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1 Introduction

In this paper we address the question of whether typical microstates in two-dimensional

conformal field theories appear thermal in a suitable sense. For a wide range of physical

systems, the usefulness of the basic notion of temperature as applied to an isolated sys-

tem is predicated on this fact, while the eigenstate thermalization hypothesis (ETH) has

sharpened the criteria for the emergence of a thermal description [1–3].

2d CFTs provide the most tractable class of interacting quantum field theories, so

provide a natural arena to address such questions. On the other hand, this tractability

arises due to infinite dimensional Virasoro symmetry, which in turn gives rise to an infi-

nite number of conserved charges that commute with the Hamiltonian (the so-called KdV

charges [4]). There is an obvious tension between the existence of this infinite tower of

charges and the standard description of an ensemble characterized by a finite number of

control parameters, i.e. the temperature and chemical potentials. Hence the notion of a

thermal description may need to be refined in this context, for instance by passing to a

generalized Gibbs ensemble with an infinite number of chemical potentials.
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We focus here on universal aspects of this question. Namely, suppose we are handed

a typical energy eigenstate1 of the CFT: do correlation functions of stress tensors and

conserved currents appear thermal in such a state, at least in some regime of parameters?

We can answer this question without committing to a specific CFT, and if this fails to hold

then there will be no effective thermal description of the CFT microstates.

Previous work with similar aims includes [5, 6]. These papers considered specific the-

ories, namely N = 4 super Yang-Mills and the D1-D5 CFT, and considered simplifying

features, such as focussing on BPS states or free fields. Typical microstates were shown

to behave approximately “thermally”,2 with small deviations encoding the specific state.

In bulk language, this provides evidence that a black hole serves as a coarse grained de-

scription of collections of microstates. As noted above, we proceed here without assuming

supersymmetry or making reference to a specific CFT, although we do restrict to two-

dimensions and to specific universal probes. Also relevant is [7], which considers states

that are random superpositions of energy eigenstates in a small window, concluding that

physically accessible observables have values that are close to thermal, with an error that

is exponentially small in the entropy. It was also noted that the nonthermal features can

be enhanced to be of order unity by considering imaginary time correlators. Additional

work and reviews include [8–10].

One motivation for this work is to resolve an apparent puzzle regarding a mismatch in

the expectation values of KdV charges in microstates versus the thermal ensemble. The

simplest example of this mismatch will suffice here. We consider the stress tensor T (w)

along with the conformal normal ordered product :TT :, obtained by subtracting power law

divergences in the OPE and then taking the coincident limit. The zero modes of these two

operators mutually commute, and define the lowest two members of the infinite tower of

mutually commuting KdV charges. We first consider the CFT on an infinite line at inverse

temperature β, and compute

〈T 〉β = −π
2c

6β2
,

〈:TT :〉β =

(
π2c

6β2

)2

+
11

90

π4c

β4
. (1.1)

We next consider the CFT on a spatial circle of circumference L. Let |hp〉 denote a

Virasoro primary state of dimension hp,
3 hence obeying L0|hp〉 = hp|hp〉, Ln>0|hp〉 = 0.

The expectation values in this state are

〈hp|T |hp〉 = −
(

2π

L

)2 (
hp −

c

24

)
,

〈hp| :TT : |hp〉 =

(
2π

L

)4 (
hp −

c

24

)2
−
(

2π

L

)4(hp
6
− 11c

1440

)
. (1.2)

1States that are not energy eigenstates are also of interest, in particular for studying time evolution

towards thermal equilibrium. We make a few comments on such states in section 5.
2Thermality here refers not to a physical temperature but to a Boltzmann type factor governing the

distribution of states.
3Here and below we are suppressing dependence on the anti-holomorphic sector of the theory, which for

our considerations simply goes along for the ride.
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To compare, we should take L → ∞ with hp/L
2 fixed so as to maintain a finite energy

density in the limit. Demanding 〈T 〉β = 〈hp|T |hp〉 fixes the relation between hp/L
2 and β as

hp
L2

=
c

24β2
. (1.3)

This gives, in the limit,

〈hp| :TT : |hp〉 =

(
π2c

6β2

)2

. (1.4)

Comparing to (1.1) we note a discrepancy, which is subleading at large c. In this work

we consider arbitrary c, not necessarily large, in which case the discrepancy is in no sense

small. The same type of discrepancy persists for quasi-primaries and the higher KdV

charges [11, 12].

One possible response to this discrepancy is that expectation values computed in the

primary state should be compared with those in the generalized Gibbs ensemble rather than

the usual canonical ensemble, with the infinite number of chemical potentials adjusted to

yield equality for the KdV expectation values. This avenue has been explored in [13–18].

Here we take another point of view: we regard the discrepancy as a reflection of the fact

that primary states are atypical, and we should not expect the canonical ensemble to

accurately reproduce results in such atypical states. Indeed, in any system which has a

thermal description there will exist atypical states which appear highly nonthermal.

As we discuss, a typical state of dimension h is not primary but rather a typical

level h
c descendant of a dimension hp = c−1

c h primary. These states have the form

|ψh〉 ≡
∏
n(L−n)Nn |hp〉,

∑
nNnn = h

c , with the Nn being non-negative integers drawn

from a Boltzmann distribution, such that 〈Nn〉 agree with the Bose-Einstein distribution.

We show that if one chooses a typical state of this form, then the above discrepancy is

resolved: 〈T 〉β = 〈ψh|T |ψh〉 and 〈:TT :〉β = 〈ψh| :TT : |ψh〉, where β is given by (1.3) but

with hp replaced by h.

We will actually establish a much more general result (4.20), namely agreement be-

tween stress tensor correlators computed in the typical microstate versus the thermal en-

semble. More precisely, consider the case of the two-point function 〈T (w)T (0)〉. For real

w, corresponding to spatial and/or real Lorentzian time separation between the two points,

the microstate correlator is accurately thermal provided L � β. On the other hand, in

Euclidean time, corresponding to imaginary w, agreement is present only inside the strip

|Im(w)| < β. For example, the thermal correlator is periodic under w → w + iβ, while

this is not even approximately true for the microstate correlator outside the strip. This is

the expected behavior: the microstate correlator is singular only in the OPE limit w → 0,

while the Euclidean periodicity of the thermal correlator implies an infinite number of sin-

gularities at w = inβ for n ∈ Z. These are “forbidden singularities” from the viewpoint of

the microstate correlator [19, 20].

The underlying mechanism responsible for the thermal behavior of microstate correla-

tors is the following. A stress tensor correlator involves a weighted sum over expectation

values of the form 〈ψ|Ln1 . . . . Lnk |ψ〉, where
∑

k nk = 0. These expectation values vary

– 3 –
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considerably depending on which microstate we choose. However, the relevant part of

the correlator is an infinite sum of the above expectation values multiplied by factors

cos
(

2πnw
L

)
, and what matters is the variance of this object evaluated over the space of

dimension h microstates. We compute this variance in the large L limit and show that it is

small provided β is held fixed as L→∞. This follows from the fact that 〈ψ|Ln1 . . . . Lnk |ψ〉
for different choices of the ni are statistically independent in this regime. Since the vari-

ance is small, the correlator takes approximately the same value in a typical microstate

as in the thermal ensemble, with corrections suppressed by 1/L. As mentioned above,

typical microstate correlators cannot be approximated by thermal correlators outside the

strip |Im(w)| < β; this follows from the analytic continuation needed to define the thermal

correlators in such cases.

Once we have established that in a typical microstate stress tensor correlators assume

their thermal values, up to small corrections, it immediately follows that all KdV charges

will have nearly thermal expectation values. With this in mind we can come back to

the relevance of the generalized Gibbs ensemble. We have noted that a typical state of

dimension h is based on a primary of dimension hp = c−1
c h, but suppose we instead choose

to look at a state based on a different value of hp. In this case we do not expect correlation

functions computed in a typical descendant of such a state to agree with those in the

canonical ensemble, but one can ask whether they would agree with correlators in the

generalized Gibbs ensemble for appropriately chosen potentials. It would be interesting

to answer this question following the large c analysis in [13, 16], but we do not address

it here. The case of a primary state, with hp = h is the extreme version of this; for

example, a primary state has the lowest value of the second KdV charge among all states

of a given energy. In general, if, for whatever reason, one is interested in the properties of

states (such as primaries) whose KdV charges differ significantly from their values in the

canonical ensemble, then the generalized Gibbs ensemble is appropriate. However, since

such states are rare, the introduction of KdV potentials is not necessary to describe most

states, whose expectation values are captured instead by the ordinary canonical ensemble.

The rest of this paper is organized as follows. In section 2 we warm up with the

technically simple case of spin-1 current correlators. We present the general argument that

typical microstates yield thermal correlators, and then verify this numerically. In section 3

we turn to the stress tensor correlators. The statistical independence of the expectation

values of a string of Virasoro generators, which is the key result needed for approximate

thermality, is established in section 4 for the case of the two-point function. The general

case is considered in appendix B. We close with some comments in section 5. Appendix A

derives the equivalence between two different forms of the current two-point functions.

2 Current correlators

In this section we consider correlation functions of spin-1 currents J(z). This provides

a technically simple context to compare and contrast correlation functions computed in

microstates versus a thermal ensemble.
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2.1 Thermal correlator

We normalize J(z) such that its 2-point function on the Euclidean plane is

〈J(z1)J(z2)〉 = − 1

(z1 − z2)2
. (2.1)

Transforming to the infinite line at inverse temperature β via z = e
2π
β
w

gives

〈J(w1)J(w2)〉β = − π2/β2

sinh2
(
π(w1−w2)

β

) . (2.2)

The current can be realized in terms of a free boson as J(z) = ∂φ(z), where the free boson

stress tensor is T (z) = −1
2∂φ∂φ. Higher point correlators are obtained from factorization

into 2-point functions, as in Wick’s theorem.

We next introduce a Euclidean torus with coordinate w = x+ it obeying w ∼= w+L ∼=
w + iβ, corresponding to a theory on a spatial circle of size L at temperature T = 1/β.

We write the corresponding torus 2-point function as 〈J(w1)J(w2)〉L,β . L and β are inter-

changed by taking w → iw, which is the modular S-transformation in terms of the modular

parameter

τ =
iβ

L
. (2.3)

The 2-point function obeys

〈J(w1)J(w2)〉L,β = −〈J(iw1)J(iw2)〉β,L . (2.4)

The 2-point function is a meromorphic function on the torus with a single pole −1
(w1−w2)2

.

This, along with the modular property, determines the 2-point function up to a position

independent constant. The constant is determined in terms of the generalized partition

function with a chemical potential, Z(q, y) = Tr[qL0− c
24 yQ], where Q denotes the charge

corresponding to the current J . This structure arises from Ward identities, and explicit

formulas are provided in [21]. In the case of a free scalar we have

〈J(w1)J(w2)〉L,β = − 1

L2

(
℘(w/L, τ) +

π2

3
E2(τ)− π

Im(τ)

)
, (2.5)

where

℘(w, τ) =
1

w2
+

∑
(m,n) 6=(0,0)

[
1

(w +m+ nτ)2
− 1

(m+ nτ)2

]
(2.6)

is the Weierstrass function and the Eisenstein series is E2(τ) = 1 − 24
∑∞

n=1
nqn

1−qn with

q = e2πiτ . We will use this free boson result in the following, keeping in mind that the

general correlator just differs from this by a position independent constant.

For what follows, it will be useful to reexpress the correlator as a mode sum in the free

boson theory. The mode expansion on the cylinder is

J(w) = −2π

L

∑
n

αne
2πinw
L , (2.7)
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with

[αm, αn] = mδm+n,0 . (2.8)

The thermal correlator is

〈J(w1)J(w2)〉L,β =
1

Z(τ)
Tr
[
qL0− 1

24 qL̃0− 1
24J(w1)J(w2)

]
, q = e2πiτ , (2.9)

with Z(τ) = Tr
[
qL0− 1

24 qL̃0− 1
24

]
and

L0 =
1

2
α2

0 +
∞∑
n=1

α−nαn , L̃0 =
1

2
α2

0 +
∞∑
n=1

α̃−nα̃n . (2.10)

We work in a basis of eigenstates of α−nαn with eigenvalues Nnn, Nn being the occupation

number. In the canonical ensemble, the probability distribution over occupation numbers

is given by the normalized Boltzmann factor,

P (Nn) =
e2πiτNnn∑∞

Nn=0 e
2πiτNnn

= (1− e2πiτn)e2πiτNnn . (2.11)

The average occupation number is given by the Bose-Einstein distribution

〈Nn〉L,β =

∞∑
Nn=0

P (Nn)Nn =
1

e−2πiτn − 1
. (2.12)

This yields the thermal correlator4

〈J(w)J(0)〉L,β =

(
2π

L

)2∑
n

〈αnα−n〉L,βe
2πinw
L ,

=

(
2π

L

)2
[∑
n>0

ne
2πinw
L +〈α2

0〉L,β+2
∑
n>0

〈α−nαn〉L,β cos

(
2πnw

L

)]

=

(
2π

L

)2
[
− 1

4sin2
(
πw
L

)+
L

4πβ
+2
∑
n>0

n

e−2πiτn−1
cos

(
2πnw

L

)]
. (2.13)

Here we have used 〈α2
0〉L,β = L

4πβ , as derived in appendix A.

An important point for what follows is that the sum in (2.13) converges in the strip

|Im(w)| < β, due to the competition between the cosine in the numerator and the Bose-

Einstein exponential in the denominator, but diverges outside the strip. Inside the strip the

correlator is periodic under w → w + iβ, and we use this relation to analytically continue

the correlator to the full w-plane.

The equivalence of (2.5) and (2.13) is shown in appendix A.1.

4Here and elsewhere we are implicitly considering the time ordered correlator, with Im(w) > 0. For

Im(w) < 0 the sign of w should be flipped in the formulas below. This ends up being immaterial as the

final result is invariant under w → −w.

– 6 –
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2.2 Microstate correlator

In a microstate, |ψ〉, the current two-point function takes a similar form,

〈ψ|J(w)J(0)|ψ〉 =

(
2π

L

)2
[
− 1

4 sin2
(
πw
L

) + 〈ψ|α2
0|ψ〉+ 2

∑
n>0

Nnn cos

(
2πnw

L

)]
. (2.14)

We have assumed that |ψ〉 is an eigenstate of the number operator, α−nαn|ψ〉 = Nnn|ψ〉
(for n > 0).

We now ask to what extent the correlator evaluated in a typical microstate agrees with

the thermal correlator at an appropriate temperature. First, we need to establish what

we mean by a typical microstate. As above, we restrict to states that are eigenstates of

α−nαn. The total energy E = 2π
L

∑∞
n=1Nnn is assumed to be large, EL� 1, and we define

the effective temperature β(E) =
√

πL
12E such that 2π

L 〈L0〉L,β(E) ≈ E. Standard statistical

reasoning implies that if we choose such a state at random, the occupation number of the

nth level will have the probability distribution P (Nn) as in (2.11). Accordingly, our defini-

tion of typicality corresponds to randomly choosing occupation numbers according to this

probability distribution.5 We further impose Nn = 0 for sufficiently large n, say 2πn
L > E;

this is convenient for numerics and also ensures that we consider only states of finite energy.

It is easy to see that the microstate correlator will differ completely from the thermal

correlator outside the strip |Im(w)| < β, a point that was emphasized in [7]. To see this, we

recall that the mode sum in (2.13) diverges outside the strip, and the thermal correlator

is defined there by analytic continuation from inside the strip. On the other hand, the

microstate correlator is a finite sum since the total energy is assumed to be finite, and

so no issue of nontrivial analytic continuation arises. If Nn ≈ 〈Nn〉L,β then the sum in

the microstate correlator looks approximately like a truncated version of the thermal sum.

While the two sums can approximately agree inside the strip they will differ outside it, just

as the sum
∑N

n=1 x
n for large N will approximately agree with 1/(1 − x) for |x| < 1, but

looks completely different for |x| > 1.

With this in mind, we now restrict attention to |Im(w)| < β. We now argue that

the microstate correlator will look approximately thermal provided L � β. To see this,

we first note that if we simply insert Nn = 〈Nn〉L,β along with 〈ψ|α2
0|ψ〉 = L

4πβ in the

microstate correlator, then we reproduce the thermal result. Of course, no microstate is

precisely compatible with this since 〈Nn〉L,β are not integers in general, but we can consider

a microstate for which these relations are approximately true. Such microstates are rare,

since Nn has large fluctuations over the space of all microstates of a given energy: by

differentiating the partition function z(q) =
∑∞

Nn=0 q
Nnn = (1− qn)−1 we have

δNn

Nn
=

√
〈(Nn − 〈Nn〉)2〉

〈Nn〉2
≈ q−n = e

2πβn
L . (2.15)

This is not small, which implies that Nn 6= 〈Nn〉L,β even in typical microstates.

5The situation here is equivalent to studies of random partitions of large integers and limit shapes of their

corresponding Young diagrams [22]. The Bose-Einstein distribution also determines the limiting profile of

the appropriate Young diagram.
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However, the correlator itself an infinite sum of such terms, the relevant piece of which is

K(w) =

(
2π

L

)2∑
n>0

α−nαn cos

(
2πnw

L

)
. (2.16)

We can evaluate the fluctuations in this operator using

〈α−nαn〉L,β =
qn

1− qn
n,

〈α−mαmα−nαn〉L,β = 〈α−mαm〉L,β〈α−nαn〉L,β +
q2n

(1− qn)2
n2δm,n . (2.17)

If we take L→∞ at fixed w and β,6 we can convert sums to integrals and find(
L

2π

)2

〈K(w)〉L,β =

(
L

2πβ

)2 ∫ ∞
0

x cos
(
w
β x
)

ex − 1
dx =

L2

8π2w2
− L2

8π2β2

1

sinh
(
πw
β

)2 ,

(
L

2π

)4 [
〈K2(w)〉L,β −

(
〈K(w)〉L,β

)2]
=

L3

8π3β3

∫ ∞
0

x2 cos2
(
w
β x
)

(ex − 1)2
dx . (2.18)

We first note that by using the first line and taking L → ∞ we find that (2.14) correctly

reduces to (2.2). The integral appearing in the expression for 〈K2(w)〉L,β above can be for-

mally evaluated in terms of Hurwitz zeta functions but its explicit form is not illuminating.

We then compute the size of the fluctuations as

δK =
√
〈(K − 〈K〉)2〉 =

1

L2

(
L

β

)3/2

f(w/β) (2.19)

so that δ〈J(w)J(0)〉L,β ∼ 1√
L

as L → ∞, which is just the standard magnitude of finite

size corrections to the thermodynamic limit. Since the sum (2.16) is sharply peaked in the

ensemble of microstates in this regime, the correlator in a typical microstate approximates

the thermal result.

The situation changes slightly if we hold fixed w/L as we take L→∞. In this case we

cannot replace the sums by integrals due to the relatively rapid variation of the cosines,

and we have

(δK(w))2 =

(
2π

L

)4∑
n>0

n2qn

(1− qn)2
cos2

(
2πnw

L

)2

. (2.20)

For w = 0, or any multiple of L/2, the cosine factor becomes unity, which allows us to

replace the sum by an integral, yielding, δK(w) =
√

2π3

3Lβ3 . On the other hand, if ∆w/L is

kept nonzero and fixed in the limit, where ∆w denotes the distance to the nearest multiple

of L/2, then the cosine factor is rapidly varying compared to the rest of the summand,

and can be replaced by its average, namely 1/2, yielding δK(w) =
√

π3

3Lβ3 . All that really

concerns us is that, as above, δK ∼ 1√
L

, and so the fluctuations in the correlator are once

again suppressed in the large L limit.

6We relax the condition on w below.

– 8 –
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Figure 1. [Left] A random partition, i.e. a set of Nn drawn from the distribution P (Nn) in (2.11)

with β = 1, L = 3 × 106. [Right] Comparison of the term that differs between the thermal and

microstate correlators (the third terms in (2.13) and (2.14) respectively). The microstate on the

plot is defined by the {Nn} from the left panel.

These arguments are readily verified by numerical analysis. To implement this we

generate a list of occupation numbers, (N1, N2, . . .) by drawing numbers according to the

probability distribution P (Nn). We then insert these occupation numbers in the microstate

correlator (2.14) and plot the result in figure 1.

For |w|�L the correlators decay exponentially in |w|. However, they must eventually

increase to respect the periodicity w∼=w+L. The minimal value is reached for w≈L/2, and

as shown in appendix A.2, 〈J(L2 )J(0)〉L,β ∼ − π
βL , which vanishes as L → ∞ as expected.

It is worth commenting on some related plots that appear in [5] (see their figure 1).

That paper considers the free CFT corresponding to the D1-D5 system at the symmetric

orbifold point. At large N , this theory has a large degeneracy of Ramond-Ramond ground

states, which are chiral primaries. The coarse grained description of these ground states is

dual to the M = 0 BTZ black hole, as was verified by comparison of a two-point function

computed in the two descriptions. At large N the typical ground state correlator is well

approximated by the coarse grained correlator for time separation t < O(
√
N). For larger t

the correlator displays an erratic behavior that depends sensitively on the microstate. The

common feature in the two examples is the appearance of a coarse grained description, but

the details differ.

3 Stress tensor correlators

We now turn to the case of stress tensor correlators. The general approach follows the

previous discussion of current correlators, although the details are a bit more involved.

The conclusion is the same: correlators computed in typical microstates look thermal in

the appropriate regime of parameters.
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3.1 Two-point functions

Stress tensor correlators are highly constrained by conformal invariance; in this section we

collect a few results. On the plane we have

〈T (z′)T (z)〉 =
c/2

(z′ − z)4
. (3.1)

We transform to new coordinates w(z) using

T (w) = (∂wz)2 T (z) +
c

12

(
∂3
wz∂wz

∂wz∂wz
− 3

2

(
∂2
wz

∂wz

)2
)
. (3.2)

The correlator on the line at inverse temperature β is generated by z = e
2π
β
w

, yielding

〈T (w′)T (w)〉β =

(
π2c

6β2

)2

+
c

32

(
2π

β

)4 1

sinh4(πβ (w′ − w))
. (3.3)

The thermal expectation value of the normal ordered product :TT :, obtained by taking the

coincident limit w′ → w after removing singular terms in the Laurent expansion, is

〈:TT :〉β =

(
π2c

6β2

)2

+
11

90

π4c

β4
. (3.4)

The stress tensor two-point function on the torus is fixed by a combination of conformal

invariance and knowledge of the torus partition function, the latter quantity depending on

the specific CFT. The two-point function is meromorphic, and so determined up to a

constant by its singularities, which are in turn fixed by the OPE, T (w)T (0) ∼ c/2
w4 +

2
w2T (0) + 1

w∂T (0). The coefficient of the double pole is therefore fixed by the one-point

function, which is in turn given by differentiating the partition function with respect to the

modular parameter. The undetermined constant part of the correlator is fixed by Ward

identities. The explicit formula for the correlator may be found in [21]. The same logic

applies to higher genus Riemann surfaces as well.

Next, we would like the result for the stress tensor two-point function on a spatial

circle evaluated in a primary state. If Ohp is a primary operator then on the plane we have

〈Ohp(0)T (z′)T (z)Ohp(∞)〉 =
h2
p

z2z′2
+

2hp
zz′(z′ − z)2

+
c/2

(z′ − z)4
. (3.5)

This is fixed by the conformal Ward identity for stress tensor insertions (or, equivalently,

by the fact that it must be a meromorphic function of z and z′, with singularities fixed

by the OPE). As usual, Ohp(∞) = limz→∞ z
2hpOhp(z). We now transform to the cylinder

with a spatial circle of circumference L via z = e
2πi
L
w, which gives

〈hp|T (w)T (0)|hp〉L =

(
2π

L

)4 (
hp −

c

24

)2
−
(

2π

L

)4
(

hp

2 sin2(πwL )
− c

32 sin4(πwL )

)
. (3.6)
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A naive test of thermality consists of comparing (3.3) to (3.6) in the thermodynamic

limit. In particular we take L→∞ while simultaneously holding hp/L
2 fixed to maintain

a finite energy density. For the correlators to match at large separation, which yields 〈T 〉2,

we should take

hp
L2

=
c

24β2
(3.7)

in the limit. The primary state result becomes

〈hp|T (w)T (0)|hp〉L→∞ =

(
π2c

6β2

)2

− π2c

3β2

1

w2
+
c/2

w4
. (3.8)

Comparing to (3.3) we see that the two results share the same short distance singularities

and (by construction) long distance limit, but differ otherwise. For example, the primary

state result yields

〈hp| :TT : |hp〉L→∞ =

(
π2c

6β2

)2

, (3.9)

as opposed to (3.4). On general grounds, we expect that in the thermodynamic limit

expectation values computed in typical states should agree with those computed in the

thermal ensemble, and so the mismatch is an indication that primary states are not typical.

On the other hand, the mismatch goes away at large c, indicating that in this regime

primary states are typical.

3.2 Typical states

The Hilbert space of a two-dimensional CFT can be decomposed into representations of

the Virasoro algebra. Each conformal family is labelled by a primary operator of some

conformal dimension hp and consists of the primary state |hp〉 and its conformal descendants

obtained by acting with strings of L−n operators. We consider unitary representations at

c > 1 with no null states. The full CFT has both left and right moving Virasoro algebras,

but since we will only be considering correlators of T (z) we can restrict attention to one

chiral half.

To characterize the typical state |ψh〉 at some specific h � 1, we note that there are

two competing effects. On the one hand, the number of primary states grows exponentially

with hp, but on the other hand so too does the number of descendant states at level h−hp.
The typical value of hp will be the one that balances these effects.

We write the partition function of the CFT as

Z(q) = Tr[qL0− c
24 ] =

∑
hp

d(hp)Trhp [q
L0− c

24 ] . (3.10)

The anti-holomorphic dependence is not made explicit; in what follows, the correlation

functions of the stress tensor and/or its modes will be determined by holomorphic deriva-

tives (∂τ or ∂q) of the partition function. Trhp above denotes a trace over states in the
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conformal family labelled by the primary of weight hp, and d(hp) is the number of primaries

at weight hp. The corresponding Virasoro character Zhp is

Zhp(q) = Trhp [q
L0− c

24 ] =
qhp−

c−1
24

η(q)
, (3.11)

where η(q) = q1/24
∏∞
n=1(1−qn) is the standard Dedekind eta function. Writing q = e−

2πβ
L ,

at high temperature we have

lnZhp(q) ≈ −
2πβ

L

(
hp −

c− 1

24

)
+
πL

12β
, (β → 0) (3.12)

as follows from the modular behavior of the eta function. The high temperature behav-

ior of the full partition function is obtained by modular transformation of the vacuum

contribution,

Z(q) ≈ e
πcL
12β , (β → 0) . (3.13)

These imply the asymptotic degeneracy of primaries [23]

d(hp) ≈ e
2π

√
c−1
6
hp , (3.14)

which takes the same form as the Cardy density of states [24], except with the replacement

c→ c− 1.

Next, for a given primary state of weight hp, we need to count up the number of

descendant states at level h− hp. This corresponds to the number of partitions of h− hp,

which is given by the Hardy-Ramanujan formula, e2π

√
h−hp

6 . Altogether, the number of

states which are level h− hp descendants of weight hp primaries are

d(h;hp) ≈ e
2π

√
c−1
6
hp+2π

√
h−hp

6 . (3.15)

Maximizing with respect to hp gives

hp =
c− 1

c
h . (3.16)

At large c, the typical state is nearly primary in the sense that hp ≈ h. However, we will

not be making any such large c assumption here. At finite c, the typical states with weight

h are level h/c descendants of a weight hp primary.7

7We still need to specify how the descendant level is partitioned; as in section 2, not all partitions are

typical. Thermal and microstate correlators in descendent states have recently been compared in [25], but

the partitions of the descendent level considered there are atypical according to the notion of typicality that

we use.
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3.3 Typical state two-point function

On the Euclidean cylinder with a spatial circle, w ∼= w + L, the mode expansion of the

stress tensor is

T (w) = −
(

2π

L

)2 (
L0 −

c

24

)
−
(

2π

L

)2∑
n 6=0

Lne
2πinw
L , (3.17)

where the generators obey the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 . (3.18)

Let |ψh〉 be an eigenstate of L0, L0|ψh〉 = h|ψh〉. Using the mode expansion and the

commutation relations it is straightforward to derive the following expression for the two-

point function in such a state,

〈ψh|T (w)T (0)|ψh〉 =

(
2π

L

)4 (
h− c

24

)2
−
(

2π

L

)4
(

h

2 sin2(πwL )
− c

32 sin4(πwL )

)

+ 2

(
2π

L

)4∑
n>0

〈ψh|L−nLn|ψh〉 cos

(
2πnw

L

)
. (3.19)

For example, suppose that |ψh〉 is primary, so that Ln>0|ψh〉 = 0 and the second line

vanishes. We then recover (3.6).

We wish to evaluate this for a typical state. As discussed in the previous section, a

typical state with weight h is a level h
c Virasoro descendant of a primary state |hp〉 whose

dimension hp = c−1
c h. The expectation value of L−nLn depends on which particular de-

scendant state we choose. However, we will show in section 4 that in the thermodynamic

limit the variance of (3.19) over the ensemble of such states is small. Therefore, the expec-

tation value in such states can be approximated by an average weighted by a Boltzmann

factor, with the temperature chosen so as to yield the desired average weight. Let 〈X〉hp,β
denote the average of X defined in this sense,

〈X〉hp,β =
1

Zhp(q)
Trhp [q

L0− c
24X] . (3.20)

Here q = e−
2πβ
L as before. β is fixed by demanding 〈L0〉hp,β = h, which can be written as

− L

2π
∂β lnZhp(q) = h . (3.21)

Using (3.12), valid in the relevant thermodyamic limit, along with hp = c−1
c h, we find

β =

√
c

24h
L . (3.22)

Next, we need 〈L−nLn〉hp,β in the thermodynamic limit. As derived in the next section,

the result is

〈L−nLn〉hp,β =
1

e
2πβn
L − 1

[
c

12
n3 +

(
hp +

L2

24β2

)
2n

]
=

1

e
2πβn
L − 1

[ c
12
n3 + 2hn

]
. (3.23)
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As argued above, provided L� β, in a typical state we can make the following replacement

in (3.19):

2

(
2π

L

)4∑
n>0

〈ψh|L−nLn|ψh〉 cos

(
2πnw

L

)
→ 2

(
2π

L

)4∑
n>0

〈L−nLn〉hp,β cos

(
2πnw

L

)
.

(3.24)

Using (3.23), converting the sum to an integral at large L, and using∫ ∞
0

x3 + 4π2x

ex − 1
cos(ax)dx = − 3

a4
+

2π2

a2
+

3π4

sinh4(πa)
(3.25)

we find

〈ψh|T (w)T (0)|ψh〉 =

(
π2c

6β2

)2

+

(
π4c

2β4

)
1

sinh4(πwβ )
. (3.26)

This reproduces the thermal correlator in (3.3), thus verifying that the stress two-point

function in a typical state appears thermal, provided L � β. It immediately follows that

〈ψh| :TT : |ψh〉 = 〈:TT :〉β .

The key step in obtaining this result was the replacement (3.24), whose validity depends

on the microstate expectation value being sharply peaked over the ensemble of states.

Obtaining analogous results for higher point correlators of the stress tensor will similarly

depend on establishing that operators built out of sums of more Ln are similarly sharply

peaked. We turn to these questions in the next section.

4 Statistics of Virasoro generator expectation values

We shall now consider the following quantity

X(w) ≡
∑
n>0

Xn cos

(
2πnw

L

)
≡
(

2π

L

)4∑
n>0

L−nLn cos

(
2πnw

L

)
. (4.1)

The replacement (3.24) is valid if X(w) is sharply peaked over the thermal ensemble. In

order to verify this, we will study its fluctuations

δX2 = 〈X2〉 − 〈X〉2. (4.2)

Given the form of the two-point function in (3.19), we can make the replacement (3.24)

in typical states provided δX → 0 as L → ∞. In this section averages are computed by

summing over states in a single conformal family, 〈. . .〉 = 1
Zhp

Trhp [q
L0− c

24 . . .], although all

formulas are unchanged if there happen to be multiple primaries of weight hp.

The contributions to (4.2) can be split into off-diagonal and diagonal pieces

δX2 = δX2
off-diag(w) + δX2

diag(w) (4.3)

where

δX2
off-diag =

∑
m 6=n

(〈XmXn〉 − 〈Xm〉〈Xn〉) cos

(
2πmw

L

)
cos

(
2πnw

L

)
(4.4)
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and

δX2
diag =

∑
n>0

(
〈X2

n〉 − 〈Xn〉2
)

cos2

(
2πnw

L

)
. (4.5)

The mode number n is taken to be of order n ∼ L/β. The relevance of this scaling follows

from the fact that when we convert sums to integrals we write x = 2πβn
L . The Bose-Einstein

factor then appears as (ex − 1)−1, leading to exponential suppression of the x� 1 regime.

The same was true in the current correlator case.

Let us first consider (4.4). To evaluate such expectation values we will repeatedly make

use of a simple trick: using

Lnq
L0 = qL0+nLn (4.6)

and cyclicity of the trace, one can move the leftmost operator to the right end of the string

and then rewrite the resulting expression as a sum of commutators plus the expectation

value of the original string. For example, to compute 〈Xn〉 we write

〈L−nLn〉 = qn〈LnL−n〉 = qn (〈L−nLn〉+ 〈[Ln, L−n]〉) . (4.7)

Then

〈Xn〉 =

(
2π

L

)4 qn

1− qn
〈[Ln, L−n]〉

=

(
2π

L

)4 qn

1− qn
(

2nq∂q lnZhp +
c

12
(n3 − n)

)
. (4.8)

This is an exact formula. Now, for large L/β we have lnZhp ∼ L/β so q∂q lnZhp ∼
(
L
β

)2
,

and from this we find the leading behavior 〈L−nLn〉 ∼
(
L
β

)3
, where we have included the

n ∼ L/β scaling.

Similarly, to compute 〈XnXm〉 we write

〈L−nLnL−mLm〉 =
qn

1− qn
(〈LnL−m[Lm, L−n]〉+ 〈Ln[L−m, L−n]Lm〉

+ 〈[Ln, L−n]L−mLm〉) . (4.9)

We now show that for m 6= n the first two terms are subleading compared to the third

in the thermodynamic limit. After evaluating the commutators, each of the three terms

is proportional to an expectation value of the form 〈LmLnLp〉 with m + n + p = 0. In

the third term one of (m,n, p) equals 0, unlike for the first two terms. If none of (m,n, p)

equals 0 then we compute

〈LmLnLp〉 =
1

1− qp
[(p− n)〈LmL−m〉+ (p−m)〈L−nLn〉] . (4.10)

This implies the leading behavior 〈LmLnLp〉 ∼
(
L
β

)4
for this case. On the other hand if

m = 0 (say), then we have

〈L0L−pLp〉 =
[
q∂q + (q∂q lnZhp) +

c

24

]
〈L−pLp〉 , (4.11)
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where we have assumed n = −p < 0, the other case leading to the same conclusion. Using

our results above, we see that the middle term dominates and implies 〈L0L−pLp〉 ∼
(
L
β

)5
.

Hence we see that the appearance of an L0 insertion in the third term of (4.9) leads to an

L/β enhancement compared to the first two terms. The same enhancement arises from the

[Ln, L−n] ∼ n3 contribution in the third term. Therefore,

〈L−nLnL−mLm〉 ≈ 〈L−mLm〉 ·
qn

1− qn
(

2nq∂q lnZ +
c

12
(n3 − n)

)
≈ 〈L−mLm〉〈L−nLn〉, (4.12)

or

〈XmXn〉 ≈ 〈Xm〉〈Xn〉(1 +O (β/L)) (4.13)

for m 6= n in this regime.

Returning to (4.4), using (4.8) and accounting for the two extra powers of L/β that

come from replacing the sums by integrals, we have

δX2
off-diag ∼

1

L
, (4.14)

for all w at high temperatures.

To compute δX2
diag, we need to evaluate (4.9) when m = n. In this case, the first and

third terms are equal and so

〈X2
n〉 ≈ 2〈Xn〉2. (4.15)

This yields the same scaling as for the off-diagonal piece,

δX2
diag ∼

1

L
. (4.16)

Altogether, we find that

δ〈ψh|T (w)T (0)|ψh〉 = δX =
√
δX2

off-diag + δX2
diag ∼

1√
L
. (4.17)

This implies the fluctuation in the correlator vanishes in the large L thermodynamic limit.

It is straightforward to derive explicit expressions for the fluctuations, analogous to

the case of the current correlator. In the limit L → ∞ with w and β fixed, substituting

〈Xn〉 from (3.23), we have

(
L

2π

)8

δX2
diag =

( c
12

)2∑
n>0

(
n3 + L2

β2 n

e2πβ/L − 1

)2

cos2

(
2πnw

L

)

≈
( c

12

)2
(

L

2πβ

)7 ∫ ∞
0

(
x3 + 4π2x

ex − 1

)2

cos2

(
w

β
x

)
dx

=

(
L

β

)7

g(w/β) . (4.18)

The fluctuations in the case with w/L fixed can also be treated as for the current correlator.
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Higher-point correlation functions of the stress-tensor take the form

〈ψh|T (w1) . . . T (wn) |ψh〉 = (−1)n
(

2π

L

)2n ∑
i1...in∑
ik=0

〈ψh|Li1 . . . Lin |ψh〉 e
2πi
L

∑
p ipwp . (4.19)

It is implicit in the above expression that the L0’s are shifted by −c/24. Equality be-

tween (4.19) in a typical state and its thermal value will follow if the sum is sharply peaked

over the ensemble. We will show in appendix B.1 that the fluctuations in (4.19) are again

small as long as the number of stress tensor insertions is small compared to L/β. It then fol-

lows that equality of thermal and typical correlation functions extends to n-point functions

of the stress tensor

〈ψh|T (w1) . . . T (wn) |ψh〉 ≈ 〈T (w1) . . . T (wn)〉β . (4.20)

The above arguments hold when the number of stress tensor insertions n is held fixed

as L/β → ∞, but can fail if n is allowed to grow in the limit. This can understood on

general grounds as follows. We write the thermal correlation function of n stress tensors as

〈T (w1) . . . T (wn)〉 =

∫ ∞
0
dEρ(E)〈E|T (w1) . . . T (wn)|E〉e−βE , (4.21)

where 〈E|T (w1) . . . T (wn)|E〉 denotes the average over all states of energy E, and ρ(E) is

the density of states. At high temperature, we think of evaluating the integral by locating

a saddle point. Since 〈E|T (w1) . . . T (wn)|E〉 ∼ En, if n is held fixed as β → 0 the saddle

point location is unaffected by the presence of the stress tensors. The fact that the same

saddle point energy arises independent of the length of the string, provided it is held fixed,

is what is responsible for the factorization properties that imply small fluctuations. On

the other hand, if n ∼ L/β (or any more rapid growth) then the saddle point location does

depend on the size of the string and the location of the stress tensors. Such correlators

will therefore be sensitive to the particular microstate, which is not surprising given that

in this regime we can arrange the stress tensors uniformly across the system with a spacing

less than the thermal wavelength λ ∼ β.

5 Discussion

The main result of this paper confirms a general physical expectation: correlation functions

in typical high energy states appear thermal. To reach this conclusion we needed to be

sufficiently careful about what constitutes a typical state. A number of past works [11, 13–

16, 20, 25, 26] have compared expectation values in primary states to those in the thermal

ensemble, and in some cases agreement was found. As we have seen here, the agreement in

these cases requires working in the large c limit, since at finite c primary states are highly

atypical. This atypicality is responsible for the mismatch between the expectation values

of KdV charges computed in primary states versus the canonical ensemble. Typical states

are instead descendants at level h/c, and taking this into account restores the agreement.

We focussed here on correlation functions of conserved currents and stress tensors, but

these remarks apply generally to correlators computed away from the large c limit.
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Our results have nontrivial implications for the comparison between CFT and black

hole physics. Quantities computed in a black hole background are inherently coarse-grained

and should therefore be compared with those evaluated in typical states of the CFT, rather

than in primary states. For example, we expect disagreement between correlation functions

in a heavy primary state (as studied e.g. in [27–30]) and the corresponding Witten diagrams

or HRRT surfaces evaluated in the black hole background beyond leading order in 1/c.

We have studied the case of the stress tensor in 2D CFT, whose correlation functions

are fixed by conformal symmetry. One might expect a similar result to hold for generic

few-body operators O, namely 〈ψh|O(w)O(0) |ψh〉 ≈ 〈O(w)O(0)〉β , but these correlation

functions depend also on the OPE data of the theory. However, conformal symmetry

constrains some of the this data [23, 31–33], which might lead to approximate equality.

In higher dimensions we lose the power of Virasoro symmetry and the ability to precisely

characterize a typical state, but the number of descendants still grows exponentially with

the level, and global primaries are more symmetric than generic operators, so it is plausible

that global primaries are atypical in generic CFTs.

We conclude with a few comments about the connection to the eigenstate thermaliza-

tion hypothesis (ETH). The usual statement of ETH is that energy eigenstates of chaotic

systems obey [1, 2]

〈Ea|O|Eb〉 = 〈O〉βEδa,b + e−S(E)/2f(Ea, Eb)Rab , (5.1)

where E denotes the average of the nearby energies Ea and Eb, 〈O〉βE is the thermal average

of the “few-body” operator O at the temperature βE , f(Ea, Eb) is smooth function of the

energies, and Rab is a random matrix. Although the full range of validity of this ansatz

remains to be understood, it leads to physically reasonable behavior regarding the approach

to thermal equilibrium in generic states. Our results are perfectly compatible with ETH,

and further imply agreement between the vacuum block contribution to CFT quantities

(such as the entanglement entropy) in thermal and typical states. However, since the only

operators O that we study are conserved currents and the stress tensor, we are not really

testing the core elements of ETH. For example, the second term in (5.1) is not respected

by taking O to be the stress tensor, since the stress tensor has a strictly vanishing matrix

element between states in different conformal families.

The ETH ansatz ensures that the expectation value of a local operator averaged over

a long time will agree with its thermal value. In particular, even if one chooses an initial

state for which an expectation value is far from thermal, the expectation value will simply

fluctuate around its thermal value for almost all times, provided the matrix elements of

the operator satisfy ETH. Such time-dependent behavior of course requires the system to

be in a non-energy eigenstate (though with a sharply distributed energy), with the time

dependence coming from the off-diagonal terms in (5.1). In this paper we have restricted

attention to energy eigenstates, and although we have considered time dependent corre-

lators this time dependence refers to the relative, as opposed to overall, location of the

operators. Thus questions regarding thermalization are beyond our present scope, but

under investigation.
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A Current two-point function

A.1 Equivalence of two forms of thermal correlator

Here we establish the equivalence of (2.5) and (2.13). We start working on (2.5) by carrying

out the sum over m using ∑
m

1

(2πm+ a)2
=

1

4 sin2(a/2)
, (A.1)

along with

E2(τ) = 1− 6
∑
n=1

1

sinh2(πβn/L)
, (A.2)

the latter following from the identity
∑∞

n=1
nxn+1

(1−xn+1)2
=
∑∞

n=1
nx2n

(1−xn)2
. This gives

〈J(w)J(0)〉L,β =
π

βL
+
π2

L2

∞∑
n=−∞

1

sinh2(π(βn−iw)
L )

. (A.3)

Next, we turn to the mode sum version

〈J(w)J(0)〉L,β =

(
2π

L

)2∑
n

〈αnα−n〉L,βe
2πinw
L ,

=

(
2π

L

)2

〈α2
0〉L,β+2

(
2π

L

)2 ∑
m>0

sinh

(
πβm

L

)
e−

πβm
L

∞∑
n=0

e−
2πβmn
L

[
(n+1)e−

2πimw
L +ne−

2πimw
L

]
m.

(A.4)

We have assumed 0 < Im(w) < β, so that the sums converge. Using

〈α2
0〉L,β =

∫
dα0e

πi(τ−τ))α2
0α2

0∫
dα0eπi(τ−τ)α2

0

=
L

4πβ
(A.5)

and performing the sum over n, we find

〈J(w)J(0)〉L,β =
π

βL
+

(
2π

L

)2 ∑
m>0

cosh
(

2πm
L (β2 − iw)

)
sinh(πβmL )

m. (A.6)

Finally, from

∑
m>0

cosh
(

2πm
L (β2 − iw)

)
sinh

(
πβm
L

) m =
∑
m>0

[ −1∑
n=−∞

e
2πm
L

(iw+nβ)m+
∞∑
n=0

e−
2πm
L

(iw+nβ)m

]

=
1

4

∞∑
n=−∞

1

sinh2(π(βn−iw)
L )

, (A.7)

we arrive at (A.3).
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A.2 Minimal size of thermal correlator

We are interested in taking L→∞ with w = L/2 at fixed β. This gives the minimal size

of the thermal correlator, since periodicity under w ∼= w + L implies symmetry around

this point.

We proceed by first performing the over n in (2.5), which yields

〈J(w)J(0)〉L,β = − π2

3L2
E2(τ) +

π

βL
− π2

3β2
+

2π2

β2

∞∑
m=1

1

sinh2(Lmβ )
− π2

β2

∑
m

1

sinh2(w+mL
β )

.

(A.8)

We have the modular transformation

E2(−1/τ) = τ2E2(τ) +
6τ

iπ
. (A.9)

From this we deduce

E2(τ) ≈ −L
2

β2
+

L

πβ
+ . . . , β → 0 (A.10)

where . . . are exponentially suppressed. This gives

〈J(L/2)J(0)〉L,β ≈ −
π

βL
+ . . . . (A.11)

B Technical results

B.1 Higher point functions of the stress tensor

The higher-point functions of the stress tensor in the microstate take the form

〈ψh|T (w1) . . . T (wn) |ψh〉 = (−1)n
(

2π

L

)2n ∑
i1...in∑
ik=0

〈ψh|Li1 . . . Lin |ψh〉 e
2πi
L

∑
p ipwp , (B.1)

analogous to (3.19) for the 2-point case. At finite h each L0 should be replaced with

L0 − c/24, but the difference is subleading in the thermodynamic limit. In order to demon-

strate approximate equality between the microstate and thermal correlators (4.20) we must

show that this quantity is sharply peaked over the ensemble of states at fixed h. Accord-

ingly, we study the fluctuations of

Y ≡
(

2π

L

)2n ∑
i1...in∑
ik=0

〈ψh|Li1 . . . Lin |ψh〉 e
2πi
L

∑
p ipwp . (B.2)

Once again the fluctuations can be split into off-diagonal and diagonal pieces:

δY 2 = 〈Y 2〉 − 〈Y 〉2 = δY 2
off-diag + δY 2

diag. (B.3)

Here off-diagonal refers to a term of the form

〈Li1 . . . LinLj1 . . . Ljn〉 , (B.4)
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with all of the ik distinct from all of the jk. As in the main text, the kinematic factors just

go along for the ride.

The diagonal terms are subleading in the thermodynamic limit, as in section 4. To see

this we make use of a result (proven below) on the expectation values of strings of Virasoro

generators. Suppose that X is a string of Virasoro generators of length ` whose mode

numbers sum to zero, with s the largest number of non-overlapping substrings within X

whose mode numbers sum to zero. If the levels of the generators in X scale like L/β and

`� L/β, then

〈X〉 ∼ (L/β)`+s, (B.5)

as (L/β) → ∞. These are the levels that are relevant in the thermodynamic limit, as in

the main text. For such X, it also follows that

〈L0X〉 =
[
q∂q + (q∂q lnZ) +

c

24

]
〈X〉 ≈ 〈X〉 · q∂q lnZ . (B.6)

First consider the scaling of the connected part of an off-diagonal term,(
2π

L

)4n ∑
{i},{j}∑
ik=

∑
jk=0

〈Li1 . . . LinLj1 . . . Ljn〉. (B.7)

The expectation value scales as (L/β)2n+s+s′ , where s (s′) is the number of zero substrings

in {i} ({j}). We get additional factors of (L/β) when we convert the sums to integrals:

(L/β)n−s and (L/β)n−s
′

from the sums over {i} and {j} respectively. Accordingly this

term scales as L0, and one can check that the disconnected piece scales in the same way.

These terms will make an O(1) contribution to δY 2 unless they cancel.

Now consider a diagonal term, say with i1 = j1. The expectation value still scales as

(L/β)2n+s+s′ but there is one fewer sum since we have fixed i1 = j1. This term therefore

scales as L−1 and vanishes in the thermodynamic limit. Other diagonal terms will similarly

make vanishing contributions to δY 2 in the limit.

Returning to the off-diagonal terms, we see that δY 2 will be O(1) unless

〈Li1 . . . LinLj1 . . . Ljn〉 ≈ 〈Li1 . . . Lin〉〈Lj1 . . . Ljn〉, (B.8)

which we now demonstrate. We start from

〈Li1 . . . Lin〉 =
1

qi1 − 1

n∑
k=2

〈Li2 . . . [Lik , Li1 ] . . . Lin〉 , (B.9)

where we used the manipulations from section 4. Similarly,

〈Li1 . . . LinLj1 . . . Ljn〉 =
1

qi1 − 1

[
n∑
k=2

〈Li2 . . . [Lik , Li1 ] . . . Lin

m∏
`=1

Lj`〉

+〈
n∏
k=2

Lik

m∑
`=1

Lj1 . . . [Lj` , Li1 ] . . . Ljm〉

]
. (B.10)
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The second term has the same length as the first but one fewer zero substring, so by (B.5)

it has one fewer power of (L/β). The first term therefore gives the leading behavior in the

thermodynamic limit:

〈Li1 . . . LinLj1 . . . Ljm〉 ≈
1

qi1 − 1

n∑
k=2

〈Li2 . . . [Lik , Li1 ] . . . Lin

m∏
`=1

Lj`〉. (B.11)

This procedure can be iterated on all the Lik until one is left with only terms of the form

〈L∑
ik

n∏
`=1

Lj`〉 ≈ 〈
n∏
`=1

Lj`〉 · q∂q lnZ, (B.12)

where we made use of (B.6). Thus the expectation value of the j string factors out:

〈Li1 . . . LinLj1 . . . Ljn〉 =
1

qi1 − 1

n∑
k=2

〈Li2 . . . [Lik , Li1 ] . . . Lin〉〈Lj1 . . . Ljn〉(1 +O(β/L))

= 〈Li1 . . . Lin〉〈Lj1 . . . Ljn〉(1 +O(β/L)). (B.13)

We see that the leading term cancels, and the off-diagonal contribution to δY 2 starts at

O(L−1). This gives rise to a fluctuation ∼ 1√
L

at finite size, as for the two-point function.

When the number of insertions scales with L/β they can be arrayed across the entire

system with separation smaller than the thermal wavelength, so we have a very fine-grained

probe. In this limit the argument above breaks down: eq. (B.5) no longer holds and the

q∂q〈X〉 term in (B.6) cannot be discarded. Thus the expectation value of the j string

does not factor out, and Y has O(1) fluctuations across the ensemble: such high-point

correlators depend sensitively on the details of the microstate.

Proof of equation (B.5). Suppose that X is a string of Virasoro generators of length `

whose mode numbers sum to zero, with s the largest number of non-overlapping substrings

within X whose mode numbers sum to zero. We will show that if the levels of the generators

in X scale as L/β and `� L/β, then

〈X〉 ∼ (L/β)`+s (B.14)

in the thermodynamic limit.

We proceed by induction; the base case was shown in section 4. Now, suppose that the

expectation value of an (`, s) string scales as (L/β)`+s and consider an arbitrary (`+ 1, s)

string

〈LmLa1 . . . La`〉 =
1

qm − 1

∑̀
i=1

〈La1 . . . [Lai , Lm] . . . La`〉

∼
∑̀
i=1

[
(m− ai)〈La1 . . . L̂aiLai+m . . . La`〉 −

c

12
δm+ai,0(m3 −m)〈La1 . . . L̂ai . . . La`〉

]
∼ (L/β)`+s+1, (B.15)
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provided m 6= 0. To obtain the last line we used the inductive assumption: the first term

is the sum of (`, s) strings multiplied by one factor of (m− ai) ∼ (L/β), while the second

term is the sum of (`− 1, s− 1) strings multiplied by m3 ∼ (L/β)3.

If m = 0 then we have an (`+ 1, s+ 1) string

〈L0La1 . . . La`〉 ≈ 〈La1 . . . La`〉 · q∂q lnZ

∼ (L/β)`+s+2 (B.16)

where we used (B.6) and the inductive hypothesis. This proves the claim.

When ` ∼ L/β these statements no longer hold: there are factors ∼ eL/β relating

different orderings of the string, so there will be some strings contributing to δY for

which (B.5), (B.6) and (B.13) all break down.

B.2 Ordering independence

In this subsection we argue that the ordering of operators defining the descendant state does

not affect the expectation value of a string of operators in the thermodynamic limit. This

does not affect our results, but leads to an effectively one-to-one correspondence between

integer partitions and descendent states for purposes of computing expectation values.

Consider two descendents that differ only in the ordering of two Virasoro generators:

|ψh〉 = (L~b)
†L−iL−j(L~a)

† |hp〉 ,
∣∣ψ′h〉 = (L~b)

†L−jL−i(L~a)
† |hp〉 . (B.17)

We wish to argue that

〈ψh|X |ψh〉 ≈
〈
ψ′h
∣∣X ∣∣ψ′h〉 (B.18)

as β/L→ 0. First consider L~a = L~b = X = 1:

〈ψh|ψh〉 = 〈hp|Lj [Li, L−i]L−j |hp〉+ 〈hp| [Lj , L−i]LiL−j |hp〉 (B.19)

= fh(i)fh(j) + (j + i) ((j − 2i)fh(j) + (2j − i)fh(i) + (i− j)fh(i− j)) ,

where

fh(n) = 2nhp +
c

12
(n3 − n). (B.20)

When n ∼ L/β and h ∼ (L/β)2, fh(n) ∼ (L/β)3 and so the first term in (B.19) gives the

leading thermodynamic behavior ∼ (L/β)6. On the other hand,

〈ψh|ψh〉 − 〈ψ′h|ψ′h〉 = 〈hp|LiLj [L−i, L−j ] |hp〉+ 〈hp| [Lj , Li]L−iL−j |hp〉
= (j − i) ((2j + i)fh(i) + (2i+ j)fh(j)) (B.21)

which scales as (L/β)5. This is the key point: terms that arise in the difference 〈ψh|X |ψh〉−
〈ψ′h|X |ψ′h〉 have one factor of fh and two of the levels in place of f2

h in 〈ψh|X |ψh〉, so the

difference is subleading to the expectation values themselves in the thermodynamic limit.

If we now let L~a, L~b and X be arbitrary the above reasoning still applies. The objects

to compare are

〈hp|L~bLjLiL~aX(L~a)
†L−iL−jL~b)

† |hp〉 vs. 〈hp|L~bLjLiL~aX(L~a)
†[L−i, L−j ](L~b)

† |hp〉 ,
(B.22)
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which can be computed by commuting L−i and L−j (or [L−i, L−j ]) all the way to the left.

In the first a term with two factors of fh is generated, while the second has at most one

factor of fh and two factors of the levels. The remainder of the computation is the same

in both cases, so the difference is subleading in the limit.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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