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1 Introduction

An interesting feature common to both Yang-Mills theory and gravity is that their light-

cone Hamiltonians can be expressed as quadratic forms [1, 2]. This quadratic form struc-

ture appears exclusively in the pure and the maximally supersymmetric varieties (N = 4

superYang-Mills theory and N = 8 Supergravity1). Simple structures like quadratic forms

are interesting because they often signal the presence of a hidden symmetry or (and) pro-

duce considerable mathematical simplifications in the way we formulate these theories. This

is in keeping with evidence that these theories — pure gravity and N = 8 supergravity for

example — may possess hidden symmetries in four dimensions [3–6].

This paper focuses entirely on the light-cone Hamiltonian describing interacting higher

spin fields [7–9], to first order in the coupling constant. Both the non-supersymmetric and

supersymmetric theories, in four spacetime dimensions, are examined. We present the

following three new results: (1) The light-cone Hamiltonian for higher spin fields without

supersymmetry is a quadratic form, (2) Maximally supersymmetric higher spin theories also

exhibit this quadratic form structure and (3) The momentum space vertex in a maximally

supersymmetric higher spin theory is simply the N = 4 superYang-Mills theory vertex

raised to the appropriate power.

The light-cone gauge has two key properties that make it particularly useful when

studying scattering amplitude structures. First, it is not manifestly covariant — it has

1Even in the supersymmetric cases, this quadratic form is not a direct consequence of the fact that the

Hamiltonian is the anti-commutator of the supersymmetry generators (see subsection 3.1.1).
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become increasingly clear that preserving manifest covariance obscures much of the sim-

plicity we have come to associate with scattering amplitudes [10]. Second, the light-cone

gauge focuses exclusively on physical degrees of freedom ensuring that spurious degrees

of freedom do not hide the symmetries in a theory. These simplifications in amplitude

structures are presented in section 4.

2 Cubic interaction vertices in higher spin theories

We define light-cone co-ordinates in (−,+,+,+) Minkowski space-time as

x± =
x0 ± x3

√
2

, x =
x1 + ix2

√
2

, x̄ =
x1 − ix2

√
2

. (2.1)

The corresponding derivatives are ∂± , ∂̄ and ∂. In four spacetime dimensions, all massless

fields have two physical degrees of freedom φ and φ̄ with λ representing the positive value of

the helicity of the field. ∂+ = ∂∂̄
∂−

for a free theory, modified by corrections when interactions

are switched on and 1
∂−

is defined following the prescription in [11].

The Hamiltonian for the free field theory is

H ≡
∫
d3xH = −

∫
d3x φ̄ ∂∂̄ φ , (2.2)

with the second equality being valid only for the free theory. We also write

H ≡
∫
d3xH =

∫
d3x ∂−φ̄ δp−φ , (2.3)

in terms of the time translation operator

δp−φ ≡ ∂+φ = {φ,H} . (2.4)

In the interacting case, δp− picks up corrections order by order in the coupling constant g.

Details regarding the derivation of light-cone cubic interaction vertices for higher spin

theories are presented in [7, 8, 12–15]. The idea is to demand closure of the Poincaré algebra

which restricts and ultimately determines the light-cone Hamiltonian. The result is

δg
p−φ = g

λ∑
n=0

(−1)n
(
λ

n

)
∂λ−1
−

[
∂̄λ−n

∂ λ−n−
φ
∂̄n

∂ n−
φ

]
, (2.5)

for even λ. For odd λ, algebra-closure requires an antisymmetric structure constant [16]

δg
p−φ

a = gfabc
λ∑
n=0

(−1)n
(
λ

n

)
∂λ−1
−

[
∂̄λ−n

∂ λ−n−
φb

∂̄n

∂ n−
φc

]
. (2.6)

From (2.3), the complete Hamiltonian to this order reads [7, 8]

H =

∫
d3x

(
∂φ̄∂̄φ− g

λ∑
n=0

(−1)n
(
λ

n

)
φ̄ ∂λ−

[
∂̄λ−n

∂ λ−n−
φ
∂̄n

∂ n−
φ

]
+ c.c.

)
, (2.7)

for even λ and

H =

∫
d3x

(
∂φ̄a∂̄φa − gfabc

λ∑
n=0

(−1)n
(
λ

n

)
φ̄a ∂λ−

[
∂̄λ−n

∂ λ−n−
φb

∂̄n

∂ n−
φc

]
+ c.c.

)
, (2.8)

for odd λ.
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2.1 Quadratic forms in higher spin theories — without supersymmetry

In this section, we prove our first claim: that the Hamiltonians in (2.7) and (2.8) may

be written as quadratic forms. Specifically, this means that the Hamiltonians have the

following “whole square” form

H =

∫
d3x D̄φDφ̄ , (2.9)

in terms of “covariant” derivatives. Covariance, specifically for λ = 1, 2 was demonstrated

in [1, 2]. We find (structure constants not shown explicitly)

Dφ̄ = ∂φ̄− 2g

λ−1∑
n=0

(−1)n
(
λ− 1

n

)
∂̄n

∂n+1
−

[
∂̄λ−n−1

∂λ−n−1
−

φ∂λ−φ̄

]
, (2.10)

D̄φ = ∂̄φ− 2g

λ−1∑
n=0

(−1)n
(
λ− 1

n

)
∂n

∂n+1
−

[
∂λ−n−1

∂λ−n−1
−

φ̄ ∂λ−φ

]
, (2.11)

which reproduce the correct results for both Yang-Mills theory and gravity.

From these definitions, it follows that (2.9) correctly produces the kinetic term in the

Hamiltonians. To prove its equivalence to (2.7) and (2.8), we therefore focus on the O(g)

contributions from (2.9). These are (measure not shown explicitly)

− 2g
λ−1∑
n=0

(−1)n
(
λ− 1

n

)[
∂̄φ

∂̄n

∂n+1
−

(
∂̄λ−n−1

∂λ−n−1
−

φ∂λ−φ̄

)]
, (2.12)

and its complex conjugate. We partially integrate this expression to obtain

− 2g

λ−1∑
n=0

(−1)λ+n+1

(
λ− 1

n

)
φ̄ ∂λ−

[
∂̄n+1

∂n+1
−

φ
∂̄λ−n−1

∂λ−n−1
−

φ

]
. (2.13)

We split (2.13) into two halves P and Q. In P , we shift n → λ − n − 1 and invoke the

identity (
λ− 1

n

)
=

(
λ− 1

λ− 1− n

)
, (2.14)

which yields

P = −g
λ−1∑
n=0

(−1)n
(
λ− 1

n

)
φ̄ ∂−

λ

[
∂̄λ−n

∂λ−n−
φ
∂̄n

∂n−
φ

]
. (2.15)

In the other half Q we shift n→ n− 1 to obtain

Q = −g
λ∑
n=1

(−1)λ+n

(
λ− 1

n− 1

)
φ̄ ∂λ−

[
∂̄n

∂n−
φ
∂̄λ−n

∂λ−n−
φ

]
. (2.16)

– 3 –



J
H
E
P
0
7
(
2
0
2
0
)
1
0
0

We then have

H = P +Q =

{
− g

λ−1∑
n=0

(−1)n
(
λ− 1

n

)
φ̄ ∂−

λ

[
∂̄λ−n

∂λ−n−
φ
∂̄n

∂n−
φ

]

− g
λ∑
n=1

(−1)λ+n

(
λ− 1

n− 1

)
φ̄ ∂λ−

[
∂̄n

∂n−
φ
∂̄λ−n

∂λ−n−
φ

]}
,

= −g
λ∑
n=0

(−1)n

([(
λ− 1

n

)
+

(
λ− 1

n− 1

)]
φ̄ ∂λ−

[
∂̄λ−n

∂λ−n−
φ
∂̄n

∂n−
φ

])
. (2.17)

Using the Pascal triangle property(
λ− 1

n

)
+

(
λ− 1

n− 1

)
=

(
λ

n

)
, (2.18)

this is

H = P +Q = −g
λ∑
n=0

(−1)n
(
λ

n

)
φ̄ ∂λ−

[
∂̄λ−n

∂λ−n−
φ
∂̄n

∂n−
φ

]
, (2.19)

reproducing the structures in (2.7), (2.8) and confirming that the higher spin Hamiltonians

are indeed quadratic forms.

3 Cubic interaction vertices in supersymmetric higher spin theories

We now move to theories of arbitrary integer spin with supersymmetry. We work in light-

cone superspace where the supersymmetry generators are of two varieties [9]. Realized on

Grassmann parameters θm and their conjugates θ̄m, the kinematical generators are

qm = − ∂

∂θ̄m
− i√

2
θm∂− , q̄n =

∂

∂θn
+

i√
2
θ̄n∂− , (3.1)

and satisfy

{qm, q̄n} = −
√

2δmn p
+ . (3.2)

The dynamical generators satisfy

{Qm, Q̄n} = δmn p
− , (3.3)

thus representing “square roots” of the light-cone Hamiltonian. At lowest order, they are

Qm = − ∂̄

∂−
qm , Q̄m = − ∂

∂−
q̄m . (3.4)

These expression pick up corrections order by order in the coupling constant in an inter-

acting theory. We introduce superspace derivatives dm and d̄n

dm = − ∂

∂θ̄m
+

i√
2
θm∂− , d̄n =

∂

∂θn
− i√

2
θ̄n∂− , (3.5)

– 4 –
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which anti-commute with the supersymmetry generators and satisfy{
dm, d̄n

}
= i
√

2δmn ∂− . (3.6)

We use Φ to denote a superfield and impose a “chirality” condition on it so

dmΦ(x, θ, θ̄) = 0 . (3.7)

For maximally extended supermultiplets, we have the additional “inside-out” constraint

Φ̄(x, θ, θ̄) =
1

2N/4N !

d̄N

∂
N/2
−

Φ(x, θ, θ̄) , (3.8)

with

N = 4λ , (3.9)

in this section and the following one. The Hamiltonian in this formalism is

H ≡
∫
d3x dNθ dN θ̄ H =

∫
d3x dNθ dN θ̄ ∂−Φ̄ δp−Φ . (3.10)

Algebra-closure now involves the larger superPoincaré algebra [17] and yields [9]

Qm Φ̄ = − ∂̄

∂−
qmΦ̄− 2g

λ−1∑
n=0

(−1)n
(
λ− 1

n

)
1

∂−

(
∂(λ−1−n)∂n− d

mΦ̄ ∂
(λ−n)
− ∂nΦ̄

)
+O

(
g2
)

(3.11)

for the dynamical supersymmetry generator

δg
p−Φ = g

λ∑
n=0

(−1)n
(
λ

n

)
1

∂−

[
∂̄(λ−n)∂ n−Φ ∂̄n∂

(λ−n)
− Φ

]
, (3.12)

for even λ and

δg
p−Φa = gfabc

λ∑
n=0

(−1)n
(
λ

n

)
1

∂−

[
∂̄(λ−n)∂ n−Φb ∂̄n∂

(λ−n)
− Φc

]
, (3.13)

for odd λ. The corresponding Hamiltonians being

H =

∫
d3x dNθ dN θ̄

{
1

2
∂Φ̄

∂̄

∂
N/2
−

Φ (3.14)

− 1

3
g

(
1

∂
N/2
−

Φ̄

λ∑
n=0

(−1)n
(
λ

n

)[
∂̄(λ−n)∂ n−Φ ∂̄n∂

(λ−n)
− Φ

]
+ c.c.

)
+O(g2)

}
,

for even λ and

H =

∫
d3x dNθ dN θ̄

{
1

2
∂Φ̄a ∂̄

∂
N/2
−

Φa (3.15)

− 1

3
gfabc

[
1

∂
N/2
−

Φ̄a
λ∑
n=0

(−1)n
(
λ

n

)[
∂̄(λ−n)∂n−Φb ∂̄n∂

(λ−n)
− Φc

]
+ c.c.

]
+O(g2)

}
,

for odd λ.

– 5 –
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3.1 Quadratic forms in higher spin theories — with supersymmetry

We now prove, to first order in the coupling constant, that the light-cone Hamiltonians

in (3.14) and (3.15) are quadratic forms. The specific claim is that these Hamiltonians can

be written as follows.

H =
2

N
√

2
(Wm, Wm) , (3.16)

with

(Φ, Ξ) ≡ 2i

∫
d3x dNθ dN θ̄ Φ̄

1

∂2λ−1
−

Ξ . (3.17)

3.1.1 Quadratic form 6= anti-commutator

Before proving (3.16), we explain how the “quadratic form” concept differs from the idea

of writing the Hamiltonian as the anti-commutator of dynamical supersymmetries. This

is best illustrated by restricting ourselves to the lowest order dynamical supersymmetry

generators. Start with the simple choice2

Wm
= Qm Φ̄ , (3.18)

where keep just the g = 0 piece in (3.11). The claim in (3.16) is that the Hamiltonian reads

(measure, integrals and constants are suppressed and a factor of 2 included for convenience)

H = (Wm, Wm) = 2QmΦ̄
1

∂2λ−1
−

Q̄m Φ . (3.19)

The step above is valid in any theory with supersymmetry. However, exclusive to max-

imally supersymmetric theories is the inside-out relation in (3.8) which we now invoke.

Write (3.19) as two halves and apply the inside-out relation only to the second expression

to obtain

H = QmΦ̄
1

∂2λ−1
−

Q̄m Φ +Qm
1

∂2λ
−

Φ ∂−Q̄m Φ̄ . (3.20)

Rewriting the second term this way is not possible in theories with less than maximal

supersymmetry.

In (3.20), integrate the Q in the first expression to the right and the Q̄ in the second

expression to the left to obtain

H = −Φ̄
1

∂2λ−1
−

Qm Q̄m Φ + Q̄mQ
m 1

∂2λ
−

Φ ∂−Φ̄ . (3.21)

Finally, in the second expression, integrate the ∂− once leaving us with

H = −Φ̄
1

∂2λ−1
−

Qm Q̄m Φ− Q̄mQm
1

∂2λ−1
−

Φ Φ̄ , (3.22)

which is equivalent to

H = −Φ̄
1

∂2λ−1
−

{Qm , Q̄m }Φ , (3.23)

2This choice preserves chirality, ie. acting with a d̄ on (3.18) yields 0.

– 6 –
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known to be a true statement. Thus a quadratic form structure as in (3.16) can only appear

in maximally supersymmetric theories, where it is equivalent to (3.23) at the lowest order.

It is important to remember that the Q in (3.20) is non-linearly realized on the super-

fields beyond the lowest order and cannot be integrated as in (3.21) if we were to include

higher order contributions to (3.18).

3.1.2 The proof

We have already identified W with the action of the dynamical supersymmetry on the

superfield in (3.18). Accordingly, including the first order contributions we have

Wm
= − ∂̄

∂−
qmΦ̄− 2g

λ−1∑
k=0

(−1)k
(
λ− 1

k

)
1

∂−

(
∂(λ−1−k)∂−

(k)dmΦ̄ ∂
(λ−k)
− ∂kΦ̄

)
+O

(
g2
)

(3.24)

with the appropriate structure constants for odd λ. The kinetic contribution from (3.16)

is trivial. At cubic order, the Hamiltonian involves terms of the form

H =
8i

N
√

2
g

∂̄

∂2λ+1
−

qm Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− d̄m Φ ∂

(λ−k)
− ∂̄k Φ

)
. (3.25)

We use qmX = −i
√

2θm∂−X where X is any chiral combination of superfields [17], and

θmd̄m = N θ1d̄1 to simplify this to

H = 8g
∂̄

∂2λ
−
θ1 Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− d̄1 Φ ∂

(λ−k)
− ∂̄k Φ

)
. (3.26)

Equation (3.26) is our starting point and we will rewrite it in two different ways. The first

rewriting involves integrating the ∂̄ from the first superfield to produce two terms, I and J

H = −8g
1

∂2λ
−
θ1 Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−k)∂k− d̄1 Φ ∂

(λ−k)
− ∂̄k Φ

)
−8g

1

∂2λ
−
θ1 Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− d̄1 Φ ∂

(λ−k)
− ∂̄(k+1) Φ

)
,

= I + J . (3.27)

This form for the Hamiltonian will be used later in this subsection.

We now rewrite (3.26) in a second manner (terms in blue survive the manipulations

described below). The first step is to partially integrate the d̄1 in (3.26), to obtain two terms

H = +8g
∂̄

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k)
− ∂̄k Φ

)
, (3.28)

− 8g
∂̄

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k)
− ∂̄k θ1d̄1 Φ

)
. (3.29)

– 7 –
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In (3.29), a ∂− is integrated away from the last superfield to yield

+ 8g
∂̄

∂2λ
−

Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂

(k+1)
− Φ ∂

(λ−k−1)
− ∂̄k θ1d̄1 Φ

)
, (3.30)

+ 8g
∂̄

∂2λ−1
−

Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k−1)
− ∂̄k θ1d̄1 Φ

)
. (3.31)

Equation (3.30) is the negative of (3.26) since(
λ− 1

k

)
=

(
λ− 1

λ− 1− k

)
,

allowing us to combine it with (3.26) producing a factor of two. Equation (3.31) can be

simplifed, using integrations and the inside-out constraint, to

+ 4g ∂̄∂− Φ
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ
−

Φ̄ ∂
(λ−k−1)
− ∂̄k θ1d̄1 Φ

)
, (3.32)

− 4g ∂̄∂− d̄1Φ
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ
−

Φ̄ ∂
(λ−k−1)
− ∂̄k θ1 Φ

)
, (3.33)

− 4g ∂̄ d̄1Φ
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ−1
−

Φ̄ ∂
(λ−k−1)
− ∂̄k θ1 Φ

)
. (3.34)

We simplify (3.33) by integrating the d̄1 from the first superfield, yielding

+4g ∂̄∂− Φ
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ
−

Φ̄ ∂
(λ−k−1)
− ∂̄k Φ

)
, (3.35)

− 4g ∂̄∂− Φ

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ
−

Φ̄ ∂
(λ−k−1)
− ∂̄k θ1d̄1 Φ

)
, (3.36)

and find that (3.36) cancels against (3.32). Integrating the chiral derivative and using

partial integrations simplifies (3.34) to

+4g ∂̄ Φ
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ−1
−

Φ̄ ∂
(λ−k−1)
− ∂̄k Φ

)
, (3.37)

− 4g
∂̄

∂2λ−1
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)
∂̄(λ−1−k)∂k−

(
Φ ∂

(λ−k−1)
− ∂̄k θ1d̄1 Φ

)
, (3.38)

+ 4g
∂̄

∂2λ−1
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)
∂̄(λ−2−k)∂k−

(
Φ ∂

(λ−k−1)
− ∂̄(k+1) θ1d̄1 Φ

)
. (3.39)

Note that (3.38) is the negative of (3.31) using the identity (A.2) from appendix A (these

terms combine with a factor of two). Partial integrations of ∂− and ∂̄ in (3.39) followed by
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the use of a similar identity (A.3) yields

+2g
1

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄λ−1−k∂k− Φ ∂

(λ−k)
− ∂̄(k+1) θ1d̄1 Φ

)
, (3.40)

+2g
1

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄λ−1−k∂

(k+1)
− Φ ∂

(λ−k−1)
− ∂̄(k+1) θ1d̄1 Φ

)
. (3.41)

This completes the second re-writing of (3.26).

We have now rewritten (3.26) in two ways. We now subtract 1
4 times the first form

in (3.27), written in green, from the second form of (3.26), in blue. Thus

H − 1

4
H = +4g

∂̄

∂2λ
−

Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k)
− ∂̄k Φ

)
(3.42)

+2g ∂̄∂− Φ
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ
−

Φ̄ ∂
(λ−k−1)
− ∂̄k Φ

)
(3.43)

+2g ∂̄ Φ
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k−

1

∂2λ−1
−

Φ̄ ∂
(λ−k−1)
− ∂̄k Φ

)
(3.44)

+2g
1

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄λ−1−k∂k− Φ ∂

(λ−k)
− ∂̄(k+1) θ1d̄1 Φ

)
(3.45)

−2g
1

∂2λ
−
θ1 Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− d̄1 Φ ∂

(λ−k)
− ∂̄(k+1) Φ

)
(3.46)

+2g
1

∂2λ
−
θ1 Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−k)∂k− d̄1 Φ ∂

(λ−k)
− ∂̄k Φ

)
(3.47)

+2g
1

∂2λ
−

Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄λ−1−k∂

(k+1)
− Φ ∂

(λ−k−1)
− ∂̄(k+1) θ1d̄1 Φ

)
(3.48)

Terms (3.45) and (3.46) combine into a single term (chain rule for d̄1). Terms (3.47)

and (3.48) cancel due to the combinatorial identity. Integration of ∂− in (3.43) produces

two terms, one of which cancels (3.44). The inside-out relation simplifies the other term to

− 2g
∂̄

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k)
− ∂̄k Φ

)
, (3.49)

which combines with (3.42). In this combination, we integrate the ∂̄ to obtain two terms

− 2g
1

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−k)∂k− Φ ∂

(λ−k)
− ∂̄k Φ

)
, (3.50)

− 2g
1

∂2λ
−

Φ̄
λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k)
− ∂̄(k+1) Φ

)
, (3.51)
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with (3.51) canceling the (3.45)–(3.46) combine leaving us with (3.50). We simplify (3.50)

as follows.

H = −8

3
g

1

∂2λ
−

Φ̄

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−k)∂k− Φ ∂

(λ−k)
− ∂̄k Φ

)
(3.52)

= −4

3
g

1

∂2λ
−

Φ̄
λ∑
k=0

(−1)k
[(
λ− 1

k

)
+

(
λ− 1

k − 1

)](
∂̄(λ−k)∂k− Φ ∂

(λ−k)
− ∂̄k Φ

)
(3.53)

= −4

3
g

1

∂2λ
−

Φ̄
λ∑
k=0

(−1)k
(
λ

k

)(
∂̄(λ−k)∂k− Φ ∂

(λ−k)
− ∂̄k Φ

)
, (3.54)

matching the structures in (3.14) and (3.15) confirming that these are quadratic forms.

4 Amplitude structures in higher spin theories

We now examine the scattering amplitude structures that appear in the cubic Hamiltonians

discussed thus far. Any four-vector can be expressed as a bispinor using the Pauli matrices,

paȧ = pµσ
µ
aȧ, with det(paȧ) yielding −pµpµ. We introduce the spinor product

〈k l〉 ≡
√

2
(kl− − lk−)√

k−l−
. (4.1)

4.1 The non-supersymmetric case

Scattering amplitudes in non-supersymmetric higher spin theories, to first order in the

coupling, were discussed in [19, 20]. The main result, in momentum space, is that the

cubic vertices in (2.7) and (2.8) may be obtained by raising the cubic vertex in pure Yang-

Mills theory (the λ = 1 case), to the appropriate power [21, 22].

Lλ
3 =

[
〈k l〉3

〈l p〉 〈p k〉

]λ
=

[
LYM

3

]λ
. (4.2)

4.2 The supersymmetric case

We turn now to the third new result in this paper, pertaining to scattering amplitude

structures in maximally supersymmetric higher spin theories. The action corresponding

to (3.14), for even λ, is

S =

∫
d4x dNθ dN θ̄

{
1

4
Φ̄

�

∂
N/2
−

Φ (4.3)

+
1

3
g

(
1

∂
N/2
−

Φ
λ∑
n=0

(−1)n
(
λ

n

)[
∂λ−n∂n−Φ̄ ∂n∂λ−n− Φ̄

]
+ c.c.

)
+O(g2)

}
,

while that corresponding to (3.15) for odd λ reads

S =

∫
d4x dNθ dN θ̄

{
1

4
Φ̄a �

∂
N/2
−

Φa (4.4)

+
1

3
gfabc

[
1

∂
N/2
−

Φa
λ∑
n=0

(−1)n
(
λ

n

)[
∂λ−n∂n−Φ̄b ∂n∂λ−n− Φ̄c

]
+ c.c.

]
+O(g2)

}
,
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with N = 4λ. In momentum space, both cubic vertices have the following basic structure

(measure and constants suppressed)

δ4(p+ k + l)

(k− + l−)2λ

λ∑
n=0

(−1)n
(
λ

n

)[
kλ−n kn− l

n lλ−n−

]
Φ̃(p) ˜̄Φ(k) ˜̄Φ(l) + c.c.

=
δ4(p+ k + l)

(k− + l−)2λ

λ∑
n=0

(−1)n
(
λ

n

)[
(kl−)λ−n (k−l)

n
]

Φ̃(p) ˜̄Φ(k) ˜̄Φ(l) + c.c.

= δ4(p+ k + l)
(kl− − k−l)λ

(k− + l−)2λ
Φ̃(p) ˜̄Φ(k) ˜̄Φ(l) (4.5)

The momentum conserving delta function δ4(p+ k + l) implies that

〈l p〉 =

√
2

p−l−
(kl− − lk−) =

√
k−√

− (k− + l−)
〈k l〉 (4.6)

〈p k〉 =

√
2

p−k−
(kl− − lk−) =

√
l−√

− (k− + l−)
〈k l〉 .

The cubic vertex is then

(kl− − k−l)λ

(k− + l−)2λ
=

[(
kl− − k−l
k−l−

)
(k− + l−)

]λ (k−l−)λ

(k− + l−)3λ

=

[
〈kl〉3

〈lp〉〈pk〉

]λ
(k−l−)λ

(k− + l−)3λ

=

[
〈kl〉3

〈lp〉〈pk〉
k−l−

(k− + l−)3

]λ
= Lλ3 susy . (4.7)

The light-cone cubic vertex for N = 4 superYang-Mills was previously shown to be [23]

LN=4
3 =

[
〈kl〉3

〈lp〉〈pk〉
k−l−

(k− + l−)3

]
. (4.8)

Therefore the coefficient of the cubic vertex in maximally supersymmetric higher spin

theories is equal to the corresponding vertex in the N = 4 theory, raised to the power λ.

Lλ3 susy =

[
〈kl〉3

〈lp〉〈pk〉
k−l−

(k− + l−)3

]λ
=
[
LN=4

3

]λ
. (4.9)

Assuming that light-cone higher spin quartic vertices exist and can be written down

in this non-covariant gauge, it is likely that the structural relationship in (4.9) will hold at

higher orders as well, suggesting the existence of KLT-like relations [24–26].

It is surprising that the light-cone Hamiltonians describing Yang-Mills, gravity and

higher spin fields all exhibit this quadratic form structure.3 The light-cone Hamiltonian

very likely remains a quadratic form with the W picking up higher order corrections. That

the form appears only in the pure and maximally supersymmetric versions seems rather

3The Hamiltonian for the BLG theory is also a quadratic form [27–29].
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striking. There are a number of issues to investigate including implications for higher spin

symmetries, residual gauge invariance [1, 2] and particularly field configurations W = 0

with vanishing energy.

This quadratic form structure, at the level of the Hamiltonian, seems to suggest a

change of variables from Φ to W. However, moving to the Dirac-Feynman path inte-

gral, which generates the quantum action, is unlikely to be straightforward. This idea,

of simplifying the theory using a change of variables, is reminiscent of the Nicolai map in

Yang-Mills theories [30, 31]. Given the ubiquitous nature of N = 4 Yang-Mills theory, a

connection between these quadratic form structures, the map [32] and integrability should

prove extremely interesting.

A Superfield identities

The following identities based on binomial expansions are useful in our calculations [9]

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k−1)
− ∂̄kΦ

)
=

λ−1∑
k=0

(−1)k
(
λ− 1

k

)
∂̄(λ−1−k)∂−

(k)
(

Φ ∂
(λ−k−1)
− ∂̄kΦ

) (A.1)

Variant 1.

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k−1)
− ∂̄k θ1d̄1 Φ

)
=

λ−1∑
k=0

(−1)k
(
λ− 1

k

)
∂̄(λ−1−k)∂k−

(
Φ ∂

(λ−k−1)
− ∂̄k θ1d̄1 Φ

) (A.2)

This identity is adapted from (A.1), with the redefinitions Φ1 ≡ Φ1 and θ1d̄1Φ2 ≡ Φ2,

allowed because the identity is purely combinatorial in nature.

Variant 2.

λ−1∑
k=0

(−1)k
(
λ− 1

k

)(
∂̄(λ−1−k)∂k− Φ ∂

(λ−k−1)
− ∂̄(k+1) θ1d̄1 Φ

)
=

λ−1∑
k=0

(−1)k
(
λ− 1

k

)
∂̄(λ−1−k)∂k−

(
Φ ∂

(λ−k−1)
− ∂̄(k+1) θ1d̄1 Φ

) (A.3)

Again adapted from (A.1), with the redefinitions Φ1 ≡ Φ1 and θ1d̄1 ∂̄ Φ2 ≡ Φ2.
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