the same time. There have been a lot of study of thermodynamics and
phase transitions of these charged black hole with different horizon topologies (see [46–50]
and references therein).

The goal of the present section is to apply the AdS/CFT correspondence to understand
how non-vanishing chemical potentials effect the hydrodynamic behavior of strongly cou-
pled gauge theories. We study the second order hydrodynamics in two cases: (a) Generic
R-charge black holes and (b) Charge black holes in higher-derivative gravity.

5.1 R-charged black holes

We consider a conformal field theory with conserved charge (density) in addition to energy
and momentum. This is especially an interesting extension of the hydrodynamics of the
uncharged fluids.

The second order hydrodynamics of charged fluid has been studied in [51, 52]. They
consider Reissner-Nordstrom black hole in five dimensions and found the effect of chem-
ical potential on second order transport coefficients in some limits of chemical potential.
However, we consider generic R-charged black holes with three (unequal) charges (chemical
potentials) and find the exact expressions for second order transport coefficients in presence
of three chemical potentials. As we have mentioned in the introduction that solving the
flow equation (of retarded Green’s function of energy momentum tensor) we can only find
two second order transport coefficients whereas in [51, 52] all other second order transport
coefficients have been reported.

We consider R-charged black holes in five dimensions. A consistent truncation of N =
8, D = 5 gauged supergravity with SO(6) Yang-Mills gauge group, which can be obtained
by S5 reduction of type IIB supergravity, gives rise to N = 2, D = 5 gauge supergravity
with U(1)3 gauge group. The same theory can also be obtained by compactifying eleven
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dimensional supergravity, low energy theory of M theory, on a Calabi-Yau three folds. The
bosonic part of the action of N = 2, D = 5 gauged supergravity is given by [46–50]. We
follow the notations of [53].

Isugra =
1

16πG5

∫
d5x
√
−g
[
R+ V (X)− 1

2
GIJ(X)F IµνF

µνJ −GIJ(X)∂µXI∂
µXJ

]
+

ζ
3

16πG5

∫
d5x εµνρσγAµFνρFσγ (5.1)

where, XI ’s are three real scalar fields, subject to the constraint X1X2X3 = 1. F I ’s, the
field strengths of three Abelian gauge fields (I,J=1,2,3) and the scalar potential V (X) are
given by,

F Iµν = 2∂[µA
I
ν]

GIJ =
1
2

diag
[
(X1)−2, (X2)−2, (X3)−2

]
V (X) = 2

∑
I

1
XI

(5.2)

The three-charge non-extremal STU solution is specified by the following background
values of the metric

ds2 = −H−2/3 fk dt
2 +H1/3

(
f−1
k dr2 + r2dΩ2

3,k

)
,

fk = k − mk

r2
+ r2H , Hi = 1 +

qi
r2
,

H = H1H2H3 , (5.3)

as well as the scalar and the gauge fields

Xi =
H1/3

Hi
, Ait =

√
kqi +mk

qi

(
1−H−1

i

)
. (5.4)

The parameter k determines the spatial curvature of dΩ2
3,k: k = 1 corresponds to the

metric on the three-sphere of unit radius, k = 0 - to the metric on R3. Hydrodynamic
approximation is valid only in the case of a translational-invariant horizon, in our case we
set k = 0 and

dΩ2
3,0 →

(
dx2 + dy2 + dz2

)
.

Replacing the radial coordinate r → r0/
√
r, where r0 is the largest root of the equation

f(r) = 0, the background solution in this new coordinate is given by,

ds2
5 = −H−2/3 (πT0)2

r
f dt2 +H1/3 1

4fr2
dr2 +H1/3 (πT0)2

r

(
dx2 + dy2 + dz2

)
, (5.5)

f(r) = H(r)− r2
3∏
i=1

(1 + κi) , Hi = 1 + κir ,

κi ≡
qi
r2

0

. (5.6)
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where κ′is are chemical potentials and

T0 = r0/π . (5.7)

The scalar fields and the gauge fields are given by

Xi =
H1/3

Hi(r)
, Ait =

κ̃i
√

2r
LHi(r)

(5.8)

where,

κ̃i =
√
qi

3∏
i=1

(1 + κi)1/2 . (5.9)

The Hawking temperature of the background (5.5) is given by

TH =
2 + κ1 + κ2 + κ3 − κ1κ2κ3

2
√

(1 + κ1)(1 + κ2)(1 + κ3)
T0 . (5.10)

We perturb the xy component of background metric and the action for transverse
graviton is,

Seff =
1

16πG5

∫
d4k

(2π)4
dr

[
AQ1 (r, k)φ′(r, k)φ′(r,−k) +AQ0 (r, k)φ(r, k)φ(r,−k)

]
(5.11)

where,

AQ
1 = −r

4
0f(r)
r

(5.12)

and

AQ
0 =

r2
0

4r2

(
H1H2H3

f(r)
− q2

)
. (5.13)

Therefore the flow equation takes the form,

∂rχ̄
Q(kµ, r) = iω

√
−grr
gtt

[
χ̄Q(kµ, r)2

ΣQ(r, k)
− ΥQ(r, k)

ω2

]
. (5.14)

Solving this equation perturbatively in ω and q we get

χ̄Q(kµ, r) = −
r3

0

∏
i(1 + κi)1/2

16πG5
+
ir2

0

2ω
(q2 − ω2)

16πG5

(
1− 1

r

)
+

iωr2
0

∏
i(1 + κi)

16πG5

√
4Pκ + (1 + Sκ)2(

1
2

ln

[
1 + Sκ − 2Pκ −

√
4Pκ + (1 + Sκ)2

1 + Sκ − 2rSκ −
√

4Pκ + (1 + Sκ)2

]

+
1
2

ln

[
1 + Sκ − 2rPκ +

√
4Pκ + (1 + Sκ)2

1 + Sκ − 2Sκ +
√

4Pκ + (1 + Sκ)2

])
+O(qω2, ωq2, q3, ω3) (5.15)
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where,

Sκ =
∑
i

κi

Pκ =
∏
i

κi. (5.16)

Computing the response function at the boundary (throwing away the divergent piece)
we get the following transport coefficients,

η =
r3

0

16πG5

∏
i

(1 + κi)1/2 (5.17)

and

κ =
η

πT

1 + Sκ/2− Pκ/2∏
i(1 + κi)

(5.18)

τπT =
2 + Sκ − Pκ

4π
∏
i(1 + κi)

[
2−

∏
i(1 + κi)√

4Pκ + (1 + Sκ)2
ln

(
3 + Sκ +

√
4Pκ + (1 + Sκ)2

3 + Sκ −
√

4Pκ + (1 + Sκ)2

)]
.

These are the new results in this paper. It is easy to check that for κi → 0 limit we recover
the results in section 2.

To complete the discussion on the second order transport coefficients for R-charged
black holes one should find the flow of Green’s functions for two point correlation functions
of R-currents. As we will mention in section 6 that in presence of finite charges (or chemical
potentials) it is very hard to solve the Riccati equation even perturbatively in ω and
q. We find it very difficult to get any analytic solution for R-current Green’s function.
However we consider a simple model in section 6 and study the flow of R-current Green’s
function numerically.

5.2 Charged black holes in higher derivative gravity

In this section, we will study five-dimensional gravity in presence of a negative cosmological
constant and coupled to U(1) gauge field. The model has been studied in [33, 54, 55], the
action is given as,

S =
1

16πG5

∫
d5x
√
−g

[
R+ 12− 1

4
F 2 +

ζ

3
εabcdeAaFbcFde (5.19)

+α′
(
c1RabcdR

abcd + c2RabcdF
abF cd + c3(F 2)2 + c4F

4 + c5ε
abcdeAaRbcfgR

fg
de

)]
.

Here, F 2 = FabF
ab, F 4 = FabF

bcFcdF
da, and the AdS radius is set to unity. The action

includes the Chern-Simon term and also a generic set of four derivative terms. All the
four derivative terms will be treated perturbatively in our computation and here α′ � 1 is
the perturbation parameter. In [33], using field-redefinition, the authors have shown that,
within perturbative approach, this is the most generic four derivative action that one can
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write down. In this section, we will closely follow their work. The background metric and
the gauge field in presence of these higher derivative terms have the following form,

ds2 = −r2f(r)dt2 +
1

r2g(r)
dr2 + r2(dx2 + dy2 + dz2),

A = h(r)dt, (5.20)

where,

f(r) = f0(r)(1 + α′F (r)),

g(r) = f0(r)(1 + α′(F (r) +G(r))),

h(r) = h0(r) + α′H(r). (5.21)

Here f0(r), g0(r) and h0(r) are the solution of the background in absence of the higher-
derivative terms in the action and they are given as,

f0 = g0 =
(

1− r2
0

r2

)(
1 +

r2
0

r2
− Q2

r2
0r

4

)
,

h0 =
√

3Q
(

1
r2

0

− 1
r2

)
. (5.22)

Here, Q is related to the physical charge of the system and r0 is the position of the
horizon. From (5.21), it is clear that even in presence of the higher-derivative terms, the
horizon remains at r0. The higher-derivative corrections to this background are given by
the functions F (r), G(r) and H(r). The form of these functions are given in [33]. We would
not write those expressions and refer the reader to that paper.

Using the flow equation, we will study the higher order transport coefficient of the
plasma theory dual to this gravity model. For this, we will write the effective action for
the metric fluctuation in (2.3), as we have done in previous sections,

Seff =
1

16πG5

∫
d4k

(2π)4
dr

[
ACB1 (r, k)φ′(r, k)φ′(r,−k) +ACB0 (r, k)φ(r, k)φ(r,−k)

]
. (5.23)

ACB1 and ACB0 are given in appendix E. The corresponding flow equation (2.15) for this
case (with the coefficients ACB1 and ACB0 ) is,

∂rχ̄
CB(kµ, r) = iω

√
−grr
gtt

[
χ̄CB(kµ, r)2

ΣCB(r, k)
− ΥCB(r, k)

ω2

]
, (5.24)

where we define

ΣCB(r, k) = −2ACB
1 (r, kµ)

√
−grr
gtt

ΥCB(r, k) = 2ACB
0 (r, kµ)

√
− gtt
grr

. (5.25)

We solve this flow equation to find the effect of higher derivative terms and chemical
potential (or charge) on transport coefficient. Here, we present our result for small Q only,
though it is possible to find the results for any Q.
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The boundary condition (2.18) will take the following form,18

χ̄(kµ, r0) =
r3

0

16πG5

[
1− α′ 24c1Q

2

r6
0

]
. (5.26)

In this case, the horizon value of the response function is independent of momenta. With
this boundary condition, we can solve the flow equation (5.24), and the solution is given by,

iωχ̄(kµ,∞) = iω
r3

0

16πG5

[
1− α′ 24c1Q

2

r6
0

]
−ω2 r2

0

32πG5

[
(1− ln 2)− Q2

2r6
0

(3− ln 2)

+
α′

6

(
c1(2− 5 ln 2)− Q2

2r6
0

(c1(35− 58 ln 2)− 48c2(2− ln 2))
)]

+
q2r2

0

32πG5

[
1− α′

3

(
25c1 +

Q2

r6
0

(32c1 + 24c2)
)]

+O(qω2, ωq2, q3, ω3) +O(Q4) . (5.27)

It is easy to read off the transport coefficients from this expression as,

η =
r3

0

16πG5

[
1− α′ 24c1Q

2

r6
0

]
+O(Q4)

κ =
η

πT

[(
1− Q2

2r6
0

)
− α′

(
10c1 −

Q2

3r6
0

(37c1 − 48c2)
)]

+O(Q4)

τπT =
2− ln 2

2π
− Q2(5− 3 ln 2)

4πr6
0

+α′
[
−11c1

2π
+

Q2

4πr6
0

(−16c2 + 5c1(11− 4 ln 2))
]

+O(Q4)

(5.28)

where, the temperature T of the system is given by,

T =
r0

π

[(
1− Q2

2r6
0

)
− α′

3

(
5c1 +

Q2

2r6
0

(31c1 + 48c2)
)]

+O(Q4). (5.29)

We see that the first order as well as the second order transport coefficients coming from
retarded Green’s function of energy momentum tensor19 only depends on two coefficients
c1, c2. This feature was observed in [33] for entropy density s and first-order transport co-
efficients η. The coefficients c3, c4, which parameterize couplings in the four point function
of the dual U(1) current does not play any role in these hydrodynamic coefficients. They

18Note that we are working in a different coordinate where r →∞ is the boundary, therefore we choose

the positive branch of the boundary condition (2.18).
19It would be interesting to study the flow of retarded Green’s function for boundary R-current. We

found it to be difficult to get any analytical solution for response function in presence of finite chemical

potential and higher derivative terms. However, it would be nice to know the higher derivative corrections

to other second order transport coefficients appear in R current [51, 52].
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should be important for the computation of conductivity, which comes from the Green’s
function of the boundary R-current. Two other coefficients ζ, c5 also do not appear in the
expressions. One can find a magnetic brane solution of the action (5.19) like [56]. In that
case it would be interesting to find the effect of magnetic field on transport coefficients.

6 Flow of retarded Green’s function of boundary R current

Finally, in this section, we study the flow of retarded Green’s function of bound-
ary R-current,

GRi,j(k) = −i
∫
dtd3xeik·x〈[Ji(x), Jj(0)]〉 (6.1)

where Jµ(x) is the CFT current dual to a bulk gauge field Aµ.
In hydrodynamic approximation one can express the current in powers of boundary

derivatives. Up to first order in derivative expansion (about equilibrium state) it has the
following form,

Jν = −κ̃Pαν ∂α
µ

T
+ Ωlν +O(∂2) (6.2)

where, κ̃ and Ω are two first order transport coefficients, µ is chemical potential, T is
temperature and

Pµν = uµuν + ηµν

lµ = εαβγµ uα∂βuγ . (6.3)

The expression of Jµ up to second order in derivative expansion can be found in [51, 52].
From conformal invariance of the theory it is possible to write all possible second order
transport coefficients appearing in the expression of Jµ. However, like energy momentum
tensor, from the expression of retarded Green’s function it is not possible to compute all
the transport coefficients that appear in different order of derivative expansion.

In this section we study the flow equation of retarded Green’s function of boundary R-
current. Unfortunately we find it difficult to solve the flow equation analytically to extract
any transport coefficient. We present the flow equation for retarded Green’s function of
R-currents in presence of generic higher derivative terms in bulk Lagrangian and some
numerical results.

We start with Einstein-Maxwell action

S =
1

16πG5

∫
d5x
√
−g
(
R+ 12− 1

4
F 2

)
. (6.4)

Background solution is given by equation (5.20) with α′ = 0. The temperature of the black
hole is given by,

T =
r0

π

(
1− Q2

2r6
0

)
(6.5)

and the chemical potential is,

µ =
√

3Q
r2

0

. (6.6)
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For technical advantage we write the metric and gauge field in a different coordinate.
We change the radial coordinate r → r0√

r
. In this coordinate the metric and gauge field are

given by,

ds2 = −r
2
0U(r)
r

dt2 +
dr2

4r2U(r)
+
r2

0

r
(d~x2)

At(r) = E(r) (6.7)

where,

U(r) = (1− r)
(

1 + r − Q2r2

r6
0

)
E(r) =

√
3Q
r2

0

(1− r) . (6.8)

We turn on small fluctuations for x component of gauge fields. Since the At component
of the bulk vector is non-vanishing in this background, the perturbations Ax can couple to
the tx component of graviton. Therefore we also need to consider small metric fluctuations
for component gtx. Writing them in momentum space we get,

Ax(r, x) =
∫

d4k

(2π)4
eik.xA1(r, k)

gxt (r, x) =
∫

d4k

(2π)4
eik.xΦ(r, k) . (6.9)

However, there exists a constraint relation between Ax and gtx. We use this relation to
replace gtx from the equation of motion of Ax.

The on-shell action for gauge field fluctuations is given by,

SA =
1

16πG5

∫
d4k

(2π)4

[
− r2

0U(r)A′2x (r, k) +
(

ω2

4rU(r)
− q2

4r

)
A2
x

]
. (6.10)

and the current corresponding to Ax fluctuation is,

Jx(r, k) =
δSA

δA′x(r, k)
= −2r2

0U(r)A′x(r, k). (6.11)

The equation of motion for Ax(r, k) becomes,

(U(r)A′x(r, k))′ = − 1
4r2

0

(
ω2

rU(r)
− q2

r

)
Ax(r, k)− E′(r)φ′(r, k)

= − 1
4r2

0

(
ω2

rU(r)
− q2

r

)
Ax(r, k) +

rE′(r)2

r2
0

Ax(r, k) (6.12)

Using the constraint relation (coming from rx component of Einstein equations),

φ′(r, k) = −rE
′(r)Ax(r, k)

r2
0

. (6.13)
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Figure 4. Flow of σ for non-extremal and extremal black holes.

and the equations of motion one gets,

J ′x(r, k) =
1
2

(
ω2

rU(r)
− q2

r

)
Ax(r, k)− 2rE′(r)2Ax(r, k). (6.14)

Next we define a response function

σ(r, k) =
Jx(r, k)
iωAx(r, k)

. (6.15)

Taking the derivative of the response function with respect to r and using the equation of
motion we find the following flow equation,

σ′(r, k) =
iω

2r0U(r)

[
σ(r, k)2 −

(
r0

r

(
1− q2U(r)

ω2

)
− 4r0rE

′(r)2U(r)
ω2

)]
. (6.16)

The boundary condition which comes from the regularity of the response function at the
horizon, demands

σ(1, k)2 = 1. (6.17)

With this boundary condition one can integrate the nonlinear equation to find finite
frequency response of boundary Green’s function.

In presence of generic higher derivative terms in the Lagrangian the on-shell action
for fluctuation Ax may not have canonical form like (6.10). In that case one has to write
an effective action for Ax (like transverse graviton). The effective will have the same
form as (6.10) only the coefficients will now depend on coupling constant of higher deriva-
tive terms.

We conclude this section by presenting some numerical solutions of the flow equa-
tion (6.16) for both non-extremal extremal black holes in figure 4.
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A Second order transport coefficients from Kubo formula

In this appendix we re-derive second order transport coefficients κ and τπ from usual Kubo
approach. Let us now consider the action with solution given in section 2,

S =
1

16πG5

∫
d5x
√
−g[R+ 12] . (A.1)

For well defined variation of this action we need to add a Gibbons-Hawking boundary term.
Also, requiring the on-shell action being finite at boundary, we have to add counter-terms
following usual approach of holographic renormalization. They are as follows:

SGH =
1

8πG5

∫
d4x
√
−γK,

SCT =
1

16πG5

∫
d4x
√
−γ
[
6 +

1
2
R
]

(A.2)

where γ and R are boundary metric and Ricci scalar (constructed out of γ) respectively.
We consider the following metric perturbation,

gxy = g(0)
xy + hxy(r, x) = g(0)

xy (1 + εΦ(r, x)), (A.3)

where ε is an order counting parameter. We are interested in quadratic on-shell action for
this transverse graviton Φ(r, x). Let us define the Fourier transform,

φ(r, k) =
∫

d4x

(2π)4
e−ik.xΦ(r, x) , (A.4)

and k = {−ω,~k}. Substituting this fluctuation in action (A.1), we get (B.1).20 Now,
we rewrite this action (A.1) as equation of motion piece (which vanishes on-shell) and
boundary term.21 Thus, on-shell S, SGH , SCT become,

S =
1

16πG5

∫
r=δ

d4k

(2π)4
L(φ(r, k)),

SGH =
1

8πG5

∫
r=δ

d4k

(2π)4
LGH(φ(r, k)),

SCT =
1

16πG5

∫
r=δ

d4k

(2π)4
LCT (φ(r, k)), (A.5)

where we define,

L(φ(r, k)) = a2(r)φ′(r, k)φ∗(r, k) +
a4(r)− a5′(r)

2
φ(r, k)φ∗(r, k),

LGH(φ(r, k)) = 2(g1)φ(r, k)φ∗(r, k) + 2(g2)φ′(r, k)φ∗(r, k),

LCT (φ(r, k)) = (c0 + c1ω
2 + c2q

2)φ(r, k)φ∗(r, k). (A.6)

20a3, a6 are zero here.
21We ignore contribution from horizon as [5].
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The coefficients a2, a4, a5 are given in (B.2) and other coefficients are,

g1 =
2− r2

r2
, g2 = −2

1− r2

r

c0 = −3
√

1− r2

r2
, c1 =

1
4r
√

1− r2

c2 = −
√

1− r2

4r
. (A.7)

The retarded Green’s function is defined at asymptotic infinity as,

GR(k) = 2 lim
r→0

(L+ LGH + LCT )|on−shell
φ0(k)φ0(−k)

. (A.8)

Here, φ0(k) is the boundary value of the fluctuation (A.4). The retarded Green’s function
GR is a function of boundary momenta kµ = (ω, 0, 0, q). Now the leading action and the
Gibbons-Hawking action get divergences from φ′(r, k)φ∗(r, k) and φ(r)φ∗(r, k) parts. Both
these divergences get canceled by the counter-term action which is always proportional
to only φ(r)φ∗(r, k). In this case of leading Einstein’s gravity, it is even more simplified.
Divergences coming from φ(r)φ∗(r, k) piece of leading and Gibbons-Hawking action gets
canceled by momentum independent piece of Counter-term action. It turns out that there
is a cancellation among the corresponding coefficients as,

lim
r→0

(
1
2

(a4(r)− a5′(r)) + 2g1 + c0

)
=

1
2
, (A.9)

i.e. the final contribution from φ(r)φ∗(r, k) piece is only a finite number 1
2 . As the graviton

fluctuation φ(r, ω,~k) = φ0(1 + F (r, ω,~k)) and moreover limr→0 F (r, ω,~k) = 0, we see that
the φ(r)φ∗(r) term above only contribute to pressure (the ω independent piece of GR). It
would never contribute to any transport coefficient.

Also, the divergences coming from φ′(r, k)φ∗(r, k) piece of original and Gibbons-
Hawking action, get canceled with the piece of the counter-term proportional to ω2, q2

(c1 and c2 are purely divergent at boundary). Here, the situation is more subtle, as
there is no cancellation among the coefficients. One actually needs to put the solution of
φ(r, ω,~k) to see the cancellation.

The overall lesson from this detailed analysis is that counter-term only cancel the UV
divergences in usual holographic renormalization process and at most contribute to pressure
of the boundary plasma. It has no effects on any transport coefficients. In [10], the author
have computed second order transport coefficients for the plasmas dual to leading Einstein’s
gravity following this usual approach. The results are as follows,

τπ =
2− ln 2

2πT
, κ =

η

πT
. (A.10)

These results match with the one we obtained in (2.28) by solving the flow equations.
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B Equivalence of boundary terms

In this appendix we will show explicitly why the transport coefficients computed from the
original action and the effective action are same, even for any higher derivative theory.
It was already noticed [29], that the two would give same first-order transport coefficient
η with a suitable choice of the overall normalization constant. Here, we show that, not
just the first order transport coefficients, rather any higher order transport coefficients
computed from the original action and the effective action are same.

We consider a general class of action for φ which appears when the higher derivative
terms are made of different contraction of Ricci tensor, Riemann tensor, Weyl tensor, Ricci
scalar etc. or their different powers. Since, all these tensors involve two derivatives of
metric they can only have terms like ∂a∂bΦ(r, x) and its lower derivatives. Therefor the
most generic quadratic (in Φ(r, x), in linear response theory) action for this kind of higher
derivative gravity has the following form (in momentum space)22

S =
1

16πG5

∫
d4k

(2π)4
dr

[
a1(r)φ(r)2 + a2(r)φ′(r)2 + a4(r)φ(r)φ′(r)

+α′ a6(r)φ′′(r)φ′(r) + α′ a3(r)φ′′(r)2 + a5(r)φ(r)φ′′(r)
]

(B.1)

where,

a1(r) =
−8r2 + ω2r + 8

4r3 − 4r5
+ α′ f2(r)

a2(r) = −3r +
3
r

+ α′ h2(r)

a4(r) = − 6
r2
− 2 + α′ g2(r)

a5(r) = −4r +
4
r

+ α′ j2(r) (B.2)

and a3(r), a6(r), j2(r), g2(r), h2(r) and f2(r) depends on higher derivative terms in the
action and hence are computed purely from the background solution with α′ → 0. Among
these coefficients a3 is special, as, it couples to φ′′2. All four derivatives act on the graviton
fluctuation and thus a3 only depends on metric functions in (2.2) and there r-derivatives.
It is easy to convince ourselves that a3 ∝ r(r2−1)2f(r, α′), where f(r, α′) is a function that
depend on the higher derivative terms and finite (constant or 0) at the boundary r → 0.
Now let us write the effective Lagrangian as follows,

Seff =
1 + α′Γ
16πG5

∫
d4k

(2π)4
dr

[
4r
(
r2 − 1

)2
φ′(r)2 − ω2φ(r)2

4r2 (r2 − 1)

+α′
(
b2(r)φ(r)2 + b1(r)φ′(r)2

)]
. (B.3)

22In all the expressions we have omitted k dependence of φ and other functions ai′s and f2, h2, g2, j2

and b1, b2 defined in next page.
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Demanding that the equation of motion (up to order α′) of φ derived from the original
action and the above action are same we get,

b1(r) =
1

2r (r2 − 1)2 [(−4r3 − 12r + ω2)a3(r)

+(r2 − 1)(2κr4 − a6′(r)r3 − 4κr2 + 2a3′(r)r2

+2(r2 − 1)h2(r)r − 2(r2 − 1)j2(r)r + a6′(r)r

+2κ+ 2a3′(r))] (B.4)

b2(r) = − 1
16r2 (r2 − 1)4

[
(ω4 + 144r3ω2)a3(r, k)

+4(r2 − 1)
(
− 4r2f2(r)(r2 − 1)3

+((ω2κ− 2r2(r2 − 1)j2′′(r))(r2 − 1)

+2r2g2′(r)(r2 − 1)2 + rω2a3′′(r))(r2 − 1)

+(1− 11r2)ω2a3′(r)
)]

. (B.5)

The boundary terms coming from the original action (after adding Gibbons-Hawking
boundary terms) are given by,23

SB =
1

16πG5

∫
d4k

(2π)4

[
− φ(r)2

r2
+ φ(r)2 + rφ′(r)φ(r)

−φ
′(r)φ(r)
r

+ α′

(
1
2
g2(r)φ(r)2 − 1

2
j2′(r)φ(r)2

+
(
h2(r)− j2(r)− a6′(r)

2

)
φ′(r)φ(r)

+
a3′(r)

(
φ(r)ω2 + 4

(
r4 − 1

)
φ′(r)

)
φ(r)

4r (r2 − 1)2

−a3(r)(6rφ(r)φ′(r)ω2)
4r (r2 − 1)3

−
a3(r)

((
r2 − 1

) (
8r3 + 24r − ω2

)
φ′(r)

)
φ(r)

4r (r2 − 1)3

−
a3(r)φ′(r)

(
φ(r)ω2 + 4

(
r4 − 1

)
φ′(r)

)
4r (r2 − 1)2

−a3(r)φ′(r)

(
− φ(r)ω2

2r (r2 − 1)2 −
(
r4 − 1

)
φ′(r)

r (r2 − 1)2

))]
. (B.6)

23There was a sign error in [29].
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And the boundary terms coming from the effective action are given by,

SBseff =
1

16πG5

∫
d4k

(2π)4

[(
r − 1

r

)
φ(r)φ′(r)

+
α′

2r (r2 − 1)2

(
φ(r)(2Γ

(
r2 − 1

)3 + (−a6′(r)r3

+2a3′(r)r2 + 2
(
r2 − 1

)
h2(r)r − 2

(
r2 − 1

)
j2(r)r

+a6′(r)r + 2a3′(r))
(
r2 − 1

)
+
(
−4r3 − 12r + ω2

)
a3(r))φ′(r)

)]
. (B.7)

Now, it is interesting to compute the difference between these two boundary terms and the
result is,24

SB − SBeff =
1

16πG5

∫
d4k

(2π)4

[
− φ(r)2

r2
+ φ(r)2

+α′
(

1
2
g2(r)φ(r)2 − 1

2
j2′(r)φ(r)2

+
a3′(r)ω2φ(r)2

4r (r2 − 1)
−
a3(r)

(
6rω2

)
φ(r)2

4r (r2 − 1)3

)]
(B.8)

The term proportional to a3 in the parenthesis of (B.8) vanishes at the boundary whereas
the term proportional to a3′ gives a pure UV divergent piece and a vanishing piece, due
to the property of a3 mentioned above. This is true irrespective of the choice of the
higher derivative terms. Thus, we see that the two boundary terms differ only by terms
which are either purely divergent or of the form g(r)φ2, where g(r) is any function of
r. The divergent terms would get canceled once appropriate boundary terms are added
(which has been discussed in sections 2 and 3). The terms proportional to φ2 can only
contribute to pressure of the boundary theory (g2(r) and j2′(r) can have terms proportional
to momentum, but those terms are either divergent or vanish at the boundary25). and are

24It has been shown in [29] that Γ = 0.
25They have following structure,

g2 ∼ (momenta)2
„
A

r
+Br

«
(C + rm) (B.9)

and

j2 ∼ (momenta)2(D + rm), (B.10)

where, A,B,C,D are constants depending on the higher derivative term.The constant m ≥ 2. The above

mentioned structure of the two functions can be derived from the structure of the Riemann tensor. Let us

first concentrate on g2 . In a Rn higher derivative gravity, there are total 2n number o derivatives acting on

the metric. From (B.1), we see that g2 appears in a4(r) which is a coefficient of φ(r)φ′(r). Moreover, we are

looking for the piece of g2 which is proportional to the squre of the momenta (ω2 or q2). This requires total

three derivatives (one r and two t/z) acting on graviton fluctuation φ(r, t, z). All other (2n− 3) derivatives

will act on the background metric and as the background metric is only function of r, the derivatives will

be only with respect to r. The structure of the Riemann tensor Rabcd is as follows:

Riemann ∼ ΓΓ− ∂Γ ∼ g−1g−1∂g∂g + g−1∂2g, (B.11)

– 31 –



J
H
E
P
0
8
(
2
0
1
0
)
0
4
1

not important for the computation of transport coefficients of the boundary plasma. Thus
we see that, it is obvious that the transport coefficients coming from the original action
and the boundary action are same.

Here we have considered only R(n) gravity theory. A more rigorous proof is required
for theories involving covariant derivatives of curvature tensors and scalars.

C Functions appeared in String theory corrected action

AW 4

0 (r, k) = −r
2
0(q2(r2 − 1) + ω2)

4r2 (r2 − 1)

− 1
4 (r2 − 1)

(
γ(4q2r2((245r4 − 407r2 + 162)r2

0 + 10rω2)

+3
(
221r4 − 191r2 + 25)ω2r2

0

))
(C.1)

and

AW 4

1 (r, k) =

(
r2 − 1

)
r4

0

r
+ 3r

(
r2 − 1

)
γr2

0

(
(43r4 + 47r2 − 25)r2

0 + 16q2r3

)
. (C.2)

D Functions appeared in four derivative action

AGB
0 (r, k) = −

q2
(
r2 − 1

)
+ ω2

4r2 (r2 − 1)

+
α′

12r2 (r2 − 1)

(
q2(2β3(13r2 − 3rω2 − 13)

+130(r2 − 1)β1 + (−36r4 + 25r2 + 11)β2)

+ω2((6r2 − 11)β2 + 130β1 + 26β3)
)

(D.1)

and

AGB
1 (r, k) = r − 1

r
−
(
r2 − 1

) ((
18r2 − 13

)
β2 + 110β1 + 22β3

)
α′

3r
.

(D.2)

where, g−1 means inverse metric. We have not put explicit indices here as that would not be important.

Ricci tensor also has the same structure and Ricci scalar terms are not required (they never contribute

to φ(r)φ′(r)). Then it is easy to see that for any Rn higher derivative terms, only two Reimann tensors

will contribute to φ(r)φ′(r) and others n − 2 have to be computed on the background metric. Moreover

form (B.11), only the product of the first piece and the second piece coming from two different Riemann

tensor will give φ(r)φ′(r). From this generic structure we get the result (B.9). The first parenthesis in (B.9)

comes from the two Riemann tensors while the second one gives the contribution from all others.

Similarly, we see that j2 appears in a5(r) which is a coefficient of φ(r)φ′′(r). Moreover, we are looking for

the piece of j2 which is proportional to ω2(or q2). This requires total four derivatives (two r and two t/z)

acting on graviton fluctuation φ(r, t, z). All other (2n − 4) derivatives will act on the background metric

and as mentioned earlier, the derivatives will be only with respect to r. From (B.11), only the product of

the second piece coming from two different Riemann tensor will give φ(r)φ′′(r). From this generic structure

we get the result (B.10).
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E Functions appeared in Higher-derivative Charged black-hole action

ACB1 =
r5(ω2 − q2) + q2r4

0r

2(r4 − r4
0)

+
c1α
′(11r8(ω2 − q2)− r4

0r
4(25q2 + 6ω2) + 36q2r8

0)
6r3(r4 − r4

0)

+
Q2

2r2
0(r2 − r2

0)(r2 + r2
0)2

[
r3ω2 +

α′

3r5

(
c1[28q2r6

0r
2

−r8(36q2 + 127ω2)− 4r2
0r

6(7q2 − 3ω2)− 8q2r8
0

+4r4
0r

4(11q2 + 3ω2)]− 24c2[r2
0r

6(2q2 − 3ω2)− 2q2r6
0r

2

+r4
0r

4(2q2 − 3ω2)− 2q2r8
0 + 4r8ω2]

)]
+O(Q4) (E.1)

and

ACB1 =
1
2
(
rr4

0 − r5
)
−
c1α
′ (13r4 − 18r4

0

) (
r4 − r4

0

)
6r3

+
Q2(r2 − r2

0)
2rr2

0

[
1− α′

3r4

(
24c2(4r4 − 3r2

0r
2 − 3r4

0)

+c1(101r4 − 156r2
0r

2 − 120r4
0)
)]

+O(Q4).

(E.2)
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