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1 Introduction

There is a fundamental issue as to whether the S matrix exists and whether it can be a

useful tool for the study of four dimensional quantum field theories where the interactions

are mediated by massless fields. Such interactions do not decouple sufficiently rapidly

at large distances and times to justify the assumption that particles become free so that

the S-matrix can be used to describe transitions between free particle states. If one ig-

nores the problem and proceeds to compute amplitudes using the standard diagrammatic

perturbation theory, the difficulty is manifest as infrared and co-linear divergences.

In Abelian gauge theories such as quantum electrodynamics, techniques for dealing

with infrared divergences are well known. There are two principal approaches, either the

computation of transition probabilities inclusive of soft photon production [1]–[3] or the use

of the S matrix to compute transition amplitudes between dressed states [4]–[10]. They
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give identical results for transition probabilities. However, it has recently been pointed

out [11]–[17] that the two approaches have subtle differences with how quantum information

is distributed in a scattering process [18]–[28].

The infrared problem in non-Abelian gauge theory is significantly more difficult than

that of its Abelian cousin. The Kinoshita-Lee-Nauenberg theorem [29]–[30] guarantees that

the probabilities of completely inclusive processes must be infrared finite. By “completely

inclusive” we mean that one must sum over both all possible final states and all possible

initial states containing soft particles. The sum over initial states is particularly subtle. It

has ambiguous normalization, which some effort has gone into treating systematically [31]–

[33]. Having to sum over initial states is tantamount to declaring that the S-matrix can

only be applied to incoming mixed states where the density matrix has equal probability

of finding any of the possible incoming states, including those with arbitrary numbers of

soft particles. Fortunately, there is recent work that suggests that this limitation is not

necessary, that it is sufficient to sum over final states alone (or initial states alone) if

forward scattering is properly taken into account [34]. This would indeed be a very useful

development and it is entirely consistent with the results that we will find in the following.

There has also been a certain amount of work on the alternative of attempting to find the

analog of the dressed states for a non-Abelian gauge theory [35]–[44]. We will also make use

of these in the following, but only in the leading perturbative order where they resemble

the dressed states of Abelian gauge theory.

In this paper we will observe another major difference between the inclusive and dressed

approaches to the infrared problem in the context of a simple perturbative computation of a

particler amplitude in N = 4 supersymmetric Yang-Mills theory. Our result will illustrate

that the way in which infrared singularities are dealt with impinges on the question as to

whether it makes sense, in a gauge fixed field theory with de-confined quarks, to assign

a specific colour to a quark. N = 4 Yang-Mills theory is a super-conformal gauge theory

where it is known that the string tension for a certain type of heavy quark vanishes, meaning

that quarks are not confined. In fact, the quarks that we are interested in are members

of a 1
2 -BPS super-multiplet and some of their properties are protected by supersymmetry.

For example, static quarks do not interact at all.

The quarks that we will study transform in the fundamental representation of a U(N)

gauge group. A quark wave-function is therefore an N component object where, in some

canonical basis, each component corresponds to a colour. We would say that the quark

has definite colour when only one component is non-zero. Then, we can ask the question

as to whether it makes any physical sense to think of the quark as being in such a state

of definite colour. Of course, we can only ask this question once we have fixed a gauge by

choosing a representative of each gauge orbit. Once that is done, there is a global SU(N)

symmetry and we expect that the states of the quantum field theory can be organized so

that they carry representations of that symmetry group. A state with a single quark would

transform in the N -dimensional fundamental representation.

We will consider the amplitude that a constantly accelerating quark with a given colour

evolves classically, that is, the probability amplitude that it follows its classical trajectory

and no other particles are produced. We will take the heavy quark limit so that we can

– 2 –



J
H
E
P
0
7
(
2
0
2
0
)
2
2
8

analyze the problem in a semi-classical expansion. We will also take the limit where the

time interval during which the constant acceleration occurs is large. For a free quark, the

semiclassical limit of this amplitude is simply a phase Aab ∼ e−iδτP δab, with τP the proper

time during which the quark accelerates and δ the particle mass, perhaps corrected by

the particle’s interaction with the accelerator. This is simply the statement that, in the

classical limit, the particle is sure to follow its classical trajectory. The indices a and b are

quark colours and the delta function indicates that the colour of the quark is unchanged

during its propagation.

We will then compute the corrections to the amplitude from the coupling of the quark

to the massless fields of N = 4 Yang-Mills theory, to the leading order of perturbation

theory. We will find that the leading correction is quadratic, rather than linear in the

proper time of the quark, a fact that we attribute to an infrared divergence that would

occur if the proper time were taken to infinity.

We will study two ways in which this infrared problem can potentially be solved. The

first is the inclusive approach. It considers a process which is inclusive of the production

of soft vector and scalar particles. The second uses dressed states. It uses the conventional

S-matrix to study the transitions between dressed states consisting of on-shell heavy quarks

and coherent states of the on-shell massless vector and scalar particles of N = 4 Yang-Mills

theory.

The result of our first attempt might be quite obvious from the beginning. When a

coloured quark accelerates, it emits bremsstrahlung which includes soft vector and scalar

fields. The soft particles that are emitted are arbitrarily soft, to the point where they are

not noticeable in the kinematics of the process. However, they carry colour charges and

each time the quark emits such a particle its colour state flips. The soft vector and scalar

particles transform in the adjoint representation and their emission is equally capable of

flipping any fundamental representation quark colour to any other colour. This continuous

flipping of colour, every time the quark accelerates, and the loss of this information to the

soft particles which escape detection, randomizes the colour of the original quark. In this

picture, any quark which has ever been accelerated cannot be in a definite state of colour,

but it must be in a mixed state where all of the colours are weighted equally.

Our second result tells us that we can redefine what we mean by a quark by adding

a cloud of soft on-shell vector and scalar particles to make a dressed state. We shall do

this only to the leading order of perturbation theory. In the dressed state, the quark

together with the soft particles combine to transform in the fundamental representation

of colour SU(N). The dressing is tuned so that the infrared divergences cancel. Then, the

infrared decouples in that the evolution of the system through transitions between dressed

states involves no additional production of soft particles. As a result, as long as coloured

hard particles are not produced by an interaction, the quark retains its colour. Its colour

no longer fluctuates and the colour state seems to be a meaningful attribute of the quark.

However, inside the dressed state, colour is distributed in a nonlocal way between the quark

and the soft particles, which must combine so that they are altogether in the fundamental

representation. They do this in such a way that the colour state of the quark and the

colour state of the soft particles are maximally entangled, even when they are very far
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separated. This fact suggests that, even in the dressed state formalism, colour is not a

local observable.

In section 2 we will review the setup of the heavy quark scenario in N = 4 supersym-

metric Yang-Mills theory. In section 3 we will analyze a constantly accelerating heavy quark

which emits a soft gluon. It is there that we show that the inclusion of the possibility of soft

particle production can repair the infrared divergence. This is so only for certain incoming

or outgoing states, those which are mixed states in which colour is completely random. In

those states, the quantum correction to the amplitude that the quark follows it classical

trajectory becomes a linear, rather than a quadratic in the proper time of the quark. We

extract a “damping rate” from this linear proper time dependence. (In the conclusions

we argue that this damping rate is directly related to the cusp anomalous dimension of

a cusped Wilson loop.) In section 4, we construct dressed states and we show that, with

a sufficiently careful infrared regularization, the dressed states have amplitudes where the

leading correction varies linearly in the quark’s proper time with precisely the same damp-

ing rate as we found for the inclusive formalism. However a fundamental difference is that

the divergences cancel for an incoming dressed quark with any colour and, therefore, the

colour of dressed states does not fluctuate and it would seem to be a meaningful quantity.

Section 5 summarizes some conclusions.

2 Heavy quark with constant acceleration

In this section we will set up some of the technical framework that is needed for our

computations. This is mainly a review of results in reference [45] which are also reviewed

in reference [46] and which are closely related to previous results using perturbation theory

to study the Euclidean circle Wilson loop [47, 48]. We present them here for completeness

and to set the context for our use of them in the following sections.

We will consider the following thought experiment. We begin with N = 4 supersym-

metric Yang-Mills theory with gauge group U(N+1). This theory has a single coupling

constant, gYM which is freely tuneable as its beta function vanishes. Moreover, it is be-

lieved that there are no phase transitions as this coupling parameter is varied between

zero and infinity. We will study this theory on the Coulomb branch. For this, we shall

assume that one matrix element of one of the scalar fields, say
[
Φ1
]
N+1 N+1

of the N = 4

Yang-Mills theory gets a vacuum expectation value. The Higgs mechanism then reduces

the gauge symmetry from U(N+1) to U(N)×U(1). The result is N = 4 Yang-Mills theory

with gauge group U(N) coupled to a massive Higgs field, corresponding to the fluctuation

in the magnitude of the condensate,
〈
Φ1
N+1 N+1

〉
, and a massive short super-multiplet of

W-bosons. That super-multiplet contains vector, spinor and scalar fields. The W -bosons

transform in the fundamental representation of the residual U(N) gauge group and they

carry a single unit of U(1) charge. The remaining massless N = 4 multiplet transform

under the adjoint representation of U(N) and they are neutral under the U(1). The mass

of the W particles is determined by the value of the condensate. The magnitude of the

condensate is a tuneable dimensionful parameter which does not get quantum corrections.
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Moreover, due to the N = 4 supersymmetry, the vacuum energy does not depend on this

parameter. It is a supersymmetric modulus.

Our heavy quark will be a massive fundamental representation scalar particle in the W-

boson super-multiplet which is put into a state of constant acceleration. This acceleration

could be driven, for example, by a constant external electric field which couples to its

conserved U(1) charge. In that case, the mass of the quark must be large compared to the

acceleration in order to suppress processes which would compete with the one that we are

interested in.1

We inject the heavy quark into the system with an initial velocity which is in a direction

directly opposing the constant acceleration. Then, we ask the question as to what is the

probability amplitude that the particle reemerges at the point where it was injected and

after a time which is consistent with the classical motion of such a particle. The classical

particle would emerge at that point, traveling at the same speed in the opposite direction

after a time which can be found by solving the classical equation of motion. In essence, we

are asking what is the probability amplitude that the particle follows the classical constant

acceleration trajectory.

The accelerated trajectory which we shall use is given by the parametric curve

x̃µ(τ) =

(
1

a
sinh aτ,

1

a
cosh aτ, 0, 0

)
, − τP

2
≤ τ ≤ τP

2
(2.1)

Since ˙̃xµ(τ) ˙̃xµ(τ) = −1, τ is the proper time and τP is the total proper time that is

experienced by the particle during its flight. Moreover, ¨̃xµ(τ)¨̃xµ(τ) = a2 and a is the

constant proper acceleration.

Let us first consider the propagation of the particle without coupling to the N = 4

fields, that is, in the limit where the Yang-Mills theory coupling constant vanishes, gYM = 0.

The quantum amplitude is given by the single particle world-line path integral

A0ab = δab

∫ ∞
0

dT

∫
[dxµ(τ)]eiS[x,T ] (2.2)

where τ ∈ [−τP /2, τP /2] and the functions xµ(τ) obey the Dirichlet boundary conditions

xµ(τP /2) = x̃µ(τP /2) =

(
1

a
sinh a

τP
2
,

1

a
cosh a

τP
2
, 0, 0

)
(2.3)

xµ(−τP /2) = x̃µ(−τP /2) =

(
−1

a
sinh a

τP
2
,

1

a
cosh a

τP
2
, 0, 0

)
(2.4)

The boundary conditions fix the initial and final positions. Here, since the interaction with

N = 4 fields is turned off, the colour state of the particle, which is labeled by a and b

remains intact during the particle’s flight. This is the source of δab for the colour indices

in equation (2.2).

1Schwinger pair production of W+–W− pairs by an constant electric field is an example of such a

process. It should be suppressed by the factor exp
(
−M2/πE

)
where M is the mass of the W particle and

E is the magnitude of the electric field. The proper acceleration is a = M/E, so the heavy quark limit is
M2

E
= M

a
� 1.
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If the acceleration is driven by an electric field, the world line action would contain a

coupling to the electric field

S[x, T ] =

∫ τP
2

− τP
2

dτ

[
− 1

4T
ẋµ(τ)ẋµ(τ) +M2T +

1

2
E
(
x0(τ)ẋ1(τ)− x1(τ)ẋ0(τ)

)]
where M is the mass of the particle, E is the strength of the electric field which we have

assumed is in the x1 direction. The last terms, proportional to E, are the line integral of

the Abelian vector potential for a constant electric field. The classical equation of motion

for this action is solved by the trajectory x̃µ(τ) given in equation (2.1), with a = E
M as well

as T̃ = 1
2M . The on-shell action is S[x̃, T̃ ] = −1

2MτP and the semi-classical limit of the

amplitude is a phase,

A0ab = δabe
− i

2
MτP (2.5)

which grows linearly in the proper time. The validity of this approximation is governed by

two limits, the heavy quark limit M � a and the large time limit MτP � 1.

The heavy quark which we have been describing transforms in the fundamental rep-

resentation of the U(N) gauge group of the massless N = 4 supermultiplet. If we turn on

the interactions of the particle with these massless fields, it couples to the U(N) fields by

the insertion of the Wilson line into the world-line path integral, so that the amplitude is

given by2

Aab =

∫ ∞
0

dT

∫
[dxµ(τ)]eiS[x,T ] 〈W [x]ab〉 (2.6)

where

W [x] = Pe
i
∫ τP

2
τP
2

dτ [Aµ(x(τ))ẋµ(τ)+|ẋ(τ)|Φ1(x(τ))]
(2.7)

P denotes path ordering and the bracket is the vacuum expectation value in the N = 4

Yang-Mills theory with U(N) gauge group.

The expectation value of the Wilson line operator (2.7) is not gauge invariant. A gauge

fixing of the Yang-Mills theory after which only the global U(N) remains in intact, must be

done before the Wilson line is computed. The expectation value will then depend on which

particular gauge fixing is used. This gauge dependence would be expected to go away in

the limit where τP →∞ where the world-line path integral describes an S-matrix element.

For this reason, we should only trust and will eventually take the large τP asymptotic limit

of the amplitude. The only physical information that we will extract is the coefficient of

the linear in τP component of the phase, in that large τP limit.

2The most general expression for this transition amplitude would include closed loops for W -bosons

as well as open lines corresponding to W+W− pair production. We are assuming that such loops are

suppressed by the large mass limit for the W particle. Indeed, they would generally be expected to correct

our results by positive powers of a
M

. Pair production is known to be exponentially suppressed, ∼ e−M/πa.

Since W ’s are bifundamental fields, all of these contributions would also be suppressed by the large N limit

which we will sometimes (but not always) take.
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Using the global U(N) invariance of the state, we can re-write the amplitude as

Aab = δab

∫ ∞
0

dT

∫
[dxµ(τ)]eiS[x,T ]

〈
1

N
TrW [x]

〉
(2.8)

The Wilson line contributes to the dynamics of the particle by virtue of its dependence on

the trajectory, xµ(τ). This dependence is generally complicated. However, we can still say

something about it in the heavy quark limit. Consider the effect of the insertion of the

Wilson line on the classical equation of motion for the particle, which is corrected to

1

2T
ẍ1 − Eẋ0 +

1

i

δ

δx1(τ)
ln

〈
1

N
TrW [x]

〉
= 0 (2.9)

− 1

2T
ẍ0 + Eẋ1 +

1

i

δ

δx0(τ)
ln

〈
1

N
TrW [x]

〉
= 0 (2.10)

with the same boundary conditions (2.3) and (2.4). Due to the spacetime symmetry of the

trajectory3

δ

δxµ(τ)
ln

〈
1

N
TrW [x]

〉∣∣∣∣
x(τ)=x̃(τ)

= 0 , τ ∈ (−τP /2, τP /2) (2.11)

This can also be seen to be a result of the supersymmetry of the trajectory [49]. The result

is that the solution of the classical equation of motion is still the uniformly accelerated

trajectory x̃µ(τ) given in (2.1) with a = E
M and T̃ = 1

2M . Then, in the semi-classical limit,

the amplitude is given by the integrand of the functional integral evaluated on the classical

trajectory,

Aab = δabe
−i 1

2
MτP

〈
1

N
TrW [x̃]

〉
(2.12)

We emphasize that the validity of this approximation does not rely on a weak coupling or

large N limit. It relies on the heavy quark limit where the dimensionless parameters which

control the approximation is the small parameter a
M and the large parameter MτP .

2.1 Wilson line for an accelerating trajectory

We can easily find leading terms in the Wilson line expectation value
〈

1
NTrW [x̃]

〉
at the

weak coupling limit by Taylor expanding the exponential and using Wick’s theorem. The

free-field two-point functions of the vector and scalar fields in the Feynman gauge are4〈
Aµab(x)Aνcd(y)

〉
0

=
ηµνδadδbc

8π2(x− y)2 + iε
(2.13)

〈
ΦI
ab(x)ΦJ

cd(y)
〉

0
=

δIJδadδbc
8π2(x− y)2 + iε

(2.14)

respectively.

3The functional derivative might get contributions from the endpoints of the interval, at τ = ±τP /2.

With the Dirichlet boundary conditions which we are using, variations of the trajectory vanish at the

endpoints, so the equation is correct when τ is strictly between the endpoints, which is sufficient for our

purposes. More precisely, δ ln
〈

1
N

TrW [x]
〉

=
∫
dτδxµ(τ) δ

δxµ(τ)
ln
〈

1
N

TrW [x]
〉∣∣∣
x(τ)=x̃(τ)

= 0 when δxµ(τ) =

0 at τ = ±τP /2.
4Here, we are using the conventions where a covariant derivative of an adjoint representation field is

Dµψ = ∂µψ − igYM [Aµ, ψ] and the Yang-Mills action is normalized as SYM = − 1
2

∫
d4x TrFµνF

µν + . . . .
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Figure 1. The Feynman diagrams contributing to the corrections to the amplitude that are quoted

in equation (2.16) are depicted in fat graph notation. The single lines represents the fundamental

representation heavy quark and the double line represents the adjoint representation scalar and

vector fields.

The essential simplification that allows us to easily do computations is the fact that the

combination of vector and scalar field correlation functions between points on the classical

trajectory are equal to constants

˙̃xµ ˙̃x′
ν 〈
Aµab(x̃)Aνcd(x̃

′)
〉

0
+ | ˙̃x|| ˙̃x′|

〈
Φ1
ab(x̃)Φ1

cd(x̃
′)
〉

0
=
a2δadδbc

16π2
(2.15)

A similar phenomenon is well known for the Euclidean circle Wilson loop [47, 50] which

is related to the present discussion by the fact that the constant acceleration trajectory is

the analytic continuation to Minkowski space of the arc of a Euclidean space circle.

Using the propagators (2.13) and (2.14), and computing the Wilson loop expectation

value to the leading order we find the result for the amplitude

Aab[τP ] = e−i
1
2
MτP δab

[
1−

g2
YMN

32π2
(aτP )2 + . . .

]
(2.16)

This expression includes the corrections depicted in figure 1. The leading order correction

in equation (2.16) has the unusual feature that its magnitude grows like the proper time

squared. We interpret this quadratic growth as an infrared divergence. Indeed, it can easily

be seen to come from the dispersive part of the two-point functions, which is the origin of

infrared divergences in the usual perturbative computations of Wilson lines. Moreover, this

infrared divergence has the feature that, if we re-sum higher orders, we expect to obtain

a Gaussian damping of the amplitude. If the gauge group were U(1), for instance, the

correction in equation (2.16) would exponentiate to produce the expression

A(N = 1) = e−i
1
2
MτP−

g2YM
32π2

(aτP )2 (2.17)
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We present some evidence for partial exponentiation in appendix A where we show that

the sum of ladder diagrams to all orders changes the leading order result in equation (2.16)

to the result quoted in equation (A.2) (which we copy here:)

Aab[τP ] = e−i
1
2
MτP δab e

− g
2
YM(aτP )2

32π2
1

N
L1
N−1

(
g2

YM(aτP )2

16π2

)
Here L1

N−1 is a polynomial. We see that the result still has an exponential with Gaussian

falloff in the proper time of the quark. Given that we should take seriously only the large

τP asymptotic, we would interpret this as telling us that the amplitude is zero. No matter

how heavy the quark and how accurate the semi-classical approximation is expected to be,

the probability amplitude for the heavy quark to follow its classical trajectory for a long

time is equal to zero.

What went wrong? It can only be that there are other processes which compete

with the one that we have considered, and which take up all of the probability, that

is, the other processes are the only likely outcomes when τP is sufficiently large. When

there are massless particles involved, it is clear what these processes are. They are the

emission of soft particles — bremsstrahlung — which should occur when a charged particle

accelerates. The problem with the above argument is that we have ignored the amplitudes

where the constantly accelerating heavy quark emits bremsstrahlung. The probability that

an incoming quark emerges as an outgoing quark by itself is zero. The nonzero probability

resides in processes where soft massless particles are produced and also occupy the outgoing

state. We will discuss the contributions of soft particle emission in the next section.

3 Soft particle emission

3.1 Bremsstrahlung and recovering unitarity

To take into account soft bremsstrahlung, we need to add the probability that soft particles

are produced to the probability of the process that we have already examined, that is, the

square of the modulus of the amplitude in equation (2.16). For this, it is convenient to

describe the quantum state of the system using a density matrix. If the system is in a

pure state |ψ〉 the density matrix is ρ = |ψ〉〈ψ|. We could consider more general mixed

states where ρ is a Hermitian matrix with eigenvalues P1, P2, . . . , Pn and 0 ≤ Pi ≤ 1 and∑
i Pi = 1. In particular Tr ρ = 1.

Let us call the incoming density matrix [ρin]ab. The amplitude that we are computing

evolves the density matrix from the incoming to out-going one

[ρout]ab =
N∑

c,d=1

Aac [ρin]cdA
†
db (3.1)

which, when we plug in the amplitude that we have computed so far, the result quoted

in (2.16), ρout becomes

[ρout]ab = [ρin]cd δacδbd

(
1−

g2
YMN

16π2
a2τ2

P + . . .

)
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The fact that we still missing some essential diagonal elements of the density matrix is

seen in

Tr [ρout] = Tr [ρin]

(
1−

g2
YMN

16π2
a2τ2

P + . . .

)
that is, the normalization of the density matrix, which always should have unit trace,

decreases with time.

To the leading order in gYM, the amplitude for a quark in colour state a to emit of

a single massless vector particle with wave-vector ~k, polarization esµ(k) and with colour

indices cd is given by5

igYM

∫ τP
2

− τP
2

dτesµ(k)ẋµ(τ)
e−ikµx

µ(τ)√
(2π)32|~k|

δacδdb√
2

, k0 = |~k| (3.2)

Here, the heavy quark in the initial state has colour index a, the soft vector or scalar field

in the final state has colour indices cd and the heavy quark in the final state has colour b.

Notice that the colour of the heavy quark is not conserved in this process. It changes from

a to b. Of course, this is natural when it emits a soft excitation which itself carries colour.

There is a similar expression for the amplitude for the emission of a massless scalar

particle

igYM

∫ τP
2

− τP
2

dτ |ẋ(τ)| e
−ikµxµ(τ)√
(2π)32|~k|

δacδdb√
2

, k0 = |~k| (3.3)

We must add these amplitudes to the evolution of the density matrix so that the out-going

density matrix has components with one physical massless vector or scalar fields as well as

the heavy quark. Indeed, as we shall see shortly, these contributions help to maintain the

normalization of the density matrix. We could imagine that we include all of the possible

soft particle production compatible with the order in perturbation theory to which we are

working, we can then take a trace over the states with soft particles to make a reduced

density matrix.

The reduced density matrix is gotten by taking a partial trace of the outgoing density

matrix over the states of the vector and scalar field. We shall want to trace over only the

soft modes of these fields. But, let us begin by studying what happens when we trace over

all of them. This will give us a way to check unitarity.

The trace over all of the massless vector and scalar degrees of freedom is straightforward

and the relevant Feynman diagram is diagram IV depicted in figure 2. It produces the

following term,

N∑
c,d=1

[ρin]cd δabδcd
g2

YM

2

∫
dτdτ ′

[
˙̃x(τ) · ˙̃x(τ ′) + | ˙̃x(τ)|| ˙̃x(τ ′)|

] ∫
d3k

eik(x̃(τ)−x̃(τ ′))

(2π)32|~k|
(3.4)

=

N∑
c,d=1

[ρin]cd
1

N
δabδcd

g2
YMN

16π2
a2τ2

P (3.5)

5The factor of 1/
√

2 comes from the unit normalization of the states when the commutation relations

for creation and annihilation operators are as in equations (4.2) and (4.3).
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Figure 2. The Feynman diagrams corresponding to the corrections to the evolution operator for

the density matrix wich take into account the interaction of the heavy quark with massless vector

and scalar particles, for order g2YM are depicted in fat graph notation. The initial density matrix is

at the center and it has colour indices a, b. The reduced out-going density matrix has the indices

d, c. Diagram I is the tree-level, diagrams II and III depict the correction to the amplitude coming

from the self-interaction of the heavy quark, mediated by exchanging massless vector and scalar

fields, and diagram IV is the correction to the reduced density matrix arising from tracing out the

vector and scalar particles that are produced. In terms of colour indices, contributions I, II and III

have the structure ∼ δadδbc whereas IV has the structure ∼ δabδcd.
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in the reduced density matrix. (This integral can be gotten from equation (B.2) in ap-

pendix B by first integrating over k± and then τ and τ ′.)

The reduced density matrix is then, up to order g2
YM,

[ρred(τP )]ab =

N∑
c,d=1

[ρin]cd

{
δacδbd −

g2
YMN

16π2
a2τ2

P δacδbd +
g2

YM

16π2
a2τ2

P δabδcd + . . .

}
(3.6)

The first term on the right-hand-side is the evolution with no interactions at all. It corre-

sponds to contribution I in figure 2. (The phase in the amplitude (2.5) cancels when we

apply it to the evolution of the density matrix.) The second term is the leading self-energy

correction to the heavy quark. It corresponds to contributions II and III in figure 2. The

third term is from the trace of the density matrix in the sector where vector and scalar

particles are produced. It corresponds to contribution IV in figure 2. Note that the third

term has a different structure in colour indices from the other terms.

Now, we can confirm that the trace of the reduced density matrix (and therefore also

the trace of the outgoing density matrix) is equal to the trace of the incoming density

matrix, ∑
a

[ρred(τP )]aa =
∑
a

[ρin(τP )]aa (3.7)

This means that we have taken into account every possible process that can occur in the

leading orders of perturbation theory and in the limit where the quark is heavy — we have

recovered unitarity.

The infrared divergent terms, those proportional to (aτP )2 remain in the expres-

sion (3.6). This means that only certain incoming density matrices, or certain questions

involving outgoing density matrices are not infected with infrared divergences. Explicitly,

we can rewrite equation (3.6) as

[ρred(τP )]ab = [ρin]ab −
g2

YMN

16π2
a2τ2

P

(
[ρin]ab −

1

N
δab

)
+ . . . (3.8)

where we have used Tr [ρin] = 1. We see that the divergent terms are absent only when

1. the incoming density matrix is [ρin]ab = 1
N δab, that is, the initial state is a singlet

mixed state of colour where all of the colours have the same probability or

2. the observables whose expectation values we calculate using the final density matrix

are averaged over colour states 〈O〉 = Tr [Oρred(τP )] and Oab ∼ δab· (independent of

a and b).

3.2 Introducing a detector resolution

It is usual to cancel infrared divergences by considering inclusive probabilities for soft

particle production, rather than inclusive of all of the inelastic behaviour as we have done

so far in the discussion above. This means that we should trace the outgoing density matrix

over only the soft vector and scalar particles which are emitted. The trace then would have
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an upper cutoff on wave-vectors which is intended to emulate a detector resolution, where

the hypothesis is that we must always compute inclusive probabilities where we include

the production of any soft particles which would escape detection. We will do this shortly.

However, as a first pass, we could simply assume that the “detector” is switched on and

it can only detect massless particles which are emitted in the time interval [−x̂0/2, x̂0/2]

where

x̂0 =
2

a
sinh a

σP
2
, σP � τP (3.9)

That means that we should trace over massless particles which are produced in the proper

time intervals where the detector is switched off, that is
[
− τP

2 ,−
σP
2

]
and

[
σP
2 ,

τP
2

]
. Doing

so yields the reduced density matrix

[ρ̂red]ab = [ρin]ab −
g2

YMN

16π2
a2τ2

P [ρin]ab +
1

N
δab

g2
YMN

16π2
a2(τP − σP )2 . . .

=

[
[ρin]ab −

1

N
δab

] [
1−

g2
YMN

16π2
(aτP )2 + . . .

]
+

1

N
δab

[
1−

g2
YMN

8π2
(aσP )(aτP ) + . . .

]
(3.10)

Here, we have assumed that τP � σP and we have dropped terms that are less than

linear in τP . This is similar to the previous result, where we traced out all of the particles

produced, in that the terms which are quadratic in τP will be absent only when the initial

density matrix satisfies [ρin]ab −
1
N δab = 0 or only when we use this density matrix to take

the expectation value of a colour singlet operator. However, there remains a linear term

in the total proper time. This is due to the fact that the possibility of the production of

hard vector and scalar particles has been left out of our reduced density matrix. The rate

at which they are being produced is

Γ =
g2

YMN

8π2
(aσP )a (3.11)

or, in terms of the total rest frame time during which the detector is active, x̂0,

Γ =
g2

YMN

4π2
a ln(ax̂0) (3.12)

This damping rate depends on the detector resolution in the sense that it depends loga-

rithmically on the time x̂0 that the detector is switched on, in units of the acceleration.

The normalization of the density matrix does not remain unity, but decreases with

time because it is not the full density matrix. We have left out the competing processes

consisting of the production of hard vector and scalar particles. If those processes were

included, as they were in the discussion of the previous subsection, we would find unit

trace. The probability of detecting the outgoing quark without hard particle production

decreases with time simply because the probability of having produced some hard vector

and scalar particles increases with time.
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3.3 Introducing a fundamental infrared cutoff

A more conventional alternative to the above scheme for introducing a detector resolution

would be to impose wave-vector cutoffs in the integrals over the wave vectors of massless

particles that are encountered in the computations of the corrections to the out-going

density matrix. This would be a fundamental cutoff which we shall call m, which will be

needed in order to define the Feynman integrals in the first place and a detector resolution

which we shall call Λ. We will assume a large hierarchy of these scales,

m� Λ� a�M

with M the heavy quark mass. “Soft particles” will be those with energies between the

fundamental cutoff m and the detector resolution, Λ. “Hard particles” will be those with

energies greater than Λ.

Once the fundamental cutoff m is introduced, and after extracting a factor of overall

proper time τP , we can safely take the limit τP →∞ and do the remaining proper time and

momentum integrals explicitly. The procedure is summarized in appendix B. The result

for the out-going reduced density matrix is

[ρ̂red]ab =
δab
N

(
1−

g2
YMN

4π2

[
ln
a

Λ

]
(aτP )

)
+

[
[ρin]ab −

1

N
δab

](
1−

g2
YMN

4π2

[
ln
a

m

]
(aτP )

)
+ . . . (3.13)

Note that the quadratic dependence on τP is now absent. It has been replaced by

linear terms in τP times logarithms of the fundamental infrared cutoff m. Again, as we see

clearly in the expression (3.13), the infrared divergent terms which are logarithms of the

fundamental cutoff cancel only when the incoming density matrix is proportional to the

unit matrix in colour indices,

[ρin]ab =
1

N
δab

The decay rate of the state, per unit of the heavy quark’s proper time is

Γ =
g2

YMN

4π2
a ln

a

Λ
(3.14)

Note the coincidence of the decay rates that we have computed in equations (3.12)

and (3.14). It associates the detector resolution Λ with the inverse of the length of the rest

frame time during which the detector was operating, (x̂0)−1.

4 Dressed states

There is an alternative way of dealing with the infrared which uses dressed states. In that

approach, instead of computing transition amplitudes for single particle states, as we have

done in the previous section, we dress the incoming and outgoing states with clouds of soft
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particles. The dressed states should contain the soft particles that are produced by the

interactions during the process. Then we compute the amplitude for a transition between

two dressed states by taking matrix elements of the S-matrix.

To the order in perturbation theory that we are working, (order g2
YM for diagonal

elements, order gYM for off-diagonal elements), and in the single heavy quark sector, the

S-matrix is

Sab = e−i
M
2
τP δab

(
1−

g2
YMN

8π2
(aτP ) ln

a

m

)
+

+ igYM

∫
m

d3k√
(2π)32|k|

∫ τP /2

−τP /2
dτeikx(τ)

[
ẋµ(τ)aµab(k) + |ẋ(τ)|a1

ab(k)
]

+ igYM

∫
m

d3k√
(2π)32|k|

∫ τP /2

−τP /2
dτe−ikx(τ)

[
ẋµ(τ)a†µab(k) + |ẋ(τ)|a1†

ab(k)
]

+ . . . (4.1)

Matrix elements of this S-matrix produce the amplitudes in equations (3.2) and (3.3)

that we used in the previous sections. Here, the momentum integrals have a fundamental

infrared cutoff m. Note that, like the Wilson line, the S matrix also contains both the

vector and scalar fields in a particular combination which allows the S-matrix to commute

with half of the supersymmetry transformations. The normalization of the creation and

annihilation operators are such that their commutation relations are[
aµab(k), a†νcd(k

′)
]

= δµνδ
3(~k − ~k′)δadδbc

2
(4.2)[

aIab(k), aJ†cd (k′)
]

= δIJδ3(~k − ~k′)δadδbc
2

(4.3)

The dressed state contains soft massless particles as well as the heavy quark. It must

contain only data referring to the final state. Here, we take the dressing as being very

similar to that which is used in Abelian gauge theory, containing the four-velocity of the

particle. The dressed final state is

|a〉〉f ≡ |a〉+ gYM

∫ Λ

m

d3k√
(2π)32|k|

[
ẋµ(τP /2)a†µab(k) + |ẋ(τP /2)|a1†

ab(k)
]

kµẋµ(τP /2)
|b〉+ . . . (4.4)

and the dressed initial state is

|a〉〉i ≡ |a〉+ gYM

∫ Λ

m

d3k√
(2π)32|k|

[
ẋµ(−τP /2)a†µab(k) + |ẋ(−τP /2)|a1†

ab(k)
]

kµẋµ(−τP /2)
|b〉+ . . . (4.5)

Note that, because of the identity |ẋ(±τP /2)|2 + ẋµ(±τP /2)ẋµ(±τP /2) = 0, the dressed

state is normalized, up to order g2
YM. The question that we are asking is about the am-

plitude that, when system begins in state |a〉〉i, it appears in the state |b〉〉f after a time

x̂0 = 2
a sinh(aτP /2), that is,

Âab = f〈〈b|S|a〉〉i (4.6)
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which we now have the tools to compute up to and including order g2
YM in perturbation

theory.

Putting together equations (4.1) to (4.6), we find

Âab = δab − δab
g2

YMN

2
×
{

(I) + (II) + (III) + (IV )

}
+ . . .

I =

∫ Λ

m

d3k

(2π)32|k0|
˙̃xµ(τP /2) ˙̃xµ(−τP /2) + | ˙̃x(τP /2)|| ˙̃x(−τP /2)|

[ ˙̃xµ(−τP /2)kµ][ ˙̃xµ(τP /2)kµ]

II = i

∫ Λ

m

d3k

(2π)32|k0|

∫ τP /2

−τP /2
dτeikµx̃

µ(τ)

[
˙̃xµ(τ) ˙̃xµ(−τP /2) + | ˙̃x(τ)|| ˙̃x(−τP /2)|

]
[ ˙̃xµ(−τP /2)kµ]

III = i

∫ Λ

m

d3k

(2π)32|k0|
i

∫ τP /2

−τP /2
dτe−ikx̃(τ)

[
˙̃xµ(τP /2) ˙̃xµ(τ ′) + | ˙̃x(τP /2)|| ˙̃x(τ ′)|

]
[ ˙̃xµ(τP /2)kµ]

IV = −1

2

∫ ∞
m

d3k

(2π)32|k0|

∫ τP /2

−τP /2
dτdτ ′eik(x(τ)−x(τ ′))

[
˙̃xµ(τ) ˙̃xµ(τ ′) + | ˙̃x(τ)|| ˙̃x(τ ′)|

]
(4.7)

In each of these integrals, I, II, III and IV , we will extract an overall factor of τP and

then take the large τP limit of the remaining expressions. Each of the resulting integrals

contain integrations over the momenta ~k which are infrared divergent. In order to define

those momentum integrations, we will introduce a fundamental infrared regulator, m, in

each of the integrals by modifying the momentum integral. We will replace photon mass

shell condition k0 = |~k| by the massive dispersion relation k0 =
√
~k2 +m2.∫ ∞

m

d3k

(2π)32|k0|
. . . ≡ lim

m→0

∫
d4k

(2π)3
δ(kµkµ +m2)θ(k0) . . .

Then, the infrared divergence is manifest in a factor of ln(m) in each integral. We shall

see shortly that these logarithms cancel when the above four integrals are added together.

Beyond this, the integrals I, II and III have an upper cutoff, so that their integrals are

also restricted to the region with frequencies less than Λ. We achieve this, and preserve as

much Lorentz symmetry as possible, by defining the cutoff integral as∫ Λ

m

d3k

(2π)32|k0|
. . . ≡ lim

m→0

∫
d4k

(2π)3
[δ(kµkµ +m2)− δ(kµkµ + Λ2)]θ(k0) . . .

where Λ is the detector resolution. After using the delta functions for the k0-integral,

the integrand has support in the region |~k| ∼ Λ. This restricts the soft particle content

of the dressing to particles with frequencies and wave-numbers smaller than the detector

resolution. We will work in the limit where both cutoffs are small compared to the ac-

celeration and where the fundamental cutoff is much smaller than the detector resolution,

m � Λ � a � M . The integrals are elementary and some details about how they are

done are given in appendices C–E. The result for the amplitude is

Âab = δab

(
1−

g2
YMN

8π2
(aτP ) ln

a

Λ
+ . . .

)
(4.8)
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It is infrared finite and it depends on the detector resolution Λ. What is more, the

decay rate, Γ =
g2YMN

4π2 a ln a
Λ is identical to the one that we found for the colour neutral

incoming density matrix in the inclusive formalism, equation (3.14). For that particular

state, the inclusive and the dressed formalisms give identical answers. But, the main

difference of the two is that, in the dressed formalism, colour is conserved. Whatever the

incoming state, the colour indices are simply copied to the outgoing state. To this order in

perturbation theory, colour still seems to be a good physical attribute of the dressed heavy

quark.

5 Conclusions

In conclusion, we have examined a Gedanken experiment where we asked the question as

to what the probability is that a constantly accelerated heavy quark follows its classical

trajectory. The answer, due to infrared divergences, was zero. Then, we took the fact

that the quark must emit soft gluons and scalar particles into account and we found that

the quadratic terms in proper time which we attributed to infrared divergences cancel

when the incoming quark is in a mixed state which is a flat superposition of colour states,

∼ 1
N

∑
a |a〉〈a|. The quadratic dependence on proper time is replaced by a linear divergence

and we interpret the coefficient of the linear terms as the inclusive rate at which hard

particles are produced, Γ =
g2YMN

4π2 a ln a
Λ where a is the proper acceleration and Λ is the

detector resolution.

The coefficient of the acceleration times the logarithm in Γ is identical to the cusp

anomalous dimension for the N = 4 Wilson loop. This is not a coincidence. If we param-

eterize the trajectory using the rest-frame time, κ, with −κmax/2 < κ < κmax/2, so that

x̃µ(κ) =
1

a

(
aκ,
√

1 + a2κ2, 0, 0
)
→ (κ, |κ|, 0, 0) as a→∞

we see that in the large acceleration limit, the trajectory is two null curves with a cusp

due to an infinite instantaneous acceleration at κ = 0. In this case, the parameter aτP =

2 sinh−1 aκmax/2 is simply the diverging cusp angle and the logarithmic terms are the usual

infrared logs that go with the cusp anomalous dimension.

We also obtained the same value of the damping constant Γ in the dressed state

approach. However, the inclusive approach could only be applied to incoming quarks in

colourless mixed states. For dressed quarks, this was not the case, the in-going to out-going

colour index of the dressed quark was conserved.

We have done explicit computations only to the leading orders of perturbation theory.

It would be interesting to understand whether the phenomena that we have discussed

here also appear at higher orders in perturbation theory. For example, it would be nice

to understand whether collinear divergences due to corrections of the processes where soft

gluons are emitted pose a fundamental problem. Also, it would be interesting to understand

whether the matrix model computation is accurate in that whether supersymmetry can be

relied on to cancel the corrections to it from Feynman diagrams with internal vertices,

in the same way as occurred for the Euclidean circle Wilson loop. These open questions

remain the subject of ongoing work.
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It would be interesting to understand whether our results have implications for gluon

scattering amplitudes in quantum chromodynamics. In that theory, the infrared problem

is solved dynamically, by confinement. However, there is a high energy regime where

perturbation theory is accurate and an interesting question deserving further study is

whether our information theoretic considerations possibly have observable effects there.

Another interesting question is whether what we have described here has a strong

coupling dual in string theory. Constantly accelerated quarks have been studied at

strong coupling Yang-Mills theory [45, 51]–[55] and it was observed that amplitudes for

bremsstrahlung are suppressed at large N . However, tracing out soft bremsstrahlung would

also involve factors of N and it would be interesting to see whether similar phenomena to

what we have considered here would be visible at strong coupling.

A The matrix model sums ladder diagrams

A.1 One-point function

We observed in equation (2.15) that the sum of the vector and scalar two-point functions

with endpoints on the contour is a constant. This is attributable to the supersymmetric

nature of the Wilson line, in that it commutes with half of the super symmetries and

conformal super symmetries of the N = 4 Yang-Mills theory. We will not discuss the details

here. A brief discussion can be found in reference [45]. With the effective propagator a

constant, we can sum a large class of Feynman diagrams which contribute to the Wilson

line, those diagrams which have no internal vertices, by simply solving the combinatorics

of the Lie algebra indices on the propagators and vertices. This can be done using a matrix

model,

〈Wab[x̃]〉 =
1

N
δab

∫
[dM ]e−8π2TrM2

[Tr eigYMaτPM ]∫
[dM ]e−8π2TrM2 (A.1)

where M is a Hermitian N ×N matrix. This matrix integral can readily be found exactly

by using the method of orthogonal polynomials, for example. The result is

〈Wab[x̃]〉 = δab e
− g

2
YM(aτP )2

32π2
1

N
L1
N−1

(
g2

YM(aτP )2

16π2

)
(A.2)

where Lkn(x) is the associated Laguerre polynomial

Lkn(x) =
exx−k

n!

dn

dxn

(
e−xxn+k

)
=

n∑
m=0

xm
(n+ k)!

(n−m)!(k +m)!m!
(A.3)

and

L1
N−1(x) =

exx−k

n!

dn

dxn

(
e−xxn+k

)
=

N−1∑
m=0

(−x)m
(N)!

(N − 1−m)!(1 +m)!m!

= N − N(N − 1)

2
x+ . . . (A.4)

We can see that this result reproduces our perturbative computation by expanding to first

order in g2
YM. We can also see that it reproduces the exponentiation of the Abelian limit,

N = 1 where L1
0 = 1.
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A.2 Two-point function

The sum of all ladder-like Feynman diagrams contributing to the evolution operator, plus

the result of tracing over all of the soft particle emission, the leading orders of which are

displayed in figure 2 is given by the matrix model correlation function

〈
Wad[x̃]W †bc[x̃]

〉
=

∫
[dM ]e−8π2TrM2

[eigYMaτPM ]ad[e
−igYMaτPM ]bc∫

[dM ]e−8π2TrM2 (A.5)

One can check by expanding to second order in gYM that the expansion contains the four

terms which reproduce the contributions I,I,III and IV in figure 2. The sum of all such

diagrams of a ladder-like nature, that is, diagrams which only have propagators which

begin and end on the contours is given by the matrix integral in equation (A.5). Moreover,

the integral is elementary. U(N) symmetry of the measure tells us that it has the form〈
Wad[x̃]W †cb[x̃]

〉
=

1

N2 − 1

(
δadδbc −

1

N
δabδcd

) ∫
[dM ]e−8π2TrM2

[Tr eigYMaτPM ][Tr e−igYMaτPM ]∫
[dM ]e−8π2TrM2

+
N

N2 − 1

(
δabδcd −

1

N
δadδbc

)
The computation of this two-point function is again an exercise in the application of or-

thogonal polynomials to matrix integrals. The generic result is∫
[dM ]e−

1
2

TrM2
[Tr eiαM ][Tr e−iβM ]∫

[dM ]e−
1
2

TrM2
=

e−(α−β)2/2L1
N−1((α− β)2) + e−(α2+β2)/2L1

N−1(α2)L1
N−1(β2)

−Ne−(α2+β2)/2LN−1(α2)L0
N (β2)− L0

N (α2)L0
N−1(β2)

α2 − β2

− 2e−(α2+β2)/2
N−1∑
k=1

(αβ)k
(N − k)!

(N − 1)!

LkN−1−k(α
2)LkN−k(β

2)− LkN−k(α2)LkN−1−k(β
2)

α2 − β2

(A.6)

and the special case that we need is∫
[dM ]e−

1
2

TrM2
[Tr eiαM ][Tr e−iαM ]∫

[dM ]e−
1
2

TrM2
=

N −Ne−α2
[L0
N−1(α2)L1

N−1(α2)− L0
N (α2)L0

N−2(α2)]

− 2e−α
2
N−1∑
k=1

(α)2k (N − k)!

(N − 1)!
[LkN−1−k(α

2)Lk+1
N−k(α

2)− LkN−k(α2)Lk+1
N−2−k(α

2)] (A.7)
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and, applied to our case,〈
Wad[x̃]W †cb[x̃]

〉
=

1

N + 1
(δabδcd + δadδbc)

=
1

N2 − 1

(
δadδbc −

1

N
δabδcd

)
e
−g2YMa2τ2P

16π2
[
N2 −N + . . .

]
which gives a late time reduced density matrix

[ρred]ab =
1

N + 1
(δab + [ρred]ab) + exponentially suppressed

This results leaves out all of the diagrams which contain any of the Yang-Mills interaction

vertices and we have no right to expect that it is accurate in an expansion beyond the

order g2
YM which we have computed explicitly. Whether this observation can be used to

obtain a more general result is clearly an interesting open problem.

B Infrared cutoff integration

The integral that we are interested in is

g2
YM

2

∫
dτdτ ′

[
˙̃x(τ) · ˙̃x(τ ′) + | ˙̃x(τ)|| ˙̃x(τ ′)|

] ∫ Λ

m
d3k

eik(x̃(τ)−x̃(τ ′))

(2π)32|~k|
(B.1)

where we will impose a lower cutoff m and an upper cutoff Λ on the magnitude of ~k, the

momentum of massless particles. This integral can be put in a nicer form by noticing that

the trajectory of the particle only involves the x0 and x1 directions. This allows us to

replace the momentum space integral∫
d3k

(2π)32|~k|
f(k0, k1) =

∫
d4k

(2π)3
δ(kµk

µ)θ(k0)f(k0, k1)

=

∫ ∞
0

dk+

2π

∫ ∞
0

dk−

2π
f(k0, k1)

where we have introduced the light-cone coordinates

k± =
1

2
(k0 ± k1)

Moreover

˙̃x(τ) · ˙̃x(τ ′) + | ˙̃x(τ)|| ˙̃x(τ ′)| = 1

2

[
2− eaτ

eaτ ′
− eaτ

′

eaτ

]

and

eik(x̃(τ)−x̃(τ ′)) = e
i
a

[k+e−aτ−k−eaτ ]e−
i
a

[k+e−aτ
′−k−eaτ ′ ]

– 20 –
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We thus present the integral as

g2
YM

4

∫ τP /2

−τP /2
dτdτ ′

[
2− eaτ

eaτ ′
− eaτ

′

eaτ

]
·

·
∫ ∞

0

dk+dk−

4π2
e
i
a

[k+e−aτ−k−eaτ ]e−i
i
a

[k+e−aτ
′−k−eaτ ′ ]θ(k+k− −m2)θ(Λ2 − k+k−) (B.2)

=
g2

YM

4
τP

∫ ∞
−∞

dσ
[
2− eaσ − e−aσ

]
·

·
∫ ∞

0

dk+dk−

4π2
e
i
a

[k+e−aσ−k−eaσ ]e−
i
a

[k+−k−]θ(k+k− −m2)θ(Λ2 − k+k−) (B.3)

where we have noticed that we could do a boost k± → k±e±aτ
′
which rewrites the integrand

as a function of σ = τ − τ ′. Then, we changed to coordinates ((τ + τ ′)/2, σ ≡ τ − τ ′) and,

since the integrand did not depend of (τ + τ ′)/2, we integrated it to produce the overall

factor τP . Then we take the limit τP →∞ in the remaining σ-integral.

We can now go to hyperbolic polar coordinates k+ = κeθ and k− = κe−θ were

dk+dk− = 2κdκdθ. We further define z = eθ, z′ = eaσ so that the integral is

=
g2

YM

8π2
(aτP )

∫ Λ/a

m/a
κdκ

∫ ∞
0

dz

z

dz′

z′
eiκ(z−1/z)e−iκ(z′1/z′)

[
2− z

z′
− z′

z

]
(B.4)

=
g2

YM

8π2
(aτP )

∫ Λ/a

m/a
κdκ8

[
K0(2κ)2 +K1(2κ)2

]
(B.5)

=
g2

YM

8π2
(aτP ) [−4κK0(2κ)K1(2κ)]

Λ/a
m/a =

g2
YM

4π2
(aτP )

[
ln
a

m
− ln

a

Λ

]
(B.6)

where, in the last line, we have used the small argument limits of the modified Bessel

functions, kept the logarithmically divergent term and dropped a finite constant. If, instead,

we had done the integral with Λ→∞ we would have obtained
g2YM
4π2 (aτP ) ln a

m .

C Integral I

As in appendix B, in order to simplify the momentum integrations, we note that integrands

in I, II, III, IV depend only on k0 and k1 and we can make the replacement∫
d3k

(2π)22|~k|
f(k0, k1) →

∫ ∞
0

dk+dk−

(2π)2
f(k0, k1)

Beyond this, we shall need an infrared regulator. We will choose one which preserves

Lorentz invariance in the k+–k− plane by restricting all of the integrals to the region

k+k− > m2. Each integral will be logarithmically divergent as m → 0. We shall see

shortly that these logarithmic divergences cancel when the above four terms are added

together. Beyond this, the integrals I, II and III have an upper cutoff, so that their

integrals are also restricted to the region k+k− < Λ2 where Λ is the detector resolution.
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Integral I is∫ Λ

m

dk+dk−

(2π)2

˙̃xµ(τP /2) ˙̃xµ(−τP /2) + | ˙̃x(τP /2)|| ˙̃x(−τP /2)|
[ ˙̃xµ(−τP /2)kµ][ ˙̃xµ(τP /2)kµ]

=

∫ Λ

m

dk+dk−

(2π)2

1− cosh τP
[k+e−τP /2 + k−eτP /2][k+eτP /2 + k−e−τP /2]

=

∫ Λ

m

dκ

κ

∫ ∞
−∞

2dθ

(2π)2

1− cosh τP
e2θ + eτP + e−τP + e−2θ

=
1

2π2
ln

Λ

m

∫ ∞
0

dz

2z

1− cosh τP
z + eτP + e−τP + 1/z

=
1

4π2
ln

Λ

m

∫ ∞
0

dz
1− cosh τP

(z + eτP )(z + e−τP )
= − 1

4π2
(aτP ) ln

Λ

m

D Integral II = Integral III

Integrals II and III can be shown to be identical by a change of variables. They are

II = III = i

∫ Λ

m

dk+dk−

(2π)2

∫ τP /2

−τP /2
dτeikµx̃

µ(τ)

[
˙̃xµ(τ) ˙̃xµ(−τP /2) + | ˙̃x(τ)|| ˙̃x(−τP /2)|

]
˙̃xµ(−τP /2)kµ

= −i
∫ Λ

m

dk+dk−

(2π)2

∫ τP /2

−τP /2
dτe−ik

+e−τ−ik−eτ 1− cosh(τ + τP /2)

k+eτP /2 + k−e−τP /2

= − i

2π2

∫ Λ

m
dκ

∫ ∞
−∞

dθ

∫ τP /2

−τP /2
dτe−iκe

θ−τ−iκeτ−θ 1− cosh(τ + τP /2)

eθ+τP /2 + e−θ−τP /2

= − i

4π2

∫ Λ

m
dκ

∫ ∞
−∞

dθe−iκe
θ−iκe−θ

∫ τP

0
dτ

2− eτ − e−τ

eθ+τ + e−θ−τ

=
i

4π2
τP

∫ Λ

m
dκ

∫ ∞
−∞

dθe−iκe
θ−iκe−θe−θ + . . . =

i

2π2
τP

∫ Λ

m
dκK1(2iκ) + . . .

=
1

4π2
(aτP ) ln

Λ

m
+ . . .

where ellipses are terms which grow slower than τP with large τP , which we shall drop, and

we have assumed that both Λ/a and m/a are so small that we can use the small argument

asymptotic of the Bessel function.

E Integral IV

Integral IV is proportional to the integral which is done in appendix B. The result is

− 1

2

∫
m

dk+dk−

(2π)2

∫ τP /2

−τP /2
dτ

∫ τP /2

−τP /2
dτ ′eik(x(τ)−x(τ ′))

[
˙̃xµ(τ) ˙̃xµ(τ ′) + | ˙̃x(τ)|| ˙̃x(τ ′)|

]
= − 1

4π2
(aτP ) ln

a

m

where we remind the reader that we have assumed that m� a.

– 22 –



J
H
E
P
0
7
(
2
0
2
0
)
2
2
8

Acknowledgments

This work was supported in part by NSERC. This work was performed in part at the

Aspen Center for Physics, which is supported by National Science Foundation grant PHY-

1607611.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev. 52 (1937)

54 [INSPIRE].

[2] D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and

high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].

[3] J.M. Jauch and F. Rohrlich, The theory of photons and electrons. The relativistic quantum

field theory of charged particles with spin one-half, in Theoretical and Mathematical Physics ,

second expanded edition, Springer-Verlag, Berlin Germany (1976) [INSPIRE].

[4] V. Chung, Infrared Divergence in Quantum Electrodynamics, Phys. Rev. 140 (1965) B1110

[INSPIRE].

[5] M. Greco and G. Rossi, A Note on the Infrared Divergence, Nuovo Cim. 50 (1967) 168

[INSPIRE].

[6] T.W.B. Kibble, Coherent states and infrared divergences, Lect. Theor. Phys. D 11 (1969)

387 [INSPIRE].

[7] T.W.B. Kibble, Coherent soft-photon states and infrared divergences. II. Mass-shell

singularities of green’s functions, Phys. Rev. 173 (1968) 1527 [INSPIRE].

[8] T.W.B. Kibble, Coherent soft-photon states and infrared divergences. III. Asymptotic states

and reduction formulas, Phys. Rev. 174 (1968) 1882 [INSPIRE].

[9] T.W.B. Kibble, Coherent soft-photon states and infrared divergences. IV. The scattering

operator, Phys. Rev. 175 (1968) 1624 [INSPIRE].

[10] P.P. Kulish and L.D. Faddeev, Asymptotic conditions and infrared divergences in quantum

electrodynamics, Theor. Math. Phys. 4 (1970) 745 [Teor. Mat. Fiz. 4 (1970) 153] [INSPIRE].

[11] D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, Infrared quantum information,

Phys. Rev. Lett. 119 (2017) 180502 [arXiv:1706.03782] [INSPIRE].

[12] D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, Dressed infrared quantum

information, Phys. Rev. D 97 (2018) 025007 [arXiv:1710.02531] [INSPIRE].

[13] C. Gomez, R. Letschka and S. Zell, Infrared Divergences and Quantum Coherence, Eur.

Phys. J. C 78 (2018) 610 [arXiv:1712.02355] [INSPIRE].

[14] D. Carney, L. Chaurette, D. Neuenfeld and G.W. Semenoff, On the need for soft dressing,

JHEP 09 (2018) 121 [arXiv:1803.02370] [INSPIRE].

[15] D. Neuenfeld, Infrared-safe scattering without photon vacuum transitions and time-dependent

decoherence, arXiv:1810.11477 [INSPIRE].

– 23 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.52.54
https://doi.org/10.1103/PhysRev.52.54
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C52%2C54%22
https://doi.org/10.1016/0003-4916(61)90151-8
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C13%2C379%22
https://doi.org/10.1007/978-3-642-80951-4
https://inspirehep.net/literature/1386346
https://doi.org/10.1103/PhysRev.140.B1110
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C140%2CB1110%22
https://doi.org/10.1007/BF02820731
https://inspirehep.net/search?p=find+J%20%22Nuovo%20Cim.%2C50%2C168%22
https://inspirehep.net/search?p=find+J%20%22Lect.Theor.Phys.%2CD11%2C387%22
https://doi.org/10.1103/PhysRev.173.1527
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C173%2C1527%22
https://doi.org/10.1103/PhysRev.174.1882
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C174%2C1882%22
https://doi.org/10.1103/PhysRev.175.1624
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C175%2C1624%22
https://doi.org/10.1007/BF01066485
https://inspirehep.net/search?p=find+J%20%22Theor.Math.Phys.%2C4%2C745%22
https://doi.org/10.1103/PhysRevLett.119.180502
https://arxiv.org/abs/1706.03782
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.03782
https://doi.org/10.1103/PhysRevD.97.025007
https://arxiv.org/abs/1710.02531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.02531
https://doi.org/10.1140/epjc/s10052-018-6088-2
https://doi.org/10.1140/epjc/s10052-018-6088-2
https://arxiv.org/abs/1712.02355
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.02355
https://doi.org/10.1007/JHEP09(2018)121
https://arxiv.org/abs/1803.02370
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.02370
https://arxiv.org/abs/1810.11477
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.11477


J
H
E
P
0
7
(
2
0
2
0
)
2
2
8

[16] T.N. Tomaras and N. Toumbas, IR dynamics and entanglement entropy, Phys. Rev. D 101

(2020) 065006 [arXiv:1910.07847] [INSPIRE].

[17] G.W. Semenoff, Entanglement and the Infrared, in proceedings of the 13th International

Workshop on Lie Theory and Its Applications in Physics (LT-13), Varna, Bulgaria, 17–23

June 2019, arXiv:1912.03187 [INSPIRE].

[18] S. Seki, I.Y. Park and S.-J. Sin, Variation of Entanglement Entropy in Scattering Process,

Phys. Lett. B 743 (2015) 147 [arXiv:1412.7894] [INSPIRE].

[19] R. Peschanski and S. Seki, Entanglement Entropy of Scattering Particles, Phys. Lett. B 758

(2016) 89 [arXiv:1602.00720] [INSPIRE].

[20] D. Carney, L. Chaurette and G.W. Semenoff, Scattering with partial information,

arXiv:1606.03103 [INSPIRE].

[21] G. Grignani and G.W. Semenoff, Scattering and momentum space entanglement, Phys. Lett.

B 772 (2017) 699 [arXiv:1612.08858] [INSPIRE].

[22] J. Fan, Y. Deng and Y.-C. Huang, Variation of entanglement entropy and mutual

information in fermion-fermion scattering, Phys. Rev. D 95 (2017) 065017

[arXiv:1703.07911] [INSPIRE].

[23] D.W.F. Alves and G. Camilo, Momentum-space entanglement after smooth quenches, Eur.

Phys. J. C 79 (2019) 48 [arXiv:1712.01400] [INSPIRE].

[24] J. Fan and X. Li, Relativistic effect of entanglement in fermion-fermion scattering, Phys.

Rev. D 97 (2018) 016011 [arXiv:1712.06237] [INSPIRE].

[25] D. Boyanovsky, Information loss in effective field theory: entanglement and thermal

entropies, Phys. Rev. D 97 (2018) 065008 [arXiv:1801.06840] [INSPIRE].

[26] D. Neill and V. Vaidya, Soft evolution after a hard scattering process, arXiv:1803.02372

[INSPIRE].

[27] R. Peschanski and S. Seki, Evaluation of Entanglement Entropy in High Energy Elastic

Scattering, Phys. Rev. D 100 (2019) 076012 [arXiv:1906.09696] [INSPIRE].

[28] J.B. Araujo et al., Measuring QED cross sections via entanglement, Phys. Rev. D 100

(2019) 105018 [arXiv:1907.10466] [INSPIRE].

[29] T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650

[INSPIRE].

[30] T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133

(1964) B1549 [INSPIRE].

[31] R. Akhoury, M.G. Sotiropoulos and V.I. Zakharov, The KLN theorem and soft radiation in

gauge theories: Abelian case, Phys. Rev. D 56 (1997) 377 [hep-ph/9702270] [INSPIRE].

[32] A. Khalil and W.A. Horowitz, Initial State Factorization and the Kinoshita-Lee-Nauenberg

Theorem, J. Phys. Conf. Ser. 889 (2017) 012002 [INSPIRE].

[33] A. Khalil and W.A. Horowitz, A Complete Diagrammatic Implementation of the

Kinoshita-Lee-Nauenberg Theorem at Next-to-Leading Order, arXiv:1701.00763 [INSPIRE].

[34] C. Frye, H. Hannesdottir, N. Paul, M.D. Schwartz and K. Yan, Infrared Finiteness and

Forward Scattering, Phys. Rev. D 99 (2019) 056015 [arXiv:1810.10022] [INSPIRE].

[35] D.R. Butler and C.A. Nelson, Nonabelian Structure of Yang-Mills Theory and Infrared Finite

Asymptotic States, Phys. Rev. D 18 (1978) 1196 [INSPIRE].

– 24 –

https://doi.org/10.1103/PhysRevD.101.065006
https://doi.org/10.1103/PhysRevD.101.065006
https://arxiv.org/abs/1910.07847
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.07847
https://arxiv.org/abs/1912.03187
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.03187
https://doi.org/10.1016/j.physletb.2015.02.028
https://arxiv.org/abs/1412.7894
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7894
https://doi.org/10.1016/j.physletb.2016.04.063
https://doi.org/10.1016/j.physletb.2016.04.063
https://arxiv.org/abs/1602.00720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.00720
https://arxiv.org/abs/1606.03103
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.03103
https://doi.org/10.1016/j.physletb.2017.07.030
https://doi.org/10.1016/j.physletb.2017.07.030
https://arxiv.org/abs/1612.08858
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.08858
https://doi.org/10.1103/PhysRevD.95.065017
https://arxiv.org/abs/1703.07911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.07911
https://doi.org/10.1140/epjc/s10052-019-6581-2
https://doi.org/10.1140/epjc/s10052-019-6581-2
https://arxiv.org/abs/1712.01400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.01400
https://doi.org/10.1103/PhysRevD.97.016011
https://doi.org/10.1103/PhysRevD.97.016011
https://arxiv.org/abs/1712.06237
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.06237
https://doi.org/10.1103/PhysRevD.97.065008
https://arxiv.org/abs/1801.06840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.06840
https://arxiv.org/abs/1803.02372
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.02372
https://doi.org/10.1103/PhysRevD.100.076012
https://arxiv.org/abs/1906.09696
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.09696
https://doi.org/10.1103/PhysRevD.100.105018
https://doi.org/10.1103/PhysRevD.100.105018
https://arxiv.org/abs/1907.10466
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.10466
https://doi.org/10.1063/1.1724268
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C3%2C650%22
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1103/PhysRev.133.B1549
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C133%2CB1549%22
https://doi.org/10.1103/PhysRevD.56.377
https://arxiv.org/abs/hep-ph/9702270
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9702270
https://doi.org/10.1088/1742-6596/889/1/012002
https://inspirehep.net/search?p=find+J%20%22J.Phys.Conf.Ser.%2C889%2C012002%22
https://arxiv.org/abs/1701.00763
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.00763
https://doi.org/10.1103/PhysRevD.99.056015
https://arxiv.org/abs/1810.10022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.10022
https://doi.org/10.1103/PhysRevD.18.1196
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD18%2C1196%22


J
H
E
P
0
7
(
2
0
2
0
)
2
2
8

[36] S. Catani and M. Ciafaloni, Generalized Coherent State for Soft Gluon Emission, Nucl. Phys.

B 249 (1985) 301 [INSPIRE].

[37] S. Catani, M. Ciafaloni and G. Marchesini, Noncancelling infrared divergences in QCD

coherent state, Nucl. Phys. B 264 (1986) 588 [INSPIRE].

[38] S. Catani and M. Ciafaloni, Gauge covariance of QCD coherent States, Nucl. Phys. B 289

(1987) 535 [INSPIRE].

[39] M. Ciafaloni, The QCD Coherent State From Asymptotic Dynamics, Phys. Lett. B 150

(1985) 379 [INSPIRE].

[40] M. Ciafaloni, Infrared Singularities and Coherent States in Gauge Theories, in Advanced

Series on Directions in High Energy Physics 5, World Scientific (1989), pp. 491–572

[INSPIRE].

[41] A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151

[arXiv:1308.0589] [INSPIRE].

[42] T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory,

JHEP 10 (2016) 137 [arXiv:1503.02663] [INSPIRE].

[43] A.H. Anupam and P.V. Athira, Generalised Coherent States in QCD from Asymptotic

Symmetries, arXiv:1907.06255 [INSPIRE].

[44] R. Gonzo, T. Mc Loughlin, D. Medrano and A. Spiering, Asymptotic Charges and Coherent

States in QCD, arXiv:1906.11763 [INSPIRE].

[45] V.E. Hubeny and G.W. Semenoff, Holographic Accelerated Heavy Quark-Anti-Quark Pair,

arXiv:1410.1172 [INSPIRE].

[46] G.W. Semenoff, Lectures on the holographic duality of gauge fields and strings, in proceedings

of the Les Houches Summer School: Integrability: From Statistical Systems to Gauge Theory ,

Les Houches, France, 6 June–1 July 2016, arXiv:1808.04074 [INSPIRE].

[47] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric

Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

[48] G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl.

Phys. B 616 (2001) 34 [hep-th/0106015] [INSPIRE].

[49] G.W. Semenoff and D. Young, Wavy Wilson line and AdS/CFT, Int. J. Mod. Phys. A 20

(2005) 2833 [hep-th/0405288] [INSPIRE].

[50] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[51] M. Chernicoff and A. Paredes, Accelerated detectors and worldsheet horizons in AdS/CFT,

JHEP 03 (2011) 063 [arXiv:1011.4206] [INSPIRE].

[52] M. Chernicoff and A. Guijosa, Acceleration and Energy Loss in N = 4 SYM, AIP Conf.

Proc. 1116 (2009) 285 [arXiv:0903.0306] [INSPIRE].

[53] M. Chernicoff and A. Guijosa, Acceleration, Energy Loss and Screening in Strongly-Coupled

Gauge Theories, JHEP 06 (2008) 005 [arXiv:0803.3070] [INSPIRE].
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