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Abstract: In some inflation scenarios such as R2 inflation, a gravitational scalar degrees

of freedom called scalaron is identified as inflaton. Scalaron linearly couples to matter via

the trace of energy-momentum tensor. We study scenarios with a sequestered matter sec-

tor, where the trace of energy-momentum tensor predominantly determines the scalaron

coupling to matter. In a sequestered setup, heavy degrees of freedom are expected to

decouple from low-energy dynamics. On the other hand, it is non-trivial to see the decou-

pling since scalaron couples to a mass term of heavy degrees of freedom. Actually, when

heavy degrees of freedom carry some gauge charge, the amplitude of scalaron decay to two

gauge bosons does not vanish in the heavy mass limit. Here a quantum contribution to

the trace of energy-momentum tensor plays an essential role. This quantum contribution

is known as trace anomaly or Weyl anomaly. The trace anomaly contribution from heavy

degrees of freedom cancels with the contribution from the classical scalaron coupling to a

mass term of heavy degrees of freedom. We see how trace anomaly appears both in the

Fujikawa method and in dimensional renormalization. In dimensional renormalization, one

can evaluate the scalaron decay amplitude in principle at all orders, while it is unclear

how to process it beyond the one-loop level in the Fujikawa method. We consider scalaron

decay to two gauge bosons via the trace of energy-momentum tensor in quantum electro-

dynamics with scalars and fermions. We evaluate the decay amplitude at the leading order

to demonstrate the decoupling of heavy degrees of freedom.
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1 Introduction

Inflation is a cosmological paradigm that solves issues of big bang cosmology, such as

the horizon, flatness, and monopole problems [1–8]. It also provides an almost scale-

invariant density contrast over homogeneous and isotropic background [9–15]. The inflation

paradigm has been strongly supported by the deviation of the scalar spectral index from

unity observed in cosmic microwave background anisotropies [16]. Among various inflation

models [17], R2 inflation (R: Ricci scalar) [2, 18–22] is a good benchmark. Its plateau

potential predicts a tensor-to-scalar ratio sufficiently small to be consistent with the Planck

data [16] but within a reach of future searches of cosmic microwave background B-mode

anisotropies [23–25].

Identifying a reheating temperature TR in R2 inflation is important for theoretical

prediction of the scalar spectral index and tensor-to-scalar ratio [26]. It also plays an

important role in production mechanisms of dark matter and baryon asymmetry [27, 28].

For example, TR & 109 GeV (e.g., refs. [29–32]) is required for thermal leptogenesis [33] to

work. Furthermore it is imprinted in the primordial gravitational wave spectrum when the

energy density of Universe is transferred from oscillating inflaton to radiation [34]. Such

an imprint could be seen in ultimate gravitational wave experiments [35].

In f(R) gravity including R2 inflation, a gravitational scalar degrees of freedom called

scalaron is identified as inflaton. To determine the reheating temperature, we need to study

scalaron coupling to matter. f(R) gravity generically can be rewritten as a scalar-tensor

theory through a Weyl transformation (local rescaling of the metric and fields) that is a

function solely of scalaron [19, 36]. This Weyl transformation manifests scalaron coupling to
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the trace of matter energy-momentum tensor in the scalaron frame [37].1 Similar situations

can also be seen in a broader class of inflation models based on a scalar-tensor theory. One

example is f(σ)R gravity (let us also refer to a scalar field σ as scalaron) [38–42]. The

trace of energy-momentum tensor predominantly determines scalaron coupling to matter,

when scalaron direct coupling to matter in the Jordan frame is suppressed for some reason.

In this paper, we consider such scenarios where a matter sector communicates with the

scalaron sector only gravitationally in the Jordan frame.

Scalaron decay2 is dominated by decay channels to two scalars if their non-minimal

coupling to Ricci curvature deviates from the conformal coupling. With the conformally

coupled scalars, loop-induced decay to two gauge bosons becomes relevant. The decay

amplitude is proportional to the β function of the corresponding gauge coupling. Ref. [34]

uses the β function at the energy scale of the scalaron mass (' 3 × 1013 GeV for the R2

inflation model), which virtually counts light degrees of freedom. Refs. [43, 44], which

study inflaton decay in f(σ)R gravity, also virtually counts light degrees of freedom.

On the other hand, it is less manifest at first sight if heavy degrees of freedom do not

contribute to scalaron decay. In the scalaron frame, scalaron couples to matter via mass

terms. Loop-induced decay to two gauge bosons does not vanish in the heavy mass limit.

It leaves scalaron coupling to gauge bosons for low-energy effective theory.3 Meanwhile

the decoupling of heavy degrees of freedom may be apparent in the Jordan frame, where

scalaron does not have any direct coupling to matter. Matter fields decouple in the heavy

mass limit without leaving any non-decoupling effects for low-energy effective theory. This

raises an issue on the “frame equivalence” (see also ref. [58] for a related discussion).

What plays an essential role is a quantum contribution to the trace of energy-

momentum tensor, known as Weyl anomaly or trace anomaly.4 Trace anomaly is

intensively investigated both in the flat spacetime [59–70] and in a curved spacetime [71–

80] (see also ref. [81] for a review). The trace anomaly contribution from heavy degrees of

freedom cancels with the contribution from the classical scalaron coupling to a mass term

of heavy degrees of freedom. Because of the cancellation between classical and quantum

contributions, the scalaron coupling to matter via the trace of energy-momentum tensor

is ultraviolet insensitive.5

1Note that the Weyl transformation consists solely of scalaron. Therefore this is not the Einstein frame

since scalar fields in a matter section (not scalaron) can still have a non-minimal coupling to the Ricci scalar.
2In this paper, we consider perturbative scalaron decay. We assume that non-perturbative effects associ-

ated with non-zero field values of scalaron and matter scalars are negligible. This could be true since decay

proceeds only gravitationally and occurs long after inflation.
3This is the case for Higgs [45, 46] or axion [47–50] (see also refs. [51, 52] and [53, 54] for popular

ultraviolet realizations). One famous example is coupling of Higgs [45, 46] or axion [47–50] (see also

refs. [51, 52] and [53, 54] for popular ultraviolet realizations) to light gauge bosons such as photon or gluon

in low-energy effective theory. With this observation, ref. [55] argues that one should count heavy degrees

of freedom as well as light degrees of freedom for the β function. This result is taken from ref. [56], which

studies scalaron decay in f(σ)R gravity. A similar calculation on scalaron coupling to the standard model

particles has been made in ref. [57]. Their stance on the frame equivalence is different from the present study.
4The trace of energy-momentum tensor and trace anomaly are often not distinguished. In this paper we

use the former to refer to the whole (classical + quantum) contribution, while we use the latter to refer to

only a quantum contribution.
5This is analogous to an anomaly mediation contribution to a sparticle mass in supersymmetric the-

ories [82, 83], which boasts its ultraviolet insensitivity. A quantum contribution to a gaugino mass from

– 2 –



J
H
E
P
0
7
(
2
0
1
9
)
1
7
2

This paper is organized as follows. In the next section we describe scenarios with a

sequestered matter sector, where scalaron couples to matter predominantly via the trace

of energy-momentum tensor. We demonstrate how the trace of energy-momentum ten-

sor receives a quantum contribution, by employing the Fujikawa method [87–89] (see also

ref. [90] for a comprehensive summary). The Fujikawa method is illustrating trace anomaly,

but not convenient in practical calculations such as perturbative renormalization. Instead,

in section 3, we use dimensional renormalization, i.e., the minimal subtraction (MS) or

modified minimal subtraction (MS) scheme [91–93], where we can compute perturbative

renormalization in principle at all orders.6 We see how trace anomaly appears in dimen-

sional renormalization. Furthermore, we compute the leading amplitude of scalaron decay

into two gauge boson in quantum electrodynamics (QED) with scalars and fermions. We

see that heavy degrees of freedom do not contribute to the amplitude. section 4 is devoted

to a summary and further remarks. We use a notation of ref. [94], where the four-dimension

metric has the signature of (+,−,−,−).

2 Gravitational coupling of scalaron to matter

We consider a class of inflation models where a scalaron sector communicates with a matter

sector only gravitationally as

Sgrav

[
g′µν , σ

′]+ Smat

[
{φ′i}, g′µν ; {λa}

]
, (2.1)

in the Jordan frame. gµν is the metric and a prime denotes the quantity in the Jordan

frame. {φi} and {λa} collectively denote matter fields and parameters, respectively. Note

that scalaron in f(R) gravity is not manifest in the Jordan frame. For example, in the R2

inflation model,

Sgrav = −
M2

pl

2

∫
d4x
√
−g′

(
R′ − R′2

6µ2

)
, (2.2)

with the reduced Planck mass Mpl ' 2.435× 1018 GeV and a mass parameter µ.

We assume that the matter sector is minimally coupled to gravity, while maintaining

renormalizability7 up to graviton loops that are suppressed by 1/M2
pl. In particular we

require renormalizablity of energy-momentum tensor that is defined as a linear response of

the matter action to the metric. For example, QED with a scalar φ is described by

Smat =

∫
d4x
√
−g′
(
− 1

4
g′µλg′νκF ′µνF

′
λκ + g′µνD′µφ

′∗D′νφ
′

+ ξgravR
′|φ′|2 −m2

s|φ′|2 −
1

4
λ|φ′|4

)
+ Sfix ,

(2.3)

heavy degrees of freedom cancels with a classical contribution from a coupling of a compensator field to a

mass term of heavy degrees of freedom. Indeed superconformal anomaly is correctly taken into account in

supersymmetric inflation setups [84–86].
6Ref. [44] sketches the derivation of trace anomaly at the one-loop order in Wilsonian renormalization.
7This does not mean the matter sector consists solely of a finite number of renormalizable terms. Non-

renormalizable terms are allowed when an infinite number of non-renormalizable terms are introduced for

renormalization in the usual sense of effective field theory.
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with Dµ being the gauge and diffeomorphism covariant derivative and Fµν being the field

strength of Aµ. ms is a scalar mass and λ is a quartic coupling. A non-minimal coupling

ξgrav, which provides an improvement term of energy-momentum tensor [59, 60], should be

kept to maintain renormalizability of energy-momentum tensor. We devote section A to

the gauge fixing term Sfix, whose contribution to energy-momentum tensor can be omitted

for physical states.

Via the Weyl transformation of

g′µν = e2ω(σ)gµν , (2.4)

the scalaron + gravity sector turns into Sgrav = SE-H + Sσ:

SE-H = −
M2

pl

2

∫
d4x
√
−gR ,

Sσ =

∫
d4x
√
−g
(

1

2
gµν∇µσ∇νσ − V (σ)

)
,

(2.5)

with ∇µ being the diffeomorphism covariant derivative. For example, in the R2 infla-

tion model,

ω = − 1√
6

σ

Mpl
(2.6)

and

V (σ) =
3

4
µ2M2

pl

[
1− exp

(
−
√

2

3

σ

Mpl

)]2

. (2.7)

The matter fields transform under the Weyl transformation as

φ′i = e−diω(σ)φi , (2.8)

with di denoting the Weyl weight of the field φi. The linear variation of the matter action

is responsible for the leading coupling of scalaron to matter:

Smat

[
{φ′i}, g′µν ; {λa}

]
'Smat [{φi}, gµν ; {λa}]−

∫
d4x
√
−gω(σ)Alin ({φi}, gµν ; {λa}) .

(2.9)

When we treat fields as classical objects, it is given by

Aclass
lin = −

∑
i

di(e.o.m.)i + (gµνT
µν ({φi}, gµν ; {λa}))class , (2.10)

and

(e.o.m.)i = −φi
1√
−g

δSmat [{φi}, gµν ; {λa}]
δφi

. (2.11)
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The second term of Aclass
lin is the classical trace of energy-momentum tensor, in which

we treat fields as classical objects. We define energy-momentum tensor by a functional

derivative of

Tµν = − 2√
−g

δSmat [{φi}, gµν ; {λa}]
δgµν

. (2.12)

For example, in scalar QED,

Tµν =− gλκFµλFνκ + 2Dµφ
∗Dνφ+ 2ξgravRµν |φ|2 − 2ξgrav

(
∇µ∇ν − gµνgλκ∇λ∇κ

)
|φ|2

− gµν
(
−1

4
gλρgκσFλκFρσ + gλκDλφ

∗Dκφ+ ξgravR|φ|2 −m2|φ|2 − 1

4
λ|φ|4

)
.

(2.13)

When we treat fields as quantum operators, the linear variation Alin receives an ad-

ditional contribution Aanom. To see it, let us take a path integral formalism with path

integral measure of D{φ′i}[g′µν ]. Note that the path integral measure depends on the met-

ric such that the path integral is diffeomorphism invariant [90]. For example, for scalar

QED, Dφ[gµν ] = D(−g)1/4φ and DAµ[gµν ] = D(−g)1/4e µ
mAµ, where emµ is the vierbein.

We change the variables from {φ′i} in the left hand side to {φi} in the right hand side of

eq. (2.9). This results in a Jacobian of path integral measure:

D{φ′i}[g′µν ] ' D{φi}[gµν ] exp

(
−i
∫
d4x
√
−gωAJacob ({φi}, gµν ; {λa})

)
(2.14)

in the linear variation. One may evaluate AJacob by using heat kernel regularization, which

is used in Fujikawa’s derivation of chiral anomaly [95]. It provides a one-loop contribution

to Aanom, which is proportional to the Weyl tensor squared, the Gauss-Bonnet density, and

a gauge field strength squared if {φi} is charged. One can identify AJacob = Aanom, which

is Fujikawa’s derivation of trace anomaly [90]. It follows that the linear variation Alin is

given by the quantum trace of energy-momentum tensor (see section B):

Alin =−
∑
i

di(e.o.m.)i + (gµνT
µν)class +Aanom ({φi}, gµν ; {λa})

=−
∑
i

di(e.o.m.)i + gµνT
µν ({φi}, gµν ; {λa}) .

(2.15)

In the above discussion, we have taken into account a Jacobian of path integral measure

associated with {φ′i} → {φi} under a background metric. One also needs to care a Jacobian

of path integral measure associated with g′µν → gµν in eq. (2.4). On the other hand, it

is intricate to compute the gravitational Jacobian. Thus we just assume that it does not

give rise to any relevant coupling between scalaron and matter. For example, in the R2

inflation model, the scalaron coupling to matter in eq. (2.9) reads

Sσ-mat =

∫
d4x
√
−g 1√

6

σ

Mpl
gµνT

µν . (2.16)
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Our assumption on the gravitational Jacobian reads that it only leads to couplings sup-

pressed by a higher power of 1/Mpl. This could be true since the graviton-loop contribution

is suppressed by 1/M2
pl.

In the rest of this paper, we restrict our discussion within the flat spacetime. The trace

of flat-spacetime energy-momentum tensor is enough to evaluate scalaron decay since the

scalaron decay amplitude into graviton is further suppressed by 1/Mpl.

3 Trace of energy-momentum tensor

In the last section we have shown that in the scalaron frame the scalaron couples to

matter via the quantum trace of energy-momentum tensor, by employing the Fujikawa

method. Here we should remark that once we use some regularization, we need to use it

throughout, for example, to calculate the renormalization of couplings {λa}. On the other

hand, heat kernel regularization in the Fujikawa method is not practical for perturbative

renormalization, for which dimensional renormalization is a usual choice.8 In dimensional

renormalization, we consider d = 4 − ε dimension instead of four dimension to make loop

diagrams finite. Then we subtract divergences in the four-dimension limit such that counter

terms compose solely of poles of ε.

In dimensional renormalization, AJacob does not depend on fields unlike that in the

Fujikawa method with heat kernel regularization. Thus Aanom has a different origin in

dimensional renormalization. The trace of energy-momentum tensor takes a form of

Tµµ = lim
ε→0

(
−
∑
i

di(e.o.m.)i + (Tµµ)class

)
. (3.1)

In the right-hand side, a quantity inside the parenthesis is calculated in d = 4−ε dimension

and then taken to the four-dimension limit of ε→ 0. A key observation is that as ε→ 0, the

second term does not coincide with the four-dimension classical trace of energy-momentum

tensor. This is because of renormalization (normal product) of the bare (composite) op-

erators such as F 2
µν and |φ|4 [102–105]. The renormalization coefficients, including the

multiplicative renormalization of bare couplings such as λ, compose of subtracted poles

of ε in the MS or MS scheme. They lead to terms proportional to the β function of the

renormalized couplings [65, 67] such as βe[F̄
2
µν ] and βλ[|φ̄|4]. A bar denotes the renormal-

ized (not composite) fields and parameters and a square bracket denotes the renormalized

composite operator. These contributions provide Aanom. Also note that Tµν is conserved

and thus solely improvement terms arising from non-minimal couplings are renormalized.

As a result Tµµ is already finite up to renormalization of improvement terms. In this article

we do not go into further detail about renormalization of improvement terms, since it does

not change the result at the leading order.

8Here is a big difference between chiral anomaly and trace anomaly. Chiral anomaly takes a one-loop

exact form [96, 97] up to the divergence of some gauge invariant current [98] due to its topological property,

i.e., it counts a number of zero modes in an instanton background [99–101]. Thus one can use the result from

heat kernel regularization even though one uses dimensional regularization for perturbative renormalization.

On the other hand, it does not hold for trace anomaly.

– 6 –
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For scalar QED, the Lagrangian density is given by

L = −1

4
F 2
µν −

1

2ξ
(∂µA

µ)2 + |Dµφ|2 −m2
s|φ|2 −

1

4
λ|φ|4 , (3.2)

with Dµ = ∂µ − iqeAµ being the gauge covariant derivative for a charge q. We have

integrated out the Nakanishi-Lautrup [106, 107] and (anti-)ghost fields (see section A).

ξ is a gauge fixing parameter.9 d-dimension flat-spacetime energy-momentum tensor is

obtained from eq. (2.13) as

Tµν =− gλκFµλFνκ + 2Dµφ
∗Dνφ− 2

(
ξcgrav +

η

d− 1

)
(∂µ∂ν − gµν∂2)|φ|2

− gµν
(
−1

4
F 2
λκ + |Dµφ|2 −m2

s|φ|2 −
1

4
λ|φ|4

)
.

(3.3)

where we rewrite ξgrav = ξcgrav +η/(d−1) with ξcgrav = (d−2)/(4(d−1)) in d dimension. We

remark that η is renormalized in a non-multiplicative manner to make Tµν finite, although

we do not go into further detail. Taking a classical trace, one finds

(Tµµ)class = ε

(
−1

4
F 2
µν +

1

4
λ|φ|4

)
+ 2m2

s|φ|2 + 2η∂2|φ|2 +
(

1− ε

2

)
(e.o.m) , (3.4)

where the last term with

(e.o.m) = φ∗
(
D2φ+m2

sφ+
2

4
λ|φ|2φ

)
+

(
D2φ∗ +m2

sφ
∗ +

2

4
λ|φ|2φ∗

)
φ (3.5)

cancels with −
∑

i di(e.o.m.)i in eq. (2.15). The first term of (Tµµ)class vanishes at the

classical level as ε→ 0, but not at the quantum level. This contribution provides Aanom.

We calculate a Tµµ-Āλ-Āκ (Āµ: renormalized gauge field) correlation function in the

scalaron frame by using the MS scheme. More specifically, we calculate the amputated

amplitude MTAA with incoming momentum k through Tµµ and outgoing momentum k1

and k2 through gauge bosons with helicity ε1 and ε2, respectively. section C is devoted

to details of the computations. For example, in the R2 inflation model, the invariant

amplitude of scalaron decay into two gauge bosons is given by

Mdec =
1√
6

1

Mpl
MTAA × Zpole

3 . (3.6)

Here, the last term Zpole
3 , which is the residue of the mass pole of the gauge field, arises

from the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [108].

For scalar QED (see section C.1), the leading contribution to MTAA arises from the

following terms of the trace of energy-momentum tensor:10

Tµµ ⊃
1

6

q2ē2

16π2
F̄ 2
µν + 2m̄2|φ̄|2 + 2η̄∂2|φ̄|2 . (3.7)

9Note that a gauge fixing parameter ξ is different from a non-minimal coupling ξgrav.
10Note that in general F̄ 2

µν 6= [F 2
µν ], although they coincide with each other at this order.
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k
ǫ2

k1
ǫ1

k2

σ

k

ǫ2

k1
ǫ1

k2

σ

k
ǫ2

k1
ǫ1

k2

σ

Figure 1. The leading contributions to MTAA, i.e., Tµµ-Āλ-Āκ correlation function (σ decay into

two gauge bosons). [Top] MF 2 : the gauge kinetic term in eq. (3.7) is inserted. [Bottom] M|φ|2 :

the scalar mass term and η term in eq. (3.7) is inserted. There is the other contribution from the

left diagram with the external gauge bosons exchanged.

The first term arises from the gauge kinetic term proportional to ε in eq. (3.4). Its coeffi-

cient is obtained from the leading contribution to the wave function renormalization of the

gauge field [see eq. (C.9)]. Meanwhile the leading contribution to the wave function renor-

malization of the gauge field also determines the leading contribution to the β function [see

eq. (C.10)] as

βe =
1

3

q2ē3

16π2
. (3.8)

The matrix element has two contributions*

MTAA =MF 2 +M|φ|2 . (3.9)

The first term arises from the tree-level diagram with the gauge kinetic term inserted (see

the top diagram of figure 1):

MF 2 = −2

3

q2ē2

16π2
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (3.10)

The second term arises from the one-loop diagram with the scalar mass term and η term

inserted (see the bottom diagrams of figure 1):

M|φ|2 =
2

3

q2ē2

16π2

m̄2 − η̄k2

m̄2
Is

(
k2

m̄2

)
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) , (3.11)

where11

Is(r) = 24

∫ 1

0
dx

∫ 1−x

0
dy

xy

−rxy + 1− iεad

=


12

r

(
−1 +

4

r
arcsin2

√
r

2

)
(for r < 4)

12

r

(
−1− 4

r

[
arccosh

√
r

2
− iπ

2

]2
)

(for r > 4)

.

(3.12)

11This definition is different from the one in ref. [56] by a factor of 6.
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For r > 4, one needs to take into account an adiabatic parameter εad > 0 properly.12 This

arises from the fact that the loop scalar can be real. Collecting the two contributions,

one obtains

MTAA = −2

3

q2ē2

16π2

(
1− m̄2 − η̄k2

m̄2
Is

(
k2

m̄2

))
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (3.13)

We remark that Is(0) = 1 and thus a heavy (m̄2 � k2) scalar does not contribute toMTAA.

Meanwhile, Is(r → ∞) → −12/r and thus a light (m̄2 � k2) scalar indeed contributes

to MTAA.

It is straightforward to generalize to the case with Ns scalars and Nf Dirac fermions

(see section C.2 for QED with a Dirac fermion) since the quartic and Yukawa coupling do

not matter at this order. The β function is given by

βe =
1

3

∑
s

q2
s + 4

∑
f

q2
f

 ē3

16π2
. (3.14)

Note that this counts contributions from both heavy and light degrees of freedom.

Meanwhile, the matrix element is given by

MTAA =
2

3

ē2

16π2

(∑
s

q2
s

(
1− m̄2

s − η̄sk2

m̄2
s

Is

(
k2

m̄2
s

))
+ 4

∑
f

q2
f

(
1− If

(
k2

m̄2
f

)))
× (k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) ,

(3.15)

where

If (r) = 3

∫ 1

0
dx

∫ 1−x

0
dy

−4xy + 1

−rxy + 1− iεad

=


6

r

(
1 +

(
1− 4

r

)
arcsin2

√
r

2

)
(for r < 4)

6

r

(
1−

(
1− 4

r

)[
arccosh

√
r

2
− iπ

2

]2
)

(for r > 4)

.

(3.16)

Here If (0) = 1 and If (∞) = 0.13 For r > 4, one needs to take into account εad prop-

erly. This arises from the fact that the loop fermion can be real. The matrix element is

approximated by

MTAA ≈
2

3

ē2

16π2

 ∑
light s

q2
s (1− 12η̄s) + 4

∑
light f

q2
f

 (k1 · k2 ε
∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (3.17)

The summation runs over solely light scalars or fermions with m2 < k2. The light scalar

contribution is not only from the β function q2
s , but also from the non-minimal coupling η̄.

This is because the classical contribution to Tµµ from the non-minimal coupling (the last

term in eq. (3.7)) does not vanish for a light scalar.

12Note that an adiabatic parameter εad associated with a Wick rotation is different from ε = 4 − d for

dimensional regularization.
13This definition is different from the one in ref. [56] by a factor of 3.
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4 Conclusion and remarks

In this article, we have revisited scalaron decay via the trace of energy-momentum ten-

sor. In particular we have studied scenarios with a sequestered matter sector, where the

trace of energy-momentum tensor gives a dominant contribution to scalaron-matter cou-

pling. We have referred to the R2 inflation mode to be concrete. On the other hand, one

can straightforwardly apply our results and discussions to more general f(R) and f(σ)R

gravity models. One just modifies the relation between the Weyl parameter and scalaron

accordingly. We have shown how trace anomaly arises by employing the Fujikawa method

and dimensional renormalization. For perturbative renormalization beyond the one-loop

level, the dimensional renormalization is more convenient than the Fujikawa method.

Trace anomaly plays an important role in ensuring that the trace of energy-momentum

tensor is predictive in terms of low-energy effective theory. We have explicitly calculated

the scalaron decay amplitude at the leading order in QED with scalars and fermions. The

contribution of heavy degrees of freedom from trace anomaly cancels with the one from

the mass term, in the heavy mass limit of the scalars and fermions. It is straightforward

to generalize the discussion to quantum chromodynamics (QCD).

There are two caveats on the predictability of the trace of energy-momentum tensor:

a non-minimal coupling of matter scalars to Ricci curvature; and the renormalization-

scale dependence. They only appear in energy-momentum tensor and thus one cannot be

determined its renormalized value through usual experiments unless graviton is involved

in a process. Since a non-minimal coupling is required to renormalize energy-momentum

tensor, one should keep it even when one considers a matter sector minimally coupled to

gravity. In addition, it may not be clear how we can see that the scalaron decay amplitude

is independent of the renormalization scale, since the trace of energy-momentum tensor is

a composite operator. We will give a detailed discussion on these caveats somewhere else.
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A Gauge fixing term

In this section we discuss the gauge fixing term Sfix in non-Abelian gauge theory, while

we consider Abelian gauge theory (QED) in the main text. The gauge fixing term takes a

Becchi-Rouet-Stora-Tyutin (BRST) form [109–113] of

Sfix =

∫
ddx
√
−g
(
ξ

2
BaBa − gµν∇µBaAaν + gµν∇µc̄aDνc

a

)
, (A.1)
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with ξ being a gauge fixing parameter. The superscript a runs over gauge group generators

T a [T a = I (identity matrix) in QED]. Dµ is the gauge and diffeomorphism covariant

derivative, while ∇µ is the diffeomorphism (not gauge) covariant derivative. We have

introduced a bosonic auxiliary Nakanishi-Lautrup field Ba = Ba†, fermionic (ghost and

anti-ghost) fields, ca = ca† and c̄a = −c̄a†.
The BRST transformation is defined by the following fermionic global transformation:

QAµ = Dµc ,

Qc =
i

2
e[c, c] ,

Qc̄ = B ,

QB = 0 ,

(A.2)

with e being a gauge coupling. We have used the matrix notation of Aµ = AaµT
a and

Dµc = ∂µc − ie[c, A], and so on. These are understood as [Q,Aµ] = iDµc (commutator),

{Q, c̄} = iB (anti-commutator), and so on in the operator formalism with Q† = Q. An

operator or state is called BRST closed when it vanishes under the BRST transformation.

Gauge invariant operators, such as a gauge invariant part of an action and its contribution

to energy-momentum tensor [see eq. (2.13)], are BRST closed. Meanwhile an operator or

state is called BRST exact when it can be written as the BRST transformation of some

operator or state. Notably the gauge fixing term is BRST exact:

Sfix =

∫
ddx
√
−gQ

(
ξ

2
c̄aBa − gµν∇µc̄aAaν

)
. (A.3)

Sfix contribution to energy-momentum tensor is also BRST exact:

T fix
µν = Q

(
−∇µc̄aAaν −∇ν c̄aAaµ − gµν

(
ξ

2
c̄aBa − gλκ∇λc̄aAaκ

))
. (A.4)

One can see that the BRST transformation is nilpotent: Q2 = 0. Thus a BRST-

exact operator or state is BRST closed. We can introduce an equivalence class on the set

of BRST-closed operators or states Hclosed as Hclosed ∼ Hclosed + Hexact with the set of

BRST-exact operators or states Hexact ⊂ Hclosed. The physical operator or state is defined

by the quotient set of Hclosed/Hexact [114–116]. Since T fix
µν is BRST exact, one can chose a

physical representative such that T fix
µν = 0.

B Path integral derivation of eq. (2.15)

We consider a correlation function in the path integral formalism:∫
D{φi}[g′µν ] exp

(
iSmat

[
{φi}, g′µν ; {λa}

])∏
{φi}

'
(

1 +

∫
d4x
√
−gωgµν

2√
−g

δ

δgµν

)
×
∫
D{φi}[gµν ] exp (iSmat [{φi}, gµν ; {λa}])

∏
{φi} .

(B.1)
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Meanwhile,∫
D{φi}[g′µν ] exp

(
iSmat

[
{φi}, g′µν ; {λa}

])∏
{φi}

=

∫
D{φ′i}[g′µν ] exp

(
iSmat

[
{φ′i}, g′µν ; {λa}

])∏
{φ′i}

'
∫
D{φi}[gµν ] exp (iSmat [{φi}, gµν ; {λa}])

×
(

1 + i

∫
d4x
√
−gω

[∑
i

di(e.o.m.)i − gµνTµν ({φi}, gµν ; {λa})

−AJacob ({φi}, gµν ; {λa})
]
−
∫
d4x
√
−gω

∑
i

diφi√
−g

δ

δφi

)∏
{φi} .

(B.2)

In the first equality, we change a notation of the integration variable {φi}, which has no

physical effect. From this Ward-Takahashi identity, one finds

−gµνTµν = −(gµνT
µν)class −AJacob ({φi}, gµν ; {λa}) , (B.3)

by ignoring the contact terms.

C One-loop calculations in QED

In the following calculations, we use the MS scheme with a spacetime dimension of d = 4−ε
and a renormalization scale of µ, while compensating a mass dimension by a modified

renormalization scale µ̃ defined by

µ̃2 = µ2 e
γE

4π
(C.1)

with γE ' 0.577 being Euler’s constant. One-loop functions are summarized in section C.3.

C.1 Scalar

The Lagrangian density is given by14

L = −1

4
F 2
µν −

1

2ξ
(∂µA

µ)2 + |Dµφ|2 −m2|φ|2 − 1

4
λ|φ|4 , (C.2)

with Dµ = ∂µ − iqeAµ being the gauge covariant derivative for a charge q. We have inte-

grated out the NL and (anti-)ghost fields. Parameters are a gauge coupling e, a scalar mass

m, a quartic coupling λ, and a gauge fixing parameter ξ. Multiplicative renormalization

is set for fields as φ = Z
1/2
2 φ̄ and Aµ = Z

1/2
3 Āµ and for parameters as Z2Z

1/2
3 e = Z1µ̃

ε/2ē,

14The following procedure is simplified with the hep-th notation since Aµ has a mass dimension 1 and

is not renormalized due to the Ward-Takahashi identity. In this case, one needs to multiply e2 when

translating MTAA to Mdec since the gauge field is not canonically normalized.
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Figure 2. Leading contributions to the vacuum polarization iΠ̄µν . [Top] scalar loop. [Bottom]

counter term.

Z2Z3e
2 = Z4µ̃

εē2 (i.e., Z2Z4 = Z2
1 ), Z2m

2 = Zmm̄
2, Z2λ = Zλµ̃

ελ̄, and Z3/ξ = Z5/ξ̄. The

Lagrangian density can be written in the form of renormalized perturbation theory as

L =− 1

4
F̄ 2
µν −

1

2ξ̄
(∂µĀ

µ)2 + |∂µφ̄|2 − m̄2|φ̄|2

− 1

4
Zλµ̃

ελ̄|φ̄|4 + iqZ1µ̃
ε/2ēĀµ(φ̄∗∂µφ̄− ∂µφ̄∗φ̄) + q2Z4µ̃

εē2Ā2
µ|φ̄|2

− 1

4
(Z3 − 1)F̄ 2

µν −
1

2ξ̄
(Z5 − 1)(∂µĀ

µ)2 + (Z2 − 1)|∂µφ̄|2 − (Zm − 1)m̄2|φ̄|2 .

(C.3)

The Ward-Takahashi identity warrants that Z1 = Z2 = Z4, Z3 is independent of ξ̄, and

Z5 = 1. It follows that

βεe = − ē

2
ε

(
1− ē

2

∂ lnZ3

∂ē

)−1

,

βελ = − λ̄ε
(

1− 2λ̄
∂ lnZ2

∂λ̄
+ λ̄

∂ lnZλ
∂λ̄

)−1

,

βm =
m̄

2
βεe

(
∂ lnZ2

∂ē
− ∂ lnZm

∂ē

)
+
m̄

2
βελ

(
∂ lnZ2

∂λ̄
− ∂ lnZm

∂λ̄

)
+
m̄

2
βξ

(
∂ lnZ2

∂ξ̄
− ∂ lnZm

∂ξ̄

)
,

βξ = − ξ̄βεe
∂ lnZ3

∂ē
− ξ̄βελ

∂ lnZ2

∂λ̄
.

(C.4)

Z3 − 1 and Z5 − 1 can be determined via loop corrections to the two point correlation

function of the gauge boson:

iΠ̄µν = iΠµν − i(Z3 − 1)(k2gµν − kµkν)− i1
ξ̄

(Z5 − 1)kµkν , (C.5)

where k denotes the gauge boson momentum. The one-loop vacuum polarization is given

by (see the top diagrams of figure 2)

iΠµν = (iqē)2i2µ̃ε
∫

dd`

(2π)d
(2`+ k)µ(2`+ k)ν

[`2 − m̄2][(`+ k)2 − m̄2]
+ (2iq2ē2gµν)iµ̃ε

∫
dD`

(2π)D
1

[`2 − m̄2]

=
iq2ē2

16π2
([4B22 − 2A] gµν + [4B21 + 4B1 +B0] kµkν) . (C.6)
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Noting that

4B21 + 4B1 +B0 =
4

3k2

[
A− m̄2B0 +

k2

4
B0 − m̄2 +

k2

6

]
= − 1

k2
[4B22 − 2A] ,

(C.7)

which ensures the Ward-Takahashi identity, one finds iΠµν = (k2gµν − kµkν)iΠ and

iΠ = i
4

3k2

q2ē2

16π2

[
−A+ m̄2B0 −

k2

4
B0 + m̄2 − k2

6

]
. (C.8)

The pole of ε is canceled with (see the bottom diagram of figure 2)

Z3 − 1 = −2

3

q2ē2

16π2

1

ε
(C.9)

and Z5 − 1 = 0. Thus the four-dimension β function is given by

βe = − ē
2

4

∂

∂ē
(lnZ3)residue

of ε=0 =
1

3

q2ē3

16π2
. (C.10)

The residue of the mass pole (k2 = 0) of the gauge field is given by

Zpole
3 − 1 = Π− (Z3 − 1) =

1

3

q2ē2

16π2
ln

(
m̄2

µ2

)
. (C.11)

The contribution from the one-loop diagram with the scalar mass term and η term

inserted is given by

M|φ|2 = 2(m̄2 − η̄k2)

(
(iqē)2i3

∫
d4`

(2π)4

(2`+ k1) · ε∗1 (2`+ 2k1 + k2) · ε∗2
[`2 − m̄2][(`+ k1)2 − m̄2][(`+ k1 + k2)2 − m̄2]

+[1↔ 2] + 2iq2ē2ε∗1 · ε∗2 i2
∫

d4`

(2π)4

1

[`2 − m̄2][(`+ k1 + k2)2 − m̄2]

)
= 2(m̄2 − η̄k2)

q2ē2

16π2

×
([
−4C24 +B0(k2)

]
ε∗1 · ε∗2 + [−4C23 − 4C12] k2 · ε∗1 k1 · ε∗2 + [1↔ 2]

)
. (C.12)

Noting that

−4C23 − 4C12 =
1

2k2

[
2m2C0 + 1

]
= − 1

2k2

[
−4C24 +B0(k2)

]
,

(C.13)

one finds

M|φ|2 = −4
m̄2 − η̄k2

k2

q2ē2

16π2

[
2m̄2C0 + 1 + [1↔ 2]

]
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (C.14)

With

2m̄2C0 + 1 = − k2

12m̄2
Is

(
k2

m̄2

)
, (C.15)
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the matrix element is

M|φ|2 =
2

3

q2ē2

16π2

m̄2 − η̄k2

m̄2
Is

(
k2

m̄2

)
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (C.16)

Let us see how we obtain the above result in Pauli-Villars regularization. Above the

Pauli-Villars mass scale, βe = 0 and the trace of energy-momentum tensor is replaced by

Tµµ ⊃ 2m̄2|φ̄|2 + 2η̄∂2|φ̄|2 + 2m̄2
PV|φ̄PV|2 + 2η̄PV∂

2|φ̄PV|2 , (C.17)

where φ̄PV is a Pauli-Villars partner with a wrong statistics. As a result, the matrix element

is replaced by

MTAA = − 2

3

q2ē2

16π2

(
m̄2

PV − η̄PVk
2

m̄2
PV

Is

(
k2

m̄2
PV

)
− m̄2 − η̄k2

m̄2
Is

(
k2

m̄2

))
× (k1 · k2 ε

∗
1 · ε∗2 − k1 · ε∗2 k1 · ε∗2) . (C.18)

After integrating out the Pauli-Villars partner, i.e., m̄2
PV → ∞, one reproduces the

above result.

C.2 Fermion

The Lagrangian density is given by

L = −1

4
F 2
µν −

1

2ξ
(∂µA

µ)2 − 1

2
iDµψγ

µψ +
1

2
ψγµiDµψ −mψψ , (C.19)

with Dµ = ∂µ − iqeAµ being the gauge covariant derivative for a charge q. We have

integrated out the Nakanishi-Lautrup and (anti-)ghost fields. Parameters are a gauge

coupling e, a fermion mass m, and a gauge fixing parameter ξ.

Multiplicative renormalization is set for fields as ψ = Z
1/2
2 ψ̄,15 and Aµ = Z

1/2
3 Āµ and

for parameters as Z2Z
1/2
3 e = Z1µ̃

ε/2ē, Z2m = Zmm̄, and Z3/ξ = Z4/ξ̄. The Lagrangian

density can be written in the form of renormalized perturbation theory as

L = − 1

4
F̄ 2
µν −

1

2ξ̄
(∂µĀ

µ)2 − 1

2
iDµψ̄γ

µψ̄ +
1

2
ψ̄γµiDµψ̄ − m̄ψ̄ψ̄ + qZ1ēµ̃

ε/2Āµψ̄γ
µψ̄

− 1

4
(Z3 − 1)F̄ 2

µν −
1

2ξ̄
(Z4 − 1)(∂µĀ

µ)2 − (Z2 − 1)
1

2
iDµψ̄γ

µψ̄

+ (Z2 − 1)
1

2
ψ̄γµiDµψ̄ − (Zm − 1)m̄ψ̄ψ̄ . (C.20)

The Ward-Takahashi identity warrants that Z1 = Z2, Z3 is independent of ξ̄, and Z4 = 1.

It follows that

βεe = − ē

2
ε

(
1− ē

2

∂ lnZ3

∂ē

)−1

,

βm = m̄βεe

(
∂ lnZ2

∂ē
− ∂ lnZm

∂ē

)
+ m̄βξ

(
∂ lnZ2

∂ξ̄
− ∂ lnZm

∂ξ̄

)
,

βξ = − βεe
∂ lnZ3

∂ē
ξ̄ .

(C.21)
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Figure 3. Leading contributions to the vacuum polarization iΠ̄µν . [Left] fermion loop iΠµν . [Right]

counter term.

Z3 − 1 and Z4 − 1 can be determined via loop corrections to the two point correlation

function of the gauge boson:

iΠ̄µν = iΠµν − i(Z3 − 1)(k2gµν − kµkν)− i1
ξ̄

(Z4 − 1)kµkν , (C.22)

where k denotes the gauge boson momentum. The one-loop vacuum polarization is given

by (see the left diagram of figure 3)

iΠµν = (iqē)2(−1)i2µ̃ε
∫

dd`

(2π)d
tr
[
γµ(/̀+ /k + m̄)γν(/̀+ m̄)

]
[`2 − m̄2][(`+ k)2 − m̄2]

= − iq2

16π2
4
([

(−2 + ε)B22 − k2 (B21 +B1) + m̄2B0

]
gµν + [2B21 + 2B1] kµkν

)
.

(C.23)

Noting that

2B21 + 2B1 =
2

3k2

[
A− m̄2B0 −

k2

2
B0 − m̄2 +

k2

6

]
= − 1

k2
[(−2 + ε)B22 − k2 (B21 +B1) + m̄2B0] ,

(C.24)

which ensures the Ward-Takahashi identity, one finds iΠµν = (k2gµν − kµkν)iΠ and

iΠ = i
8

3k2

q2ē2

16π2

[
A− m̄2B0 −

k2

2
B0 − m̄2 +

k2

6

]
. (C.25)

The pole at ε = 0 is canceled with (see the right diagram of figure 3)

Z3 − 1 = −8

3

q2ē2

16π2

1

ε
(C.26)

and Z4 − 1 = 0. Thus the four-dimension β function is given by

βe = − ē
2

4

∂

∂ē
(lnZ3)residue

of ε=0 =
4

3

q2ē3

16π2
. (C.27)

The residue of the mass pole (k2 = 0) of the gauge field is given by

Zpole
3 − 1 = Π− (Z3 − 1) =

4

3

q2ē2

16π2
ln

(
m̄2

µ2

)
. (C.28)

15Note that a bar for a renormalized quantity is different from an overline for a Dirac bar.
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d-dimension flat-spacetime energy-momentum tensor is given by16

Tµν =− gλκFµλFνκ −
1

4

(
iDµψγν + iDνψγµ

)
ψ +

1

4
ψ (iDµγν + iDνγµ)ψ

− gµν
(
−1

4
F 2
µν −

1

2
iDµψγ

µψ +
1

2
ψγµiDµψ −mψψ

)
.

(C.29)

Taking a classical trace, one finds

(Tµµ)class = −1

4
εF 2

µν +mψψ +

(
3

2
− ε

2

)
(e.o.m) , (C.30)

where

(e.o.m.) = −
(
−i /Dψ −mψ

)
ψ − ψ

(
i /D −m

)
ψ . (C.31)

The first term of (Tµµ)class vanishes at the classical level as ε→ 0, but not at the quantum

level. This contribution provides Aanom. The leading contribution to MTAA arises from

the following trace of energy-momentum tensor:

Tµµ ⊃
2

3

q2ē2

16π2
F̄ 2
µν + m̄ψ̄ψ̄ . (C.32)

The first term arises from the gauge kinetic term proportional to ε in eq. (C.30). Its

coefficient is obtained from the leading contribution to the wave function renormalization Z3

of the gauge field [see eq. (C.26)]. Note that the leading contribution to Z3 also determines

the leading contribution to the β function βe [see eq. (C.27)] The all-order form that is

often quoted,

Tµµ =
βe
2ē

[F̄ 2
µν ] + (m̄− βm)[ψ̄ψ̄] , (C.33)

is obtained after renormalization of composite operators [65].

The matrix element is

MTAA =MF 2 +Mψψ . (C.34)

The first term arises from the tree-level diagram with the gauge kinetic term inserted (see

the left diagram of figure 4):

MF 2 = −8

3

q2ē2

16π2
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (C.35)

The second term is a one-loop contribution from the fermion mass term inserted (see the

right diagram of figure 4):

Mψψ = m̄

(
(iqē)2(−1)i3

∫
d4`

(2π)4

tr
[
(/̀+/k1+/k2+m̄)/ε∗2(/̀+/k1+m̄)/ε∗1(/̀+m̄)

]
[`2−m̄2][(`+ k1)2 − m̄2][(`+ k1 + k2)2−m̄2]

+ [1↔ 2]

)
= 4m̄2 q2ē2

16π2µ̃ε

([
εC24 − k2C23 − k2C12 −

k2

2
C0 + m̄2C0

]
ε∗1 · ε∗2

+ [4C23 + 4C12 + C0] k2 · ε∗1 k1 · ε∗2 + [1↔ 2]) . (C.36)

16Curved-spacetime energy-momentum tensor takes the same form with Dµ being the gauge, Local

Lorentz, and diffeomorphism covariant derivative.
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σ

Figure 4. Leading contributions to MTAA, i.e., Tµµ-Āλ-Āκ correlation function (σ decay into two

gauge bosons). [Left] MF 2 : the gauge kinetic term in eq. (C.33) is inserted. [Right] Mψψ: the

fermion mass term in eq. (C.33) is inserted. There is the other contribution with the external gauge

bosons exchanged.

Noting that

4C23 + 4C12 + C0 = − 1

2k2

[
2m̄2C0 + 1− k2

2
C0

]
= − 1

2k2

[
εC24 − k2C23 − k2C12 −

k2

2
C0 + m̄2C0

]
,

(C.37)

one finds

Mψψ = 8
m̄2

k2

q2ē2

16π2

[
2m̄2C0 + 1− k2

2
C0 + [1↔ 2]

]
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (C.38)

With

2m̄2C0 + 1− k2

2
C0 =

k2

6m̄2
If

(
k2

m2

)
, (C.39)

the matrix element is

Mψψ =
8

3

q2ē2

16π2
If

(
k2

m̄2

)
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (C.40)

Collecting the two contributions, one obtains

MTAA =
8

3

q2ē2

16π2

(
1− If

(
k2

m̄2

))
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (C.41)

We remark that If (0) = 1 and thus a heavy (m̄2 � k2) fermion does not contribute to

MTAA. Meanwhile, If (∞) = 0 and thus a light (m̄2 � k2) fermion indeed contributes

to MTAA.

Let us see how we obtain the above result in Pauli-Villars regularization. Above the

Pauli-Villars mass scale, βe = 0 and the trace of energy-momentum tensor is replaced by

Tµµ ⊃ m̄ψ̄ψ̄ + m̄PVψ̄PVψ̄PV , (C.42)
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where ψ̄PV is a Pauli-Villars partner with a wrong statistics. As a result, the matrix element

is replaced by

MTAA =
8

3

q2ē2

16π2

(
If

(
k2

m̄2
PV

)
− If

(
k2

m̄2

))
(k1 · k2 ε

∗
1 · ε∗2 − k2 · ε∗1 k1 · ε∗2) . (C.43)

After integrating out the Pauli-Villars partner, i.e., m̄2
PV → ∞, one reproduces the

above result.

C.3 Summary of one-loop functions

One-loop functions are based on refs. [117, 118] (see also appendix F of ref. [119]). One

point integral is defined as

µ̃ε
∫

dd`

(2π)d
1

`2 −m2
=

i

16π2
A(m2) . (C.44)

The explicit form is

A(m2) = m2

(
2

ε
− ln

(
m2

µ2

)
+ 1

)
. (C.45)

Two point integrals are defined as

µ̃ε
∫

dd`

(2π)d
1; `µ; `µ`ν

[`2 −m2
1][(`+ k)2 −m2

2]
=

i

16π2
B0;µ;µν(k2;m2

1,m
2
2) , (C.46)

where

Bµ = kµB1 ,

Bµν = gµνB22 + kµkνB21 .
(C.47)

For our purpose, we can take m1 = m2 = m:

B1 = −1

2
B0 ,

B22 =
1

6

[
A+ 2m̄2B0 −

k2

2
B0 + 2m̄2 − k2

3

]
,

B21 =
1

3k2

[
A− m̄2B0 + k2B0 − m̄2 +

k2

6

]
.

(C.48)

The explicit form with a Feynman parameter integral is

B0 =
2

ε
−
∫ 1

0
dx ln

(
m2 − x(1− x)k2 − iεad

µ2

)
. (C.49)

Three point integrals are defined as

µ̃ε
∫

dd`

(2π)d
1; `µ; `µ`ν

[`2 −m2
1][(`+ k1)2 −m2

2][(`+ k1 + k2)2 −m2
3]

=
i

16π2
C0;µ;µν(k2

1, k
2
2, k

2;m2
1,m

2
2,m

2
3) , (C.50)
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where k + k1 + k2 = 0 and

Cµ = k1µC11 + k2µC12 ,

Cµν = gµνC24 + k1µk1νC21 + k2µk2νC22 + (k1µk2ν + k2µk1ν)C23 .
(C.51)

For our purpose, again we can take m1 = m2 = m3 = m:

C11 =
1

k2

[
B0(k2

1)−B0(k2)− k2C0

]
,

C12 =
1

k2

[
B0(k2)−B0(k2

2)
]
,

C24 =
1

4

[
B0(k2) + 2m̄2C0 + 1

]
,

C21 = − 1

2k2

[
3B0(k2)− 3B0(k2)− 2k2C0

]
,

C23 = − 1

2k2

[
2B0(k2)− 2B0(k2

2) + 2m̄2C0 + 1
]
,

C22 = − 1

2k2

[
B0(k2)−B0(k2

2)
]
.

(C.52)

The explicit form with Feynman parameter integrals is

C0 = −
∫ 1

0
dx

∫ 1−x

0
dy

1

−k2 xy +m2 − iεad
. (C.53)
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