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1 Introduction

The traditional paradigms to approach the hierarchy problem of the Standard Model re-

quire new physics close to the electroweak scale, attributing the smallness of the Higgs

mass to a symmetry protection (e.g. supersymmetry) or to the lowering of the cutoff of

the theory (e.g. technicolor). This class of solutions has been a guide to model building

of physics beyond the Standard Model for many years and one of the leading motivations

of searches for new physics at the LHC. An alternative possibility does not predict new

physics at the TeV scale, but instead requires multiple vacua with a large range of possible

values of the Higgs mass and a selection mechanism such that we end up in the vacuum

where the Higgs is light. Recently, a new dynamical selection mechanism was proposed,

the cosmological relaxation of the electroweak scale [1] (see also [2–12]). It relies on the

scanning of the Higgs mass parameter by a new field, the relaxion, and a back-reaction
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mechanism that is triggered when the vacuum expectation value (VEV) of the Higgs has

reached the electroweak scale, making the relaxion evolution stop.1 This is a radical change

of paradigm as it implies that the naturalness problem of the Standard Model ceases to be

a reason to expect new physics close to the TeV scale.

In what follows we review the relaxation mechanism for which an axion-like scalar φ

is introduced which couples to the Higgs doublet H via the potential

V (φ,H) ⊃ −
(
Λ2 − g′Λφ

)
H2 + λH4 + gΛ3φ + Λ4

f (H) cos

(
φ

f

)
. (1.1)

Here Λ is the cutoff which sets the Higgs mass parameter, f the decay constant of the

relaxion, λ the Higgs quartic coupling, g and g′ are small dimensionless couplings, and

Λf (H) is a scale which depends on the Higgs VEV. Assuming a classical time evolution

with slow-roll conditions, the second-last term in eq. (1.1) causes the relaxion to move

downwards following its potential. The effective Higgs mass parameter in the φ background,

the first term in parenthesis in eq. (1.1), then varies accordingly. The relaxion is assumed to

start with a VEV such that this mass parameter is initially positive. Due to the evolution

of the relaxion, the mass parameter then eventually turns tachyonic, triggering electroweak

symmetry breaking. In the presence of a Higgs VEV, the oscillatory barrier from the last

term grows, until its slope matches the slope of the linear term. For technically natural

parameters in the potential, this causes the relaxion to stop once the Higgs VEV has reached

the electroweak scale. There must be some mechanism to dissipate the kinetic energy of

the relaxion during its evolution such that the field does not overshoot the barriers. If the

dynamics happens during a period of inflation, Hubble friction can provide the dissipation

necessary to slow down the field [1]. As an alternative to inflation, one can also consider

friction due to particle production as proposed in ref. [14] or finite temperature effects in

the early universe as in ref. [15].

Note that the linear terms in φ are in conflict with the assumption that the relaxion

is a pseudo-Nambu-Goldstone boson as they explicitly break the axion shift symmetry [5].

This may be reconciled if the linear terms arise from a second oscillatory potential with a

period much larger than f . This is realized if the potential takes the form [16–18]:2

V (φ,H) ⊃ −Λ2H2 + λH4 + Λ4
F (H) cos

(
φ

F

)
+ Λ4

f (H) cos

(
φ

f

)
, (1.2)

where F � f is another decay constant and ΛF (H) another scale that depends on the

Higgs in such a way as to reproduce the second and fourth term in eq. (1.1) after expand-

ing in φ/F . An interesting possibility to obtain this type of potential is the clockwork

construction which was first realized for axion-like fields in refs. [16, 17] and generalized for

applications other than the relaxion in ref. [26]. Further developments regarding the 5D

1See also Nnaturalness [13], where instead of multiple vacua, many copies of the Standard Model are

considered to explain the smallness of the electroweak scale. The way reheating behaves is such that only

the copy with the smallest Higgs mass is efficiently reheated.
2See also refs. [19–24] for similar earlier ideas in inflation model building. For the viability of the

relaxation mechanism in string theory in the context of axion monodromy, see ref. [25].
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continuum limit of the clockwork can be found in refs. [27–30]. Besides the clockwork, one

can also generate a potential of the form in eq. (1.2) in realizations inspired by dimensional

deconstruction [31, 32], as in ref. [18].

In this work, we show how the required potential for the relaxation mechanism to work

can be naturally obtained by embedding the relaxion and Higgs into a warped extra dimen-

sion. We consider a slice of AdS5 space which is bounded by two branes, as in the Randall-

Sundrum model [33]. However, in our setup the IR scale or warped-down AdS scale is not

of order TeV but can be much larger. We introduce a U(1) gauge field in the bulk of the ex-

tra dimension and break the gauge symmetry on the two branes. The 5th component A5 of

the gauge field then gives rise to one massless scalar mode in 4D which we identify with the

relaxion. In order to generate a potential, we introduce anomalous couplings of A5 to two

non-abelian gauge groups. The wavefunction of the massless mode from A5 is exponentially

peaked towards the IR brane (see e.g. [34–36]). Depending on where the anomalous terms

are localized, this can yield a large hierarchy between the decay constants for the couplings

of the relaxion to the gauge groups. We assume that the gauge groups confine at energies

below the compactification scale. Instantons then generate periodic potentials for the re-

laxion as in eq. (1.2) with periods given by the decay constants.3 Due to the warping, these

periods can thus naturally be hierarchically different as required. We embed the Higgs at

or near the IR brane. Its mass parameter is then naturally of order the IR scale which we

identify with the cutoff of the relaxion theory. The required Higgs-relaxion couplings can

be obtained by introducing fermions on the IR brane with higher-dimensional or Yukawa

couplings to the Higgs. To summarize, the warping does two things: firstly, it generates

the hierarchy between the decay constants F and f in eq. (1.2) and thereby explains the

smallness of the couplings g and g′ in eq. (1.1). Secondly, it provides a UV completion4 for

the relaxion. The relaxation mechanism protects the Higgs up to the IR scale above which

warping takes over.5 We illustrate this in figure 1. Alternatively, one can think of the relax-

ation mechanism in our construction as a solution to the little hierachy problem of Randall-

Sundrum models.6 As is well-known, various experimental constraints (the most stringent

ones coming from CP violation in K−K̄-mixing and the electirc dipole moment of the neu-

tron) require that the IR scale in these models is of order 10 TeV or above. This means that

a residual tuning in the permille range is necessary to generate the electroweak scale. In our

construction with warping and the relaxion, on the other hand, no such tuning is required.

3A potential for A5 can be generated perturbatively if the underlying gauge field is coupled to charged

bulk states. In the non-abelian case (see e.g. [34]), this includes the gauge fields themselves due to the non-

linear interactions, while the abelian case requires charged scalars or fermions in the bulk (see e.g. [37]).

Here we consider a U(1) gauge field and do not add charged bulk states as we are interested in generating

a non-perturbative potential for A5.
4As a caveat, we should stress that the Randall-Sundrum model itself requires a UV completion. In

particular, near the IR brane gravity becomes strongly coupled at energies not far above the IR scale. Near

that brane, the UV completion therefore needs to kick in at correspondingly low scales. There are known

UV completions to the Randall-Sundrum model in string theory [38, 39].
5See [6, 10, 12] for how the relaxation mechanism can protect the Higgs up to some high supersymmetry-

breaking scale instead.
6See [40] for an alternative solution where an accidental form of supersymmetry protects a little hierarchy

between the electroweak scale and the IR scale of the Randall-Sundrum model.
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Figure 1. A UV completion for the relaxion model is obtained by embedding the relaxion and

the Higgs into a warped extra dimension. The hierarchy problem is then solved in two steps: the

relaxation mechanism protects the Higgs mass up to the IR scale (which can be much larger than

the electroweak scale) and from there warping provides protection till the Planck scale.

We find that for an effective anomalous coupling localized on the UV brane, the decay

constant is of order M2
PL/ΛIR with MPL and ΛIR being the Planck and IR scale. For an

anomalous coupling in the bulk, we instead find a decay constant of order ΛIR. We then

identify F = M2
PL/ΛIR and f = ΛIR. Generating a suitable barrier Λ4

f (H) cos(φ/f) for the re-

laxion requires some additional structure. The reason is that this term generically contains

a contribution which is independent of the Higgs and which could stop the relaxion before

the Higgs VEV has reached the electroweak scale. To avoid this problem, we consider two

different options. One employs a construction from ref. [1] for which new fermions are intro-

duced which couple to the Higgs. If the masses of these fermions are near the electroweak

scale, the Higgs-independent barrier can be sufficiently small. The drawback of this con-

struction is a coincidence problem as it requires to introduce the fermions at a scale which

is dynamically generated by the relaxation mechanism and thus a priori determined by

completely different parameters. An interesting alternative is the so-called double-scanner

mechanism of ref. [2] (see also [10]). To this end, one introduces another axion-like scalar

which dynamically cancels off the Higgs-independent barrier. We identify this axion-like

scalar with the 5th component of another U(1) gauge field in the bulk of the extra dimen-

sion. We then show how the potential which is required for the double-scanner mechanism

can be obtained. This construction is largely independent of the embedding into warped

space and can therefore also be useful for other UV completions of the relaxion. For both op-

tions to generate the barrier, we discuss the relevant theoretical and phenomenological con-

straints for successful relaxation. The highest cutoff and IR scale consistent with these con-

straints in our warped implementation of the relaxation mechanism is Λ = ΛIR . 106 GeV.

The plan of this work is as follows. In section 2, we discuss the properties of the A5

and show how hierarchical decay constants can be obtained. In section 3, we generate

the desired potential for the relaxation mechanism. We analyse the relevant constraints

to guarantee a successful relaxation of the electroweak scale in section 4. In section 5, we

present our implementation of the double-scanner mechanism and we conclude in section 6.

Additional details are given in three appendices.

2 Hierarchical decay constants from warped space

We will now show how hierarchical decay constants can be obtained from warped space.

These will be used in later sections to generate the relaxion potential. We consider a slice

– 4 –



J
H
E
P
0
7
(
2
0
1
8
)
0
3
3

of AdS5 space with metric in conformal coordinates given by

ds2 = a2(z) (ηµνdx
µdxν − dz2) , (2.1)

where a(z) = (kz)−1 is the warp factor with k being the AdS curvature scale (see e.g. [41]

for a review). The slice is bounded by the UV brane at zUV = 1/k and the IR brane at

zIR = ekL/k. The length L of the extra dimension can be stabilized for example by means

of the Goldberger-Wise mechanism [42]. The effective 4D Planck scale for this space is

given by M2
PL 'M3

∗ /k, where M∗ is the 5D Planck scale. We will assume that the Planck

scale and the AdS scale are of the same order of magnitude (and will later often equate

them). For later convenience, let us also define the IR scale ΛIR ≡ k e−kL.

Let us consider a U(1) gauge boson in the bulk. Its action is given by

S5D ⊃
∫
d4x dz

√
g

(
− 1

4g2
5

FMNF
MN

)
, (2.2)

where FMN is the U(1) field strength, g5 the 5D gauge coupling and
√
g = a5(z). In order

to eliminate the mixing between Aµ and A5, we add the gauge fixing term (see e.g. [34, 43])

S5D ⊃ −
∫
d4x dz

√
g

1

2g2
5ξ

[
gµν∂µAν −

g55ξ

a(z)
∂5(A5a(z))

]2

. (2.3)

The bulk equations of motion for the 4D component Aµ and the 5th component A5 then

read

ηµσηλν
(
∂σ Fµλ +

1

ξ
∂λ∂µAσ

)
+ a(z)−1∂5

(
a(z)ηµν∂5Aµ

)
= 0 (2.4)

ηµν∂µ∂ν A5 + ξ∂5

(
a(z)−1∂5

(
a(z)A5

))
= 0 . (2.5)

We are interested in obtaining a massless scalar mode from the bulk gauge boson.

To this end, we break the gauge symmetry on both branes by imposing Dirichlet bound-

ary conditions on Aµ. For consistency, this then requires to impose Neumann boundary

conditions for A5. Together the boundary conditions read

Aµ|UV,IR = 0 , ∂5

(
a(z)A5

)∣∣
UV,IR

= 0 . (2.6)

Alternatively we could break the gauge symmetry with Higgs fields on the two branes (see

e.g. [44, 45]). The above boundary conditions are then obtained in the limit of their VEVs

going to infinity. In unitary gauge, ξ →∞, the bulk equation of motion for A5 gives

∂5

(
a(z)−1∂5

(
a(z)A5

))
= 0 . (2.7)

Notice that this equation is consistent with the boundary conditions and there is thus one

massless mode from A5. Its other Kaluza-Klein modes are all eaten by Aµ. In particular,

there is no massless mode from Aµ, consistent with the fact that the gauge symmetry is

broken. As usual, the A5 massless mode can be parameterized as

A5(x, z) = h(z)φ(x) , (2.8)

– 5 –
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Figure 2. Sketch of a slice of AdS5 space which is bounded by two branes. We identify the relaxion

with the 5th component of a U(1) gauge field in the bulk. Its wavefunction is then localized towards

the IR brane. The Higgs is localized on (or near) the IR brane. The UV brane corresponds to the

Planck scale. We draw the IR brane with a dashed contour as a reminder that the IR scale in our

model can be much larger than the usual TeV scale of the Randall-Sundrum model.

where h(z) is its profile along the extra dimension. From eqs. (2.6) and (2.7), we then

see that h(z) = Na(z)−1. Demanding canonically normalized kinetic terms for φ(x), the

normalization constant N of the wavefunction is determined by

N 2

g2
5

∫ zIR

zUV

dz

a(z)
= 1 . (2.9)

For kL � 1, this gives N ' g4

√
2kL e−kL, where we define the dimensionless coupling

g4 ≡ g5/
√
L. Altogether, the wavefunction of the massless mode then reads

h(z) ' g4

√
2kL e−kLkz . (2.10)

The wavefunction is thus peaked towards the IR brane (see figure 2 for a sketch of the

wavefunction profile in the extra dimension). Furthermore, the fact that N → 0 for

zIR →∞ shows that the A5 massless mode is indeed localized in the IR.

Performing a 5D gauge transformation, AM (x, z)→ AM (x, z)+∂Mα(x, z), we see that

the boundary conditions in eq. (2.6) and the bulk equation of motion in eq. (2.7) remain

invariant only for the subset of transformations

α = B z2 + C (2.11)

with B and C being independent of x and z. The remaining symmetry in 4D is thus

global, again consistent with the fact that the gauge symmetry is broken. Under this

remnant symmetry, the massless mode transforms as

φ → φ +
2B

Nk
. (2.12)

At this point, the relaxion is thus an exact Nambu-Goldstone boson which non-linearly

realizes a remnant global U(1). By virtue of the 5D gauge invariance, no 5D local, higher-

dimensional operators can break this shift symmetry (see [46] for a detailed discussion). A
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potential for the relaxion could be generated by non-local effects in the presence of bulk

states which are charged under the U(1) but we assume such states to be absent from the

theory.7 Instead we introduce anomalous couplings of the relaxion to confining non-abelian

gauge groups. A potential then arises from instantons, similar to what happens for the

axion in QCD. We localize these anomalous couplings in the bulk or on the UV brane.

In what follows, we show that these possibilities, thanks to the warp factor, can naturally

explain the required hierarchy between the decay constants in the relaxion potential.

2.1 Anomalous couplings from the bulk

Let us add a non-abelian gauge group in the bulk, whose field strength and coupling we

denote respectively as GNP and gc5. We choose boundary conditions for the gauge field such

that the 4D gauge symmetry remains unbroken on the branes. Its tower of Kaluza-Klein

modes then contains one massless mode which is the 4D gauge boson. We next introduce

a Chern-Simons coupling of the U(1) gauge field to this gauge group. Including the kinetic

term, the action reads

S5D ⊃
∫
d4x dz

(
√
g
−1

2(gc5)2
Tr
[
GMNG

MN
]

+
cB

16π2
εMNPQRAMTr [GNPGQR]

)
,

(2.13)

where cB is a dimensionless constant and the normalization is chosen for later convenience.8

Under a U(1) gauge transformation AM (x, z) → AM (x, z) + ∂Mα(x, z), the action trans-

forms as

S5D → S5D −
∫
d4x dz α(x, z)

cB
16π2

εµνρσTr [GµνGρσ]
(
δ(z − zUV) − δ(z − zIR)

)
. (2.14)

The Chern-Simons term thus induces an anomaly for the U(1) symmetry on the branes.

This is not a problem, however, since the symmetry is only global on the branes and there

are thus no gauge anomalies.

In the 4D effective theory, this gives rise to an anomalous coupling for φ. Let us

restrict ourselves to the massless mode of the non-abelian gauge field, whose field strength

we denote as Gµν . Integrating over the extra dimension, eq. (2.13) then in particular gives

S4D ⊃
∫
d4x

(
−1

2(gc4)2
Tr [GµνG

µν ] +
φ(x)

16π2fB
εµνρσTr [GµνGρσ]

)
, (2.15)

where gc4 = gc5/
√
L is the gauge coupling of the massless mode. The decay constant is given

by [43, 46]

fB ≡
[
cB

∫ zIR

zUV

dz h(z)

]−1

=
N
cBg2

5

' 2k e−kL

cB g4

√
2kL

(2.16)

7Alternatively, for example for bulk fermions charged under the U(1) it is sufficient if their masses are

somewhat larger than the AdS scale in which case any perturbative contribution to the potential is highly

suppressed (see e.g. [34, 47]).
8Note that a factor of 2 arises from the normalization Tr[T aT b] = 1

2
δa,b of the generators of the non-

abelian gauge group.
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which is of order the IR scale ΛIR and thus warped-down. From eqs. (2.12), (2.14)

and (2.15), we see that φ reproduces the anomaly under a transformation α = Bz2. In ap-

pendix B, we briefly review how Chern-Simons terms can arise from charged bulk fermions.

As we also discuss there, any perturbative contribution from such a fermion to the poten-

tial for A5 can be sufficiently suppressed. Nevertheless, in the remainder of this paper we

will never assume any charged bulk states and will instead include the Chern-Simons terms

directly into our effective 5D theory.

Note that eq. (2.13) also yields couplings of φ to the higher Kaluza-Klein modes of

the non-abelian gauge field. As eq. (2.15) for the massless mode, these couplings are total

derivatives (see e.g. ref. [48]) and therefore do not contribute perturbatively to the potential

for φ. We will later assume that the non-abelian gauge group confines in order to generate

a non-perturbative potential for φ. But we will choose the confinement scale below the IR

scale and thus below the Kaluza-Klein masses. The Kaluza-Klein modes of the non-abelian

gauge group therefore do not contribute non-perturbatively to the potential either.

2.2 Anomalous couplings from the UV brane

We now discuss how a decay constant which is much larger than ΛIR can be obtained. To

this end, we consider an effective anomalous coupling of A5 which is localized on the UV

brane [43],

S5D ⊃
∫
d4x dz δ(z − zUV)

cUV

16π2

A5

k
εµνρσ Tr [GµνGρσ] , (2.17)

where cUV is a dimensionless constant and GMN is the field strength of a non-abelian gauge

field in the bulk. As we outline in appendix A, this interaction can for example arise as

an effective coupling from a Chern-Simons term in a two-throat geometry. Under a U(1)

gauge transformation, the action transforms similar to eq. (2.14) but restricted to the UV

brane and with ∂5α(x, z) instead of α(x, z). Let us again restrict ourselves to the massless

mode of the gauge field, whose field strength we denote as Gµν . Using the wavefunction of

the massless mode of A5 from eqs. (2.8) and (2.10), this gives

S4D =

∫
d4x

1

16π2

φ(x)

fUV

εµνρσ Tr [GµνGρσ] (2.18)

with decay constant given by [43]

fUV ≡
k

cUV h(zUV)
' k ekL

cUV g4

√
2kL

(2.19)

or fUV ∼ M2
PL/ΛIR. We see that a warped-up decay constant, much larger than the cutoff,

appears naturally in this case. This large decay constant can be intuitively understood as

being of order the natural scale MPL on the UV brane times an inverse suppression factor

from the wavefunction overlap of A5 with the UV brane.

Note that super-Planckian decay constants may be constrained by the weak gravity

conjecture in theories of quantum gravity [49] (see also [50–53]). Given that the relaxion

is an axion-like field, the conjecture necessarily restricts its field excursion (∆φ ∼ Λ/g′)

to be sub-Planckian, setting a lower bound on the coupling g′ in the potential (1.1). The

– 8 –
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weak gravity conjecture is then at odds with any relaxion model with trans-Planckian

field excursions, including our proposal. On the other hand, there are known loopholes

to the conjecture [54–58]. For instance, the application of the conjecture to effective field

theories may result in a much weaker bound on the coupling g′ [57]. Furthermore, in [58],

a better understanding of the conclusions of [57] is achieved by considering a string theory

embedding. There it is shown that if a clockwork model is successfully embedded in string

theory, one may in principle obtain a large cutoff, avoiding the naive bound from the weak

gravity conjecture, as long as the number of sites in the construction is large.

We conclude that two hierarchically different decay constants can be obtained, depend-

ing on the localization of the anomalous interactions in the warped space. For the relaxion,

we then identify F = fUV ≈M2
PL/ΛIR and f = fB ≈ ΛIR. Note that as the ratio F/f is pro-

portional to the warp factor, the potential in eq. (1.2) does not respect a discrete shift sym-

metry since, in general, F/f is a non-integer number. This is a consequence of the non-local

nature of the residual symmetry transformation α = Bz2 +C in eq. (2.11) which explicitly

depends on the localization. In the following, we build an explicit model that makes use

of this toolkit to generate a phenomenologically viable potential in the form of eq. (1.2).

3 Generating the relaxion potential

3.1 General setup

Let us next discuss the relaxion parameters in more detail and how they can be understood

in terms of our UV model. Provided that electroweak symmetry remains unbroken in the

confinement phase transition which generates the periodic potentials in eq. (1.2), ΛF,f (H)

both depend quadratically on the Higgs (plus generically higher even powers of the Higgs

which are, however, not important in the following).9 We can then parametrize

Λ4
F,f (H) = Λ4

F,f

(
1 +

H2

M2
F,f

)
, (3.1)

where ΛF,f and MF,f can be understood as the scales where the periodic terms and higher-

dimensional couplings to the Higgs are generated, respectively. The potential in eq. (1.2)

then reads

V (φ,H) = −Λ2H2 +λH4 + Λ4
F

(
1 +

H2

M2
F

)
cos

(
φ

F

)
+ Λ4

f

(
1 +

H2

M2
f

)
cos

(
φ

f

)
. (3.2)

For simplicity, we have dropped terms which may be generated at higher loop-order. We

will discuss these terms later in section 4. Assuming that φ is in the linear regime of the

low-frequency cosine, φ ∼ πF/2 mod 2π, we can expand it for φ − πF/2 . F . After the

redefinition φ − πF/2 → φ, this gives the linear part of the relaxion potential in eq. (1.1)

with the identifications

g =
Λ4
F

FΛ3
, g′ =

Λ4
F

FM2
FΛ

(3.3)

9As proposed in [1], one can also use the QCD axion as the relaxion. The last term in eq. (1.1) is

then the usual QCD axion potential which depends linearly on the Higgs (see e.g. [59]). However, barring

additional model building, this spoils the axion solution to the strong CP problem. See also [60–62] for

solutions to the strong CP problem in the context of the relaxion.
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up to factors of order one.

The last term in eq. (3.2) stops the relaxion once the Higgs VEV has reached the

electroweak scale. For this to work, we need to ensure that Mf . vEW, otherwise the

Higgs-independent barrier proportional to cos(φ/f) would stop the relaxion already before

the Higgs VEV has obtained the right value. Note also that the Higgs-independent barrier

receives corrections from closing the Higgs loop in the Higgs-dependent one and will thus

generically be present. We discuss radiative corrections to the potential in more detail in

section 4. But to get a sense of the scales involved, we already note here that radiative

stability of the potential demands that Λ2
f . 4π vEWMf and ΛF . 4πMF .

To obtain Mf . vEW requires that the higher-dimensional coupling of the Higgs to

the periodic potential is generated near the electroweak scale. In the next section, we

make use of a construction from ref. [1] which introduces light fermions for this purpose.

The drawback of this scenario is of course a coincidence problem: one has to assume new

particles at a scale which is dynamically generated by the relaxation mechanism and is thus

determined by a priori completely unrelated parameters. One way around this problem is

the double-scanner mechanism of ref. [2]. To this end, one introduces another axion-like

field which dynamically cancels off the Higgs-independent barrier in eq. (3.2). This allows

the relaxation mechanism to work even for Mf � vEW.10 We discuss a UV completion of

this scenario in section 5.

3.2 A warped model

We now build a simple explicit model that successfully generates the needed terms in the

Higgs-relaxion potential at a phenomenologically viable scale, making use of the results

of section 2. We assume that the Higgs is localized on or near the IR brane, so that

its mass is warped down to the IR scale (see figure 2). We note that it may also be

possible to implement the relaxation mechanism in a model where the Higgs is instead

localized on the UV brane. As usual, the relaxion can only protect the Higgs up to some

cutoff significantly below the Planck scale. Such a model would therefore require a UV

completion above this cutoff on the UV brane. We leave a study of this possibility to future

work. As we find later, the highest IR scale that we can achieve in our implementation

of the relaxation mechanism (while still solving the hierarchy problem) is below the GUT

scale. If the remaining Standard Model fields are then also localized on the IR brane,

higher-dimensional operators violating baryon number lead to too fast proton decay [63].

In order to suppress these operators, we assume that the Standard Model instead lives

in the bulk. As usual, the light quarks are localized towards the UV brane, while the

top-bottom doublet and the right-handed top live nearer to the IR brane. This has the

added advantage that the hierarchy of Yukawa couplings can then be generated from the

warping too. The IR scale in our model can be high enough, on the other hand, to ensure

that oblique corrections and flavour- and CP -violating processes are sufficiently suppressed

without imposing custodial or flavour symmetries.

10Another proposal for the relaxion that does not require new physics close to the electroweak scale is

the particle-production mechanism of ref. [14].
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We identify the relaxion with the 5th component of a U(1) gauge field in the bulk. In

order to generate a potential for this field, we add two non-abelian gauge groups Gf and

GF which also live in the bulk. We assume that these gauge groups confine at the scales

ΛGf and ΛGF , respectively. In order to ensure that confinement can be discussed using only

the zero-modes of the bulk gauge fields, we take ΛGf and ΛGF to be below the IR scale.

This can always be arranged by choosing the 5D gauge couplings and ranks of the gauge

groups appropriately.

We assume anomalous couplings of the relaxion φ to the field strengths Gfµν and GFµν
of the massless 4D gauge fields corresponding to Gf and GF , respectively:

S4D ⊃
∫
d4x

φ(x)

16π2
εµνρσ

(
1

F
Tr
[
GFµνG

F
ρσ

]
+

1

f
Tr
[
GfµνG

f
ρσ

])
. (3.4)

As we have discussed in section 2, these can arise from a Chern-Simons coupling in the

bulk and an effective anomalous coupling of A5 on the UV brane. But for now, we only

assume that F � f and postpone a concrete choice for the decay constants to section 4.

On the IR brane, we add a pair of chiral fermions χ and χc in the fundamental and

antifundamental representation of GF , respectively. These fermions transform under a

chiral symmetry which we assume to be broken only by a Dirac mass mχ. This allows for

the terms in the action

S5D ⊃
∫
d4x dz

√
−gIR δ(z − zIR)mχ

(
1 +

H2

M2
PL

)
χχc + h.c. , (3.5)

where gIR is the induced metric determinant on the IR brane. We have included a higher-

dimensional coupling to the Higgs which is generically present and which we expect to be

suppressed by a scale near the Planck scale. Note that we will use the symbol H for both

the SU(2)-doublet Higgs field, writing the singlet combination |H|2 as H2 for simplicity,

and its VEV. It will be clear from context which one is meant. For simplicity, we also

ignore any numerical prefactors for now and set k = MPL. Similarly, we assume that all

parameters are real. We will reinstate prefactors and phases later on. Performing the

integral over the extra dimension and canonically normalizing the fields gives

S4D ⊃
∫
d4x mχ

(
1 +

H2

Λ2
IR

)
χχc + h.c. , (3.6)

where we have redefined e−kLmχ → mχ, e−kLH → H, e−3kL/2χ → χ and similarly for

χc. Note in particular that mχ . ΛIR after the redefinition. Let us next perform the field

redefinition

χ → eiφ/Fχ , (3.7)

while χc is left invariant. Due to the non-trivial transformation of the path integral measure,

this chiral rotation removes the coupling of φ to Tr
[
GFµνG

F
ρσ

]
in eq. (3.4) and transforms

eq. (3.6) to

S4D → S4D ⊃
∫
d4xmχ

(
1 +

H2

Λ2
IR

)
eiφ/Fχχc + h.c. . (3.8)
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χ χc N N c L Lc

GF � �̄ – – – –

Gf – – � �̄ � �̄

SU(2)L – – – – � �

U(1)Y – – – – −1
2 +1

2

Table 1. Matter content on the IR brane with gauge representations for the model with a barrier

at the electroweak scale.

Ifmχ is below the confinement scale of GF (which in turn is below ΛIR), this term contributes

to the Higgs-relaxion potential after confinement. Parametrizing11 〈χχc〉 = Λ3
GF , this gives

V (φ,H) ⊃ mχ Λ3
GF

(
1 +

H2

Λ2
IR

)
cos

(
φ

F

)
. (3.9)

This has the same form as the potential with period F in eq. (3.2), including the coupling

to the Higgs. We can then make the identifications

Λ4
F = mχ Λ3

GF , M2
F = Λ2

IR . (3.10)

Next we need to generate the potentials with smaller period f . To this end, we use

a construction from ref. [1] and add fermions L and N on the IR brane with the same

Standard Model charges as the lepton doublet and the right-handed neutrino, respectively.

In addition, these fermions are in the fundamental representation of the gauge group Gf .

We also include fermions Lc and N c in the conjugate representations. Together they allow

for the terms in the action

S5D ⊃
∫
d4x dz

√
−gIR δ(z− zIR)

(
mL LL

c + mN NN
c + y HLN c + ỹ H†LcN

)
+ h.c. .

(3.11)

Notice that we have not included a higher-dimensional coupling to the Higgs. It could be

present but will be subdominant as we will see momentarily. Performing the integral over

the extra dimension and canonically normalizing the fields gives

S4D ⊃
∫
d4x

(
mL LL

c + mN NN
c + y HLN c + ỹ H†LcN

)
+ h.c. , (3.12)

where we have redefined e−kLmL → mL, e−kLH → H, e−3kL/2L→ L and similarly for mN ,

N and the conjugated fields. Note in particular that mL,mN . ΛIR after the redefinition.

Assuming that mN � mL and restricting to a region in field space where the Higgs VEV

satisfies yỹH2 � m2
L, we can integrate out L and Lc. This gives

S4D ⊃
∫
d4x

(
mN −

yỹ H2

mL

)
NN c + h.c. . (3.13)

11This is thus our definition of the scale ΛGF .
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We can then perform the chiral rotation

N → eiφ/fN , (3.14)

while N c is left invariant. This removes the coupling of φ to Tr
[
GfµνG

f
ρσ

]
in eq. (3.4) and

transforms eq. (3.13) to

S4D → S4D ⊃
∫
d4x

(
mN −

yỹ H2

mL

)
eiφ/f NN c + h.c. . (3.15)

Provided that mN is below the confinement scale of Gf , this term contributes to the Higgs-

relaxion potential after confinement. Parametrizing 〈NN c〉 = Λ3
Gf , this gives

V (φ,H) ⊃ mN Λ3
Gf

(
1 − yỹ H2

mNmL

)
cos

(
φ

f

)
. (3.16)

This has the form of the potential with period f in eq. (3.2), including the coupling to the

Higgs. We can then make the identifications

Λ4
f = mN Λ3

Gf , M2
f =

mNmL

yỹ
. (3.17)

For sufficiently small mN and mL, this allows for Mf . vEW as required in a technically

natural way. Notice that if we had instead relied on the higher-dimensional operator in

eq. (3.5) to generate the barrier, we would have obtained Mf ∼ ΛIR � vEW. We discuss

constraints on the parameters of this construction in more detail in section 4. A summary

of the matter content on the IR brane is given in table 1.

We next reinstate the numerical prefactors and the phases of the parameters which

we have ignored so far. Let us denote the prefactor of the Higgs coupling in eq. (3.5) as

cχH . We absorb possible phases in the fermionic condensates 〈χχc〉 and 〈NN c〉 and any

(relaxion-independent) Θ-terms for GF and Gf into the mass parameters mχ and mN ,mL,

respectively. Redoing the derivation above then gives

V (φ,H) ⊃ 2|mχ|Λ3
GF

[
cos

(
φ

F
+ bχ

)
+ |cχH |

H2

Λ2
IR

cos

(
φ

F
+ bχH

)]
+ 2|mN |Λ3

Gf

[
cos

(
φ

f
+ bN

)
− |yỹ|H2

|mNmL|
cos

(
φ

f
+ bNH

)]
, (3.18)

where the complex phases are given by bχ = arg(mχ), bχH = arg(mχcχH), bN = arg(mN )

and bNH = arg(yỹ/mL). Note that this does generically not match the form of the potential

in eq. (3.2). Nevertheless the relaxation mechanism can still work. Indeed expanding the

first two terms in the linear part of the cosines again gives the sliding term for the relaxion

and its linear coupling to the Higgs. In order to ensure that these terms have the same

sign as required, we need to demand that bχ ∼ bχH . As before, the Higgs-independent

barrier in the third term should be too small to stop the relaxion by itself. It is then

negligible for the dynamics and the phase bN has no consequences. The phase bNH in the

Higgs-dependent barrier in the fourth term, on the other hand, slightly shifts the minimum

where the relaxion eventually stops but has no other consequences either.
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To ensure that our calculation of the potentials is applicable, the masses of the fermion

pairs χ, χc and N,N c need to be below their respective condensation scales. This means

that the chiral symmetries under which these fermion pairs transform are only weakly

broken at the confinement scales. We then expect corresponding pseudo-Nambu-Goldstone

bosons in the spectrum of composite states. As we discuss in appendix C, their contribution

to the potential factorizes from the remaining potential and they can be trivially integrated

out if the spectrum of fermions is doubled.

4 Conditions for successful relaxation

We now discuss various conditions that need to be fulfilled for the relaxation mechanism

to be viable. In section 4.1, we derive general conditions on the parameters in the relaxion

potential in eq. (3.2). In section 4.2, we then discuss additional conditions that arise in

our warped model with a barrier at the electroweak scale.

4.1 General conditions

We begin our discussion of the evolution of the Higgs and relaxion with the Higgs mass-

squared being positive and of order Λ2. In order to allow the relaxion to subsequently turn

the Higgs mass tachyonic, its average VEV φ̃ during this stage of the evolution needs to

satisfy

cos
( φ̃
F

)
&

Λ2M2
F

Λ4
F

. (4.1)

Since the left-hand side is bounded by 1, this in particular implies the condition

Λ2
F & ΛMF . (4.2)

The relaxion stops rolling down its potential when the derivatives of the periodic

terms balance each other. We will find below that MF � vEW and the term proportional to

cos(φ/F ) is thus dominated by the Higgs-independent part. On the other hand, the term

proportional to cos(φ/f) needs to be dominated by the Higgs-dependent part as discussed

in section 3. The relaxion then stops once the Higgs VEV becomes

H2 ≈ M2
f

f

F

Λ4
F

Λ4
f

, (4.3)

where we have set sin(φ̃/F ) ∼ 1. This is a good approximation as long as cos(φ̃/F ) is not

very close to its extrema. The parameters need to be chosen such that the combination

on the right-hand side gives the electroweak scale vEW. In the following, we will use this

relation to trade Λf for vEW.

Notice that the Higgs-dependent barrier H2 cos(φ/f) in the potential contributes to

the Higgs mass. Imposing that this contribution be less than the electroweak scale (see

– 14 –



J
H
E
P
0
7
(
2
0
1
8
)
0
3
3

e.g. ref. [64])12 gives the constraint Λ2
f .MfvEW which using eq. (4.3) leads to

ΛF . vEW

(
F

f

)1/4

. (4.4)

Together with eq. (4.2), this gives a constraint on the cutoff in our model as we discuss

in section 4.2. In order to ensure that the Higgs mass is scanned with sufficient precision,

we need to demand that the change of the Higgs-dependent term proportional to cos(φ/F )

over one period of the barrier, δφ ∼ f , is less than the electroweak scale. This gives the

constraint ΛF . (MF vEW)1/2(F/f)1/4 which is weaker than eq. (4.4).

Furthermore, there are several requirements on the inflation sector for the relaxation

mechanism to be viable. If the relaxion is not the inflaton, its energy density should be

subdominant compared to the inflaton. The energy density in the minimum where the

relaxion eventually settles needs to be (close to) zero. This requires an additional constant

contribution that is added to the potential and chosen such that the energy density at

the minimum (nearly) vanishes. The tuning that is necessary to achieve this is just a

manifestation of the cosmological constant problem. The contribution of the relaxion to

the energy density relevant for inflation is then determined by how much it changes during

its evolution. Using eq. (4.1) in the potential of eq. (3.2) gives the condition

HI &
MFΛ

MPL

, (4.5)

where HI is the Hubble rate during inflation. In addition, to ensure that our classical

analysis of the field evolution is applicable, quantum fluctuations of the relaxion while it

roles down the potential should be sufficiently small. Over one Hubble time, the relaxion

changes classically by (δφ)class. ∼ H−2
I dV/dφ. Its quantum fluctuations, on the other hand,

are (δφ)quant. ∼ HI . This leads to the condition

HI .
Λ

4/3
F

F 1/3
. (4.6)

Combining the last two inequalities, we get

Λ2
F &

√
F

(
MF Λ

MPL

)3/2

. (4.7)

Finally, the number of e-folds of inflation must be sufficiently large to ensure that the

relaxion scans the required field range. Denoting the latter by ∆φ, this leads to the

condition Ne(δφ)class. & ∆φ. Provided that the relaxion is in the linear part of cos(φ/F ),

using eq. (4.1) this gives

Ne &
(
HIFMFΛ

Λ4
F

)2

. (4.8)

12This constraint can be slightly relaxed if one includes the barrier term in the scanning of the Higgs

mass [65]. One then still needs to impose that Λ2
f . 4πMfvEW to ensure that loop corrections to the

potential are small. This gives a similar condition as eq. (4.4) but with an additional factor
√

4π on the

right-hand side.
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The resulting required number of e-folds can be very large. We will not specify the in-

flation sector but will simply assume that it can be arranged to fulfill the conditions in

eqs. (4.5), (4.6) and (4.8). Possible complications in achieving this are discussed e.g. in

ref. [9]. Note also that the above conditions are somewhat alleviated if the effect of the

time evolution of the Hubble rate during inflation is taken into accout [3].

We also need to ensure that the potential is radiatively stable. The potential is an

effective theory with a cutoff determined by the confinement scales ΛGf and ΛGF of the

gauge groups that give rise to the periodic terms (assuming they are smaller than the

cutoffs associated with generating the H2-terms in the potential). In the region of the

potential where the Higgs mass parameter13

m2
H(φ) ≡

Λ4
F

M2
F

cos

(
φ

F

)
− Λ2 (4.9)

is smaller than these cutoffs, the Higgs can give important corrections to the potential.

From the one-loop effective potential, we find

V (φ,H) ⊃
Λ2
GFm

2
H(φ)

16π2
+
m4
H(φ)

16π2
log

(
m2
H(φ)

Λ2
GF

)
+

Λ4
fΛ2
Gf

16π2M2
f

cos

(
φ

f

)

+

[
Λ8
f

16π2M4
f

cos2

(
φ

f

)
+

Λ4
fm

2
H(φ)

8π2M2
f

cos

(
φ

f

)]
log

(
m2
H(φ)

Λ2
Gf

)
, (4.10)

where we have neglected some subdominant terms. In the opposite region m2
H(φ) � Λ2

Gf
or Λ2

GF , on the other hand, the corrections are strongly suppressed.14 This ensures that

the term proportional to m2
H(φ) cos(φ/f) gives only a small contribution to the Higgs-

independent barrier. In order to guarantee that the other term proportional to cos(φ/f)

is suppressed too, we require that

ΛGf . 4πMf . (4.11)

Provided that Λ,ΛGF ,ΛF . 4πMF the first two terms in eq. (4.10) give small corrections to

the sliding term for the relaxion and do not affect the dynamics. Finally if Λ2
f . 4πMfvEW,

the cos2(φ/f)-term is negligible compared to the Higgs-dependent barrier when the Higgs

reaches the electroweak scale. Using eq. (4.3), this translates to the constraint

ΛF .
√

4π vEW

(
F

f

)1/4

. (4.12)

This is less stringent than eq. (4.4).

4.2 Conditions on the warped model

The Higgs is localized on or near the IR brane in our warped model. Its mass parameter

is then naturally of order Λ2
IR. We therefore identify the cutoff of our relaxion model with

13Note that the Higgs mass parameter has an additional contribution from the cos(φ/f)-term. Since it

is subdominant except in a small region of φ, we define eq. (4.9) without this contribution.
14See the one-loop effective potential e.g. in eq. (2.64) of ref. [66] in the limit U ′′ � Λ2.
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the IR scale:

Λ ∼ ΛIR . (4.13)

As we have discussed in section 2, we can obtain the decay constants fB ≈ ΛIR from a

Chern-Simons term in the bulk and fUV ≈ M2
PL/ΛIR from an effective anomalous coupling

on the UV brane. Since F � f is required, we identify F = M2
PL/ΛIR and f = ΛIR.

From the conditions in eqs. (4.2) and (4.4) and using that MF ≈ ΛIR, we obtain an

upper bound on the IR scale in our warped model:

ΛIR .
(
v2
EWMPL

)1/3 ≈ 4 · 104 TeV . (4.14)

Note that this is slightly lower than the maximal cutoff found in ref. [1]. The reason is

that there the bound on the cutoff is partly determined by the requirement of a finite

viable window for the Hubble rate. In our warped model, the corresponding contraint in

eq. (4.7) is always trivially satisfied as we discuss below. The dominant bound on the cutoff

instead involves the constraint in eq. (4.2) that the H2 cos(φ/F )-term in the potential can

compensate for a Higgs mass near the cutoff. This difference arises because g is a free

parameter in the effective description of ref. [1], whereas in our warped model g ∝ 1/F is

determined in terms of other parameters.

We need to ensure that collider and flavour bounds on the KK modes in our warped

model are fulfilled. We have assumed that the Standard Model fields live in the bulk. The

dominant constraints then arise from CP -violation in K−K̄-mixing and the electric dipole

moment of the neutron. This requires [67, 68]:

ΛIR & 10 TeV . (4.15)

This also satisfies constraints from electroweak precision tests without imposing a custodial

symmetry [69, 70] and on the radion (for a typical stabilization mechanism).

The potential leads to mixing between the Higgs and the relaxion. This further

constrains the IR scale. We use results from ref. [64], where bounds on the parameter

Λ2
br = Λ2

fvEW/Mf controlling the mixing have been derived from several experiments (fifth

force, astrophysical and cosmological probes, beam dump, flavor, and collider searches). Us-

ing eq. (4.3), this translates to limits on ΛF and thereby on ΛIR. For our case F = M2
PL/ΛIR

and f = ΛIR, the most stringent bound comes from the distortion of the diffuse extra-

galactic background light spectrum due to relaxion late decays. This gives the constraint

ΛIR . 4 · 103 TeV (4.16)

which is more stringent than eq. (4.14).

We have discussed the confinement of Gf and GF in terms of only the massless modes

of the gauge fields in our extra-dimensional model. This is a good approximation provided

that the confinement scales are smaller than the KK mass scale:15

ΛGf ,ΛGF . ΛIR . (4.17)

15It may be possible to alleviate this condition by including some of the KK modes in the effective theory.
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Λ F ΛF MF f Λf Mf

ΛIR

M2
PL

ΛIR
ΛIR ΛIR ΛIR

Λ
3/2
IR

M
1/2
PL

vEW 10 TeV . ΛIR . 4 · 103 TeV

Table 2. Parameters in the potential in eq. (3.2) in our warped model with an electroweak-scale

barrier. The range for the IR scale is allowed by all phenomenological constraints considered in this

section.

Since ΛF . ΛGF and MF ∼ ΛIR according to eq. (3.10), it then follows from eq. (4.2) that

ΛF ∼ ΛIR is required for successful relaxation. This in turn means that mχ,ΛGF ∼ ΛIR.

Since the fermions χ, χc are localized on the IR brane, the former condition can be nat-

urally fulfilled. In order to discuss the latter condition, let us focus on GF = SU(N) for

definiteness. If we estimate the confinement scale as the scale where the 4D gauge coupling

diverges, we find (see e.g. ref. [71])16

ΛGF
MPL

≈
(

ΛIR

MPL

) 24π2

11N(gc5)
2k

, (4.18)

where gc5 is the 5D gauge coupling of GF . From this we see that the confinement scale of

GF is close to the IR scale if 24π2/(11N(gc5)2k) ≈ 1. This can be achieved for a wide range

of values for gc5 and N but clearly requires a coincidence between two parameters which

are a priori not related. It may be possible to instead trigger the confinement of GF by

adding states on the IR brane and thereby achieve ΛGF ∼ ΛIR without such a coincidence.

We leave a detailed study of this question to future work.

We next consider constraints related to the fermions N,N c and L,Lc on the IR brane.

The last two terms in eq. (3.12) break the chiral symmetry of N,N c, in addition to their

Dirac mass. Loop corrections then contribute to the Dirac mass (see figure 3), leading to

the constraint

mN &
yỹ mL

16π2
log(ΛIR/mL) . (4.19)

The Higgs-dependent barrier can only stop the relaxion if Mf . vEW. Using eq. (3.17), the

loop contribution to mN then implies that

mL .
4π vEW√

log(ΛIR/mL)
. (4.20)

The electroweak doublets L,Lc can thus not be much heavier than the electroweak scale.

On the other hand, due to collider constraints on such particles, they cannot be much

lighter either. This limits their mass to a region near the electroweak scale. The question

why their mass should be near the scale that is dynamically generated via the relaxation

mechanism is the coincidence problem that we have mentioned in section 3. This problem

does not appear in the double-scanner scenario that we discuss in section 5.

16Brane-localized kinetic terms for the gauge field would give another factor multiplying one side of this

relation. This would change the required relation between gc5 and N accordingly.
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Figure 3. Loop correction to mN .

Let us briefly pause to count parameters. The potential in eq. (3.2) has 7 dimensionful

parameters. Of these, Λ, MF and ΛF are of order ΛIR, whereas Mf is of order vEW.

Furthermore, F and f are given in terms of ΛIR and MPL, while Λf is fixed as a function of

the other parameters via eq. (4.3). We can then express all parameters (up to O(1) factors)

uniquely in terms of ΛIR (plus MPL and vEW). In table 2, we summarize the corresponding

relations and the phenomenologically viable range for the IR scale in our warped model.

Additional loop corrections arise in the effective field theory at energies below ΛGF
and ΛGf as discussed in section 4.1. In particular, eq. (4.11) is an upper bound on the

confinement scale of Gf . An additional constraint arises from the requirement that the

mass of the lightest fermion after diagonalizing eq. (3.12) is smaller than the confinement

scale (cf. the comment above eq. (3.16)). Together this gives∣∣∣∣mN −
yỹ v2

EW

2mL

∣∣∣∣ . ΛGf . 4π vEW , (4.21)

where we have used Mf ≈ vEW and that the largest Higgs VEV of interest is the electroweak

scale (as the relaxion stops before the Higgs VEV can grow even further). Using eq. (4.3)

and that Λf . ΛGf , this upper bound on ΛGf gives an upper bound on ΛF which is less

stringent than eq. (4.4). On the other hand, ΛGf can be very low provided that y, ỹ and

mN are sufficiently small. In order to ensure that Gf does not contribute to dark radiation

during big bang nucleosynthesis, its confinement scale should be larger than a few MeV:

ΛGf & O(few) ·MeV . (4.22)

From eq. (4.3) and since Λf . ΛGf , it follows that such low ΛGf is only possible for the IR

scale near its lower bound in eq. (4.15). Furthermore, we need to ensure that the decay

of composite states does not destroy heavy elements during big bang nucleosynthesis. The

resulting limits have been worked out in ref. [72]. For ΛGf = 10 MeV, mL = 500 GeV and

y = 2ỹ, it is found that y, ỹ & 0.15 is required. This limit quickly becomes weaker for larger

ΛGf or smaller mL. On the other hand, the Yukawa couplings must not be too large in order

to satisfy bounds on the invisible decay width of the Higgs. The corresponding limit is

y, ỹ . 0.1 for y = ỹ and mL = 200 GeV which becomes slightly less stringent for larger mL.

Given that the fermions χ, χc, L, Lc, N and N c are all localized on the IR brane, we

expect higher-dimensional terms in the action. These include

S4D ⊃
∫
d4x

(
cχχ

m2
χ

Λ4
IR

(χχc)2 + cNN
m2
N

Λ4
IR

(NN c)2 + cχN
mχmN

Λ4
IR

χχcNN c + h.c.

)
.

(4.23)
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The coefficients cχχ, cNN and cχN could be estimated using naive dimensional analysis. For

simplicity, we assume them to be real. After confinement, this gives the additional terms

V (φ,H) ⊃ cχχ
Λ8
F

Λ4
IR

cos

(
2φ

F

)
+ cNN

Λ8
f

Λ4
IR

cos

(
2φ

f

)
+ cχN

Λ4
FΛ4

f

Λ4
IR

cos

(
φ

F
+
φ

f

)
(4.24)

in the Higgs-relaxion potential. Note that higher-dimensional couplings involving LLc

either do not directly contribute to the potential as the pair LLc does not condense or the

contribution is very suppressed.17 The first term in eq. (4.24) contributes to the sliding

term for the relaxion. But for cχχ . 1 as expected from naive dimensional analysis,

this is suppressed compared to the sliding term in eq. (3.2) and can thus be neglected.

The second and third term, on the other hand, give additional contributions to the

Higgs-independent barrier for the relaxion. Again these are suppressed compared to the

barrier in eq. (3.2) and can be neglected. Adding higher-dimensional couplings to the

Higgs in eq. (4.23) gives terms which can similarly be neglected.

Finally, we check constraints related to inflation. Due to the temperature and quantum

fluctuations in de-Sitter space, we need to demand that the confinement scales of Gf and

GF are larger than the Hubble rate during inflation:

HI . ΛGf ,ΛGF . (4.25)

For both ΛGF ∼ ΛIR and ΛGf & Λf given by eq. (4.3), this is less stringent than eq. (4.6)

from requiring that quantum fluctuations of the relaxion are negligible for the dynamics.

For F = M2
PL/ΛIR and since Λ ∼ ΛF ∼ MF ∼ ΛIR, the condition for having a finite viable

window for the inflation scale in eq. (4.7) is trivially fulfilled. Furthermore, the upper

limit on the inflation scale in eq. (4.6) is significantly smaller than the IR scale. We will

assume that the inflationary sector, which we do not specify further, is located on the UV

brane. Then HI � ΛIR guarantees that the effect of inflation on the geometry of the extra

dimension is negligible [73, 74]. Similarly, for a typical stabilization mechanism it ensures

that the extra dimension is safe from destabilization during inflation. In order to ensure

that the barrier for the relaxion is not removed during reheating after inflation, we demand

that the reheating temperature be below ΛGf . This may require a relatively low reheating

temperature. As follows from eq. (4.22), it can still be sufficiently high to allow for big

bang nucleosynthesis though. Under certain conditions, the reheating temperature may

also be higher than ΛGf [1] (see also [75]).

To summarize, after imposing all the constraints the usual parameters of the relaxion

potential (1.1) in the model discussed in section 3.2 can be written just in terms of ΛIR,

vEW and MPL as can be seen from table 2 and using eq. (3.3). The dimensionless couplings

of the relaxion potential and the relaxion mass are now determined as

g = g′ =
Λ2

IR

M2
PL

, mφ ∼
Λ2

IR

MPL

. (4.26)

17A higher-dimensional coupling (χχc)†NNc would give a term proportional to cos(φ/F − φ/f) in the

potential.
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These couplings can thus be very small, provided that there is a large hierarchy between

the IR scale and the Planck scale. This in turn can be naturally achieved (i.e. without the

input of very small numbers) e.g. by means of the Goldberger-Wise mechanism to stabilize

the extra dimension [42].

In addition to ΛIR and MPL, the input parameters of the model discussed in section 3.2

include the confinement scales ΛGF and ΛGf , the fermion masses mχ, mN and mL and the

couplings y and ỹ. Of these, ΛGF and mχ are both required to be of order the IR scale.

Since the corresponding fermions are localized on the IR brane, the former condition can

be naturally fulfilled, while the latter condition may require a coincidence of parameters

as discussed around eq. (4.18). After imposing this, the electroweak scale is determined

by ΛGf , y, ỹ, mN and mL (plus ΛIR and MPL) as follows from eqs. (3.17) and (4.3). Using

eq. (4.19) and the requirement that Mf . vEW as well as imposing that mL & vEW to satisfy

electroweak precision tests [72], we see that

vEW . mL .
4π vEW√

log(ΛIR/vEW)
(4.27)

yỹ mL
log(ΛIR/mL)

16π2
. mN . yỹ

v2
EW

mL
. (4.28)

Using the range for mL in the range for mN , we then find

yỹ vEW
log(ΛIR/vEW)

16π2
. mN . yỹ vEW . (4.29)

The fact that the electroweak doublets need to be close to the electroweak scale is the

coincidence problem discussed after eq. (4.20). Note that the condition for the mass of the

singlets can be naturally fulfilled if it dominantly arises from the loop process in figure 3

(cf. eq. (4.19)). Demanding that the right electroweak scale is obtained, we then see from

eq. (4.3) that

Λ3
Gf ≈

mL

yỹ v2
EW

Λ6
IR

M2
PL

, (4.30)

where y and ỹ need to be chosen such that eqs. (4.21) and (4.22) for ΛGf as well as the

limits discussed below eq. (4.22) are fulfilled.

In the inflationary sector, the allowed window of Hubble scales and the minimum

number of e-folds are given by

Λ2
IR

MPL

. HI .
Λ

5/3
IR

M
2/3
PL

, Ne &
M2

PL

Λ2
IR

. (4.31)

In table 3, we give numerical values for two benchmark points. For the first one, we

set the cutoff to its maximal allowed value in our model, ΛIR = 4 · 103 TeV, and choose

y = 2ỹ = 0.2 and mL = 700 GeV. For the second one, we choose the intermediate cutoff

ΛIR = 500 TeV as well as y = 2ỹ = 0.04 and mL = 450 GeV. For both benchmark points,

we assume that mN is dominantly generated by the loop process in figure 3 in which case

the lower bound in eq. (4.28) is saturated (while our choices for mL satisfy the bound in

eq. (4.27)). This in particular leads to Mf ∼ vEW as used for table 2. Both benchmark
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g, g′
mφ
GeV

ΛGf
GeV

mN
GeV

HI
GeV Nmin

e

3 · 10−24 7 · 10−6 7 0.8 [7 · 10−6 , 0.06] 4 · 1023

4 · 10−26 10−7 0.3 2 · 10−2 [10−7 , 2 · 10−3] 2 · 1025

Table 3. Numerical values of the parameters for two benchmark points. For the first line, we set

ΛIR = 4 · 103 TeV, y = 2ỹ = 0.2 and mL = 700 GeV, while for the second line, ΛIR = 500 TeV,

y = 2ỹ = 0.04 and mL = 450 GeV.

points satisfy the constraints in eqs. (4.21) and (4.22) in addition to the relevant constraints

from colliders and big bang nucleosynthesis as can be seen from figure 10 in ref. [72]. Note

that for cutoffs ΛIR . 500 TeV, constraints from big bang nucleosynthesis can become

problematic. Indeed from eqs. (4.29) and (4.30) and the requirement that mN . ΛGf , we

see that lower cutoffs necessitate smaller values for yỹ. If y ∼ ỹ, this leads to longer lifetimes

for the lightest NN c bound states which arise from the confinement of Gf (see [72]). For

too long lifetimes, these decay during big bang nucleosynthesis. One way out is to choose

y ∼ 1 � ỹ. The large coupling y then allows for relatively fast decays via an off-shell

Z [72]. For example for ΛIR = 10 TeV, y = 1, ỹ = 10−9,mL = 800 GeV and assuming that

the mass of the lightest NN c bound state is ∼ 3ΛGf , we find that its lifetime is of order

1000 s while it can kinematically only decay into electron pairs or lighter states. This then

satisfies the corresponding limit on the lifetime of order 104 s [76]. Alternatively, one could

add new decay channels for the bound states which can allow them to decay faster and

sufficiently long before big bang nucleosynthesis. We leave a further investigation of this

possibility for future work.

5 Warping the double-scanner mechanism

5.1 A UV completion

As discussed in section 3.1, the Higgs-dependent barrier in the relaxion potential needs to

dominate over the Higgs-independent one once the Higgs VEV has reached the electroweak

scale. This requires that Mf . vEW which in turn necessitates to introduce new particles

coupled to the Higgs near the electroweak scale. We now discuss an interesting alternative

presented in ref. [2]. The idea is to have another axion-like scalar σ with couplings in the

potential

V (φ, σ,H) ⊃ gσΛ3σ + Λ4
f

(
1 − g̃σ

σ

Λ
+ g̃

φ

Λ
+

H2

M2
f

)
cos

(
φ

f

)
(5.1)

and arrange its evolution such that it cancels off the Higgs-independent barrier. Note that

we have also included a term φ cos(φ/f) in the potential which will be important. The

remaining terms involving the relaxion are as in eq. (1.1). Similar to the relaxion, the

shift-symmetry breaking couplings gσ and g̃σ of the field σ are taken to be very small.

Let us assume that σ begins its evolution at some initial value σ & (Λ + g̃φ)/g̃σ so

that the Higgs-independent term in brackets in eq. (5.1) is unsuppressed. Provided that
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gΛ3 . Λ4
f/f , the barrier term for the relaxion then dominates over its sliding term and the

relaxion is initially stuck in a local minimum. Meanwhile, the first term in eq. (5.1) causes

σ to slide and it eventually reaches the value σ ' (Λ + g̃φ)/g̃σ. This removes the barrier

for the relaxion which can subsequently also slide down the potential. Both σ and φ then

roll down if they track each other according to the relation σ ' (Λ + g̃φ)/g̃σ. The resulting

growth of φ after a while causes the Higgs mass parameter to turn tachyonic and H begins

to grow too. Shortly afterwards, the Higgs-dependent barrier in eq. (5.1) then becomes so

big that the relaxion stops again. Provided that σ can no longer cancel this barrier, the

relaxion remains stuck. This mechanism works for certain ranges of parameters which we

review below. It then allows the backreaction from the Higgs to stop the relaxion once its

VEV has reached the electroweak scale even if Mf � vEW.

We first present a construction to generate the required terms in the potential (see

also [10, 12]). This construction is, in fact, largely independent of the embedding into

warped space and can thus be used in other UV completions of the relaxion as well. It is

meant to serve as a proof of principle, and does not preclude the existence of simpler or

more complete models. Let us introduce an additional U(1) gauge symmetry in the bulk.

We identify the field σ with the 5th component of the gauge field after imposing appro-

priate boundary conditions. In order to generate the sliding term in eq. (5.1), we add an

anomalous coupling of σ to a non-abelian gauge group GFσ on the UV brane using the con-

struction in section 2.2. We also introduce two chiral fermions ρ and ρc on the UV brane,

with a Dirac mass mρ and in respectively the fundamental and anti-fundamental repre-

sentation of GFσ . These fermions have no explicit coupling to σ. Such a coupling is then

generated if we perform a chiral rotation of ρ or ρc to remove the anomalous coupling of σ

to GFσ . If the gauge group confines at some scale ΛGFσ > mρ, this gives rise to the potential

V (φ, σ,H) ⊃ 2|mρ|Λ3
GFσ cos

(
σ

Fσ
+ bρ

)
. (5.2)

Here Fσ � f is the decay constant resulting from the anomalous coupling and bρ = arg(mρ)

is the phase of the mass term. As we see later, we again have Λ = ΛIR. Expanding in σ

around the linear part of the trigonometric potential gives the sliding term in eq. (5.1) with

gσ =
|mρ|Λ3

GFσ
Fσ Λ3

IR

(5.3)

up to factors of order one.

Generating the coupling of σ to the periodic potential for φ is somewhat more involved.

Notice that in eq. (5.1), the periodic potential for φ appears with the same phase in the

last four terms (which for definiteness we have chosen as cos(φ/f)). Having the same phase

to a high precision in these a priori independent terms is in fact necessary for the double-

scanner mechanism to work. Let us assume that σ instead couples to sin(φ/f). Keeping

the phases for the other periodic terms fixed, the barrier in eq. (5.1) then reads

V (φ, σ,H) ⊃ Λ4
f

(
1 − g̃σ

σ

Λ
tan

(
φ

f

)
+ g̃

φ

Λ
+

H2

M2
f

)
cos

(
φ

f

)
. (5.4)
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Even if σ can then initially cancel off the Higgs-independent terms (which depending on

the initial value for φ may require σ � Λ/g̃σ), this cancellation is generically irreversibly

spoiled once φ starts rolling. The same holds for a phase difference less than π/2, if the

other periodic terms have different phases or if the decay constants in the periodic terms

differ from each other (in all cases down to values which are determined by the small

couplings in the potential).

In order to ensure the required phase and period structure, we extend the gauge sym-

metry Gf in the bulk from section 3.2 to the product group Gf1 × Gf2 × Gf3 × Gf4 . In

addition, we impose discrete symmetries Z2 and Z′2 that interchange the groups as follows:

Gf1
Z2←→ Gf2

Z′2
xy xyZ′2
Gf3 ←→

Z2

Gf4 .

(5.5)

This in particular imposes that the underlying groups (e.g. SU(N)) are the same for

Gf1 ,Gf2 ,Gf3 and Gf4 . We couple the 5D gauge field AM that gives rise to φ to the gauge field

strengths of these four groups via Chern-Simons terms as in section 2.1. We impose that

in the resulting anomalous couplings, φ transforms as φ ↔ −φ under Z2, while it is even

under Z′2 (by choosing the coefficients cB in eq. (2.13) to transform accordingly). This gives

S4D ⊃
∫
d4x

1

16π2

φ

f
εµνρσ

(
Tr
[
Gf1µνG

f1
ρσ

]
− Tr

[
Gf2µνG

f2
ρσ

]
+ Tr

[
Gf3µνG

f3
ρσ

]
− Tr

[
Gf4µνG

f4
ρσ

])
,

(5.6)

where the decay constant f ∼ ΛIR is equal for all gauge groups by virtue of the symmetries.

We also add anomalous couplings of σ to Gf3 and Gf4 on the UV brane, using the

construction in section 2.2. We choose σ to be even under Z2. This gives

S4D ⊃
∫
d4x

1

16π2

σ

F̃σ
εµνρσ

(
Tr
[
Gf3µνG

f3
ρσ

]
+ Tr

[
Gf4µνG

f4
ρσ

])
, (5.7)

where the decay constant F̃σ � f is equal for the two gauge groups by virtue of the Z2.

We do not add corresponding couplings to Gf1 and Gf2 though. This explicitly breaks the

Z′2 on the UV brane.

On the IR brane, we next introduce four pairs of chiral fermions η1, η
c
1, η2, η

c
2, η3, η

c
3

and η4, η
c
4 in the fundamental and anti-fundamental representation of Gf1 , Gf2 , Gf3 and

Gf4 , respectively. The fermion pairs interchange under Z2 consistent with eq. (5.5) but we

choose Z′2 to be explicitly broken on the IR brane too. Including Dirac masses for the pairs

of chiral fermions and higher-dimensional couplings to the Higgs, this gives

S4D ⊃
∫
d4x

(
mη1 [η1η

c
1 + η2η

c
2]

(
1 + cη1

H2

Λ2
IR

)
+mη3 [η3η

c
3 + η4η

c
4]

(
1 + cη3

H2

Λ2
IR

)
+ h.c.

)
, (5.8)
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where the fields are already canonically normalized and mη1 ,mη3 . ΛIR. The coefficients

cη1 and cη3 are a priori different from each other and could be of order one or be suppressed

by a loop factor. We can now perform the chiral rotations

η1 → e
iφ
f η1 η2 → e

−iφ
f η2

η3 → e
iφ
f

+i σ
F̃σ η3 η4 → e

−iφ
f

+i σ
F̃σ η4

(5.9)

while leaving ηc1, ηc2, ηc3 and ηc4 invariant. This moves φ and σ from eqs. (5.6) and (5.7)

into eq. (5.8). We assume that the gauge groups confine at energies below the IR scale.

By virtue of the Z2 which is unbroken everywhere, the confinement scales of Gf1 and

Gf2 are identical, as are those of Gf3 and Gf4 . The condensates then are pairwise equal,

〈η1η
c
1〉 = 〈η2η

c
2〉 = Λ3

Gf1
and 〈η3η

c
3〉 = 〈η4η

c
4〉 = Λ3

Gf3
. The resulting potential at low energies

reads

V (φ, σ,H) ⊃ 4|mη1 |Λ3
Gf1

cos

(
φ

f

)[
cos(bη1) + |cη1 | cos(dη1)

H2

Λ2
IR

]
(5.10)

+ 4|mη3 |Λ3
Gf3

cos

(
φ

f

)[
cos

(
σ

F̃σ
+ bη3

)
+ |cη3 | cos

(
σ

F̃σ
+ dη3

)
H2

Λ2
IR

]
,

where bη1 = arg(mη1), dη1 = arg(mη1cη1), bη3 = arg(mη3) and dη3 = arg(mη3cη3) are given

by the complex phases of the parameters. We have kept track of the phases in order to

show that all terms are proportional to cos(φ/f) without relative phase shifts as required.

This is guaranteed by the Z2 under which φ→ −φ and the potential is invariant. However,

note that we have tacitly assumed that the fermionic condensates are real. As we have

discussed at the end of section 3.2 and in appendix C, these phases are pion-like fields and

thus dynamical. Doubling the spectrum in order to ensure that the potential for these

pions factorizes from the remaining potential then fixes their phases to the same value for

all four condensates and leads to an additional overall minus sign in eq. (5.10).

On the other hand, the decay constants that appear in cos(φ/f) between the first and

second line of eq. (5.10) are the same due to the Z′2 in the bulk. However, note that this

symmetry is broken on the UV brane by the couplings for σ in eq. (5.7). Nevertheless we

expect that this does not affect the decay constants for φ in eq. (5.10) by virtue of the

non-renomalization properties of anomalous couplings (see e.g. ref. [77]). Also any such

effect would be strongly suppressed since F̃σ � f . We leave a detailed study of this for

future work. Furthermore, we have allowed for the masses mη1 and mη3 being different

which breaks the Z′2 also on the IR brane. This generically leads to a different running

of the gauge couplings of Gf1 and Gf2 compared to those of Gf3 and Gf4 and accordingly

different confinement scales ΛGf1 and ΛGf3 . However, it does not affect the decay constants

for φ in eq. (5.10) either as these are defined not involving the gauge couplings of the

underlying gauge groups (cf. eqs. (2.15) and (2.16)). As follows from eqs. (3.7) to (3.9),

it is precisely the decay constants defined in this way which determine the period of the

periodic potentials. These periods are thus not affected by the differing running of the gauge

couplings. Note also that the resulting difference between the confinement scales can be

made arbitrarily small for example by increasing the number of colours of the gauge groups.
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χ χc η1 ηc1 η2 ηc2 η3 ηc3 η4 ηc4

GF � �̄ – – – – – – – –

Gf1 – – � �̄ – – – – – –

Gf2 – – – – � �̄ – – – –

Gf3 – – – – – – � �̄ – –

Gf4 – – – – – – – – � �̄

Table 4. Matter content on the IR brane with gauge representations for the double-scanner model.

We can match with the potential in eq. (5.1) after expanding both eqs. (5.2) and (5.10)

in σ around regions where the corresponding trigonometric potentials are linear. Both

trigonometric potentials can be in the linear part simultaneously for example for Fσ ∼ F̃σ
and bρ − bη3 ∼ π. This also ensures that the right signs in the potential are obtained. In

addition to eq. (5.3), we can then identify

Λ4
f = |mη1 |Λ3

Gf1
, Mf =

ΛIR√
|cη1 |

, g̃σ =
|mη3 |Λ3

Gf3
|mη1 |Λ3

Gf1

ΛIR

F̃σ
(5.11)

up to factors of order one. Notice that eq. (5.10) contains a term cos(φ/f) cos(σ/F̃σ)H2

which is not included in eq. (5.1). However, provided that for example

|mη3 |Λ3
Gf3
≈ |mη1 |Λ3

Gf1
and |cη3 | is somewhat suppressed compared to |cη1 |, this only gives a

small correction to the Higgs-dependent barrier and therefore does not affect the dynamics.

Note that this would not be possible if the Z′2 would be unbroken on the IR brane.

As in section 3.2, we next introduce fermions χ and χc in the fundamental and anti-

fundamental representation of a non-abelian gauge symmetry GF to generate the sliding

term for the relaxion and its coupling to the Higgs. These fermions also allow us to generate

the term φ cos(φ/f) in eq. (5.1). To this end, we consider the higher-dimensional operator

S4D ⊃
∫
d4x

(
cχη1

mχmη1

Λ4
IR

χχc
(
η1η

c
1 + η2η

c
2

)
+ h.c.

)
(5.12)

which we expect to be present since the relevant fermions live on the IR brane. The fields

are already canonically normalized and mχ,mη1 . ΛIR. The coefficient cχη1 is again of

order one or suppressed by a loop factor. Performing the chiral rotations in eqs. (3.7)

and (5.9), we find below the confinement scales

S4D ⊃
∫
d4x 4|cχη1 |

|mχ|Λ3
GF |mη1 |Λ3

Gf1
Λ4

IR

cos

(
φ

F
+ bχη1

)
cos

(
φ

f

)
, (5.13)

where bχη1 = arg(cχη1mχmη1). Expanding the trigonometric function of φ/F around its

linear part, we can identify

g̃ = |cχη1 |
|mχ|Λ3

GF
Λ3

IRF
(5.14)

up to factors of order one. Note that the coupling in eq. (5.12) with η1η
c
1, η2η

c
2 replaced by

η3η
c
3, η4η

c
4 gives an additional term cos(φ/F + σ/F̃σ) cos(φ/f) in the potential. We expect
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that for example for |mη3 |Λ3
Gf3
≈ |mη1 |Λ3

Gf1
and the corresponding coefficient cχη3 being

somewhat suppressed compared to cχη1 , this does not significantly affect the dynamics.

A summary of the matter content on the IR brane is given in table 4.

5.2 Constraints

We have now generated all terms in the potential of eq. (5.1) as well as the sliding term

and coupling to the Higgs of the relaxion. In order to see if the potential parameters in

eqs. (5.3), (5.11) and (5.14) (plus eqs. (3.3) and (3.10) for g and g′) can take on values which

allow the double-scanner mechanism to work, we next discuss various constraints. We again

need to ensure that the conditions discussed in section 4.1 are fulfilled. In particular, the

Higgs VEV once the relaxion stops is as before given by eq. (4.3). One difference between

the potential parameters for the electroweak-scale barrier and the double scanner is that

Mf ∼ vEW in the former and Mf ∼ ΛIR in the latter. But in both scenarios, by construction

the Higgs-independent barrier plays no role and therefore only the combination Λ2
f/Mf is

relevant for the dynamics of the relaxion and Higgs. Using eq. (4.3) to fix the Higgs VEV,

we can express this combination in terms of the decay constants and ΛF . Constraints

on these parameters therefore apply for both the electroweak-scale barrier and the double

scanner. We can therefore conclude that the allowed range for the IR scale is again given

by table 2. Note that Λf and Mf are different from those given in the table but the

combination Λ2
f/Mf and the other parameters in the table agree for both scenarios. In

particular, we again find that Λ ∼ ΛIR and that ΛF ∼ ΛGF ∼ mχ ∼ ΛIR is required.

On the other hand, the constraint on ΛGf in eq. (4.17) can always be fulfilled as follows

from eq. (4.4). Similarly, we see using eqs. (4.3), (4.6) and (4.15) that the constraints in

eqs. (4.22) and eq. (4.25) are automatically fulfilled.

There are new conditions that are specific to the double-scanner mechanism: the fields

φ and σ track each other according to the relation σ ' (Λ + g̃φ)/g̃σ once the barrier is

sufficiently small provided that [2]

g g̃ & gσ g̃σ , (5.15)

where g is given by eqs. (3.3) and (3.10). On the other hand, σ can no longer cancel the

barrier that the Higgs generates once it obtains a VEV if [2]

g
(
g̃ − g

2λ

)
. gσ g̃σ (5.16)

with λ being the Higgs quartic coupling. We have F ≈ Fσ ≈ F̃σ since these decay constants

all arise from anomalous couplings on the UV brane. Comparing eqs. (3.3) and (5.14), we

also see that g̃ ∼ |cχη1 |g. On the other hand, the couplings gσ and g̃σ can a priori be quite

different. The gauge group GFσ that gives rise to the sliding term for σ can in principle be

localized on the UV brane. Nevertheless we should still demand that its confinement scale

is below the IR scale to ensure that the effective description for σ is valid at the energy scale

where the potential is generated. In addition, we need to require that |mρ| . ΛGFσ . In order

to study one concrete example, let us assume that |mη1 |Λ3
Gf1
≈ |mη3 |Λ3

Gf3
(corresponding

to Z′2 being only weakly broken on the IR brane). This gives g̃σ ≈ g and g & gσ. The
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conditions in eqs. (5.15) and (5.16) then simplify to

g |cχη1 | & gσ , g

(
|cχη1 | −

1

2λ

)
. gσ . (5.17)

This can be fulfilled for a wide range of gσ if |cχη1 | . 1/(2λ). This example shows that the

conditions for the double-scanner mechanism to work can be easily satisfied.

Finally, let us consider loop corrections to the potential. The double-scanner mecha-

nism cannot remove barriers from terms like cos2(φ/f) [2]. Therefore these must be smaller

than the Higgs-dependent barrier when the Higgs reaches the electroweak scale. For loop

corrections from the Higgs, this translates to the condition Λ2
f . 4πMfvEW and in turn

to eq. (4.12) which is less stringent than the already imposed eq. (4.4). This also means

that eq. (4.11) can always be fulfilled. Furthermore, in addition to eq. (5.12) we expect

higher-dimensional operators like

S4D ⊃
∫
d4x

(
cχχ

m2
χ

Λ4
IR

(χχc)2 + cη1η1
m2
η1

Λ4
IR

[
(η1η

c
1)2 + (η2η

c
2)2
]

+ cη1η2
m2
η1

Λ4
IR

η1η
c
1 η2η

c
2 + h.c.

)
(5.18)

and similar terms involving η3, η
c
3, η4, η

c
4 since the relevant fermions are all localized on the

IR brane. The coefficients are again of order one or suppressed by a loop factor and are

partly determined by the Z2. Assuming all parameters to be real for simplicity, below the

confinement scales this gives

V (φ,H) ⊃ 2 cχχ
Λ8
F

Λ4
IR

cos

(
2φ

F

)
+ 4 cη1η1

Λ8
f

Λ4
IR

cos

(
2φ

f

)
. (5.19)

The first term gives a correction to the sliding term for the relaxion which is negligible for

cχχ . 1. The second term, on the other hand, gives another type of barrier that cannot be

cancelled by the double-scanner mechanism. It is sufficiently suppressed compared to the

Higgs-dependent barrier provided that Λ2
f . vEWΛ2

IR/(Mf
√
cη1η1). This in turn leads to a

condition which for example for cη1η1 ∼ cη1 ∼ 1 is the same as eq. (4.4) and which is then

fulfilled for the entire range of IR scales in table 2.

6 Conclusions

We have implemented the cosmological relaxation mechanism in a warped extra dimension.

The relaxion potential trades the hierarchy between the Planck and electroweak scale for

a technically natural hierarchy of decay constants. Warped extra dimensions are then a

natural choice for its UV completion as they can generate a large hierarchy of scales purely

from geometry. In our construction, the relaxion is identified with the scalar component of

an abelian gauge field in the bulk, whose profile automatically has a small overlap with the

UV brane. The warping generates the hierarchy from the Planck scale down to the scale

of the IR brane, which is then identified with the cutoff Λ of the relaxion potential. From

there onwards, the Higgs mass is relaxed down to its physical value.

In section 2, we have presented a model-building toolkit for generating anomalous

couplings of the relaxion to new, strong sectors. Depending on the localization of the

– 28 –



J
H
E
P
0
7
(
2
0
1
8
)
0
3
3

anomalous terms in the warped interval, hierarchically different decay constants for these

couplings may be obtained, including decay constants which are super-Planckian. A bench-

mark model coupling the relaxion to the Higgs was constructed in section 3. The sliding

term and its coupling to the Higgs is generated through the condensation of a Dirac pair of

SM singlet fermions that live on the IR brane. The barrier term, on the other hand, is gen-

erated close to the electroweak scale by the condensation of vector-like fermions with the

same quantum numbers as one generation of SM leptons. These are also localized at the IR

brane, and have masses near or below the weak scale, but are a priori unrelated to it, leading

to the well-known coincidence problem. In order to avoid this and achieve a larger scale for

the barrier term, a more elaborate construction is required. In section 5, we have presented

a warped UV completion for one such scenario, the double-scanner mechanism of ref. [2].

The constraints for the model, both in general and those specific to the construction

of section 3, were discussed thoroughly in section 4, as well as the stability of the po-

tential under radiative corrections. The requirement of obtaining the correct Higgs VEV

may be used to fix the scale where the barrier term is generated in terms of the other

parameters. Then, we have found that the scale where the sliding and scanning terms are

generated needs to be of order the IR scale. Since the SM fields live in the bulk, standard

flavor constraints of Randall-Sundrum models push the minimum value of the IR scale to

Λ & 10 TeV. The maximum cutoff that we can achieve while ensuring that all theoretical

and phenomenological constraints are fulfilled is Λ ≈ 4 · 106 GeV.

In this work, we have focused on inflation to provide a friction term for the slow-

roll of the relaxion, but interesting alternatives such as the particle-production mechanism

of ref. [14] exist. It would be interesting to explore how such constructions may be im-

plemented in warped space. The framework that we have described naturally allows for

hierarchical decay constants for axion-like fields to be generated. As such it presents many

further opportunities for model building, not limited to relaxion models, such as appli-

cations to inflation or dark matter. Another interesting possibility for generating this

hierarchy is to consider a more general geometry with more than one AdS5 throat [78].
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A An anomalous coupling on the UV brane from two throats

The interaction in eq. (2.17) should be understood as an effective coupling that can for

example arise from a Chern-Simons term in a second throat as we now briefly discuss.

More details will be presented in [78]. To this end, we consider a setup with two warped

spaces which are glued together at a common UV brane but each slice still has its own

IR brane. For simplicity, we assume that both slices have the same AdS scale k. Let us

denote the coordinates along the extra dimension in the two throats as z1 and z2, with

metric in each throat again given by eq. (2.1). The coordinates match at the common UV

brane at zUV1 = zUV2 = 1/k, while the IR branes are at zIR1 = ekL1/k and zIR2 = ekL2/k.

We then introduce an abelian gauge boson which propagates in both throats (see e.g. [44]).

We break the gauge symmetry on the two IR branes by imposing the boundary conditions

in eq. (2.6) but leave it unbroken on the UV brane. This allows for one massless mode

from A5 which lives in both throats with wavefunction A5 = Na(zi)
−1φ in a given throat

(the wavefunction is continuous at the UV brane). We will be interested in the case where

one throat is significantly longer than the other. The normalization constant N is then

dominated by the longer throat. Choosing L1 > L2 without loss of generality, we have

zIR1 � zIR2 , which gives N ' g4

√
2kL1e

−kL1 with g4 defined as before. Let us next

introduce a Chern-Simons coupling of AM to a non-abelian gauge group, where we choose

the coupling to be localized in the second throat:

S5D ⊃
∫
d4x

∫ zIR2

zUV

dz2
cb2

16π2
εMNPQRAM Tr [GNPGPQ] . (A.1)

Notice that the coupling to A5 from this resembles eq. (2.17) with the δ-function replaced

by the integral over A5 in the second throat. In the limit of a very short second throat

with zIR2 ∼ O(few) · zUV, we can think of this integral as a smeared-out δ-function. Corre-

spondingly we expect the decay constant of φ in this limit to agree with eq. (2.19). Let us

again restrict ourselves to the zero-mode of the non-abelian gauge field. Integrating over

the extra dimension, we in particular find

S4D ⊃
∫
d4x

1

16π2

φ(x)

fB2

εµνρσTr [GµνGρσ] (A.2)

with decay constant given by

fB2 '
k ekL1−2kL2

cb2 g4

√
2kL1

(A.3)

or fB2 ≈ Λ2
IR2
/ΛIR1 . For a very short second throat with L1 � 2L2, this indeed agrees with

eq. (2.19). On the other hand, the two-throat construction allows for more general choices

for the decay constant, with a continuum between M2
PL/ΛIR1 and ΛIR1 (as ΛIR1 < ΛIR2 by

assumption). The resulting phenomenology and the details of the construction will be

presented in [78].
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B Chern-Simons terms from bulk fermions

In this appendix, we briefly review how charged bulk fermions can give rise to Chern-

Simons terms. We consider a bulk fermion Ψ which couples to both the non-abelian gauge

group and the U(1) from section 2.1. The action reads

S5D ⊃
∫
d4xdz

√
g
(
Ψ̄i /DΨ + mΨΨ̄Ψ

)
, (B.1)

where the covariant derivative is DM = ∂M − iGM − iAM with GM being the non-abelian

gauge field (and AM the U(1) gauge field). In order to see that this gives the same anomaly

as a Chern-Simons term, we can perform a field redefinition [79, 80]

Ψ → exp

[
i

∫ z

z0

dz̃A5(x, z̃)

]
Ψ , (B.2)

where the constant z0 can be chosen according to convenience. However, the field redefini-

tion is anomalous on the branes18 and transforms the action into (see [81–84])

S5D → S5D +

∫
d4xdz

(∫ z

z0

dz̃A5(x, z̃)

)
εµνρσ

48π2
Tr [GµνGρσ]

(
αUVδ(z − zUV) + αIRδ(z − zIR)

)
.

(B.3)

The coefficients αUV and αIR depend on the boundary conditions on the two branes for the

left-handed component ΨL of the bulk fermion (which in turn fixes the boundary conditions

of the right-handed component ΨR). If ΨL is even (odd) on a given brane, α = 1(−1).

Let us first assume αUV = −αIR in which case Ψ does not have a massless mode. From

eq. (B.3), we then get the anomalous coupling of φ in eq. (2.15) with

cB =
αIR

4
. (B.4)

Notice that this is independent of z0. In the opposite case αUV = αIR, on the other hand,

cB depends on z0. But then Ψ has a massless mode which contributes to the anomaly

and which cancels the dependence on z0. If the Chern-Simons term arises from such a

bulk fermion, any perturbative contribution to the potential for A5 can be sufficiently

suppressed by making the bulk mass of the fermion somewhat larger than the AdS scale

(see e.g. [34, 47]).

C Pion-like fields in the relaxion potential

In this appendix, we include the pion-like fields which arise from the condensing fermions on

the IR brane and which contribute to the potential. Let us focus on χ, χc for definiteness.

As usual, we can parametrize the pseudo-Nambu-Goldstone boson corresponding to the

breaking of the chiral symmetry of χ, χc by the σ-model field U = exp(iπχ/fχ) with a

18We note that, e.g. for SU(N), there is an additional SU(N)3 anomaly. It can be canceled by adding

another bulk fermion, uncharged under U(1), with opposite boundary conditions from Ψ.
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decay constant of order fχ ∼ ΛGF . After confinement then 〈χχc〉 = Λ3
GFU . From eq. (3.8),

this gives

V (φ,H) ⊃ mχ Λ3
GF

(
1 +

H2

Λ2
IR

)
cos

(
φ

F
+
πχ
fχ

)
, (C.1)

where for simplicity we again ignore phases and prefactors. Since F � fχ, generically

πχ settles into its minimum πmin
χ = fχπ − fχφ/F first after which the potential becomes

independent of φ. This problem is remedied for example by introducing another pair of

chiral fermions χ̃χ̃c with the same quantum numbers. Instead of eq. (3.6) we then have

S4D ⊃
∫
d4x

(
1 +

H2

Λ2
IR

)
[mχ χχ

c + mχ̃ χ̃χ̃
c] + h.c. . (C.2)

Similar to the up and down quark in the Standard Model, the fermions transform under

an approximate SU(2)L × SU(2)R symmetry which is spontaneously broken to a diago-

nal SU(2)V by the condensates and explicitly but weakly broken by their masses. The

corresponding pseudo-Nambu-Goldstone bosons are parametrized as

U = eiΠχ/fχ with Πχ =

(
π0
χ

√
2π+

χ√
2π−χ −π0

χ

)
. (C.3)

We next perform the chiral rotation

χ → ei
φ
2F χ , χ̃ → ei

φ
2F χ̃ (C.4)

with χc and χ̃c left invariant to remove the coupling of φ to Tr
[
GFµνG

F
ρσ

]
in eq. (3.4).

For this choice of chiral rotation, no kinetic mixing between the relaxion and the pions is

induced (see ref. [85]). Choosing mχ = mχ̃ for simplicity, from eq. (C.2) we get below the

confinement scale

V (φ,H) ⊃ mχ Λ3
GF

(
1 +

H2

Λ2
IR

)
cos

(
φ

2F

)
cos

(
πχ
fχ

)
, (C.5)

where πχ ≡
√

(π0
χ)2 + 2π+

χ π
−
χ . The potential for the pions and relaxion thus factorizes and

no longer vanishes once the pions settle into their minimum. This is similar to what happens

for the axion and the pion of the Standard Model, see ref. [59]. For the generalization of

the potential to the case mχ 6= mχ̃, see also ref. [59]. The potential after minimization

with respect to the pion then still leads to a nonvanishing potential for the relaxion but

the latter is no longer a simple cosine.
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