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1 Introduction

Experimental data from heavy ion collisions at LHC and RHIC suggest that the produced

quark gluon plasma (QGP) is strongly coupled and equilibrates extremely fast. Unfor-

tunately, standard QCD techniques are unsuitable to treat the strongly coupled, non-

equilibrium early dynamics. Therefore the best known way to study the early phases of

the QGP before thermalization happened is via holography, by mapping weakly coupled

supergravity (SUGRA) to its strongly coupled quantum field theoretical dual. Although

there is no dual description for QCD one can approach the real world by studying the

plasma with the help of the holographic dual of large-N , N = 4 strongly coupled super

Yang-Mills (SYM) theory.

The QGP produced during heavy ion collisions lies somewhere in between the two

extreme limits of infinitely strong coupling (or small curvature) with ’t Hooft coupling

λ = ∞ and weak coupling, which would allow for a perturbative description. One way

of investigating this region is to consider finite coupling corrections or higher derivative

corrections to the type IIb SUGRA action. These additional contributions of order O(α′3)

for the dual gravity theory, where α′ is related to the string length ls via α′ = l2s , yield finite

coupling corrected correlators, emission rates, transport coefficients etc. on the QFT side.

One interesting topic in this context is the analysis of the behaviour of charged parti-

cles in such a QGP. In recent years there have been several works contributing to a deeper

quantitative understanding thereof. One important step was the computation of leading
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coupling corrections to the equations of motion of gauge fields in a strongly-coupled N = 4

SYM plasma by considering O(α′3) corrections to the type IIB supergravity action [1, 2].

These α′-corrected equations of motion were then used to study the conductivity, the trans-

port coefficient in this channel and the photoemmission rate, which give important infor-

mation about the structure of the plasma. Determining α′ corrections to these quantities is

of major interest, especially since this allows first cautious comparisons and interpolations

between the spectra of strongly coupled and weakly coupled plasmas [2]. Unfortunately

the authors of [1, 2] used a 5-form that didn’t solve its higher derivative corrected EoM. In

addition, unlike stated in these papers, the calculation was done in Euclidean signature,

but the five form wasn’t transformed appropriately. More specifically, we can reproduce

their results, if we leave out an actually needed factor i in front of the five form components

of the form dt ∧ . . . after the transformation to Euclidean signature. Also several terms

contributing to the Hodge duals got lost. Our first aim is to give a corrected derivation

of the higher derivative corrected EoM for gauge fields in type IIb SUGRA. After that

we revisit the computation of several observables, whose α′3-corrections so far have been

calculated with the EoM form [1, 2]. In general we find that the actual higher derivative

corrections to all quantities studied in this paper turn out to be substantially smaller than

the values found in the literature so far. For instance in [1] the correction factor to the

conductivity was given as (1 + 14993
9 γ), whereas we obtained (1 + 125γ). A comparison

with the transport coefficient of the spin 2 channel is given in table 2.

In contrast to previous works we find that the behaviour of the photoemission rate and

spectral density at finite coupling agree with expectations from weak coupling calculations

in both the small and, that is new, the large energy limit [7]. In [7] the authors derived

that in the weak coupling limit decreasing coupling means increasing phtotoemission rate

at small momenta and decreasing photoemission rate at large momenta. The signs of the

correction factors we found coincide with these expectations. We start from the higher

derivative corrected type IIb action and compute finite coupling corrected QNM spectra,

spectral density, photoemission rate and conductivity of the plasma. Before we come to

finite coupling corrections we give a detailed description how to introduce gauge fields in

type IIb SUGRA by twisting the five sphere along certain angles, which was first described

in [10]. We try to provide enough details of the calculations to allow the reader to check it

with limited effort.

2 Einstein-Maxwell-AdS/CFT in the λ → ∞ limit

The aim of this section is to give a detailed description of how to introduce charge and

gauge fields in AdS/CFT starting from the type IIb SUGRA action

S10 =
1

2κ10

∫
d10x

√
− det(g10)

[
R10 − ∂µφ∂µφ−

1

4× 5!
F 2

5

]
, (2.1)

where F5 is the 5-form and g10 the metric of the 10 dimensional manifold. In the following

calculations we set the constant l, which measures the size of S5, to 1, since the resulting

EoM for gauge fields won’t depend on it. In [10] it was shown that in order to obtain
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Maxwell-terms FµνF
µν in the reduced 5−dimensional theory one has to twist the five

sphere S5 along its fibers in a maximally symmetric manner. The ansatz for the metric in

this case has the form

ds2
10 = ds2

AdS +

3∑
i=1

(
dµ2

i + µ2
i

(
dφi +

2√
3
Aµdx

µ

)2)
, (2.2)

with

ds2
AdS = −r2

h

1− u2

u
dt2 +

1

4u2(1− u2)
du2 +

r2
h

u
(dx2 + dy2 + dz2), (2.3)

where the unperturbed metric is just the AdS Schwarzschild black hole solution times S5

with horizon radius rh. It is convenient to work here with the following S5-coordinates, for

which we define µi with i ∈ {1, 2, 3} to be the direction cosines

µ1 = sin(y1), µ2 = sin(y2) cos(y1), µ3 = cos(y1) cos(y2), (2.4)

and set the angles

φ1 = y3, φ2 = y4, φ3 = y5, (2.5)

such that the metric of the 5−sphere is given as

dΩ2
5 =

3∑
i=1

(
dµ2

i + µ2
i dφ

2
i

)
= dy2

1 + cos(y1)2dy2
2 + sin(y1)2dy2

3+

+ cos(y1)2 sin(y2)2dy2
4 + cos(y1)2 cos(y2)2dy2

5. (2.6)

It is straightforward to check that with this metric ansatz we obtain

R10 = R
Aµ→0
10 − 1

3
FµνF

µν , (2.7)

with F = dA. The dilaton part of the action can be ignored here, since its EoM does not

couple with those of Aµ and the solution of its EoM in this order in α′ is simply zero. On

the other hand it is crucial to understand in detail the role of the five form part of the action

in this calculation. In the following we will motivate its ansatz, which was given in [10].

The five form F5 is not an independent field with respect to which we have to vary

the action in order to complete the set of EoM for type IIb fields relevant in this case.

Actually, the term F 2
5 in the action is the kinetic term of the 4-form C4 with dC4 = F5,

which straightforwardly leads to the EoM obtained by varying S10 with respect to C4:

d ∗ F5 = 0, (2.8)

where ∗ is the Hodge star operator. In addition one has dF5 = 0, which already reveals

the self dual structure of the solution for F5 in this order in α′.

In the case of a vanishing gauge field Aµ = 0 the self dual solution to (2.8) is

F el
5 = −4εAdS = −4

√−gAdSdt ∧ du ∧ dx ∧ dy ∧ dz, (2.9)

F5 = (1 + ∗)F el
5 , (2.10)
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where εAdS is the volume form of the AdS-part of the manifold. The forefactor −4 is chosen

in such a way that in the dimensionally reduced action we have

vol(S5)

2κ10

∫
d5x
√
− det(gAdS)

[
R5 − 8 +RS5

]
=

vol(S5)

2κ10

∫
d5x
√
− det(gAdS)

[
R5 + 12

]
.

(2.11)

Now we want to find a solution for dF5 = 0 and d∗F5 = 0 with the metric (2.2). In order

to see that F el
5 = −4

l εAdS is no longer the correct ansatz we consider the tuyzy1y3-direction

of the 6-form d ∗ F5. In the following we only consider transverse fields, which means that

only Ax is non-vanishing and Ax = Ax(u, t, z). The deduction for longitudinal fields is

analogous. Remember that we are interested in linearized differential equations for Aµ,

which we consider as tiny fluctuations of our background geometry. This means that terms

of order A2
µ or higher can be discarded, such that there are only 6 non-diagonal elements in

the matrix representation of the metric tensor gµν , namely gxy3 , gxy4 , gxy5 and interchanges

of x and yi. From our solution in the Aµ = 0 case we already know that we will at least have

one non vanishing term in the tuyzy3-direction of the 5-form ∗F5, which is proportional to

√−ggy1y1gy2y2gy3xgy4y4gy5y5(F
Aµ→0
5 )y1y2y3y4y5 . (2.12)

Note that we are not making use of the sum-convention here and henceforth. This term is

proportional to Aµ without any derivatives and has a non trivial y1-dependence, such that

we have

0 6= (d ∗ F5)tuyzy1y3 = ∂y1(
√−ggy1y1gy2y2gy3xgy4y4gy5y5(F

Aµ→0
5 )y1y2y3y4y5) + . . . (2.13)

without further directions of F5 being non zero. This term can’t be canceled by the EoM

for Aµ, since it would give a mass to our gauge field. Consequently there have to be more

components of the solution for F5, which give non-zero contributions, such that these mass

terms cancel. The symmetries of this problem should dictate, which directions of the five

form vanish and which don’t. We instead use a different approach. We start from the fact,

that our final ansatz for the C4 can only depend on the coordinates u, t, z, y1, y2, i.e. the

coordinates the metric and its fluctuations Aµ depend on. Any other dependence would

lead to non-vanishing components of d ∗ dC4. This means the only possible components of

C4 proportional to Aµ that could give a contribution to the tuyzy1y3-component of d∗dC4

are (C4)xy1y4y5 , (C4)xy2y4y5 , (C4)xzy4y5 , (C4)txy4y5 , (C4)uxy4y5 modulo permutations of their

4 indices. In the following, when we address properties of certain directions of forms, e.g.

for (C4)abcd the abcd-direction of C4, these properties’ applicabilities implicitly include all

permutations of the indices abcd with the correct signs.

Graphically we can depict all relevant contributions of these 4-form components to the

differential equations shortly written as d ∗ dC4 = 0 as shown in figure 1. Note that this

diagram is closed in the sense that plus the contribution in (2.13) all terms contributing

to the tuyzy1y3, uyzy1y2y3 , tuyzy2y3, tyzy1y2y3 and tuyy1y2y3-directions of d ∗ F5 are

depicted and (C4)xy1y4y5 , (C4)xy2y4y5 , (C4)xzy4y5 , (C4)txy4y5 , (C4)uxy4y5 do not contribute

to any other directions of d ∗ F5. The next important observation is that (d ∗ F5)uyzy1y2y3 ,

(d∗F5)tyzy1y2y3 and (d∗F5)tuyy1y2y3 cannot be set to 0 by imposing the EoM of Ax, because
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(C4)xy2y4y5
d //

d

''
d

��
d

��

(F5)txy2y4y5
∗ // (∗F5)uyzy1y3

d //

d

""

(d ∗ F5)tuyzy1y3

(F5)xzy2y4y5
∗ // (∗F5)tuyy1y3

d
66

d

��

(C4)xy1y4y5
d

''
d

��
d

��

d

��

(F5)uxy2y4y5
∗ // (∗F5)tyzy1y3

d

<<

d

��

(d ∗ F5)uyzy1y2y3

(F5)xy1y2y4y5
∗ // (∗F5)tuyzy3

d

BB

d

((
(C4)txy4y5

d

GG

d //

d

��

d

��

(F5)txy1y4y5
∗ // (∗F5)uyzy2y3

d //

d

<<

(d ∗ F5)tuyzy2y3

(F5)uxy1y4y5
∗ // (∗F5)tyzy2y3

d
66

d

((
(C4)xzy4y5

d

HH

d //

d

''

d

��

(F5)xzy1y4y5
∗ // (∗F5)tuyy2y3

d

<<

d

""

(d ∗ F5)tyzy1y2y3

(F5)uxzy4y5
∗ // (∗F5)uyy1y2y3

d

((

d

GG

(C4)uxy4y5
d

''

d //

d

DD
d

JJ

(F5)tuxy4y5
∗ // (∗F5)yzy1y2y3

d

<<

d

II

(d ∗ F5)tuyy1y2y3

(F5)uxzy4y5
∗ // (∗F5)tyy1y2y3 .

d
66

d

BB

Figure 1. Graphic depiction of the “closed” system of differential equations around the xy2y4y5-

direction of C4. In this order in α′ the right hand side should give zero.

they contain odd derivatives in the t and z direction ∂zAx, ∂tAx or ∂3
zAx, ∂

3
tAx, if we have

only even derivatives in (d ∗ F5)tuyzy1y3 .

From the requirement that there are no mass terms in the EoM for Ax we can deduce

from (2.13) and the form of F
Aµ→0
5 that (∗F5)tuyzy3 is proportional to sin(y1)2 and has no

y2-dependence. Therefore, (C4)xy1y4y5 doesn’t contribute to (d∗F5)tuyzy1y3 and (C4)xy2y4y5
doesn’t contribute to (d ∗ F5)tuyzy2y3 . Thus, it is legal to choose (C4)xy1y4y5 = 0. This

leads to the beautiful result that in diagram 1 the contributions of (C4)xzy4y5 , (C4)txy4y5 ,

(C4)uxy4y5 to (d ∗ F5)tuyzy1y3 have the same form as those of (C4)xy2y4y5 and are indistin-

guishable in the final EoM (d ∗ F5)tuyzy2y3 = 0 , which means it is a legitimate ansatz to

set them to 0 and solve (d∗F5)tuyzy2y3 = 0 for (C4)xy2y4y5 . This process has to be repeated

for two further cases (remember that we only considered the off diagonal element gxy3 so
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far), which together with the self duality of the 5-form leads to the result

(F 0
5 )el = −4εAdS, (F 1

5 )el =
1√
3

3∑
i=1

d(µ2
i ) ∧ dφi ∧ ∗̄F2, (2.14)

and

F5 = (1 + ∗)((F 0
5 )el + (F 1

5 )el), (2.15)

with F2 = dA. Of course, it isn’t a coincidence that the electric part of F5 is proportional

to J ∧ ∗̄dA, with the Kähler-form of the five sphere J , and there are more and easier ways

to deduce this five form solution. Since we will have little choice but to work with similar

brute force in the O(α′3)-case, due to the complexity of the higher derivative correction

terms to the type IIb action, it is a good exercise to already do this in the lowest order in

α′. Notice that the requirement that we are allowed to make the ansatz (2.2) implies that

the EoM for Aµ can be obtained both by varying the action with respect to Aµ and from

the tuyzy1y3, tuyzy2y4,tuyzy2y5,tuyzy1y5 and tuyzy1y4-directions of d ∗ dC4 = 0, simply

by starting from the fact that the metric tensor gµν has only certain off-diagonal elements.

Varying the action with respect to Aµ leads to the following well known EoM for transverse

fields in order O(γ0)

∂2
uAx −

2u

1− u2
∂uAx +

ω̂2 − q̂2(1− u2)

u(1− u2)2
Ax = 0 (2.16)

with x̂ = x
2rh

= x
2πT for x ∈ {q, ω} and the horizon radius rh. Before we address higher

derivative corrections it is advisable to look in detail at the following calculational pre-

scription of SUGRA to obtain an effective action solely for the metric: “Take the ansatz

of the 5−form, plug it back into the action and only consider the magnetic part of your F5

and double its contribution, then vary with respect to the metric.”. In order to be able to

decide, whether we are allowed to make use of this, if we include higher derivative correc-

tions, we must understand where this prescription comes from. In the easiest case, where

we do not consider α′-corrections or gauge fields Aµ, our solution for the five form is given

in (2.9), (2.10). If we want to derive the EoM for general metric components from the type

IIb action (3.2) we, of course, are not allowed to impose a dependence of the five form on gµν

on the level of the action. Instead we have to vary the five form part of the action as follows

δ

∫
d10x
√−g

[
− 1

4 · 5!
F 2

5

]
= −1

4
δ

∫
d10x
√−g

[
gttguugxxgyygzz(F el

5 )2
tuxyz+

+ gy1y1gy2y2gy3y3gy4y4gy5y5(Fmag
5 )2

y1y2y3y4y5

]
= −1

4
δ

∫
d10x

[
−
√
gy1y1gy2y2gy3y3gy4y4gy5y5

gttguugxxgyygzz

× (F el
5 )2

tuxyz +

√
gttguugxxgyygzz

gy1y1gy2y2gy3y3gy4y4gy5y5
(Fmag

5 )2
y1y2y3y4y5

]
, (2.17)

which leads to a contribution to the EoM for gµν of the form

4

(
(−1)1+

∑5
i=1 δµyi

√−g
2

gµν − (−1)
∑5
i=1 δµyi

√−g
2

gµν
)
. (2.18)
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The same result is obtained from plugging the solution of the five form back into the action,

only considering the contribution of the magnetic part times 2. This calculation can be

performed similarly for more complicated five form solutions involving gauge fields. This

recipe, which is nothing but a calculational tool, is equivalent to the more intuitive but also

more tedious approach of treating every metric component and every 4-form component as

an independent field on the level of the action, varying with respect to all of them and solv-

ing the resulting system of EoM. One important lesson to learn here is that the justification

for this prescription requires a self dual five form and we will see in the next section, that

self duality is violated when we include higher derivative corrections (also see [5]). We don’t

want to imply that this prescription breaks down for all non self dual forms, but we are not

aware of a justification to use it to deduce the EoM for higher orders in α′. Out of caution we

will avoid this simplification in order O(α′3) and strictly following the variational principle.

3 Finite coupling corrections to the EoMs of gauge fields

Now let us start to consider higher derivative corrections to our theory. In type IIb SUGRA

this means that we have to add terms of order α′3 to the action (3.2). For this purpose we

set γ = ζ(3)
8 λ−

3
2 , with the ’t Hooft coupling λ, which is proportional to α′−

1
2 . The action

including finite λ corrections has the form

S = S10 + γSγ10 +O(γ
4
3 ), (3.1)

with

S10 =
1

2κ10

∫
d10x
√−g

[
R10 −

1

4× 5!
F 2

5

]
. (3.2)

as before and

Sγ10 =
1

2κ10

∫
d10x

√
|g10|

[
C4 + C3T + C2T 2 + CT 3 + T 4

]
. (3.3)

The expression for Sγ10 is schematical and stands for a set of tensor contractions between the

Weyl tensor C and T , a 6-tensor that takes care of higher derivative corrections containing

the five form. Explicitly the term in brackets in (3.3) is given by [5]

γW = γ

[
C4 + C3T + C2T 2 + CT 3 + T 4

]
=

γ

86016

20∑
i=1

niMi, (3.4)

with

(ni)i=1,...,20 = (−43008, 86016, 129024, 30240, 7392,−4032,−4032,−118272,

− 26880, 112896,−96768, 1344,−12096,−48384, 24192, 2386,

− 3669,−1296, 10368, 2688) (3.5)

– 7 –
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as well as

(Mi)i=1,...,20 = (CabcdC
abefCceghC

dg
f
h, CabcdC

aecfCbgehC
d
gf
h,

CabcdC
a
e
f
gC

b
fhiT cdeghi, CabcdCabceTdfghijT efhgij ,

Ca
bcdCabefTcdghijT efghij , CabcdCaecfTbeghijT dfghij

Ca
bcdCaecfTbghdijT eghfij , CabcdCaefgTbcehijT dfhgij ,

Ca
bc
dC

ae
fgTbcehijT dhifgj , CabcdCaef gTbcfhijT dehgij ,

Ca
bc
dC

ae
fgTbcheijT dfhgij , CabcdTabefghTcdeijkT fghijk,

CabcdTabefghTcdfijkT eghijk, CabcdTabefghTcdfijkT eg ihjk,
CabcdTabefghTcefijkTdghijk, TabcdefT abcdghT egijklT fij hkl,
TabcdefT abcghiT dejgklT f hkij l, TabcdefT abcghiT dgj eklT f hj ikl
TabcdefT abcghiT dgj eklT f hkij l, TabcdefT aghdijT bgkeilT chkf j l). (3.6)

The Weyl tensor Cabcd is

Cabcd = Rabcd −
1

8

(
gacRdb − gadRcb − gbcRda + gbdRca

)
+

1

72

(
Rgacgdb −Rgadgcb

)
, (3.7)

and T is given by

Tabcdef = i∇aF+
bcdef +

1

16

(
F+
abcmnF

+mn
def − 3F+

abfmnF
+mn
dec

)
, (3.8)

with two sets of antisymmetrized indices a, b, c and d, e, f . In addition the right hand side

of (3.8) is symmetrized with respect to the interchange of (a, b, c)↔ (d, e, f) [5]. Here F+

stands for the self dual part 1
2(1 + ∗)F5 of the five form. It should be noted that up to

this day it is not known, whether the terms in (3.3), which were derived in [5] using [19],

are complete. There are strong indications that this is the case, but since there is no strict

mathematical proof we included this cautionary remark.

We already know that the solution of F5 in order O(γ0) is self dual, and that in order

O(γ1) the O(γ0) part of F5 is the only contribution of F5 that enters in the higher derivative

part of the action. But we still do not have the EoMs in order O(γ) for the 4-form compo-

nents. This means that we still have to vary the action with respect to C4 and thus it makes

a difference whether F5 = dC4 or F+ enters γW . Before we start discussing the higher

derivative corrected EoMs for gauge fields, we have to determine the γ-corrected solution of

our unperturbed geometry as done in [4]. The ansatz for the metric we make is of the form

ds2
10 = −r2

hU(u)dt2 + Ũ(u)du2 + e2V (u)r2
h(dx2 + dy2 + dz2) + L(u)2dΩ2

5, (3.9)

where we are forced to give up the product structure of our manifold and admit a u-

dependent warping factor L(u) in front of the 5-sphere line element as shown in [4]. The

EoMs for our 4-form components still have the form (2.8) simply because the T -tensor

defined above vanishes on the unperturbed background. We also have

δSγ10

δF5
= 0 (3.10)

– 8 –



J
H
E
P
0
7
(
2
0
1
8
)
0
6
9

for Aµ = 0. The solution for the 5-form in order O(γ1) and without gauge fields is

F5 = (1 + ∗)F el
5 (3.11)

F el
5 =

−4

L(u)5
εγAdS, (3.12)

where εγAdS is the volume form of the γ-corrected AdS-part of our manifold. The five form

is still self dual, such that we are allowed to plug the solution for the five form back into

the action, only considering its magnetic part and doubling its contribution, which gives

1

2κ10

∫
d10x

√
− det(g10)

[
R10 −

8

L(u)10
+ γW

]
. (3.13)

The EoM for the metric components from this action yield [4]

U(u) =
(1− u2)

u

(
1 +

5u2γ

8
(−130− 130u2 + 67u4)

)
(3.14)

Ũ(u) =
1

4u2(1− u2)

(
1 + γ

(
325

4
u2 +

1075

16
u4 − 4835

16
u6

))
(3.15)

V (u) = −1

2
log(u) (3.16)

L(u) = 1 +
15γ

32
(1 + u2)u4. (3.17)

Now we are ready to introduce gauge fields to our finite λ-corrected theory. In order

to get the correct results in the limits Aµ → 0 and γ → 0 we choose the ansatz again

corresponding to a twist of the five sphere along the y3, y4, y5 angles

ds2
10 = −r2

hU(u)dt2 + Ũ(u)du2 + e2V (u)r2
h(dx2 + dy2 + dz2) + L(u)2 4Ax(u, t, z)2

3
dx2

+ L(u)2 4Ax(u, t, z)√
3

dx
(
dy3 sin(y1)2 + dy4 cos(y1)2 sin(y2)2 + dy5 cos(y1)2

× cos(y2)2
)

+ L(u)2
(
dy2

1 + cos(y1)2dy2
2 + sin(y1)2dy2

3 + cos(y1)2 sin(y2)2dy4

+ cos(y1)2 cos(y2)2dy2
5

)
, (3.18)

which we justify as follows: we will obtain the EoM for Aµ by varying the coupling cor-

rected type IIb SUGRA action with respect to the 4-form components and Aµ. Apparently

the xx-component e2V (u) + L(u)2 4Ax(u,t,z)2

3 of our metric ansatz looks like it could lead to

problems. On the one hand we know that if we would only vary the action with respect

to e.g. the xy3-component, we would obtain an EoM for Aµ that is at first glance different

from varying the action with respect to Aµ. This is because after linearizing in Aµ the A2
µ-

term of the xx-component of the metric won’t contribute to the former case, but will give

a contribution to the latter. In fact varying the
√−gR10,

√−g 1
4∗5!F

2
5 and

√−gγW -terms

in the action with respect to the xy3-component of the metric separately and inserting the

ansatz (3.18) gives mass terms. However, adding everything up leads to the same EoM for

Aµ (of course, still depending on some unknown F5-directions) as varying with respect to

Aµ, while the mass terms cancel identically.
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From now on we will work with rh = 1, which also applies for the appendix A, and

reintroduce rh wherever needed after having obtained the EoM or contributions thereto.

We know that we will end up with differential equations, where rh only appears in the

rescaled frequency ω
2rh

and momentum q
2rh

. Also setting rh = 1 simply corresponds to

rescaling t the spatial coordinates and Ax by a constant factor. Changing ω
2 to ω

2rh
in the

end corresponds to scaling back to the form of the metric given in (3.18).

Now we are prepared to determine the EoM in order O(γ) of all relevant fields i.e.

gauge fields, the five-form and, less important, the dilaton field. Since its EoM decouple,

we will ignore it henceforth. Let us start with the five-form. As in the last section its EoMs

are derived by varying the action with respect to the 4-form components with dC4 = F5.

A concise way of writing the resulting system of differential equations is

d

(
∗ F5 − ∗

2γ√−g
δW
δF5

)
= 0, (3.19)

where δW
δF5

is defined by

δW
δF5

:= 2κ10
δSγ10

δF5
. (3.20)

It is easy to obtain this by observing that for a p-form C with F = dC and an action

S =

∫
dDxL(F,∇F ) (3.21)

for C the variation δS
δC = 0 leads to an equivalent set of differential equations as

d

(
∗ 1√−g

δS

δF

)
= 0. (3.22)

The first and easiest result we can extract from (3.19) is that self duality of the five form

is broken if d ∗ 1√
−g

δW
δF5
6= 0, which is the case if Aµ 6= 0. Obviously, if F5 would still be

self dual, we had (1 − ∗)F5 = 0, but together with dF5 = 0 (3.19) would then lead to a

contradiction. This means that we cannot treat the F 2
5 -term of the action as in the previous

cases. In the following let us focus on the variation of this term with respect to Aµ.

Due to the same argument as in the first section, since we are only interested in those

terms of the final EoM, which are linear in Aµ, we can ignore O(A2
µ) parts of the metric in

F 2
5 . Contributions of terms of this form cancel identically, as they have to, since otherwise

we would get mass terms. This means that the number of F5-directions, which actually

contribute to
δ
√−gF 2

5

δAµ
(3.23)

is very restricted. As in section one, we only consider transverse fields Ax(u, t, z), with Ay =

Az = 0. This implies that the only metric components depending on Aµ, modulo terms

of order O(A2
µ), are again gxy3 , gxy4 , gxy5 , gy3x, gy4x, gy5x. Therefore, the only directions of

F5, which contribute to (3.23) in order O(γ1), are

(F5)y1y2y3y4y5 , (F5)tuxyz, (F5)tuyzy3 , (F5)tuyzy4 , (F5)tuyzy5 , (F5)xy1y2y4y5 , (F5)xy1y2y3y5 ,

(F5)xy1y2y3y4 . (3.24)
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We already know how (F5)y1y2y3y4y5 and (F5)tuxyz look like in order O(γ1) for Aµ = 0

and how these directions are modified in order O(γ0) for Aµ 6= 0. This is all the informa-

tion we need about them, when computing (3.23), since (F5)tuyzy3 , (F5)tuyzy4 , (F5)tuyzy5 ,

(F5)xy1y2y4y5 , (F5)xy1y2y3y5 , (F5)xy1y2y3y4 are zero for Aµ = 0. This means we only have to

compute (F5)tuyzy3 , (F5)tuyzy4 , (F5)tuyzy5 , (F5)xy1y2y4y5 , (F5)xy1y2y3y5 , (F5)xy1y2y3y4 up to

first order in γ from (3.19). We will return to this later, let us first finish the variation of

the rest of the action with respect to the gauge fields.

With our metric (3.18) we obtain

R10 =

(
R10

∣∣
Aµ→0

)
− L(u)2

3
FµνF

µν (3.25)

for the Ricci scalar. Varying this part with respect to Aµ is straightforward. The final part

δγ
√−gW
δAµ

(3.26)

already contains a γ-factor. Therefore, only O(γ0)-parts of the metric and F5 enter it in

order O(γ1). Knowing already the solutions for F5 with gauge fields in zeroth order in γ

allows us to compute this term immediately. One has to be careful and remember that

only the self dual part of F5 enters here. Of course, we know already, that after having

solved all EoM, we have (1 − ∗)F5 = 0 in order O(γ0). But since on the action level the

4-form components and the gauge fields are independent fields, meaning that δF5
δAµ

= 0, it

is crucial to realize, that in general

δf(1
2(1 + ∗)F5)

δAµ
6= δf(F5)

δAµ
(3.27)

for a functional f , even if 1
2(1+∗)F5 = F5 after inserting all solutions of the resulting EoM.

This is because Aµ can enter through to the Hodge dual

δ(∗F5)abcdef
δAµ

6= 0 =
δ(F5)abcdef

δAµ
(3.28)

for some directions abcdef . Let us split the work up and concentrate on the C4-part of the

higher derivative corrections first. After varying it with respect to Ax, introducing

(Ax)k(u, q, ω) =
1

2π

∫
dtdzeiqze−iwtAx(u, z, t) (3.29)

and exploiting that

γ

(
∂2
uAx −

2u

1− u2
∂uAx +

ω̂2 − q̂2(1− u2)

u(1− u2)2
Ax

)
= O(γ2) (3.30)

we obtain

64u3γ

3

(
(Ax)k(24q̂4u+q̂2(162−235u2)−60ŵ2)−(u2−1)(120q̂2u−135u2+112)(Ax)′k

)
+O(γ2)

(3.31)
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as a contribution to the differential equations, rescaled in such a way that the O(γ0)-part

has the form 8(1−u2)
3 times (2.16). We can ignore terms of the form CT 3, T 4, since we are

only interested in linearized EoMs for Ax and T = 0 on a fluctuation free metric. However,

since δT
δAµ
6= 0, we still have to determine

δγ
√−gC2T 2

δAx
and

δγ
√−gC3T
δAx

. (3.32)

Our strategy to compute the terms above will be to insert the solutions for F5 in lowest

order in γ slightly modified by replacing Aµ by a new independent function Āµ into (3.32)

F5

∣∣∣∣
Aµ→Āµ

(3.33)

and let Āµ go to Aµ after the variation, since we are not allowed to vary with respect to

Aµ appearing in F5 after inserting the O(γ0) solution of the five form. For this purpose

let us write down explicitly how this solution looks like. We start with the gauge field free

electric and magnetic part and get

(F el
5 )0 = −4

√
| det(g5)|dt ∧ du ∧ dx ∧ dy ∧ dz (3.34)

∗(F el
5 )0 = 4

√
det(gS5)dy1 ∧ dy2 ∧ dy3 ∧ dy4 ∧ dy5 + 4

√
| det(g10)|

√
| det(g5)|

×
(
gtt10g

uu
10 g

yy
10g

xy3
10 gzz10dy1 ∧ dy2 ∧ dx ∧ dy4 ∧ dy5 + gtt10g

uu
10 g

yy
10g

xy4
10 gzz10dy1 ∧ dy2

∧ dy3 ∧ dx ∧ dy5 + gtt10g
uu
10 g

yy
10g

xy5
10 gzz10dy1 ∧ dy2 ∧ dy3 ∧ dy4 ∧ dx

)
=: (Fmag

5 )0,

where g10 is the metric of the 10 dimensional manifold corresponding to an AdS-

Schwarzschild black hole times S5, g5 is the metric corresponding to the internal AdS

space and gS5 is the metric of the five sphere. The nomenclature (Fmag
5 )0 shouldn’t dis-

tract from the fact that it nevertheless depends on Aµ via gxy510 , gxy410 and gxy310 . The electric

components of the five form including the gauge field Ax(u, t, z) are explicitly given by

(F el
5 )1 = (F el

5 )1
ux + (F el

5 )1
tx + (F el

5 )1
zx (3.35)

with

(F el
5 )1

ux =
2∂uAx(u, t, z)√

3

√
| det(g5)|gxx5 guu5

(
sin(y1) cos(y1)dt ∧ dy ∧ dz ∧ dy1 ∧ dy3+

+ cos(y1)2 sin(y2) cos(y2)dt ∧ dy ∧ dz ∧ dy2 ∧ dy4 − cos(y1) sin(y1) sin(y2)2dt

∧ dy ∧ dz ∧ dy1 ∧ dy4 − cos(y1) sin(y1) cos(y2)2dt ∧ dy ∧ dz ∧ dy1 ∧ dy5

− cos(y2) sin(y2) cos(y1)2dt ∧ dy ∧ dz ∧ dy2 ∧ dy5

)
, (3.36)

(F el
5 )1

tx = −2∂tAx(u, t, z)√
3

√
| det(g5)|gxx5 gtt5

(
sin(y1) cos(y1)du ∧ dy ∧ dz ∧ dy1 ∧ dy3+

+ cos(y1)2 sin(y2) cos(y2)du ∧ dy ∧ dz ∧ dy2 ∧ dy4 − cos(y1) sin(y1) sin(y2)2du

∧ dy ∧ dz ∧ dy1 ∧ dy4 − cos(y1) sin(y1) cos(y2)2du ∧ dy ∧ dz ∧ dy1 ∧ dy5

− cos(y2) sin(y2) cos(y1)2du ∧ dy ∧ dz ∧ dy2 ∧ dy5

)
, (3.37)
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(F el
5 )1

zx = −2∂zAx(u, t, z)√
3

√
| det(g5)|gxx5 gzz5

(
sin(y1) cos(y1)dt ∧ dy ∧ du ∧ dy1 ∧ dy3+

+ cos(y1)2 sin(y2) cos(y2)dt ∧ dy ∧ du ∧ dy2 ∧ dy4 − cos(y1) sin(y1) sin(y2)2dt

∧ dy ∧ du ∧ dy1 ∧ dy4 − cos(y1) sin(y1) cos(y2)2dt ∧ dy ∧ du ∧ dy1 ∧ dy5

− cos(y2) sin(y2) cos(y1)2dt ∧ dy ∧ du ∧ dy2 ∧ dy5

)
. (3.38)

Analogously we write the magnetic part as

(Fmag
5 )1 = (Fmag

5 )1
ux + (Fmag

5 )1
tx + (Fmag

5 )1
zx (3.39)

with

(Fmag
5 )1

ux = −
√

det(gS5)
(

sin(y1) cos(y1)gy1y110 gy3y310 du ∧ dx ∧ dy2 ∧ dy5 ∧ dy4+

+ cos(y1)2 sin(y2) cos(y2)gy2y210 gy4y410 du ∧ dx ∧ dy1 ∧ dy5 ∧ dy3 − sin(y1)×
× cos(y1) sin(y2)2gy1y110 gy4y410 du ∧ dx ∧ dy2 ∧ dy3 ∧ dy5 − cos(y1) sin(y1)×
× cos(y2)2gy1y110 gy5y510 du ∧ dx ∧ dy2 ∧ dy4 ∧ dy3 − cos(y2) sin(y2) cos(y1)2×

× gy2y210 gy5y510 du ∧ dx ∧ dy1 ∧ dy3 ∧ dy4)
2∂uAx(u, t, z)√

3
+O(Ax(u, t, z)2), (3.40)

(Fmag
5 )1

tx = −
√

det(gS5)
(

sin(y1) cos(y1)gy1y110 gy3y310 dt ∧ dx ∧ dy2 ∧ dy5 ∧ dy4+

+ cos(y1)2 sin(y2) cos(y2)gy2y210 gy4y410 dt ∧ dx ∧ dy1 ∧ dy5 ∧ dy3 − sin(y1)×
× cos(y1) sin(y2)2gy1y110 gy4y410 dt ∧ dx ∧ dy2 ∧ dy3 ∧ dy5 − cos(y1) sin(y1)×
× cos(y2)2gy1y110 gy5y510 dt ∧ dx ∧ dy2 ∧ dy4 ∧ dy3 − cos(y2) sin(y2) cos(y1)2×

× gy2y210 gy5y510 dt ∧ dx ∧ dy1 ∧ dy3 ∧ dy4)
2∂tAx(u, t, z)√

3
+O(Ax(u, t, z)2), (3.41)

(Fmag
5 )1

zx = −
√

det(gS5)
(

sin(y1) cos(y1)gy1y110 gy3y310 dz ∧ dx ∧ dy2 ∧ dy5 ∧ dy4+

+ cos(y1)2 sin(y2) cos(y2)gy2y210 gy4y410 dz ∧ dx ∧ dy1 ∧ dy5 ∧ dy3 − sin(y1)×
× cos(y1) sin(y2)2gy1y110 gy4y410 dz ∧ dx ∧ dy2 ∧ dy3 ∧ dy5 − cos(y1) sin(y1)×
× cos(y2)2gy1y110 gy5y510 dz ∧ dx ∧ dy2 ∧ dy4 ∧ dy3 − cos(y2) sin(y2) cos(y1)2×

× gy2y210 gy5y510 dz ∧ dx ∧ dy1 ∧ dy3 ∧ dy4)
2∂zAx(u, t, z)√

3
+O(Ax(u, t, z)2). (3.42)

The complete solution of the five form F5 in order O(γ) is then

F5 = (Fmag
5 )1 + (Fmag

5 )0 + (F el
5 )1 + (F el

5 )0. (3.43)

One easy way of testing this five form solution is to compute F 2
5 , which turns out to be

zero. This is good news, since the Hodge star operator fulfills for any five form F :

F ∧ ∗F = F 2ω̃, (3.44)

where ω̃ is the 10 form

ω̃ = dt ∧ du ∧ dx ∧ dy ∧ dz ∧ dy1 ∧ dy2 ∧ dy3 ∧ dy4 ∧ dy5. (3.45)
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Since F5 is self dual in this order in α′, we thus have to get F 2
5 = 0. It should be noted

that this, of course, does not hold on the action level, even in the lowest order in α′, since(
δ

δAµ

∫
d10√−g(F5|Aµ→Āµ)2

)
Āµ→Aµ

(3.46)

does not have to vanish even if F 2
5 = 0 after inserting its solution. Now let us think about

which directions of ∗F5 can actually enter (3.32). The only way Aµ can enter C3T and

C2T 2 is through the fact that

∂ ∗ (F5|Aµ→Āµ)

∂Aµ

∣∣∣∣
Āµ→Aµ

6= 0, (3.47)

Aµ-dependent terms entering directly via the metric components present in the contractions

of C and T , the Weyl tensor itself and the covariant derivative in (3.8). We claim that all

we have to care about, regarding ∗(F5|Aµ→Āµ) in (3.47) is

F5|Aµ→Āµ +
∗(F el

5 )0 −
(
(Fmag

5 )0|Aµ→Āµ
)

2
+
∗
(
(Fmag

5 )0|Aµ→Āµ
)
−
(
∗ (Fmag

5 )0|Aµ→Āµ
)

2
.

(3.48)

We also checked this explicitly by computing the unsimplified contribution of ∗(F5|Aµ→Āµ)

and explain in the following why this holds.

It is easy to see that this is true for the first term in (3.32). There, the argument that

T = 0 for γ = 0 and Aµ = 0 forces all contribution of order O(A2
µ), O(AµĀµ) or O(Aµ∂Āµ)

from ∗(F5|Aµ→Āµ) to C2T 2 to be negligible in (3.32). But what about potential terms of

order O(Aµ∂Āµ) in ∗(F5|Aµ→Āµ) entering C3T ? In fact, since the perturbation of the

metric by Aµ was chosen in such a maximally symmetric way, in order to avoid coupling

to scalars in order O(γ0), it is rather straightforward to check that the terms of order

O(Aµ∂Āµ) from ∗((Fmag
5 )1|Aµ→Āµ) cancel identically. Considering the definition of the

tensor T one sees that the terms ∗((F el
5 )1|Aµ→Āµ) of order O(Aµ∂Āµ) only enter those

components Tabcdef , where at least one of a, b, c, d, e is in {y1, . . . , y5}. The parts of T
coming from ∗((F el

5 )1|Aµ→Āµ) in order O(Aµ∂Āµ), have to be contracted with the Weyl-

tensor part of (3.32) computed from the γ = 0-Aµ = 0-metric. In this case the Weyl tensor

splits up block-diagonally into an AdS-part and a S5-part, the latter of which is zero since

the 5-sphere is Weyl flat. Summing up the contributions of both terms in (3.32) to the

EoM obtained by variation with respect to Aµ one gets

16

9
u3
(
349q̂2(Ax)k − 1111

(
u2 − 1

)
∂u(Ax)k

)
+O(γ2). (3.49)

This term is rescaled in the same way as (3.31).

Now we have to solve (3.19) for the last 6 elements of (3.24). Again, as in the case

γ = 0, the strategy is to find closed diagrams such as figure 1, for which

(F5)tuyzy3 , (F5)tuyzy4 , (F5)tuyzy5 , (F5)xy1y2y4y5 , (F5)xy1y2y3y5 , (F5)xy1y2y4y4 (3.50)

contribute to all considered directions of d ∗ F5 on the right side of the diagram and no

more. After that one has to find all directions of C4 that contribute to these components
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of d ∗ F5 and make sure that the directions of C4 on the left side of the diagram don’t

contribute to another direction of d ∗ F5, otherwise expand the diagram and repeat. Let’s

assume we thereby collect a set of directions {aibicidieifi}i∈I for which (d ∗ F5)aibicidieifi
with i ∈ I appears on the right side of one of the diagrams. This means that we have to

compute the components {(
d ∗ 2γ√−g

δW
δF5

)
aibicidieifi

}
i∈I

(3.51)

in order to be able to solve for all needed directions of (3.19). What we have to keep in

mind is that in this order in γ the five form is no longer self dual, such that we cannot

simply skip one half of the diagrams and determine the remaining directions of F5 with the

help of the duality argument, as done in order O(γ0). Since diagram 1 was found without

using that we are in order O(γ0), we can simply reuse it now. But as said above we also

have to find its dual diagram, which is given by figure 2. Here the unlabeled arrows in the

diagram on the left and right depict derivatives. Due to (3.19) the nonzero directions of

d ∗ 2γ√
−g

δW
δF5

determine the y1, y2-dependence of the components of C4 proportional to γ on

the left hand side of the diagram. The form of the solution of the five form in order O(γ0),

which gives the y1, y2-dependence of d ∗ 2γ√
−g

δW
δF5

+O(γ2) already illustrates, what becomes

more apparent once one calculated the

uxy1y2y4y5, txy1y2y4y5, uxzy1y4y5, tuxy2y4y5, tuxy1y4y5, txzy2y4y5,

txzy1y4y5, uxzy1y4y5, xzy1y2y4y5, tuxzy4y5−

directions of d ∗ 2γ√
−g

δW
δF5

+ O(γ2), namely that all directions of C4 on the left hand side,

which contain a y2 and all directions of d∗F5 on the right hand side, which contain a y1 and

no y2 can be ignored, since all are trivially zero in order O(γ1). More specifically we have(
d ∗ 2γ√−g

δW
δF5

)
abcy1y4y5

= O(γ2) (3.52)

for all a, b, c ∈ {t, u, x, y, z, y1, y3, . . . , y5}. Before we turn to actually solving the differential

equations linked to this diagram, its dual and four further ones let us shortly address how

to compute the differential form δW
δF5

. To begin with, one interesting observation is that

δW
δF5

=
1

2

(
1− ∗

)
δW
δF+

5

, (3.53)

since only the self dual part of F5 is entering γW. This relation could be used to test

the result, once we have it, since it means that whatever we will obtain for δW
δF5

has to be

anti-self dual. In order to vary W or more specifically∫
dx10√−gγW (3.54)

we think of W as a map

W : Ω5(M)→ C∞(M) (3.55)
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(C4)tyzy3
//

''

��

(F5)tuyzy3
∗ // (∗F5)xy1y2y4y5

//

))

��

(d ∗ F5)uxy1y2y4y5

(C4)tuyy3

77

��

��

(F5)tyzy1y3
∗ // (∗F5)uxy2y4y5

55

))

""

(d ∗ F5)txy1y2y4y5

(C4)uyzy3

??

��

��

(F5)tyzy2y3
∗ // (∗F5)uxy1y4y5

<<

""

��

(d ∗ F5)uxzy1y4y5

(C4)yzy1y3

??

��

��

(F5)tuyy1y3
∗ // (∗F5)xzy2y4y5

��

55

""

(d ∗ F5)tuxy2y4y5

(C4)tyy1y3

DD

77

��

(F5)tuyy2y3
∗ // (∗F5)xzy1y4y5

""

��

��

(d ∗ F5)tuxy1y4y5

(C4)tyy2y3

��

DD

77

(F5)uyzy1y3
∗ // (∗F5)txy2y4y5

//

<<

EE

(d ∗ F5)txzy2y4y5

(C4)yzy2y3
//

GG

''

(F5)uyzy2y3
∗ // (∗F5)txy1y4y5

//

<<

GG

(d ∗ F5)txzy1y4y5

(C4)uyy1y3

??

GG

��

(F5)yzy1y2y3
∗ // (∗F5)tuxy4y5

BB

EE

""

(d ∗ F5)uxzy1y4y5

(C4)uyy2y3

GG

??

''

(F5)tyy1y2y3
∗ // (∗F5)uxzy4y5

HH

))

55

(d ∗ F5)xzy1y2y4y5

(C4)yy1y2y3
//

77

??

(F5)uyy1y2y3
∗ // (∗F5)txzy4y5

//

BB

EE

(d ∗ F5)tuxzy4y5

Figure 2. Depiction of the system of differential equations, dual to those of diagram 1. Contribu-

tions of off-diagonal elements of the metric tensor to the Hodge duals were left out for simplicity in

this figure, of course, they are included in the calculation. The right hand side of the diagram has

to be equal to the corresponding directions of d
(
∗ 2γ√−g

δW
δF5

)
.

from the set of the 5-forms on the manifold M, which denotes the pseudo-riemannian

manifold with metric (3.18), to C∞(M). In order to compute the component

(
δW
δF5

)µ1,...,µ5
we take the limit

lim
α→0

1

α

∫
dx10√−gγ

(
W [F5 + αF (u, t, z, y1, y2)dxµ1 ∧ · · · ∧ dxµ5 ]−W [F5]

)
, (3.56)

where we can already insert the O(γ0)-solution of F5. We can interpret (3.56) as a
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variation of the functional

S : C∞(M)→ R

F 7→
∫
dx10√−gγW [F5 + Fdxµ1 ∧ · · · ∧ dxµ5 ]. (3.57)

The argument, why we are allowed to assume that F only depends on u, t, z, y1, y2 is the

same is in the case O(γ0), alternatively one easily verifies that

∂µ
∂S
∂∂µF

= 0, ∂2
µ

∂S
∂∂2

µF
= 0 (3.58)

for µ ∈ {x, y, y3, y4, y5}. The results for all directions of δW
δF5

needed to compute the EoM

obtained by evaluating (3.19) for the components corresponding to the right hand side of

diagram 1 and 2 in order O(γ) can be found in the appendix. It should be mentioned that

due to the anti-self-duality of δW
δF5

the components given in section A are all you need to

compute diagrams 1, 2. The other directions can be computed from those or vanish, since

we only consider EoM, which are linearized in Ax.

Now let us sketch how to solve this zoo of differential equations. One important

observation is that the xy2y3y4-direction of C4 plays a crucial role. Considering which

components of δW
δF5

are zero and which actually give contributions to (3.19) shows that the

argument we applied in the first section, when discussing diagram 1, for why the xy2y3y4-

direction of C4 is the only non-zero one on the left hand side of diagram 1, doesn’t change

if we include α′-corrections. Thus, diagram 1 reduces to (3.59) in order O(α′3).

(C4)xy2y4y5
d //

d

''
d

��
d

��

(F5)txy2y4y5
∗ // (∗F5)uyzy1y3

d // (d ∗ F5)tuyzy1y3

=

��

(F5)xzy2y4y5
∗ // (∗F5)tuyy1y3

d
55

(F5)uxy2y4y5
∗ // (∗F5)tyzy1y3

d

;;

(F5)xy1y2y4y5
∗ // (∗F5)tuyzy3

d

AA

(
d
(
∗ 2γ√
−g

δW
δF5

))
tuyzy1y3

(3.59)

Our ansatz for (C4)xy2y4y5 will be of the form

(C4)xy2y4y5 = cos(y1)4 sin(2y2)
Ax + γC(u, q, ω)√

3
. (3.60)

The y1, y2-dependence is dictated by the form of the components of δW
δF5

listed in section A

and the requirement that ∂yiA = 0. It is possible to find a similar simplification for its

dual diagram again obtained by analysing the y1, y2-dependence of the relevant directions

of δW
δF5

. This has to be repeated for the remaining diagrams in order to solve the EoM for

the relevant directions of F5, obtained by varying the action with respect to Aµ. However,
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this very tedious calculation can be abbreviated by an elegant shortcut, which we present

in the following, see also [18]. We took the effort to calculate the EoMs using both methods

to test our results.

There is also a slightly different approach to solve (3.19), which relies on the observation

that for every solution F5 also

F5 + γF̃ (3.61)

with

dF̃ = 0, d
(
1− ∗

)
F̃ = 0, (3.62)

solves (3.19) and fulfills that there is a four form C4 with dC4 = F5 + γF̃ . Let F̃5 be a

solution of (3.19) with dF̃5 = 0. Considering the de Rham-cohomology of our manifold

shows that the EoM for the five form can be written as(
− F̃5 + ∗F̃5 − ∗

2γ√−g
δW
δF5

)
= γdH4, (3.63)

for some 4-form H4. Since δW
δF5

is anti-self dual, also dH4 has to be anti-self dual. So

d
(
1− ∗

)
dH4 = 2ddH4 = 0, (3.64)

such that we can choose F̃ = −dH4
2 , set

F̃5 = F5 + γF̃ (3.65)

for another closed solution F5 of (3.19) and thus get

F5 = ∗
(
F5 −

2γ√−g
δW
δF5

)
. (3.66)

The differential equation depicted in diagram (3.59) can be deduced from the tuyzy3,

uxy2y4y5, txy2y4y5 and zxy2y4y5-direction of (3.66). In addition it helps us to express the

tuyzy3-direction of F5 by its xy1y2y4y5-component and the appropriate direction of W
δF5

.

In an analogous way this links the pairs

{(xy1y2y3y5, tuyzy4), (xy1y2y3y4, tuyzy5)}, (3.67)

where it turns out that up to a different y1, y2-dependence the directions tuyzyi with

i ∈ {3, 4, 5} of F5 are identical, the same is valid for their dual partners. This is great

news, since now we can reduce the entire coupled set of EoM for the 4-form components

and the gauge field Aµ to a rather simple system of two coupled differential equations

for Aµ and the xy2y4y5-component of C4. Exploiting the relations between the directions

tuyzyi with i ∈ {3, 4, 5} of the five form and the analogous ones for their dual partner gives

after a tedious calculation

− 1

4 · 5!

∂
√−gF 2

5

∂Ax
=

16γC(u, q, w)

3u2
+

4(F5)tuyzy3√
3 sin(y1)2

. (3.68)
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Applying (3.66) gives

(F5)tuyzy3 =
√−ggxxgy1y1gy2y2gy4y4gy5y5

(
4 sin(y1) cos(y1)3 sin(2y2)

γC(u, q, ω)√
3

− 2γ√−g

( W
δF5

)
xy1y2y4y5

)
. (3.69)

Adding up everything we can finally write down the differential equation obtained by

varying with respect to Ax. For this purpose let us define

Ax(u, z, t) = A0
x(u, z, t) + γA1

x(u, z, t) (3.70)

Aix(u, z, t) =

∫
d4k

(2π)4
Ãix(u, q, w)e−iωt+iqz (3.71)

with Ãx(u, q, w) =: (Ax)k, k = (w, q). The EoM for (A1
x)k is given by

∂2
u(A1

x)k +
2u

−1 + u2
∂u(A1

x)k +
(q̃2(−1 + u2) + ω̃2)

u(−1 + u2)2
(A1

x)k +
1

(48u2(−1 + u2)2)
(u3

× (−9216q̃4u3(−1 + u2) + q̃2(−3900 + 73507u2 − 145342u4 + 75735u6) + 15(520

− 1061u2 + 435u4)w̃2)(A0
x)k − 2(−1 + u2)(96C(u, q, ω) + u3(−1 + u2)(3900

− 23846u2 − 23040q̃2u3 + 675u4)∂u(A0
x)k)) = 0. (3.72)

where ω̃ = ω
2rh

, q̃ = q
2rh

. The coupling corrected relation between horizon radius rh and

temperature T is given by rh = πT (1 − 265
16 γ + O(γ2)). If we introduce in (3.72) rescaled

variables ω̂ = ω̄
2πT and q̂ = q̄

2πT we obtain a differential equation whose characteristic

exponents simplify to ± iω̂
2 also in order O(γ). From diagram (3.59) or the tuyzy3, uxy2y4y5,

txy2y4y5 and zxy2y4y5-components of (3.66) we obtain the differential equation

∂2
u(A1

x)k +
2u

−1 + u2
∂u(A1

x)k +
q̃2(−1 + u2) + w̃2

u(−1 + u2)2
(A1

x)k +
1

48u2(−1 + u2)2

(
u3(−9216q̃4u3

× (−1 + u2) + q̃2(−3900 + 116931u2 − 260414u4 + 147383u6) + 3(2600− 10969u2

+ 7839u4)w̃2)(A0
x)k + 2(24(−2 + 2u2 + q̃2u(−1 + u2) + uw̃2)C(u, q, ω)− u2(−1 + u2)

× (u(−1 + u2)(3900− 36702u2 − 32480q̃2u3 + 20895u4)∂u(A0
x)k − 24(2u∂uC(u, q, ω)

+ (−1 + u2)∂2
uC(u, q, ω))))

)
= 0. (3.73)

The boundary conditions of these EoMs are that Ax and C, respectively the xy1y2y4y5-

component of the five form, have to be infalling at the horizon. The zeroth expansion

coefficient of the near horizon expansion of Ax/(1− u)−
iω̂
2 can be set to 1, since it doesn’t

affect any physical observables on the boundary due to the form of (4.1). The missing

condition is that C(u, q, ω) has to vanish on the boundary, which is a regular singular

point of our small system of EoMs. More explicitly this can be obtained from the two

different possible boundary behaviours of C(u, q, ω) given by

C(u, q, ω) =
C−2

u2
+O(u−1) and C(u, q, ω) = u3C3 +O(u4), (3.74)
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extracted from the near boundary analysis of the differential equation obtained by

subtracting (3.73) from (3.72). Equation (3.72) shows that the former choice would lead

to a gauge field Ax, which diverges at the boundary. This means our missing boundary

condition is that

C−2 = 0, (3.75)

which in this case implies that C−1 = . . . C2 = 0, such that C(u, q, ω) = u3C3 +O(u4).

4 Results

Let us now turn to determining α′-corrections to several observables such as the conduc-

tivity, photoemission rates, quasinormal mode spectra as well as in and off-equilibrium

spectral densities. These were first computed in [9] using the results of [1–3], which we now

argue to be incorrect. Consequently also the results for observables, which can be found in

the literature, computed with the γ-corrected EoM for gauge fields change. The differences

are quite substantial and are caused by several disagreements: most importantly a missing

factor i in front of some components of the five form, when working in Euclidean signature,

several missing terms, when computing the Hodge duals, coming from the off-diagonal el-

ements of the metric tensor, and the fact that the five form used by the authors of the

papers [1–3] did not solve it’s α′-corrected EoM. Note that in Euclidean signature there

is no self duality, since the Hodge star operator squares to −1 there, such that self dual

five forms transform to imaginary anti-self-dual forms ∗FE
5 = −iFE

5 . Continuing to work

with (1 + ∗)F el
5 implies that the five form doesn’t square to zero anymore, which means it

doesn’t even solve its EoM in the lowest order in α′. Also the Lorentz-signature version of

the coupling corrected five form given in [1–3] is not a solution of (3.19).

4.1 Quasinormal modes and their coupling corrections

Quasinormal modes (QNM) describe the response of the system to infinitesimal pertur-

bations. In our case these perturbations correspond to tiny twists of the S5-part of our

geometry, from which we deduced the α′-corrected differential equations (3.72) and (3.73)

for gauge fluctuations. The spectrum of the complex QNM-frequencies ω is the discrete

spectrum of frequencies, at which the propagator of Ax has poles. The negative inverse

of the imaginary part of ω gives the thermalization time τ , such that one can expect that

increasing γ or decreasing the ’t Hooft coupling will decrease the absolute value of the

imaginary part of each QNM frequency ω. Following [6] one can calculate the retarded

propagator for transverse fields Π⊥ with the help of the prescription

Π⊥ = −N
2T 2

8
lim
u→0

(Ax)′k
(Ax)k

. (4.1)

such that

Cret
µν = P TµνΠ⊥ + PLµνP‖, (4.2)

with Pµν = ηµν − kµkν
k2

, P Tij = δij − kikj
k2

and zero elsewhere, PLµν = Pµν − P Tµν . Here Cret
µν

denotes the retarded electromagnetic current-current correlator

Cret
µν = −i

∫
d4xeikxθ(t)〈[Jem

µ (x), Jem
µ (0)]〉. (4.3)
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In the following we will present several techniques with which we can extract the α′-

corrected spectra for different values of q using (3.72) and (3.73). Independent from the

approach used the first information about the solutions we have to exploit is their near

horizon behaviour

A0
x(u, q̂, ω̂) = (1− u)−

iω̂
2 Φ0(u, q̂, ω̂) (4.4)

A1
x(u, q̂, ω̂) = (1− u)−

iω̂
2 Φ1(u, q̂, ω̂) (4.5)

C(u, q̂, ω̂) = (1− u)−
iω̂
2 Φ2(u, q̂, ω̂). (4.6)

Let us start with an easy way to solve (3.72) and (3.73) with this ansatz, where the prize

we pay is that the precision of our results scales more or less logarithmically with effort.

We simply expand the resulting differential equations around the horizon and require them

to hold order by order in (1−u). By going to sufficiently large orders and demanding that

Φ0(0, q̂, ω̂) + γΦ1(0, q̂, ω̂) = 0, (4.7)

we can extract the α′-corrected spectra for arbitrary values of q.

Alternatively, we can apply spectral methods to reduce our system of differential equa-

tions to a generalized eigenvalue problem. For this purpose we use the same notation as

in (4.6) and subtract (3.72) from (3.73) to end up with a differential equation only con-

taining Φ0 and Φ2. We set Φ2 = uΦ̃2 and

Ax(u, q̂, ω̂) = (1− u)−
iω̂
2 Φ(u, q̂, ω̂) (4.8)

and obtain after an expansion in γ(
∂2
uΦ̃2 +

2 + iuŵ + iu2(4i+ ŵ)

u− u3
∂uΦ̃2 +

1

4u2(−1 + u)(1 + u)2
(24 + u2(8 + 4q̂2 − 10iŵ

− 3ŵ2) + 4u(6 + q̂2 − iŵ − ŵ2)− u3(−8 + 6iŵ + ŵ2))Φ̃2 +
u2

12(−1 + u2)

(
− i((3214

+ 3214u− 5055u2 − 5055u3 + 4248iŵ)ŵ + 8q̂2(−1357i+ 295uŵ + u2(2239i+ 295ŵ)))Φ

− 2(−1 + u2)(−3214− 2360q̂2u+ 5055u2)∂uΦ
))
γ = O(γ2) (4.9)

and

∂2
uΦ− i(ŵ + u(2i+ ŵ))

−1 + u2
∂uΦ +

4q̂2(1 + u)− ŵ(4ŵ + u2(2i+ ŵ) + u(2i+ 3ŵ))

(4(−1 + u)u(1 + u)2)
Φ

+
γ

48u(−1 + u2)

(
(−9216q̂4u5 + i(3900u3 − 23846u5 + 675u6 + 675u7 + 30u2(130 + 313iŵ)

+ u4(−23846− 6525iŵ) + 1590iŵ)ŵ + q̂2(1590 + 3900u2 − 69607u4 + 45u6(1683

− 512iŵ)− 23040iu5ŵ))Φ− 2(96Φ̃2 + u2(−1 + u2)(3900− 23846u2 − 23040q̂2u3

+ 675u4)∂uΦ)
)

= O(γ2). (4.10)

We can solve Φ0 for a given value of ω̂ at a certain q̂ using spectral methods almost up

to arbitrary numerical precision, due to the simplicity of the order O(γ0)-EoM. It would
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q̂ = 0 γ = 0 O(γ1)-correction

1. QNM 1− i γ(646.132− 207.258i)

2. QNM 2− 2i γ(4896 + 495.5i)

q̂ = 1 γ = 0 O(γ1)-correction

1. QNM 1.54719− 0.84972i γ(298.289 + 208.678i)

2. QNM 2.39890− 1.87434i γ(2357 + 1916i)

Table 1. The first two QNM frequencies at q = 2πT (right) and q = 0 (left) normalized by 2πT

and their O(γ)-corrections, which turn out to be more than one order of magnitude smaller then

found in [9], which was based on the EoM derived in [1–3].

even be possible to find analytic solutions in the lowest order in γ, but for our purposes

an approximation by Chebyshev-cardinal functions is sufficient, if we choose the order

sufficiently high or the Gauss-Lobatto grid sufficiently dense.

We also approximate Φ and Φ̃2 in the following by a truncated expansion in cardinal

functions on a Gauss-Lobatto grid{
− cos

(πn
M

)}
n∈{0,...,M}

(4.11)

on the interval [−1, 1] for 2u− 1, u ∈ [0, 1], respectively with a grid{
1− cos(πnM )

2

}
n∈{0,...,M}

(4.12)

on the interval [0, 1]. More explicitly we set for a certain value of q̂

Ψ(u, ω̂) =
M∑
i=0

aΨ
i (ω̂)c(i, 2u− 1), (4.13)

with c(i, x), x ∈ [−1, 1] being the i-th cardinal function for the grid (4.11) and Ψ ∈
{Φ , Φ̃2}. Now we can bring (4.9) and (4.10) into the form of a generalized eigenvalue

problem for ω̂, if we truncate the differential equations after the first order in γ. In the

next step we also put γ on a appropriate Gauss-Lobatto grid and solve the generalized

eigenvalue problem for each grid point. At γ = 0 the slopes of the resulting curves of

partially resummed poles for different values of γ in the complex plane gives us the O(γ1)-

coefficient to the corresponding λ =∞-modes. For the first modes these curves are depicted

in figure 5. By going to sufficiently dense grids we obtain identical values as with the simpler

Frobenius-method discussed above.

4.2 Finite coupling corrections to the plasma conductivity and photoemission

rate

In order to compute the spectral density respectively the photoemission rate and its finite

coupling corrections from our transverse field Ax we simply need the retarded Greens

function, or more precisely its imaginary part. The transverse components of the spectral

density are given by [7, 9]

χ⊥ = −4Im(Π⊥). (4.14)
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I
m
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)

Figure 3. The first QNM frequencies at q = 2πT (right) and q = 0 (left) normalized by 2πT for

λ =∞ (blue) and their O(γ)-corrections for λ = 500 (red) and λ = 300 (brown).

From the low energy regime respectively the first order coefficient of (4.14) in q̂ with

lightlike momentum we can immediately read off the correction to the conductivity. The

correction factor to the differential photon production rate can be computed via the relation

between the spectral function χ and the Wightman function [9]

Π<
µν = n(k)χµν(k), (4.15)

with n(k) = 1/(e
k
T − 1), such that

dΓ

dk
=
αemn(k)

π
kχµµ. (4.16)

To obtain the low energy limit of (4.14), more specifically the finite coupling correction to

the conductivity, we only have to solve (3.72) and (3.73) to order O(γ) and O(ω̂). In this

case the solution for C(u, q̂, ω̂) is simply

C(u, q̂, ω̂) =

(
95u3

8
− 959u5

24
+

337u7

12

)
∂uA

0
x +O(ω̂2), (4.17)

which means that our EoM for Ax simplifies drastically to

∂2
uAx+

u

8(−1 + u2)

(
16∂uAx+γ(920−7970u2 +7275u4−225u6)∂uAx

)
= O(γ2, ω̂2) (4.18)

Here it suffices to apply Frobenius methods, since after only a couple of orders in (1 − u),

we obtain stable results. We expand the functions Ax at the horizon

Ax = (1− u)−
iω̂
2

K∑
i=1

(ai(1− u)i + γbi(1− u)i), (4.19)

with K sufficiently large. Inserting this ansatz into (4.18) and solving the resulting equation

order by order in (1 − u) as well as order by order in γ and only up to order O(ω̂) gives
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us a low energy approximation of the solution of Ax near the horizon. We continue this

computation until we have reached a K for which the numerical results for the conductivity

and its γ correction stabilize. We counterchecked our findings by calculating Ax from (3.72)

and (3.73) with the help of spectral methods and took the low energy limit of (4.14). For

the spectral density in the low energy regime and lightlike momenta we find

χω=q
⊥ =

N2T 2

2

(
(1 + 125γ)q̂ +O(q̂2)

)
+O(γ2). (4.20)

This means that the conductivity σ gets a γ-correction factor of (1+125γ). This is identical

to the finite coupling correction factor for the photoemission rate at 1 � ω, which coincides

with the expectations of [7] for the low frequency limit, which predicted a growing behaviour

for decreasing ’t Hooft coupling in this regime.

Let us now turn to the large ω calculation. This is interesting, since originally the

authors of [7] expected the photoemission rate to decrease with decreasing λ. However, the

authors in [1–3] found a correction factor of (1 + 5γ), which would indicate the contrary

behaviour. Thus we want to see if this behaviour still holds, when using the correct

EoM. We choose to determine the functions Φ0, Φ1, Φ2 as an approximation in cardinal

functions and compute the large ω limit numerically in the zero-virtuality case ω = q. By

using sufficiently large Gauss-Lobatto grids we find the following large-q behaviour

χω=q,q�1
⊥ =

N2T 2

4

35/6Γ(2
3)

Γ(1
3)

(
(1− 80.39γ)q̂2/3 + . . .

)
+O(γ2), (4.21)

where dots stand for terms of order q̂α with α < 2
3 . In the same way as before we can read

off the correction factor to the photoemission rate from this result.

We now want to compare our small and large ω limits with the analogous ones for

the spectral density in the spin-2 channel. A quite similar calculation there (as obtained

in [8]) gives for 1 � ω a correction factor (1 + 135γ). We performed a numerical large

ω analysis of the spectral density in the lightlike case also in this channel and obtained a

correction factor of (1− 290
3 γ) there (actually our result was of the form (1−γ96.66666 . . . 7)

with sufficiently many digits that we can write 290
3 ). To sum up we find a quite similar

behaviour of the γ-corrected spectral density and photoemission rates in the spin 1 and

spin 2 channel, whose sign of the correction factors coincide in both limits with the intuitive

expectations, respectively the expectations of [7].

4.3 Finite coupling corrections to the off-equilibrium spectral density

Let us finally turn to determining the γ-corrected on-shell photoemission spectrum in the

off-equilibrium case. For this purpose we consider the simplified setting of [9]. There,

the authors consider an infinitely thin shell, collapsing towards its horizon in the static

coupling-corrected AdS5-background. It is assumed that the shell is collapsing so slowly

that its radial motion can be neglected. Let us start with the γ = 0 case. The motivation

for the form of the metric we use is given by Birkhoff’s theorem, stating that outside of

the shell the solution for the Einstein equations is the AdS-Schwarzschild metric, whereas
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inside of the shell we have a pure AdS-space. This implies

ds2 =
r2
h

u2

(
f(u)dt2 + dx2 + dy2 + dz2

)
+

1

4u2f(u)
du2 (4.22)

with

f(u) =

{
f−(u) = 1 if u > us

f+(u) = 1− u2 if us > u.
(4.23)

and us =
r2h
r2s

, where rs is the radial position of the shell. Requiring that the metric, solutions

for fluctuations etc. are continuous at the position of the shell will give us junction or

matching conditions. In order O(γ) the metric outside of the shell will be (3.18), whereas

inside of the shell we have no coupling corrections at all [8]. From this we can immediately

read off the matching condition for the frequency

ω̂+ = ω̂−
√
U(us)us, (4.24)

by comparing the prefactors of dt2 in the line elements inside of and outside of the shell.

Here and in the following subindices + denote quantities outside of the shell and subindices

− inside of the shell. From the requirement that the metric has to be continuous, it follows

that dx+ = dx− and the same for y and z. The calculation we perform in the following

is identical to the one, where we require the continuity of the gauge invariant combination

ωAx. For everyone, who doesn’t want to work with Ax instead of E = ωAx, can think of A,

which is the notation for the transverse gauge fields we use in the following, as A = ωAx.

Since we have t− =
√
U(us)ust+ and since we require A to be continuous at the shell

position, we obtain

A+(u, z, t)
∣∣
u=us

= A−(u, z, t
√
U(us)us)

∣∣
u=us

, (4.25)

thus

Ā+(u, q, ω+)
∣∣
u=us

=

∫
dte−iω+tÃ+(u, q, t)

∣∣
u=us

=

∫
dt√

U(us)us
e−iω−tÃ−(u, q, t)

∣∣
u=us

=
Ā−(u, q, ω−)√

U(us)us

∣∣∣∣
u=us

, (4.26)

where functions with tilde Ã± and Ā± stand for the Fourier transformed ones. In the

following we will write simply A for Ā and Ã and indicate to which functional space A

belongs by the variables it depends on.

For derivatives in t-direction things are similarly easy. We have

∂t−A−(us, z, t−) =
1√

U(us)us
∂t+A−(us, z, t+

√
U(us)us) =

1√
U(us)us

∂t+A+(us, z, t+).

(4.27)

For derivatives in u-direction the junction condition turns out to be slightly more difficult

to derive. Inside of the shell the EoM for A− is given by

∂2
uA−(u, q̂, ω̂) +

(
1 +

265

8
γ

)
ω̂2 − q̂2

u
A−(u, q̂, ω̂) = 0, (4.28)
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where the γ-correction merely arises due to the modified relation between rh and T . Outside

of the shell the O(γ0) part of A is a solution to (2.16), the O(γ1) part is a solution to (3.72).

From the continuity requirement of C(u, q, ω), or the xy2y4y5-component of C4, we can

derive a relation for (C4)xy2y4y5 analogous to (4.26). Inside of the shell we have

((C4)xy2y4y5)− = cos(y1)4 sin(2y2)
A−√

3
, (4.29)

such that at u = us

((C4)xy2y4y5)+ = cos(y1)4 sin(2y2)
A+√

3

∣∣∣∣
u=us

, (4.30)

which means that the contributions of C4 to (3.72) vanish on the surface of the shell.

Therefore, at u = us we can write the EoM for A+ as

0 = ∂2
uA+(u, q̂, ω̂+)

∣∣
us

+ f1
+(us, q̂, ω̂+, γ)∂uA+(u, q̂, ω̂+)

∣∣
us

+ f2
+(us, q̂, ω̂+, γ)A+(u, q, ω̂+)

∣∣
us
,

(4.31)

whereas for A− we have

∂2
uA−(u, q̂, ω̂−)

∣∣
us

+ f−(us, q̂, ω̂−, γ)A−(u, q̂, ω̂−)
∣∣
us

= 0, (4.32)

with f1
+, f2

+ and f− chosen appropriately. Using (4.27) gives

f−(us, q̂, ω̂−, γ)A−(u, q̂, ω̂−)
∣∣
us
→
(

1 +
265

8
γ

)
ω̂2

+ − q̂2f2
m

uf2
m

A+(u, q̂, ω̂+)
∣∣
us
, (4.33)

with fm =
√
U(us)us. We now perform a coordinate transformation such that the EoM

inside and outside of the shell are of the same shape. For this purpose we choose ũ(u) such

that
d2ũ

du2
+
dũ

du
f1

+(ω̂−, u, γ, q) = 0, (4.34)

outside of the shell and ũ = u inside of it. The EoM in this new coordinate reads outside

of the shell

0 = ∂2
ũA+(u(ũ), q, ω̂+, γ) + f̃+(u(ũ), q̂, ω̂+, γ)A+(u(ũ), q, ω̂+, γ), (4.35)

with

f̃+(u(ũ), q̂, ω̂+, γ) :=

(
du

dũ

)2

f2
+(u(ũ), q̂, ω̂+, γ). (4.36)

We can read off the junction condition for ∂uA±, by considering

∂ũA− − ∂ũA+ = lim
ε→0

∫ us+ε

us−ε
∂2
ũA = 0, (4.37)

which can be achieved by choosing(
dũ

du

)∣∣∣∣
u=us

=

√(
usf2

m

)f2
+(us, q̂, ω̂+, γ)

ω̂2
+ − q̂2f2

m

(
1− 265

16
γ

)
. (4.38)
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By an analogous computation as in (4.26) we obtain

∂uA−(u, q̂, ω̂−)

∣∣∣∣
us

= fm

√(
usf2

m

)f2
+(us, q̂, ω̂+, γ)

ω̂2
+ − q̂2f2

m

(
1− 265

16
γ

)
∂uA+(u, q̂, ω̂+)

∣∣∣∣
us

. (4.39)

In the lightlike case this explicitly means√
U(us)us

(√
1− u2

s −
1

96

(
u2
s

√
1− u2

s(53692− 136807u2
s + 75735u4

s + 9216usŵ
2

− 9216u3
sŵ

2)
)
γ

)
∂uA+(u, ω̂+)

∣∣∣∣
us

= fγmfm∂uA+(u, ω̂+)

∣∣∣∣
us

= ∂uA−(u, ω̂−)

∣∣∣∣
us

, (4.40)

with

fγm =
√

1− u2
s

(
1− 1

96

(
u2
s(53692−136807u2

s+75735u4
s+9216usŵ

2−9216u3
sŵ

2)
)
γ

)
. (4.41)

Outside of the shell we have both ingoing and outgoing wave solutions, so that we write

A+(u, q = ω) = cinAin(u, q = ω) + coutAout(u, q = ω), (4.42)

whereas inside of the shell we only have ingoing modes. From the matching conditions

deduced above one obtains the following relation

cout

cin
= − fγmA−∂uAin −Ain∂uA−

fγmA−∂uAout −Aout∂uA−

∣∣∣∣
us

. (4.43)

At this point we can perform a non trivial check of our calculation, since obviously cout
cin
→ 0

for us → 1 should hold. The outgoing solution of A inside of the shell for general virtuality,

expressed by w+ =: ω is

A−(u, q̂, ω̂)=
√
u

(
J1

(
2ω̂

(
1+

265

16
γ

)√
c(us, q/ω)u

)
+iY1

(
2ω̂

(
1+

265

16
γ

)√
c(us, q/ω)u

))
,

(4.44)

with

c(us, q/ω) =

(
1

U(us)us
− q2

ω2

)
. (4.45)

Setting q = ω, inserting the solution above into (4.43) and taking the limit us → 1 actually

gives cout
cin
→ 0 both in order O(γ0) and O(γ1) as expected.

The coupling corrected off-equilibrium spectral density is given by [9]

χ(ω̂, us) =
N2T 2

2

(
1− 265

8
γ

)
Im

(
∂uA+

A+

)∣∣∣∣
u=0

, (4.46)

with

Im

(
A′+
A+

)∣∣∣∣
u=0

= Im

( cout
cin
∂uAout + ∂uAin

cout
cin
Aout +Ain

)∣∣∣∣
u=0

. (4.47)

As in [9] we compare the cases us = 1 and us =
r2h
r2s

with rs > rh by calculating the quantity

R(ω̂, us) =
χ(ω̂, us)− χ(ω̂, 1)

χ(ω̂, 1)
. (4.48)
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q̂ = ŵ, us = 1/1.12

20 40 60 80

−0.6

−0.4

−0.2

0

0.2

ω/T

R

q̂ = ŵ, us = 1/1.012

10 20 30 40 50 60 70 80

−2

0

2

·10−2

ω/T

R

Figure 4. The function R⊥ plotted for rh = 1.1 on the left side and rh = 1.01 on the right side.

In both pictures the solid red line represents the λ =∞ limit, whereas the dashed blue line shows

the O(γ1) corrected results at λ = 300.

Figures 4 demonstrate that even with the new EoM for transverse gauge fluctuations

including γ-corrections, the results of [9] regarding the behaviour of the off-equilibrium

spectral densities didn’t change on a qualitative level.

4.4 A partial resummation of the expansion in γ

So far we have considered corrections to several observables, related to γ-corrected gauge

fields on the gravity side or the current-current correlator on the field theory side. We

are clearly not allowed to go to very small values of λ, if we only consider α′3-corrections

and ignore higher ones, since e.g. the QNM-spectrum will unavoidably bend upwards and

eventually, at a λ-value that is sufficiently small, cross the real axis. However, there is a

technique, which would in principle allow us to go to arbitrary small values for λ, without

witnessing unphysical behaviour like poles with positive imaginary part. The idea is to

treat the O(γ) differential equation for Ax as its complete EoM and calculate exactly in

γ henceforth [11]. This is equivalent to computing all higher order corrections to certain

quantities like QNM, which arise only from the O(γ)-part of its EoM and resum those

contributions. The results obtained hereby should be interpreted carefully. In no way is it

guaranteed that we get even close to the real values at very small λ, but since even higher

derivative terms to the type IIb action are not explicitly known so far, this procedure

delivers the best results for small λ, which are available at this point.

For the QNM-spectra the calculation was already explained in section 4.1. For a

given value of q̂ and γ using spectral methods we reduce (3.72) and (3.73) to generalized

Eigenvalue problem for ω and repeat the calculation for points of a sufficiently dense grid,

on which we have put γ. The endpoints of this curve are γ = 0 and γ = ζ(3)
8 (11.3)−

3
2 , the

latter of which corresponds to the value of λ naively obtained from the QCD-limit αs = 0.3

and N = 3. For q̂ = 1 and q̂ = 0 these results are displayed in figure 5. Technically it is

possible to go to arbitrary small values of λ, regarding the curves in figure 5. However, the
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1 1.5 2 2.5 3 3.5 4 4.5
−3

−2.5

−2

−1.5

−1

−0.5

λ = ∞

λ = 40

λ = 150

λ = 11.3

Re(ω̂)

Im
(ω̂

)

1 1.5 2 2.5 3 3.5 4 4.5

−2.5

−2

−1.5

−1

−0.5

λ = ∞

λ = 40

λ = 150

λ = 11.3

Re(ω̂)

Im
(ω̂

)

Figure 5. The flow of the first 3 QNM frequencies, normalized by 2πT , with the ’t Hooft coupling

between λ = ∞ and λ = 11.3 ≈ 4παsN , with N = 3 and αs = 0.3 computed in the resummation

scheme [11] with q̂ = 0 (left) and q̂ = 1 (right). The slopes of the curves at γ = 0 give the first

order corrections 4.1.

1 1.5 2 2.5 3 3.5 4
−3

−2.5

−2

−1.5

−1

q̂ = 0

Re(ω̂)

I
m
(ω̂

)

2 2.5 3 3.5 4

−2.5

−2

−1.5

−1

q̂ = 1

Re(ω̂)

I
m
(ω̂

)

Figure 6. The first QNM frequencies at q = 2πT (right) and q = 0 (left) normalized by 2πT for

λ = ∞ (blue) and their O(γ)-corrections for λ = 150 (brown) and the resummed poles also taken

at λ = 150 (red).

exact size of the λ-interval in which the resummed poles still are reliable results is unclear,

such that going to λ = 11.3 already is quite daring. Throwing all caution aboard and

analyzing the resummed spectrum for values of 1 � λ makes the poles align near the real

axis with very small but still negative imaginary part.

5 A surprising observation

In section 3 we derived the higher derivative correction to the EoM of gauge fields Ax.

Everything followed strictly from the γ-corrected type IIb action. Now we will try a dif-

ferent approach, which is calculationally much easier but not mathematically well justified
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without further insight. Surprisingly, however, it gives identical results regarding the O(γ)-

corrections to the conductivity, the QNM, the photoemission rate, etc. It should be noted

that the γ-correction to the off-equilibrium spectral density, see figure 4, differ from the

actual results obtained in the previous section. This suggests that this prescription might

only be valid for in-equilibrium quantities, which can be computed from the gravitational

propagator (4.1). Still even such a limited validity is not understood.

There are good reasons to assume that the prescription of inserting twice the contri-

bution of the magnetic part of F5 to
F 2
5

4·5! back into the action and varying with respect to

Ax hereafter, which is valid in order O(γ0), is simply wrong in order O(γ1). First of all

the five form F5 loses its self duality in order O(γ1). The “doubling” of the contribution

of the magnetic part in the action comes from exactly there. Second and even worse, we

now have further highly non-trivial terms γW containing (1+∗)F5 and derivatives thereof.

Therefore it is not only highly doubtful whether the prescription regarding the five form,

which we are used to in order O(γ0), is still working. It is not even clear how exactly it

should look like. Still one intuitive ansatz one could try is the following:

Take the solution of the magnetic part of the five form obtained in order O(γ0) and

look at its dependence on the metric components gµν and Aµ. Insert the α′-corrected

background metric given in (3.9). Choose the L(u)-prefactor of certain components of

your resulting form in such a way that

dFmag = O(γ2). (5.1)

Explicitely this means

(Fmag
5 )0 = 4

√
det(gS5)dy1∧dy2∧dy3∧dy4∧dy5 +

4

L(u)5

√
|det(g10)|

√
|det(g5)|

×
(
gtt10g

uu
10 g

yy
10g

xy3
10 gzz10dy1∧dy2∧dx∧dy4∧dy5 +gtt10g

uu
10 g

yy
10g

xy4
10 gzz10dy1∧dy2

∧dy3∧dx∧dy5 +gtt10g
uu
10 g

yy
10g

xy5
10 gzz10dy1∧dy2∧dy3∧dy4∧dx

)
. (5.2)

(Fmag
5 )1

ux

L(u)4
=−

√
det(gS5)

(
sin(y1)cos(y1)gy1y110 gy3y310 du∧dx∧dy2∧dy5∧dy4

+cos(y1)2 sin(y2)cos(y2)gy2y210 gy4y410 du∧dx∧dy1∧dy5∧dy3−sin(y1)

×cos(y1)sin(y2)2gy1y110 gy4y410 du∧dx∧dy2∧dy3∧dy5−cos(y1)sin(y1)

×cos(y2)2gy1y110 gy5y510 du∧dx∧dy2∧dy4∧dy3−cos(y2)sin(y2)cos(y1)2

×gy2y210 gy5y510 du∧dx∧dy1∧dy3∧dy4)(2∂uAx(u,t,z))+O(Ax(u,t,z)2), (5.3)

(Fmag
5 )1

tx

L(u)4
=−

√
det(gS5)

(
sin(y1)cos(y1)gy1y110 gy3y310 dt∧dx∧dy2∧dy5∧dy4

+cos(y1)2 sin(y2)cos(y2)gy2y210 gy4y410 dt∧dx∧dy1∧dy5∧dy3−sin(y1)

×cos(y1)sin(y2)2gy1y110 gy4y410 dt∧dx∧dy2∧dy3∧dy5−cos(y1)sin(y1)

×cos(y2)2gy1y110 gy5y510 dt∧dx∧dy2∧dy4∧dy3−cos(y2)sin(y2)cos(y1)2

×gy2y210 gy5y510 dt∧dx∧dy1∧dy3∧dy4)(2∂tAx(u,t,z))+O(Ax(u,t,z)2), (5.4)
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(Fmag
5 )1

zx

L(u)4
=−

√
det(gS5)

(
sin(y1)cos(y1)gy1y110 gy3y310 dz∧dx∧dy2∧dy5∧dy4

+cos(y1)2 sin(y2)cos(y2)gy2y210 gy4y410 dz∧dx∧dy1∧dy5∧dy3−sin(y1)

×cos(y1)sin(y2)2gy1y110 gy4y410 dz∧dx∧dy2∧dy3∧dy5−cos(y1)sin(y1)

×cos(y2)2gy1y110 gy5y510 dz∧dx∧dy2∧dy4∧dy3−cos(y2)sin(y2)cos(y1)2

×gy2y210 gy5y510 dz∧dx∧dy1∧dy3∧dy4)(2∂zAx(u,t,z))+O(Ax(u,t,z)2), (5.5)

and

Fmag = (Fmag
5 )0 + (Fmag

5 )1
tx + (Fmag

5 )1
tx + (Fmag

5 )1
ux. (5.6)

Here gS5 denotes the metric of the five sphere, g10 the γ-corrected metric of the entire

manifold (3.18) and g5 the γ-corrected metric of the internal AdS space. Now replace the

F 2
5 -term in the action with two times (Fmag)2 and insert the O(γ0)-solution of F5 into

the higher derivative term γW of the type IIB SUGRA action. The result will be the new

action for Aµ. Considering the prescription above we get together with

1

2× 5!
(Fmag

5 )2 =
8

L(u)10
+

2

3L(u)6
FµνF

µν (5.7)

the following result for the part of the action depending on Aµ, which doesn’t contain

higher derivative terms

− 1

2κ10

∫
d10x
√−g

(
L(u)2

3
+

2

3L(u)6

)
FµνF

µν . (5.8)

The term L(u)2

3 comes from the curvature scalar R10. Again we only considered transverse

fields Ax, respectively its Fourier transform (Ax)k, with k = (ω, q). The result for the

γW -part of the action given up to order O(A2
x) is

γ

8r2
h

∫
d10x

√
det g10W = γvol(S5)

∫
d4k

(2π)4

(
AW (Ax)′′k(Ax)−k +BW (Ax)′k(Ax)′−k

+ CW (Ax)′k(Ax)−k +DW (Ax)k(Ax)−k + EW (Ax)′′k(Ax)′′−k + FW (Ax)′′k(Ax)′−k

)
+O(γ2) =: γvol(S5)

∫
d4k

(2π)4
L1
γ , (5.9)

where the primes ′ stand for ∂u and the functions AW , BW , CW , DW , EW , FW are given by

AW =
4u5

9

(
41q̂2(1− u2)− 172ω̂2

)
(5.10)

BW = −2u5

9

(
− 803u+ 1563u3 − 216q̂2(1− u2)− 72ω̂2

)
(5.11)

CW =
4u4

9(1− u2)

(
q̂2(167− 416u2 + 249u4)− 59ω̂2 + 511u2ω̂2

)
(5.12)

DW =
2u3

9(1− u2)2

(
− 90q̂4u(1− u2)2 − ω̂2(270− 441u2 + 99u4 + 208uω̂2) + q̂2

× (1− u2)(162− 315u2 + 153u4 − 134uω̂2)

)
(5.13)
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EW = −416

9
u6(1− u2)2 (5.14)

FW = −20u5

9

(
37− 150u2 + 113u4

)
. (5.15)

We already used the definitions ω̂ = ω
2πT = ω

2rh
+ O(γ) and q̂ = q

2πT = q
2rh

+ O(γ) here.

Together with (5.8) equations (5.10)–(5.15) explicitly give the O(γ)-Lagrangian for (Ax)k
up to second order in (Ax)k .

L =
1

2

(
(Ax)k(Ax)−k

(
q̃2(1− u2)− ω̃2

u(1− u2)
+ γ

5u

8(1− u2)

(
− 10q̃2u2 − 197q̃2u4 + 207q̃2u6

− 130ω̃2 − 120u2ω̃2 + 274u4ω̃2
))

+ (Ax)′k(Ax)′−k(1− u2)

(
1 + γ

5

16

(
− 260u2

− 235u4 + 553u6
)))

+ L1
γ , (5.16)

with ω̃ = ω
2rh

and q̃ = q
2rh

.

In the next step we derive the γ-corrected EoM for our gauge field (Ax)k by varying

the action with respect to (Ax)k. We do not want to focus on boundary terms here but

merely on the resulting EoM for (Ax)k. This simple exercise gives

2
(
u2 − 1

)
(Ax)′′k + 4u(Ax)′k +

2(Ax)k
(
q̃2
(
u2 − 1

)
+ w̃2

)
u (u2 − 1)

− γH((Ax)k) = O(γ2) (5.17)

with

H((Ax)k) =
u

72(u2 − 1)2

(
(u2 − 1)2

(
u(Ax)′′k(−8576q̂2u5 + 128u3(67q̂2 + 208ω̂2)

+ 1398243u6 − 1740092u4 + 459685u2 − 11700) + 4(Ax)′k(−15008q̂2u5

+ 160u3(67q̂2 + 208ω̂2) + 401046u6 − 373722u4 + 60325u2 − 5850)+

+ 13312(u2 − 1)u4(u(u2 − 1)(Ax)′′′′k + 4(5u2 − 3)(Ax)′′′k )

)
+ 2(Ax)k(2880

× q̂4u3(u2 − 1)2 + q̂2u2(u2 − 1)(21507u4 − 31105u2 − 4288uw2 + 9598)

+ 2ω̂2(30085u6 − 75057u4 + 3328u3ω̂2 + 55359u2 + 2925))

)
. (5.18)

Exploiting that we have

(Ax)′′k +
2u(Ax)′k
(u2 − 1)

+
(Ax)k

(
q̂2
(
u2 − 1

)
+ ŵ2

)
u (u2 − 1)2 = O(γ) (5.19)

reduces (5.18) to

γH((Ax)k) =
uγ

72(1− u2)

(
(Ax)k(−27648q̂4u3(u2 − 1) + q̂2(370501u6 − 666170u4

+ 307369u2 − 11700) + 9ω̂2(5951u4 − 9081u2 + 2600))− 10(u2 − 1)2

× (−17600q̂2u3 + 8493u4 − 19450u2 + 2340)(Ax)′k

)
+O(γ2). (5.20)

– 32 –



J
H
E
P
0
7
(
2
0
1
8
)
0
6
9

To simplify this further we define

Σ(u) =
5γ
(
−7040q2u5 + 2831u6 − 9725u4 + 2340u2

)
288
√

1− u2
+

1√
1− u2

, (5.21)

so that with

Ψ = (Ax)k/Σ(u) (5.22)

we end up with the following EoM

0 = Ψ′′ + Ψ

(
u− q̂2(1− u2) + ω̂2

u(1− u2)2
− γ

144u(1− u2)

(
− 27648q̂4u5 + q̂2(−157499u6

+ 56331u4 + 11700u2 + 4770) + 297255u7 − 698575u5 + 53559u4ω̂2 + 326850u3

− 28170u2ω̂2 − 11700u− 4770ω̂2

))
, (5.23)

where we already used the γ corrected relation between the temperature and rh

rh = πT

(
1− 265

16
γ

)
. (5.24)

From this differential equation one obtains identical γ-corrections for the conductivity, the

photoemission rate and the QNM spectrum for all values of q̂ considered. We want to

highlight that this is firstly almost certainly not a coincidence and secondly comes very

unexpectedly. On the one hand this coupling corrected differential equation (5.23) should

be taken with a grain of salt, since unlike (3.72) and (3.73) it doesn’t follow mathematically,

but by intuitively extending a calculational prescription into a regime, where it actually

shouldn’t hold anymore. On the other hand, since especially the coupling corrections to

the QNM are identical in both our calculations, one could argue that it isn’t a surprise

that other quantities coincide with what we found previously. This is because the QNM

govern huge parts of the behaviour of our system.

6 Discussion

In this paper we rederived the finite coupling correction to the EoM for gauge fields and

corrected several mistakes found in the literature. We have computed finite coupling correc-

tions to the photoemission rate, the electrical conductivity, the QNM spectrum for different

momenta and (off equilibrium) spectral density of a N = 4 SYM plasma. We analyzed

the behaviour of QNMs for realistic values of λ’t Hooft using the partial resummation tech-

nique starting from the full O(α′3)-corrections to the SUGRA action. We saw that in both

the large and small energy limit the corrections to the spectral function respectively the

photoemission rate behave as expected from (perturbative) weak coupling calculations [7].

Interestingly we found that the term in the EoM for coupling corrected gauge fields (3.72)

governing the large ω behaviour, whose existence is crucial for the right behaviour of the

photoemission rate in this region is precisely the same as in the spin-2 channel.

The resummation technique, which in principle is an approximation using the assump-

tion that the correction terms to (3.72), (3.73) of order higher than O(α′3) are small,
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Quantity O(γ0) O(γ1) Reference

s (1
2π

2N2
c T

3)−1 1 15 γ [12]

η (1
8πN

2
c T

3)−1 1 135 γ [8]

4π η/s 1 120 γ [8]

σ (1
4αEMN

2 T )−1 1 125 γ This work

ωshear
2 (q = 0) (2πT )−1 2.585− 2.382 i (1.029 + 0.957 i) 104 γ [16]

ωEM
2 (q = 0) (2πT )−1 2− 2 i (4.896 + 0.495 i) 103 γ This work

Table 2. A collection of results for the zeroth and first order terms in the expansion of various

thermal observables in powers of γ = 1
8 ζ(3)λ−3/2. Results are shown for the entropy density s,

shear viscosity η, viscosity to entropy density ratio η/s, electrical conductivity σ and the second

quasinormal mode frequencies, ωEM
2 and ωshear

2 , at zero wave vector, for the electromagnetic current

and shear channel of the stress-energy correlator, respectively.

whereas the first order correction approximates real physics by assuming that the higher

order corrections to the quantities of interest themselves are small, can also be applied

in an analogous way to the conductivity. For λ = 11.3 ≈ 4πNαs|N=3,αs=0.3 we obtain a

resummed value of

σ = 0.29082e2T. (6.1)

This can be compared to results of hot QCD lattice calculations. For temperatures above

Tc the authors of [14] found σ ≈ e2T (0.4 ± 0.1). More recently this could be improved to

σ ≈ e2T (0.31±0.05) for T > 1.75Tc, see figure 10 in [15]. Without any coupling corrections

the conductivity is given by

σ∞ =
9

16π
e2T ≈ 0.179e2T. (6.2)

In conclusion the coupling corrected and resummed result comes noticeably closer to hot-

QCD lattice results.

In the last part we note a surprising observation. If we naively extend the prescription

valid in O(γ0) to the O(γ1) case, which leads to a quite different EoM for Ax than our

strict derivation in section 3, we still obtain the same corrections to the QNM-spectra,

the conductivity and the photoemission rate in both the large and the small ω limit as

in section 4. However, the results for the off-equilibrium spectral density were different.

It certainly would be interesting to understand why one obtains correct answers for the

equilibrium observables we calculated, because, although still tedious, the calculation is

significantly easier than the one in section 3.
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A Variation of the higher derivative terms with respect to the five form

(
δW
δF5

)
xy1y2y4y5

= γ
cos(y1)3 sin(y1)sin(y2)cos(y2)

6
√

3

((
−117

u5

(1−u2)
∂2
tAx+(468u6

−468u8)∂2
uAx+83u5∂2

zAx+(4312u5−5248u7)∂uAx

))
+O(A2

x) (A.1)(
δW
δF5

)
xzy2y4y5

=−γ (cos(y1)4 sin(y2)cos(y2))

6
√

3

(
(415u6−415u8)∂2

u∂zAx+
415u5

4(−1+u2)

×∂z∂2
tAx−

261u5

4
∂3
zAx+(3220u5−4050u7)∂u∂zAx+

×(2181u4−3216u6)∂zAx

)
+O(A2

x) (A.2)(
δW
δF5

)
uxy2y4y5

= γ
(cos(y1)4 sin(y2)cos(y2))

6
√

3

(
(−733u6 +733u8)∂3

uAx+
733u5

4(1−u2)

×∂u∂2
tAx−

257u5

4
∂2
z∂uAx+(−4398u5 +7330u7)∂2

uAx

+
3117u4−1651u6

4(1−u2)2
∂2
tAx−1145u4∂2

zAx+(−2056u4 +12162u6)∂uAx

)
+O(A2

x) (A.3)(
δW
δF5

)
txy2y4y5

=−γ (cos(y1)4 sin(y2)cos(y2))

6
√

3

(
(733u6−733u8)∂2

u∂tAx+
257u5

4
∂2
z∂tAx

+
733u5

4(−1+u2)
∂3
tAx+(548u5−2014u7)∂u∂tAx+(u4(−609+912u2))

×∂tAx
)

+O(A2
x) (A.4)
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