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1 Introduction & summary

Conformal Field Theories (CFTs) in two dimensions have infinite symmetry group and, as

a result, 2d CFTs are perfectly specified by a central charge, operator spectrum and OPE

coefficients. Moreover, possible CFT data are limited by crossing symmetry and modular

invariance, which come from the consistency requirements of CFTs. Recently the bootstrap

program, which is based on crossing symmetry or modular invariance, attracts attention

to classify CFTs [1–4]. Once we have CFT data, we can construct all the correlators in the

CFT by taking a sum of conformal blocks weighted by the OPE coefficients. The conformal

blocks correspond to a virtual exchange of a primary operator and its descendants, which

are completely determined by conformal symmetry, that is, by using Virasolo algebra in

principle [3]. However, we do not know the simple closed form of conformal blocks, except

in special cases. Only recursion relations for conformal blocks are known [5, 6], which are

very complicated. Therefore, we have not made much progress on the study of conformal

blocks, despite decades of effort.

Conformal blocks play a very important role in some scenarios. For example, to solve

the bootstrap program in an unknown CFT, one has to know conformal blocks with a

central charge and conformal dimensions in the CFT. This conformal bootstrap equation

can be described by∑
p

C12pC34pF21
34 (hp|z)F21

34 (h̄p|z̄) =
∑
p

C14pC23pF41
32 (hp|1− z)F41

32 (h̄p|1− z̄), (1.1)

where Cijk are OPE coefficients and F ijkl(hp|z) are conformal blocks, which are usually

expressed by using the Feynman diagram as

F jikl(hp|z) ≡ .

And also in the context of AdS/CFT correspondence, conformal blocks receive attention

recently [7–12] and, in particular, in AdS3/CFT2, the semiclasical Virasoro blocks have

been used to probe information loss, which appears in CFT2 as forbidden singularities and

exponential decay at late times [13–16]. This semiclassical blocks can be computed in the

dual AdS3 gravity [17–20]. Some other progresses attributed to conformal blocks are the

study of the dynamics of the Renyi entropy [21–23] and out-of-time-ordered correlators

(OTOCs) [24].

In this paper, we focus on the letter context, that is, we consider the CFT which is the

dual of Einstein gravity in AdS3, called holographic CFT. Unfortunately, there is a little

known data for the holographic CFT for now. Nevertheless, we know that some constrains

on a CFT data can be given by using the bootstrap, for example, the bound on spectrum
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density [25], the bound on the dimension of a first excited state [26–28] and the universal

formula for OPE coefficients [29–33]. We can extract CFT data from conformal blocks.1

We are interested in large c conformal blocks because it is known that the holographic

CFT has a large central charge. Actually in some special limits on external and internal

dimensions of blocks, we have useful expressions of large c conformal blocks. However, if

one would try to go beyond the limits, even if focusing on the holographic CFT, no simple

expression for conformal blocks is found. Nevertheless we can study any conformal block by

using the Zamolodchikov recursion relation [5, 6].2 Recently this recursion relation is used

to probe information loss non-perturbatively in central charge [35], and it shows that the

exact conformal blocks in the OAOA → OBOB channel decay as t−
3
2 at late times, which

is quite different behavior from the semiclassical block. It means that a non-perturbative

correction in central charge is very important when one would try to probe information

loss by using large c conformal blocks.

In our recent paper [23], we study large c vacuum conformal blocks for the correla-

tor 〈OB(∞)OB(1)OA(z)OA(0)〉 in the OAOA → OBOB channel. And we find that the

qualitative behavior of large c conformal blocks drastically changes at hA,B = c
32 . This

statement is interesting both in physical and mathematical contexts, for example, confor-

mal bootstrap, physical meaning of this transition and so on. And moreover we find the

simple asymptotic form of the conformal blocks. More information are in [23] and briefly

summarized in section 3.1.

In [23], we focused only on vacuum blocks for the correlator 〈OB(∞)OB(1)OA(z)OA(0)〉
in the OAOA → OBOB channel. But it is also interesting to investigate (i) whether

similar properties also hold for conformal blocks with a non-zero (in particular, heavy)

intermediate dimension and (ii) whether the similar transition occurs in ABBA block, which

is the Virasoro block for the correlator 〈OA(∞)OB(1)OB(z)OA(0)〉 in the OB(z)OA(0) OPE

channel, in that,

FBABA (hp|z) ≡ ,

which is important because this channel also appears in the bootstrap equation for the

correlator 〈OB(∞)OB(1)OA(z)OA(0)〉 as well as the OAOA → OBOB channel. Note that

in contrast with this ABBA block, we call the following blocks as AABB blocks,

FAABB(hp|z) ≡ ,

1Here, we interpret the modular bootstrap as a kind of the conformal bootstrap because the torus

partition function can be explicitly given by the 4-pt function of twist-2 operators.
2A good review is given by [34], which also explains the relation between various recursion relations.
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and as ABAB blocks, we define

FBAAB (hp|z) ≡ .

In this paper, we try to address these questions, (i) and (ii). In the following, we

summarize our main results:

Result (1):

Denoting ABBA blocks by

FBABA (hp|z) = Λ(z)
∑
n

cnq
n, (1.2)

where Λ(z) is an universal prefactor and q is the elliptic nome defined as

q(z) = e
−πK(1−z)

K(z) (1.3)

where K(z) is an elliptic integral of the first kind, then we can see that the coefficients

cn behave like3

cn ∼ nαeA
√
n for n� c, (1.4)

where cn are always positive, which are different from those of AABB blocks. (See

figure 1, which shows the sign pattern of cn of AABB blocks.)

For hp � c, the values of A and α in (1.4) are given by

1. In the heavy-heavy region (hA >
c

32 and hB > c
32),

A = 0,

α = 4(hA + hB)− c+ 9

4
.

(1.5)

2. In the region where any hA and hB � c,

A = 2π

√√√√c− 1

24
− 4hB +

c− 1

6

(
1−

√
1− 24

c− 1
hB

)
,

α = 2(hA + hB)− c+ 5

8
.

(1.6)

Here we can assume hA > hB without loss of generality because the coefficients cn
is symmetric under hA ↔ hB (see (2.12)). What we would like to emphasize here is

that there is a transition of ABBA blocks at hA,B = c
32 in the same way as AABB

3In this paper, “'” means an approximation by extracting a leading contribution and “∼” means an

approximation up to a constant factor.
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blocks. Accordingly, we will use the italic font for “heavy” to discriminate “heavy”

from the usual definition of heavy, which means the order of O(c). The italic font

means larger than c
32 . Similarly, we use “light” as smaller than c

32 . These results are

summarized in figure 7.

Note that we can show a relation between the coefficients of ABBA blocks and ABAB

blocks as

(cBAAB)n = (−1)n(cBABA)n. (1.7)

Therefore, it is straightforwardly shown that for ABAB blocks, the coefficients are

given by

cn ∼ (−1)nnαeA
√
n for n� c (1.8)

and the values of A and α are given by the same expression as above.

Result (2):

The conformal blocks with general intermediate dimension hp also have the simple

asymptotic coefficients cn well-fitted by (1.4) and we find a transition at hA,B = c
32

again. And moreover the values of A and α of the coefficients cn are not sensitive to

hp for large n. In other words, for any hp, one can find one N such that

|cn| ∼

{
nα, if hA, hB > c

32 ,

nαeA
√
n (A > 0), otherwise ,

for n� N, c, (1.9)

where A and α are independent of hp. These features are shown in figure 3 (for

AABB blocks) and figure 9 (for ABBA blocks). And actually we can suggest that

this N is of order hp from the form of the recursion relation (see section 3.2). For

n /� hp, we have the naive estimation both for AABB and ABBA blocks as

1. In the heavy-heavy region (hA >
c

32 and hB > c
32),

|cn(hp)| ∼
(

1

hp

)const.

, (1.10)

2. In the region where any hA and hB � c
32 ,

|cn(hp)| ∼

{
const. , if hp . n,(

1
hp

)const.
, if hp & n,

(1.11)

which are also based on the recursion relation.

Result (3):

As one of the applications of our results, the conformal bootstrap leads to the bound

on the three point coefficients as

1. In the heavy-heavy region (hA >
c

32 and hB > c
32),

C2
ABp −−−−→∆p→∞

16−∆pe
−2π

√
c−1
12 (∆p− c−1

12 ). (1.12)
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2. In the region where any hA and hB � c
32 ,

16−∆pe
4π

√(
∆B− c−1

12

(
1−
√

1− 12
c−1

∆B

))
(∆p− c−1

12 )−4π
√
c−1
12 (∆p− c−1

12 )

∆p→∞
≤ C2

ABp

∆p→∞
≤ 16−∆pe

−2π
√
c−1
12 (∆p− c−1

12 ).

(1.13)

Here the mean squared is over all primary operators of fixed dimension ∆p.

Note that the exponential suppression in the upper bound can be characterized by

the entropy S(E) = 2π
√

c
3E as e−

1
2
S(E), which appears in the Cardy formula [36]. This

exponential suppression also can be seen in the asymptotics of the heavy-heavy-heavy OPE

coefficients [31],

C2
ABC −−−−−−−−−−−−−−→∆A=∆B=∆C=∆p→∞

(
16

27

)−3∆p

e−
1
2

3S(∆p), (1.14)

which is given by the modular bootstrap for 0-point correlators on a 2-genus surface (see

also [32, 33]). In addition, other universal formulas for OPE coefficients are also given by

using the bootstrap approach for 1-point correlators on a torus [30] and 2-point correlators

on a torus [37]. The result in [37] gives the heavy-heavy-light OPE coefficients as

C2
Apq −−−−−−−→∆p=∆q→∞

e−
1
2

2S(∆p). (1.15)

One can again see the exponential suppression characterized by the entropy in this form.4

Note also that this asymptotic behavior is different from the asymptotics for the OPE

coefficients for any states [38] (see section C). It is natural because the above result (3) is

the mean over only primary states (and also the normalization is different).

From our results, we can construct the asymptotic form of large c conformal blocks.

When one considers the bootstrap equation for the correlator 〈OB(∞)OB(1)OA(z)OA(0)〉,
one has to know both AABB blocks and ABBA (correctly, not ABBA but BAAB) blocks.

Our results suggest that both AABB and ABBA large c conformal blocks have simple form,

therefore we expect that the conformal bootstrap in the holographic CFT can be solved by

using our analysis or more information derived by the recursion relation in a similar way.

The outline of this paper is as follows. In section 2, we review the Zamolodchikov

recursion relation, which is a key tool of our strategy. In section 3, we revisit AABB blocks

with vacuum intermediate states and moreover we extend our analysis to blocks with

general intermediate states. In section 4, we study ABBA blocks with light and heavy

intermediate states. We extract the simple properties of ABBA blocks and find similar

transition to AABB blocks. However, in some cases, we can not find simple formula for

blocks with heavy intermediate states. Nevertheless, we manage to extract some properties

of the blocks with heavy intermediate states in section 5. In section 6, we apply our results

4In [30], one can also find the asymptotics of the heavy-heavy-light OPE coefficients. However, the

result given in [30] is taken a mean squared over all primary operators of fixed dimension ∆p with A = B

as microstates, which is different from (1.15).
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in section 3, 4 to estimating the asymptotic form of conformal blocks in some limits. In

section 7, we discuss correlators reproduced by our conformal blocks. In section 8, we

comment on the future direction and application to the conformal bootstrap. We conclude

with a discussion in section 9. In appendix A, we show some more detailed numerical data

from the Zamolodchikov recursion relation. In appendix B, we compare our results with the

semiclassical blocks and comment on the consistency and inconsistency between them. In

appendix C, we derive the asymptotic heavy-light-light coefficients with arbitrary operators.

2 Recursion relations for conformal blocks

Conformal blocks appear in the decomposition of the correlators as follows,

〈O4(∞)O3(1)O2(z, z̄)O1(0)〉 =
∑
p

C12pC34pF21
34 (hp|z)F21

34 (h̄p|z̄) (2.1)

where the sum is taken over primary operators in the CFT. Conformal blocks F21
34 (hp|z)

can be split into two factors as

F21
34 (hp|z) = Λ21

34(hp|q)H21
34 (hp|q), q(z) = e

−πK(1−z)
K(z) (2.2)

where the function Λ21
34(hp|q) is a universal prefactor, which is given by

Λ21
34(hp|q) = (16q)hp−

c−1
24 z

c−1
24
−h1−h2(1− z)

c−1
24
−h2−h3(θ3(q))

c−1
2
−4(h1+h2+h3+h4) (2.3)

and the function H21
34 (hp|q) can be calculated recursively by using the following relation,

H21
34 (hp|q) = 1 +

∞∑
m=1,n=1

qmnRm,n
hp − hm,n

H21
34 (hm,n +mn|q) (2.4)

where hm,n is the zero of Kac determinant, that is,

hm,n =
1

4

(
b+

1

b

)2

− λ2
m,n,

λm,n =
1

2

(m
b

+ nb
)
,

(2.5)

and

Rm,n = 2

∏
p,q (λ2 + λ1 − λp,q) (λ2 − λ1 − λp,q) (λ3 + λ4 − λp,q) (λ3 − λ4 − λp,q)∏′

k,l λk,l
. (2.6)

Here the integers p, q, k, l are defined as

p = −m+ 1,−m+ 3, · · · ,m− 3,m− 1,

q = −n+ 1,−n+ 3, · · · , n− 3, n− 1,

k = −m+ 1,−m+ 2, · · · ,m,
l = −n+ 1,−n+ 2, · · · , n.

(2.7)
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The product
∏′
k,l in (2.6) means that we exclude (k, l) = (0, 0) and (m,n). We also defined

c = 1 +

(
b+

1

b

)2

,

hi =
c− 1

24
− λ2

i .

(2.8)

In this paper, we consider a series expansion of the function H21
34 (hp|q) as

H21
34 (hp|q) = 1 +

∞∑
k=1

ck(hp)q
k, (2.9)

and focus on the series coefficients ck. In the same way as (2.4), we can also calculate the

coefficients ck(hp) recursively by the following relation,

ck(hp) =
k∑
i=1

∑
m=1,n=1
mn=i

Rm,n
hp − hm,n

ck−i(hm,n +mn) (2.10)

where the sum is taken over m,n = 1, 2, 3, · · · with mn held fixed, i.e. the sum
∑

m=1,n=1
mn=4

means taking sum over (m,n) = (1, 4), (2, 2) and (4, 1). The coefficient ck(hm,n +mn) can

be also calculated recursively by

ck(hm,n +mn) =

k∑
i=1

∑
µ=1,ν=1
µν=i

Rµ,ν
hm,n +mn− hµ,ν

ck−i(hµ,ν + µν) (2.11)

where the starting values of this recursion formula are c0(hm,n +mn) = 1.

Examples:

c1(hp) =
R1,1

hp−h1,1
,

c2(hp) =
R2

1,1

hp−h1,1
+

R2,1

hp−h2,1
+

R1,2

hp−h1,2
,

c3(hp) =
R1,1

hp−h1,1

(
R2

1,1+
R1,2

1+h1,1−h1,2
+

R2,1

1+h1,1−h2,1

)
+

R1,2

hp−h1,2

R1,1

2−h1,1+h1,2
+

R2,1

hp−h2,1

R1,1

2−h1,1+h2,1
+

R1,3

hp−h1,3
+

R3,1

hp−h3,1
.

In the end of this section, we would like to comment on an important property of the

function H(hp|q) and its coefficients ck(hp). From the expression of Rm,n, we find that Rm,n
is symmetric under the exchange h1h2 ↔ h3h4, which leads to the symmetry of H(hp|z)

and its coefficients ck(hp) under the exchange h1h2 ↔ h3h4, that is,

H21
34 (hp|q) = H34

21 (hp|q). (2.12)

– 7 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
0

And also we can show from (2.6),

H21
34 (hp|q) = H21

43 (hp| − q), (2.13)

or equivalently,

(c21
34)n = (−1)n(c21

43)n. (2.14)

Now that we have conformal blocks written by elliptic nome q, which appears in a

torus partition function,5 we can reinterpret the exchanging symmetry and the crossing

symmetry of the correlators by using the language of modular invariance (see (8.3)).

Exchanging Symmetry→ Modular T Invariance

Crossing Symmetry→ Modular S Invariance

And also note that this elliptic nome q(z) maps the universal cover of the sphere with

punctures at z = 0, 1,∞ to the interior of the unit q-disk, in that, |q| is always bounded by

|q| < 1. (2.15)

This fact can be understood in terms of the relation between the modulus τ in the pillow

metric and z [40]. Thus the series expansion (2.9) in q is well-behaved and converges except

for OPE singularities.

3 AABB blocks

In this section, we focus on the AABB blocks for the correlator 〈OB(∞)OB(1)OA(z)OA(0)〉
in the OAOA → OBOB channel. First, we review our previous results on vacuum blocks

from the recursion relation [23] and next, we generalize this analysis to blocks with non-zero

intermediate dimensions.

Note that if setting h1 = h2 and h3 = h4 in (2.6), Rm,n with odd mn always vanish

and therefore we can obtain from (2.10) (see [23, 34, 35]),

ck(hp) = 0 if k is odd. (3.1)

This fact can shorten the processing time to calculate H(hp|q). That is why it is easier

to study AABB blocks than ABBA blocks. In the following of this section, we implicitly

assume cn with odd n to be zero in all expressions.

3.1 AABB vacuum blocks

First, we review the properties of AABB vacuum blocks. By using the Zamolodchikov

recursion relation, we suggest in [23] that the coefficients cn for even n have the simple

asymptotic form as6

|cn| ∼

{
nα, if hA, hB > c

32 ,

nαeA
√
n (A > 0), otherwise ,

for n� c, (3.2)

5One can understand why the elliptic nome appears in the monodromy method [39] and in the pillow

metric quantization [40].
6Somehow, (3.2) and (3.4) suggest that the coefficients cn behave like Cardy’s formula. This might be

the key to access large c conformal blocks analytically.
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Figure 1. The sketch of behaviors of cn = sgn(cn)nαeA
√
n for various values of (hA, hB).

where A,α and the signature of cn are given in figure 1. This result implies that the

behaviors of AABB blocks drastically change at hA,B = c
32 .7 In the heavy-light limit (the

green regions in figure 1), we can estimate the values of A and α from our analysis based

on the recursion relation as8

A = π

√
c− 1

24
− 2hB, α = 2(hA + hB)− c+ 5

8
if hA >

c

32
> hB,

A = π

√
c− 1

24
− 2hA, α = 2(hA + hB)− c+ 5

8
if hA <

c

32
< hB.

(3.4)

These values are exactly given by the Heavy-Light Virasoro blocks [13, 14], which supports

a validity of our statement.

7The value c
32

also appears in the analytic expression of cn for small n as

c2m −−−→
c→∞

1

m!

[
c

2

(
1− 32

c
hA

)(
1− 32

c
hB

)]m
for 2m� c, (3.3)

which suggests that the sign pattern of c2m changes at hA,B = c
32

as in figure 1.
8In [23], we define cn as the coefficients of q2n instead of qn because of (3.1), but now we use the

definition (2.9). Therefore, if one wants to convert the previous results in [23] to those in our new convention,

one has to divide the previous value of A by
√

2.
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1 2 3 4 5 6 7
log(n)

-5

5

10

log |cn |

log(n) vs. log |cn | with hA=
c

24
×1 ,hB=

c

24
×
3

2
and hp=

c

24
×ⅇ52

1 2 3 4 5 6 7
log(n)

20

40

60

80

log |cn |

log(n) vs. log |cn | with hA=
c

24
×1 ,hB=

c

24
×
1

10
and hp=

c

24
×ⅇ52

Figure 2. The behaviors of the coefficients cn of AABB blocks with hA = c
24 . The left is for

(hB , hp) = ( c16 ,
c
24 × e

5
2 ) and the right is for (hB , hp) = ( c

240 ,
c
24 × e

5
2 ). The blue dots are the

numerical values of log cn. The red lines are BnαeA
√
n with the constant B determined by the fit.

We now set c = 30.01 and, to fit A and α, we use the numerical values of cn at n = 500 ∼ 1000.

In a part of light-light region (the blue region in figure 1), the values of A and α are

expressed by

A = 2π

√√√√c− 1

24
− hA − hB +

c− 1

12

(
1−

√
1− 24hA

c− 1

)(
1−

√
1− 24hB

c− 1

)
,

α = 2(hA + hB)− c+ 5

8
.

(3.5)

We derive this expression analytically in appendix B.2.

In the heavy-heavy region (the red region in figure 1), the values of A and α have a

simple form,

A = 0,

α = 4(hA + hB)− c+ 9

4
.

(3.6)

3.2 AABB non-vacuum blocks

Let us move on to AABB non-vacuum blocks. In fact, the non-vacuum blocks show a

similar behavior to that of the vacuum blocks, that is, the coefficients cn are well-fitted by

nαeA
√
n for large n as in figure 2. In particular, the values of A and α are independent

of hp. What we would like to emphasize here is that there is the transition at hA,B = c
32

in the behavior of AABB blocks with not only vacuum but also non-vacuum intermediate

states. These features can be seen in figure 3.

From the values of A and α for various values of (hB, hp) in figure 3, one can see

the transition at hB = c
32 obviously. This fact enhances our previous result for Renyi

entropy [23] because the calculation of Renyi entropy in [23] relies on the vacuum block

approximation of the correlator corresponding to the Renyi entropy. Thus the transition of

the Renyi entropy can be seen at earlier times than the late time when we can approximate

the correlator by the vacuum block.
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Figure 3. The plots of the values of A (left) and α (right) for various values of (hB , hp) with

hA = c
24 . Some strange behaviors near the line hB = c

32 could be resolved by using the values cn
for higher n to fit A and α (see appendix A.1). Here we set c = 30.01 and to fit A and α, we use

the numerical values of cn at n = 500 ∼ 1000.

Actually, we can also see the value c
32 analytically in the same way as (3.3). By using

the Zamolodchikov recursion relation, one can see that the coefficients cn(hp) for general

hp can be given by

c2m(hp) −−−→
c→∞

1

m!

[
c

2

(
1− 32

c hA
) (

1− 32
c hB

)(
1 + 8

chp
) ]m

for 2m� c. (3.7)

From this observation as well as numerical supports, we can expect that the transition at
c

32 of AABB blocks can be generalized to non-zero intermediate dimensions.

If one carefully observes the behaviors of cn in the right of figure 3, one could find the

values of α decrease with hp. It can be seen more obviously in figure 4, which is one hB
slice of figure 3. Nevertheless, we do not think the values of α depend on hp. In figure 4,

blue dots are fitted by using cn at more higher n than red dots. It suggests that the hp
dependence of α approaches a constant if one uses enough large n to fit α. This is the

reason why we think the coefficients cn for large n are independent of hp. In other words,

for any hp, one can find one N such that

|cn| ∼

{
nα, if hA, hB > c

32 ,

nαeA
√
n (A > 0), otherwise ,

for n� N, c, (3.8)

where A and α are independent of hp and are given by figure 1.

How can we identify the value of N? Actually, we can suggest N ∼ hp since one can

see the coefficients cn(hp) depend only on the difference hp − hm,n from the expression

of the coefficients cn (2.10). As a result, our Cardy-like formula (3.2) for cn could break

down if n ∼ hp. It’s also interesting to find the simple form of the coefficients cn with

n ∼ hp, however in this case, the coefficients cn depend complicatedly on many parameters

c, hA, hB, hp, n and therefore we leave it as a future work. Nevertheless, we can extract few

remarkable properties of cn with n ∼ hp and we will explain it later in section 5.
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Figure 4. The hp dependence of α. The left is for (hA, hB) = ( c24 ,
c

240 ) and the right is for

(hA, hB) = ( c
24 ,

c
16 ). Red dots are fitted by cn for n = 100 ∼ 200 and black dots are fitted by cn

for n = 500 ∼ 1000. One can find that the hp dependence of α approaches to constant as we use

higher n to fit the values of α.

Consequently, we can argue that the AABB blocks in the limit z → 1 is independent of

intermediate dimensions due to the following reason. If one wants to reconstruct conformal

blocks from the coefficients cn, one has to take the sum

HHH
LL (hp|q) =

∞∑
n=0

cnq
n. (3.9)

If taking the limit z → 1 which corresponds to the limit q → 1, we can approximate the

sum of cn by that of the asymptotic form nαeA
√
n which is valid for large n, because the

contributions from small n terms are much less than the other infinite contributions in

the limit q → 1. And cn for large n is independent of hp, which leads to the conclusion

that the AABB blocks are independent of intermediate dimensions in the limit z → 1.

However, this scenario can be applied only to the case where cn > 0 for any n. It happens

in the heavy-heavy or light-light region (hA, hB < c
32 or hA, hB > c

32), which can be seen in

figure 1. Note that even though cn is not always positive, we can read off the upper bound

of the singular behavior in the limit z → 1 because
∞∑
n=0

cnq
n ≤

∞∑
n=0

|cn| qn, (0 < q < 1). (3.10)

If the upper bound of the singular behavior is less than the singularity of the universal

prefactor Λ(hp|q), then we can neglect the contribution of H(hp|q) to the singularity of the

conformal block.

If one can find the limit of z corresponding to q → i, the above scenario can also be

applied to the blocks in the heavy-light region (hA < c
32 and hB > c

32 , or hA > c
32 and

hB < c
32) in such a limit. Actually we can take the limit q → i by taking the limit z → 0

after picking up a monodromy around z = 1, that is, 1− z → e−2πi (1− z).

3.3 Comments on information loss

AdS/CFT shows that correlators decay exponentially at large time separation in a black

hole background, which is known as one of the information loss problems. And this problem
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can be seen directly from semiclassical Virasoro blocks [13]. We expect that this problem

can be resolved by taking account of a non-perturbative correction in central charge and

summing over Virasoro blocks in the OAOA OPE channel.

Recently, it is shown numerically that exact blocks behave like power law decay

t−
3
2 [35]. It means that the non-perturbative correction to blocks ameliorates informa-

tion loss. Actually, this polynomial decay can be derived from (3.6) by setting hA >
c

24 >

hB ( > c
32). And moreover the result of section 3.2 explains that this polynomial decay

can be seen in blocks with non-vacuum intermediate states.

Semiclassical conformal blocks also exhibit the information loss problem as forbidden

singularities, which are singularities not corresponding to OPE singularities. This problem

can be resolved by using exact conformal blocks as mentioned in [35], and the result of

section 3.2 shows this resolution can be also applied to blocks with non-zero intermediate

dimensions.

4 ABBA blocks

To solve the conformal bootstrap program, we have to know not only AABB blocks, but

also ABBA blocks, hence we are also interested in the properties of ABBA blocks. In this

section, we study ABBA blocks in the same approach as AABB blocks and reveal universal

behaviors of ABBA blocks in large c CFTs.

The series expansion of conformal blocks in the elliptic nome q(z),

F21
34 (hp|z) = Λ(z)

∑
n

cnq
n, (4.1)

can be seen naturally in the quantization on the pillow metric [40]. In particular, from a

viewpoint of the pillow metric quantization, it can be shown that the coefficients cn for

ABBA blocks are all positive, which is very nontrivial from the recursion relation. Our

analysis is consistent with this fact, in that, we have checked the fact that the coefficients

of all ABBA blocks satisfy

(cBABA)n > 0 for all n, (4.2)

by using the recursion relation numerically. Note that this fact holds only for ABBA blocks,

not for AABB blocks and ABAB blocks. In fact, from (2.14), the coefficients for ABAB

blocks are given by

sgn[(cBAAB)n] = (−1)n for all n. (4.3)

And the sign of the coefficients (cAABB)n are more non-trivial and illustrated in figure 1.

Is there any similar phenomenon for ABBA blocks as AABB blocks? Surprisingly, the

same asymptotic behaviors as AABB blocks can be found for ABBA blocks. In more detail,

we can see that there are only two patterns in the asymptotic behaviors of ABBA blocks:

1. log cn shows a linear behavior for large n. (The upper left in figure 5)

2. log log cn shows a linear behavior for large n. (The lower right in figure 5)
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Figure 5. The plots of cn. The upper two plots are for hA = hB = c
8 . We can see that the left

of two shows a linear behavior, which suggest that cn grows polynomially. The lower two plots are

for hA = hB = c
240 and we can find a linear dependence in the right, which suggest that cn grows

exponentially.

Therefore, the asymptotic form of the coefficients cn can be written by

cn ∼ nαeAn
β

(4.4)

and moreover, there are universal properties for A and β as

A = 0 if hA, hB >
c

32
,

A > 0 and β =
1

2
otherwise,

(4.5)

which are the same properties as the coefficients of AABB blocks. It is obvious that the

ABBA block with hA = hB is exactly same as the AABB block with hA = hB, which

implies that one can see the same behaviors of the coefficients cn for ABBA and AABB

along the line hA = hB in figure 1, 7. Therefore, it is natural that the behaviors of cn for

ABBA blocks also drastically change at hA,B = c
32 .

4.1 ABBA blocks with light intermediate states

Using our numerical results, we can estimate the values of A and α in (4.4). First, we

focus on the nearly vacuum blocks FBABA (hp � c|z). In such a case, the asymptotic coef-

ficients (4.4) are insensitive to intermediate dimensions due to the following reason. The
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intermediate dimension hp appears only in the denominator of the recursion relation (2.10)

as the difference hp − hm,n, and these zeros of the Kac determinant hm,n are of order c. It

means that hp � hm,n for all (m,n), (except for n = 1). As a result, we expect that the

effect of hp � c to the blocks can be negligible.

Fitting the coefficients cn into the asymptotic form nαeA
√
n leads to figure 6. From

this observation, we can give the following expectations:

1. In the heavy-heavy region (hA >
c

32 and hB > c
32), the coefficients cn have the simple

asymptotic form (n� c) described by

A = 0,

α = 4(hA + hB)− c+ 9

4
.

(4.6)

2. In the region where any hA and hB � c, the asymptotic behavior of the coefficients

cn (n� c) are determined by

A = 2π

√√√√c− 1

24
− 4hB +

c− 1

6

(
1−

√
1− 24

c− 1
hB

)
,

α = 2(hA + hB)− c+ 5

8
.

(4.7)

These properties of ABBA blocks are very similar to AABB blocks. The difference from

AABB blocks is that the sign of the coefficients cn and the value of A in this region.

In the end of this section, we summarize our results as in figure 7.

4.2 ABBA blocks with general intermediate states

The hp dependence of ABBA blocks with general intermediate dimensions has the similar

feature to that of AABB. First of all, the coefficients cn are well-fitted by nαeA
√
n for large

n as in figure 8. We find that the behavior of the coefficients cn of general ABBA blocks

also exhibits the asymptotic form (4.4). Figure 9 shows the values of A and α fitted by (4.4)

for various values of (hB, hp) with hA = c
24 . One can see that the behaviors of A and α

drastically change at hA,B = c
32 also for higher intermediate dimensions.

From the left of figure 9, we can see that the values of A are independent of hp and

thus the transition at hB = c
32 continues to general hp. And also we can see that the values

of α do not depend on hp in the right of figure 9. When looking at one hB slice more

carefully in figure 10, the values of α seem to be decreasing with hp. However, we think

that this is due to the same reason as in section 3.2 because we can also see in figure 10

that the less decreasing of α with hp we can see, the higher n we use to fit α. Therefore,

we conclude that the ABBA blocks are also insensitive to the intermediate dimensions hp
in the limit z → 1 in a similar way as the AABB block.

Note that, as we explained in section 3.2, our Cardy-like formura for the coefficients

cn(hp) could break down also for ABBA blocks if n ∼ hp. We can not find some simple

formula for cn with n ∼ hp in this paper. We will, though, exhibit some features of cn with

n ∼ hp in the next section 5.
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Figure 6. The plots of the values of A (upper) and α (lower) for various values of (hA, hB).

The ranges are 0 < hA, hB < c
8 . The black dots are the numerical values of A and α. The red

surface describes (4.6) and the blue surfaces describes (4.7). Some strange behaviors near the lines

hA,B = c
32 could be resolved by using the values cn for higher n to fit A and α (see appendix A.1).

Here we set c = 30.01 and use the values of cn up to of n = 1000 to fit A and α.

– 16 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
0

Figure 7. The sketch of behaviors of cn ∼ sgn(cn)nαeA
√
n for various values of (hA, hB).
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Figure 8. The behaviors of the coefficients cn of ABBA blocks with hA = c
24 . The left is for

(hB , hp) = ( c16 ,
c
24 × e

5
2 ) and the right is for (hB , hp) = ( c

240 ,
c
24 × e

5
2 ). The blue dots are the

numerical values of log cn. The red lines are BnαeA
√
n with the constant B determined by the fit.

We now set c = 30.01 and to fit A and α, we use the numerical values of cn at n = 500 ∼ 1000.

5 Conformal blocks with very heavy intermediate states

In this section, we study the hp dependence of the coefficients cn(hp) with n ∼ hp. Before

stating our results, we explain the motivation for it. It is known that the large c conformal

blocks with very heavy intermediate states (hp � hi, c) can be derived by the monodromy

method [5, 6, 39] and will be briefly explained in section 5.2. This block is given by

F21
34 (hp|z) = Λ21

34(hp|q), q(z) = e
−πK(1−z)

K(z) , (5.1)
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Figure 9. The plots of the values of A (left) and α (right) for various values of (hB , hp) with

hA = c
24 . Some strange behaviors near the line hB = c

32 could be resolved by using the values cn
for higher n to fit A and α. Here we set c = 30.01 and to fit A and α, we use the numerical values

of cn at n = 500 ∼ 1000.
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Figure 10. The hp dependence of α. The left is for (hA, hB) = ( c
24 ,

c
240 ) and the right is for

(hA, hB) = ( c24 ,
c
16 ). Red dots are fitted by cn for n = 100 ∼ 200 and Black dots are fitted by cn

for n = 500 ∼ 1000. One can find that the hp dependence of α approaches to constant as we use

higher n to fit the values of α.

where the function Λ21
34(hp|q) is

Λ21
34(hp|q) = (16q)hp−

c−1
24 z

c−1
24
−h1−h2(1− z)

c−1
24
−h2−h3(θ3(q))

c−1
2
−4(h1+h2+h3+h4). (5.2)

This means that the function H(hp|q) has the following asymptotic form,

H(hp|q) −−−−→
hp→∞

1. (5.3)

Here, attention should be given to the fact that in the process of this approximation, the

kinematic configuration is held fixed. If one would try to estimate correlators by using

the saddle point approximation, the dependence on the kinematic configuration is impor-

tant since the saddle points hp∗ of the sum over intermediate states relate the kinematic

configuration.
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Example:

If the correlator in the limit z, z̄ → 1 is dominated by only one saddle point,

we can approximate the sum as∑
p

C12pC34pF21
34 (hp|z)F21

34 (h̄p|z̄) −−−−→
z,z̄→1

C12p∗C34p∗F21
34 (hp∗ |z)F21

34 (h̄p∗ |z̄),

(5.4)

where hp∗ depends on the kinematic configuration, hp∗ = hp∗(z).

Therefore, the approximation (5.3) under the fixed kinematics might be invalid. To be

more explicit, we need to know the hp dependence of cn(hp) not only for large n � hp
but also for n ∼ hp (see also section 7.1). In fact, if one wants to estimate the asymptotic

behavior of correlators from the knowledge of conformal blocks, one needs to know how

cn(hp) depends on hp. That’s the motivation.

5.1 Numerical results for very heavy intermediate states

As mentioned in section 3 and 4, for very heavy intermediate dimensions hp ∼ n � c,

we can’t describe the coefficients cn as a simple form. Nevertheless, we can find out few

qualitative features for cn by directly observing the dependence of cn(hp) with fixed n.

Before the observation, we compare the n dependence of cn(hp) with various hp. Figure 11

shows the behaviors of the coefficients cn of AABB and ABBA blocks for various inter-

mediate dimensions hp. From this figure, we can expect that the coefficients |cn(hp)| are

monotonically increasing with hp in some sense. Moreover, we can expect that

|cn(hp)| ≥
∣∣cn(h′p)

∣∣ if hp ≤ h′p, (5.5)

for at least higher n. In fact, we find out the counterexample to (5.5) in a special case. If one

considers AABB blocks with hA ∼ hB ∼ c
32 , one can see the counterexample. Nevertheless,

when the external dimensions are apart from the vicinity of (hA, hB) = ( c
32 ,

c
32), the block

satisfies the inequality (5.5) for any integer n. And at least, we can observe in general

|cn(hp � c)| ≥
∣∣cn(h′p /� c)

∣∣ . (5.6)

To read off the hp dependence of the coefficients cn(hp), we calculate cn(hp) for various

hp with fixed n. Here we showed only few our numerical plots and we tried not to disturb

readers by too many figures. However in fact most of our plots exhibit similar properties

and therefore one can see our conclusion from them. If one wants to confirm our conclusion

by more examples, one can see other examples in appendix A.2. Figure 12 shows the hp
dependence of cn(hp) with fixed n = 10 and 1000 for AABB blocks. The upper two figures

are for (hA, hB) = ( c
24 ,

c
240), which is in the heavy-light region. These figures suggest that

the hp dependence of log |cn(hp)| shows the steep slope from hp ∼ n. In other words, the

coefficients |cn(hp)| behave like

in the heavy-light region,

|cn(hp)| ∼

{
const. , if hp . n,(

1
hp

)const.
, if hp & n.

(5.7)
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Figure 11. These figures show the behaviors of the coefficients cn of AABB (upper) and ABBA

(lower) blocks simultaneously for various intermediate dimensions hp. The left is for (hA, hB) =

( c24 ,
c

240 ) and the right is for (hA, hB) = ( c24 ,
c
16 ).

This is just a rough estimate, but in fact, in the upper left of figure 12, n = 10 is very

small, thus most of hp satisfies hp & n and therefore the hp dependence of cn is dominated

by (hp)
const. for most values of hp. And in the upper right of figure 12, the hp dependence

of cn with n = 1000 shows gentle slope for hp . 1000 and steep slope for hp & 1000. From

these observation, we expect that the coefficients of cn(hp) show the behavior as (5.7). We

can see more clearly from figure 21 in appendix A.2 that the transition point from a gentle

slope to a steep slope is controlled by n. On the other hand, in the heavy-heavy region, we

find more simple properties of cn(hp). The lower two figures are for (hA, hB) = ( c
24 ,

c
16),

which is in the heavy-heavy region. In this case, we can’t see the transition from a gentle

slope to a steep slope at hp ∼ n and moreover the hp dependence of log |cn| is clearly linear.

Therefore, the statement is more probable in the heavy-heavy region than in the heavy-light

region. From the above observation, we can suggest that for any hp,

in the heavy-heavy region,

|cn(hp)| ∼
(

1

hp

)γ(n)

, (5.8)

where γ(n) is some constant for hp. Actually the same relations as (5.7) and (5.8) are

satisfied for ABBA blocks (see appendix A.2). This is one of main results in this paper.

We must be able to extract this properties from the recursion relation analytically, which

we leave for future work. And also it’s important future work to explicitly identify cn(hp) as

the function of c, hA, hB, hp, n with the aim of the motivation mentioned at the beginning

of this section.
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Figure 12. The hp dependence of cn(hp) with fixed n = 10 (left) and 1000 (right) for AABB

blocks. The upper two figures are for (hA, hB) = ( c24 ,
c

240 ), which is in the heavy-light region. The

lower two figures are for (hA, hB) = ( c24 ,
c
16 ), which is in the heavy-heavy region.

Note that we can find that the power γ(n) depends on n, however the growth of γ(n)

with n is slower and slower as n approaches infinity as in figure 13. This means that

|cn(hp)| ∼
(

1

hp

)γ
for large n, (5.9)

where γ is some constant for hp and n. Therefore, for large n, the coefficients cn(hp) can

be split into two factors as

cn(hp) ∼ P (hp)Q(n), (5.10)

where P (hp) depends only on hp and Q(n) depends only on n. This is consistent with our

conjecture (3.8), which states that the asymptotic behavior of the coefficients cn for large

n is independent of hp up to a constant factor. (Recall that our definition of “∼” is the

approximation up to a constant factor.) In other words, the function Q(n) can be given

by our Cardy-like formula for large n.

5.2 Validity of large h asymptotics

In the beginning of the section, we mentioned that if one considers the kinematics of the

asymptotic blocks, one has to take care of the regime of validity of the approximation.

Actually, we can identify the regime of validity of the approximation (5.3) as

hp| log q|2 � c, (5.11)
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Figure 13. The n dependence of γ(n) for AABB blocks, which is the power of (5.8). We can see

that the growth of γ(n) with n is slower and slower as n approaches infinity.

where hp → ∞ and q → 1. If the saddle point hp in the limit q → 1 of the correlator

satisfies (5.11), then we can use the asymptotics,

H(hp|q) −−−−→
hp→∞

1. (5.12)

We will explain it in this subsection.

In this paper, we are interested in the holographic CFTs, therefore we restrict us to

large c CFTs. If the asymptotics (5.12) is valid, it means that the monodromy method [5,

6, 39] can be justified. The monodromy method is the method to derive the semiclassical

conformal blocks as follows:

1. Null ODE

The degenerate primary operator Ψ with the dimension −1
2 −

3
4b

2 leads to the ODE,[
1

b2
∂2
z+

4∑
i=1

(
hi

(z−zi)2
+

1

z−zi
∂i

)]
〈O4(z4, z̄4)O3(z3, z̄3)Ψ(z, z̄)O2(z2, z̄2)O1(z1, z̄1)〉= 0.

(5.13)

2. ODE for each intermediate states

Under some appropriate assumptions for large c CFTs, the ODE (5.13) leads to a

ODE for each intermediate states Op in the OPE O1O2 as[
∂2
z +

4∑
i=1

(
δi

(z − zi)2
− Ci
z − zi

)]
Ψp = 0, (5.14)

where δi = b2hi and

〈O4O3ΨOp〉 ≡ Ψp(z, z̄; zi, z̄i)〈O4O3Op〉. (5.15)
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At this stage, we can not determine Ci, which are called as accessory parameters.

This parameter is related to the conformal block as

C2 = ∂xfcl, (5.16)

where

F21
34 (hp|x) ∼ e−

c
6
fcl . (5.17)

3. Ward-Takahashi identity

The second term of (5.14) is can be understood as b2 times the semiclassical expec-

tation value of the stress tensor from the Ward-Takahashi identity. This fact leads

to the following ODE,[
∂2
z +

δ1

z2
+

δ2

(z − x)2
+

δ3

(1− z)2
+
δ1 + δ2 + δ3 − δ4

z(1− z)
− C2x(1− x)

z(z − x)(1− z)

]
Ψp = 0.

(5.18)

4. WKB approximation

By using the WKB approximation in the limit δp →∞, we can solve the ODE (5.18),

Ψp ∼ exp

[
±
√
x(1− x)C2

∫ z

z0

dz′√
z′(1− z′)(z′ − x)

]
. (5.19)

5. Monodromy equation

From the usual CFT discussion for degenerate operators, we know the OPE between

Op and Ψ and therefore it is shown that the monodromy of Ψp arond Op can be

given by

(z − z1)
1
2

(
1±
√

1−4b2hp
)
. (5.20)

Hence, the solution (5.19) needs to have the above monodromy. This fact leads to

the condition,

C2 ' −
π2b2hp

x(1− x)K(x)2
. (5.21)

6. Semiclassical conformal block

We have the relation

C2 = ∂xfcl, (5.22)

and therefore we can obtain the conformal block as

F21
34 (hp|z) = (16q)hp , (5.23)

and the next order leads to the semiclassical block (5.1). This method is called as

monodromy method.
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As above, this method relies on the WKB approximation and therefore we have to

take care of the regime of validity of this approximation. This regime is given by

1

λ

∣∣φ′2∣∣� ∣∣φ′′∣∣ , (5.24)

or

λ

∣∣∣∣ ddz 1

φ′

∣∣∣∣� 1, (5.25)

where we define Ψp ≡ e
1
λ
φ and hp ≡ b2

ηp
λ , which are the usual convention for the WKB

method. From (5.18) and (5.21), the leading order of φ′ is given by

φ′ '

√
− λ2π2b2hp
K(x)2z(z − x)(1− z)

. (5.26)

As a result, we get the regime of validity as

hp

|K(x)|2
� c. (5.27)

In the limit x→ 1, we have the following asymptotics,

K(x) ∼ log(1− x) ∼ 1

log q(x)
. (5.28)

Therefore, we can reexpress (5.27) as

hp |log q|2 � c. (5.29)

This is the regime of validity of the WKB approximation. In other words, the WKB

solution H(hp|q) = 1 is valid only if hp |log q|2 � c. Here, we don’t claim that the lack of

the condition (5.29) immediately leads to the breakdown of the asymptotic behavior (5.12).

It is just the breakdown of the WKB approximation, but it serves as a criterion of the

breakdown, except for special cases.

In one of special cases, the solution from the WKB approximation is an exact solution

to the ODE (5.18) [41]. For example, if setting δ1,2,3,4 = 3
16 (corresponding to h1,2,3,4 = c

32),

then the ODE is solved by

Ψ(±)
p (z) =

1√
t′(z)

e±ikt(z), with t′(z) =
1√

z(z − x)(z − 1)
, (5.30)

where C2 = 1−2x+8k2

8x(1−x) . The monodromy condition leads to

C2 =
1− 2x

8x(1− x)
+

π2α2

16x(1− x)K(x)2
(5.31)

where α =
√

1− 4δp. This gives the conformal block as9

F
c
32
, c
32

c
32
, c
32

(hp|q) ∼ (16q)hp−
c
24 (z(1− z))−

c
48 . (5.33)

9In large c, we can identify this conformal block with a character [31, 42],

F
c
32
, c
32

c
32
, c
32

(hp|q) ∼ (z(1− z))−
c
48 χhp

2
, c
2

(τ) . (5.32)

We think that this relation relies on the fact that the value c
32

is the dimension of a twist-2 operator and a

4-pt. function of twist-2 operators is equivalent to a torus partition function.
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This block is valid beyond the regime of validity of the WKB approximation.10 Other

methods beyond the WKB approximation are discussed in [16, 31].

6 The asymptotic form of conformal blocks

In this section, we estimate the simple form of the function H(hp|q) for real q away from

the origin q = 0. (The function H(hp|q) in the limit q → 0 is trivial and not interesting.)

In order to extract the simple form of H(hp|q), we approximate the summation

∞∑
n=0

nαeA
√
nqn (6.1)

by an integral, which is valid for 0� q < 1.

6.1 HLLH and LHHL blocks

Now that we have shown the simple asymptotic proprieties of the coefficients cn in the

heavy-light limit, one might try to reconstruct conformal blocks. In this subsection, we

focus on the ABBA block with external dimensions h1 = h4 = hA and h2 = h3 = hB
because it has positive coefficients and therefore we can estimate the block easily in the

following. Note that, fortunately, especially in the heavy-light limit, it can be seen that

the asymptotic form (4.7) also holds for small n (see appendix A) and therefore the ap-

proximation by substituting our asymptotic form into (6.1) is good especially in this case.

We can estimate the function H(h|q) in the limit z = 1− ε (ε� 1) as

H(hp|q) =

∞∑
n=0

nαeA
√
nqn −−→

ε→0
(log ε)2α+ 3

2 ε−
A2

4π2 (6.2)

where we use the following asymptotic behavior of the elliptic nome q,

q(z) = e
−πK(1−z)

K(z) −−→
ε→0

e
− π2

log(16/ε) . (6.3)

and the LHHL conformal blocks have the following asymptotic behavior,

logFHLHL (hp|z)−−−→
z→1

(
4hL−2hH−

c−1

6

(
1−
√

1− 24

c−1
hL

))
log(1−z)+o(log log(1−z)).

(6.4)

On the other hand, in the same way, we can obtain the asymptotic behavior of HLLH

blocks as

logFLHLH (hp|z)−−−→
z→1

(
2hL−

c−1

6

(
1−
√

1− 24

c−1
hL

))
log(1−z)+o(log log(1−z)). (6.5)

10This might be relevant to the fact that the leading term of the coefficients cn (3.7) vanishes when

hA or hB = c
32

.
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6.2 HLHL and LHLH blocks

For ABAB blocks, the sign of coefficients cn oscillates and therefore we can not approximate

the blocks by the same method as in section 6.1 (see also appendix B.1). Nevertheless, we

have the inequality,
∞∑
n=0

cnq
n ≤

∞∑
n=0

|cn| qn, (0 < q < 1). (6.6)

By combining this inequality, the results in section 6.1 and the equation (2.14), we get

logFLHHL (hp|z)
z→1
≤

(
3hL − hH −

c− 1

6

(
1−

√
1− 24

c− 1
hL

))
log(1− z), (6.7)

and we can obtain the same result for LHLH block. Here, we mean by the symbol “
z→1
≤ ”

that an inequality holds only if z → 1.

As mentioned in the last of section 3.2, we can take the limit q → i by picking up the

monodromy at z = 1 and taking the limit z → 0 ( in section 7.2, we will explain when this

limit appears in more detail.). In the similar way, we can find the limit of z corresponding

to the limit q → −1. In fact, we can take the limit q → −1 by taking the limit z →∞ as

q(z) = e
−πK(1−z)

K(z) −−−−−→
z= 1

ε
→∞

−e
− π2

log(16/ε) . (6.8)

In this limit, the block is given by

logFLHHL (hp|z) −−−→
z→∞

(
4hL −

c− 1

6

(
1−

√
1− 24

c− 1
hL

))
log

(
1

z

)
+ o

(
log log

(
1

z

))
,

(6.9)

where we used the following property of the Jacobi theta function,

θ3(q(z)) −−−−−→
z= 1

ε
→∞

2

√
log 16

ε

π

( ε
16

) 1
4
. (6.10)

In the same way, we can show that the LHLH block is given by the same expression.

6.3 HHHH blocks

In this subsection, we study the asymptotics of ABBA blocks in the heavy-heavy region,

which we call as HAHBHBHA block. The expressions (4.6) for A and α in the heavy-heavy

region lead to

HBA
BA (hp|q) =

∞∑
n=0

nαqn −−→
ε→0

(log ε)4(hA+hB)− c+5
4 (6.11)

where z = 1− ε (ε� 1). Here we use the asymptotic behavior of the Polylogarithm,

Li−α(e−πτ ) =
∞∑
n=1

nαe−πτn −−−→
τ→0

Γ(α+ 1)

(πτ)α+1 if α > −1, (6.12)
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and we assumed α > −1. In fact, almost all values (hA, hB) in the heavy-heavy region

satisfy α = 4(hA + hB) − c+9
4 > −1, however somehow there is a region where α > −1 is

not satisfied. It suggests that the exact transition point might be hA,B = c
32 +O(c0). Note

that somehow, this asymptotic form exactly matches HAA
BB(hp|q), which is the function

H(hp|q) of AABB blocks.

This HBA
BA function leads to the asymptotic form of conformal blocks in the heavy-heavy

region (hA,B > c
32) as

logFBABA (hp|z)−−−→
z→1

(
c−1

24
−2hB

)
log (1−z)− 3

2
log log(1−z)+o(log log(1−z)), (6.13)

which is surprisingly simple. It means that it might be possible to derive this result

analytically in some way. But we leave this problem to future work. And for now, we do not

have the clear holographic dual description of ABBA blocks, however this simple form also

suggests that the HAHBHBHA blocks could have some classical description in gravity side.

As we mentioned, the function HAA
BB(hp|q) shows the same behavior as HBA

BA (hp|q) in

the heavy-heavy region. Therefore, the HAHAHBHB block is also given by

logFAABB(hp|z) −−−→
z→1

(
c− 1

24
− hA − hB

)
log (1− z)− 3

2
log log (1− z) + o(log log(1− z)).

(6.14)

We can see the power 3
2 , which is due to the same reason as that the power law t−

3
2 appears

in the late time behavior of Virasoro blocks [35]. To probe information loss, one needs to

consider the analytic continuation of the correlator [35, 43]. In more detail, we have to

consider the conformal blocks undergoing a monodromy around z = 1, whose behaviors

are different from the original conformal blocks. This leads to the power law t−
3
2 for

HAHAHBHB blocks at late times.

For HAHBHAHB blocks, we can obtain the bound form (6.13) as

logFBAAB (hp|z)
z→1
≤

(
c− 1

24
− hA − hB

)
log (1− z)− 3

2
log log (1− z) + o(log log(1− z)),

(6.15)

and the asymptotic form as

logFBAAB (hp|z) −−−→
z→∞

c− 1

24
log

(
1

z

)
− 3

2
log log

(
1

z

)
+ o

(
log log

(
1

z

))
. (6.16)

7 Correlator, OTOC and Entanglement Entropy from conformal blocks

7.1 Asymptotic correlators

Now that we give the asymptotic form of conformal blocks with vacuum and non-vacuum

intermediate states, one might try to extract the properties of correlators from our confor-

mal blocks. However, one could be confronted with the following problem. To construct

correlators, one has to take the sum of conformal blocks over intermediate dimensions as

〈OA(∞)OB(1)OB(z)OA(0)〉 =

∞∑
hp=0

∞∑
h̄p=0

ρhp,h̄p (CABp)
2FBABA (hp|z)FBABA (h̄p|z̄) (7.1)
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where ρhp,h̄p is the density of primary states. Once we take z near the singular point z = 1,

we can approximate it as the sum of effective contributions as

〈OA(∞)OB(1)OB(z)OA(0)〉 '
hp∗∑
hp=0

h̄p∗∑
h̄p=0

ρhp,h̄p (CABp)
2FBABA (hp|z)FBABA (h̄p|z̄), (7.2)

where p∗ depends on z = 1− ε (ε� 1) and∑∞
hp=hp∗

∑∞
h̄p=h̄p∗

ρhp,h̄p (CABp)
2FBABA (hp|z)FBABA (h̄p|z̄)∑∞

hp=0

∑∞
h̄p=0 ρhp,h̄p (CABp)

2FBABA (hp|z)FBABA (h̄p|z̄)
� 1. (7.3)

And in the same way, we can also define n∗ for the sum,

H(hp|q) =

∞∑
n=0

cn(hp)q
n, (7.4)

as ∑n∗

n=0 cn(hp)q
n∑∞

n=0 cn(hp)qn
� 1, (7.5)

(or when there exists only one saddle point of the summation, one can think of n∗ as the

saddle point of the summation (7.4) and hp∗ as the saddle point of the summation (7.1).

In other words, the point (n∗, hp∗) is the saddle point of the double sum over n and hp.)

Recall that the coefficients cn are given by (2.10) as

ck(hp) =

k∑
i=1

∑
m=1,n=1
mn=i

Rm,n
hp − hm,n

ck−i(hm,n +mn). (7.6)

From this expression, one can find that the asymptotic form (6.13) breaks down as k

approaches to the order hp. Therefore, we expect that the asymptotic form (6.13) of cn
holds only for n� hp. In other words, if one wants to approximate the conformal block by

using our asymptotic cn, the condition n∗ � hp has to be satisfied. However, it might be

possible that there are conformal blocks with hp ∼ n∗ in the conformal block decomposition

of the correlator, that is, hp∗ ∼ n∗. As a result, the behavior of the correlator might be

different from that of the conformal block. This story is illustrated in figure 14 and it is

simplified when there exists only one saddle point as explained in figure 15.

To derive the asymptotic behavior of the correlator from the conformal blocks, one

has to understand the behavior of the coefficients cn for n ∼ hp. Or, possibly, one can

show that n∗ � hp∗ . If so, we can use our asymptotic conformal blocks to construct the

correlator. We leave this problem to future work.

Note that one might think that it is strange in the first place that the conformal block

in the limit z → 1 is independent of hp because one can estimate the correlation function as

〈OA(∞)OB(1)OB(z)OA(0)〉 −−−→
z→1

|1− z|
c−1
12
−4hB |log (1− z)|−3 (7.7)
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Figure 14. This figure explains the breakdown of the asymptotic form. Since |q(z)| < 1 in

the whole z plane except for OPE singular points, only finite number of cn (n = 1 . . . k < ∞)

effectively contribute to conformal blocks. On the other hand, the lower bound of the region where

the coefficients ck can be well approximated by our formula depends on hp and the lower bound

become large as increasing hp. (The reason is explained in the main text.) Therefore, if we take hp
too large, then the asymptotic form of the conformal block (6.13) breaks down.

by using our asymptotic form if the asymptotic conformal blocks are independent of hp,

however we know that the correlator has a OPE singularity

〈OA(∞)OB(1)OB(z)OA(0)〉 −−−→
z→1

|1− z|−4hB , (7.8)

which leads to a contradiction. But actually, in the expression of the asymptotic blocks

derived in section 6, we neglect the small effect

(q)hp−
c−1
24 −−−→

z→1
e
− π2

log(16/(1−z))(hp−
c−1
24 ), (7.9)

which is included in the universal prefactor (2.3). If we take account of this contribution

to the conformal block, we can reproduce the OPE singularity (7.8) by tunning the OPE

coefficients. We will explain it in more detail in section 8.

7.2 Analytic continuation of correlators

From the consideration in the above subsection, one would think that there could be a

significant difference between the asymptotic behavior of conformal blocks and correlators

and therefore the features important in physics could not be obtained from the asymptotics

of conformal blocks. But actually, we can use our asymptotic form directly in considering

analytic continuations around OPE singular points, which appears in the calculation of

OTOCs. In more details, OTOCs are obtained by analytic continuation of the same Eu-

clidean four point function. If one considers a 2d CFT on a thermal cylinder, OTOCs can
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Figure 15. This figure also explains the breakdown of the asymptotic form in terms of the sad-

dle point approximation. When there exists only one saddle point, the situation is simpler than

figure 14. If the saddle point (n∗, hp∗) is in the lower triangle, the correlator can be estimated by

our Cardy-like formula. On the other hand, if the saddle point is in the upper triangle, we can not

estimate the correlator because no expression for cn is found in this region. However, if hp∗ � n∗
is satisfied, the contributions at n ≥ 1 are negligible, in that, n∗ = 1.

be calculated by taking the map (1− z)→ e−2πi(z − 1) while leaving z̄ as it is and taking

the limit z, z̄ → 0 [24, 44, 45]. Let denote the function after this operation by fmono(z).

Example:

If one considers f(z) = log(1− z), then

fmono(z) = f(z)− 2πi,

fmono(z̄) = f(z̄).

In this notation, the OTOC for OA and OB can be obtained by calculating the correlator as∑
p

CAApCBBpFAABB,mono(hp|z)FAABB(h̄p|z̄). (7.10)

Taking the limit z, z̄ → 0 which corresponds to increasing time t, we can approximate this

sum by the identity block as∑
p

CAApCBBpFAABB,mono(hp|z)FAABB(h̄p|z̄) −−−−→
z,z̄→0

FAABB,mono(0|z)FAABB(0|z̄). (7.11)
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As we mentioned before, the elliptic nome has the limit qmono(z) −−−→
z→0

i, thus we can use

our asymptotic form of AABB blocks for the coefficients cn. Finally, we can obtain the

behavior of OTOCs at late times as11

〈OA(t)OBOA(t)OB〉β
〈OAOA〉β〈OBOB〉β

−−−→
t→∞

e
− c−1

12
πt
β , if hA, hB >

c

32
, (7.12)

where the relation between cross ratios and time is given by

z ∼ −e
−2

π(t−x)
β , z̄ ∼ −e

−2
π(t+x)
β . (7.13)

Moreover, in the heavy-light limit, we can reproduce the results in [24, 46]. From our

asymptotic form, we can suggest that OTOCs in the holographic CFT have the exponen-

tial decay at late times for any operators. And this exponential decay can be seen in no

other CFT [44, 45, 47] than the holographic CFT. This may suggest that this late time

behavior can also be used as a criterion of chaotic nature of a given quantum field theory,

in addition to the existing arguments on the Lyapunov exponent [24, 48, 49].

Actually the result of the Renyi entropy after a local quench [23] can be also obtained in

the almost same way as above, that is, all we have to do is calculate only the identity block

as in the right hand side of (7.11). In other words, the Renyi entropy after a local quench

is a kind of OTOC. The dynamics of the Renyi entropy also receive extensive attention in

the context of chaos [50–55] as well as OTOC. And from our result in [23], in holographic

CFT, this behaviors of the Renyi entropy after a local quench dramatically change when

we use heavy operators (h > c
32) to excite vacuum states. We expect that this transition

exhibits the interesting physics in the holographic CFT.

As these examples of OTOC and Entanglement Entropy, we can extract the interesting

physics directly from our asymptotic form of the coefficients cn, even though we have the

problem mentioned in section 7.1.

8 Towards the conformal bootstrap

We would like to comment on the conformal bootstrap between AABB and ABBA (cor-

rectly, not ABBA but BAAB) blocks. First, let us consider the bootstrap equation in terms

of the elliptic nome q instead of z. By using the relations z =
(
θ2(q)
θ3(q)

)4
and 1−z =

(
θ4(q)
θ3(q)

)4
,

we can reexpress conformal blocks as

= (16q)hp−
c−1
24
(
16η(q)12

) c−1
24
−hA−hB

(
θ3(q)2hA

θ2(q)hA−hB

)4

HAA
BB(hp|q)

(8.1)

11One might wonder we can not estimate the OTOC since we do not know the asymptotic behavior of

the heavy-heavy block in the limit q → i. However, we can estimate the bound of the block as mentioned

in section 3.2 (see eq. (3.10)). As a result, we can find that the contribution of the function H(hp|q) to the

block can be neglected compared to the universal prefactor Λ(hp|q). This leads to the estimation of the

OTOC (7.12).
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and

= (16q̃)hp−
c−1
24
(
16η(q̃)12

) c−1
24
−hA−hB

(
θ3(q̃)2hA

θ4(q̃)hA−hB

)4

HAB
AB (hp|q̃)

= (−iτ)
c−1

4
−2(hA+hB) (16q̃)hp−

c−1
24
(
16η(q)12

) c−1
24
−hA−hB

×
(

θ3(q)2hA

θ2(q)hA−hB

)4

HAB
AB (hp|q̃) (8.2)

where η is the Dedekind eta function and q̃(z) = q(1 − z). We will set q = q̄ = e−
β
2 , then

we have the following bootstrap equation,∑
p

CAApCBBp (16)∆p e−
β
2 (∆p− c−1

12 )HAA
BB(hp|q)HAA

BB(hp|q)

=
∑
p

C2
ABp

(
β

2π

) c−1
2
−4(∆A+∆B)

(16)∆p e
− 2π2

β (∆p− c−1
12 )HAB

AB (hp|q̃)HAB
AB (hp|q̃)

(8.3)

where we used the following identities,

θ3

(
−1

τ

)
=
√
−iτθ3(τ), θ4

(
−1

τ

)
=
√
−iτθ2(τ), η

(
−1

τ

)
=
√
−iτη(τ). (8.4)

In most cases, the bootstrap equation can be applied to two limits, the high-low tem-

perature limit and the medium temperature limit. Let us see each limit in the following:

The high-low temperature limit. The most famous consequence of the high-low tem-

perature limit is Cardy’s formula [36], which can be derived by setting hA = hB = c
32

in (8.3). If we take the limit β →∞ in (8.3), then we have

e
β
2
c−1
12 HAA

BB(0|q)HAA
BB(0|q)

=
∑
p

C2
ABp

(
β

2π

) c−1
2
−4(∆A+∆B)

(16)∆p e
− 2π2

β (∆p− c−1
12 )HAB

AB (hp|q̃)HAB
AB (hp|q̃).

(8.5)

From the expression of the H(hp|q) function (2.4), we can see that

H21
34 (hp|q) −−−→

q→0
1. (8.6)

Here, we assume that

H21
34 (hp|q) −−−−→

hp→∞
1. (8.7)
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We have to mention again that this is valid only in the regime (5.11),12

hp| log q|2 � c, (8.9)

except for special cases. In the high-low temperature limit, the bootstrap equa-

tion (8.3) is simplified as

e
β
2
c−1
12 =

∑
p

C2
ABp

(
β

2π

) c−1
2
−4(∆A+∆B)

(16)∆p e
− 2π2

β (∆p− c−1
12 ). (8.10)

Here we assume c > 1. Thus there are many heavy primary states, and the sum

in (8.10) can be approximated by an integral as

e
β
2
c−1
12 =

∫
d∆p ρ(∆p)C2

ABp

(
β

2π

) c−1
2
−4(∆A+∆B)

(16)∆p e
− 2π2

β (∆p− c−1
12 ), (8.11)

where ρ(∆p) is the density of states which has the asymptotic formula called as

Cardy’s formula:

ρ(∆p) −−−−→
∆p→∞

e
4π
√
c−1
12 (∆p− c−1

12 ) (∆p � c), (8.12)

and the average is over all primary operators of fixed dimension ∆p.

By using the inverse Laplace transformation, we can obtain the mean-squared OPE

coefficients as

C2
ABp −−−−→∆p→∞

π

16∆p

(
12∆p

c−1 − 1
)4(∆A+∆B)− c+1

2

e
−2π

√
c−1
12 (∆p− c−1

12 ). (8.13)

Here we can reexpress (8.13) by using entropy as√
C2
ABp −−−−→∆p→∞

4−∆pe−
S(∆p)

4 . (8.14)

Note that in [58], the mean-squared OPE coefficients C2
AAp are given in much the

same way as the above approach (they used the quantization on the pillow metric

12In [30], the asymptotics for heavy-heavy-light three point coefficints is derived in the similar way. We

believe that the regime (8.9) is corresponding to (45) in [30],

hp |log q|2 � 1, (8.8)

which is shown by the large h limit of a 1-point conformal block on a torus. In that case, we can estimate

the large h expansion of the block on a torus by using the Virasoro algebra. However, we can not find

out the corresponding derivation for the 4-point block. Note that the r.h.s. of (8.9) and (8.8) are different

in spite of the Poghossian identities [56, 57]. We believe that it comes from the special property for the

block with hA or hB = c
32

as explained in the last of section 5.2. Note that the regime (8.8) comes from

the expectation that no descendants contribute to a 1-point block on a torus at large hp in large c CFTs.

However, it does not occur in the bootstrap for 4-point function (see appendix C).
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and they restrict attention to the case ∆A = ∆B) and they give the holographic dual

interpretation of C2
AAp.

However, the saddle point of the inverse Laplace transformation for (8.11) is given by

∆p |log q̃|2 ' π2 c− 1

12
. (8.15)

This does not satisfy the condition (8.9), therefore the above derivation of the three

point function is subtle. As discussed in section 7.1, it is possible that the saddle

point hp∗ of the r.h.s. of (8.5) is smaller than n∗, which is defined by (7.5). If the

inequality hp∗ < n∗ is satisfied, then we should use our asymptotic formula,

HAB
AB (hp∗ |e−

2π2

β )
β→∞
≤

 e
β
2

(
c−1
24
−4hB+ c−1

6

(
1−
√

1− 24
c−1

hB

))
, if hB � c,

β4(hA+hB)− c+5
4 , if hA,B > c

32 ,
(8.16)

instead of (8.7). From our numerical observations (5.5) or (5.6), we expect at least

that

0
β→∞
≤ log

(
HAB
AB (hp∗ |e−

2π2

β )

)

β→∞
≤

{
β
2

(
c−1
24 − 4hB + c−1

6

(
1−

√
1− 24

c−1hB

))
, if hB � c,(

4(hA + hB)− c+5
4

)
log β, if hA,B > c

32 ,

(8.17)

in the limit β →∞.

From the above observation, it is shown that for hB � c, the bootstrap equation can

be described instead of (8.11) as

e
β
2
c−1
12

β→∞
≤

∫
d∆p ρ(∆p)C2

ABp

(
β

2π

) c−1
2
−4(∆A+∆B)

(16)∆p

× e
− 2π2

β (∆p− c−1
12 )e

β
2

(
c−1
12
−4∆B+ c−1

3

(
1−
√

1− 12
c−1

∆B

))
,

(8.18)

where we set hA = hA and hB = hB for simplicity. Here the above inequality is

satisfied only if β →∞. By using the inverse Laplace transformation, we can get the

asymptotic three point function by

16−∆pe
4π

√(
∆B− c−1

12

(
1−
√

1− 12
c−1

∆B

))
(∆p− c−1

12 )−4π
√
c−1
12 (∆p− c−1

12 )

∆p→∞
≤ C2

ABp

∆p→∞
≤ 16−∆pe

−2π
√
c−1
12 (∆p− c−1

12 ),

(8.19)

where the second inequality is led by (8.13).

For hA,B > c
32 , the bootstrap equation is

e
β
2
c−1
12

β→∞
≤

∫
d∆p ρ(∆p)C2

ABpβ
−3e
− 2π2

β (∆p− c−1
12 )16∆p , (8.20)
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where we set hA = hA and hB = hB again. This inequality leads to the asymptotic

inequality as

16−∆pe
−2π

√
c−1
12 (∆p− c−1

12 )
∆p→∞
≤ C2

ABp
∆p→∞
≤ 16−∆pe

−2π
√
c−1
12 (∆p− c−1

12 ), (8.21)

which means that the leading asymptotic behavior of the three point function CABp
with hA,B > c

32 in the limit hp →∞ is perfectly determined by the conformal boot-

strap as

C2
ABp −−−−→∆p→∞

16−∆pe
−2π

√
c−1
12 (∆p− c−1

12 ). (8.22)

Actually, it is possible that this asymptotics is true for any external dimensions.

However, we have shown that the asymptotics of blocks drastically changes at c
32

(which means that the contribution from the descendants differs based on the exter-

nal dimensions) and therefore it is also possible that the asymptotics of three point

functions also has the transition.

The medium temperature limit. One of the main contributions of the medium tem-

perature limit is to derive the upper bound on the gap, which is called the Hellerman

bound [26–28] and which is revisited by using semiclassical conformal blocks [42].

And this limit is also used in the numerical bootstrap [4, 59–61].

If one hopes to make use of the bootstrap equation in this limit, we have to resolve

the problem mentioned in section 7.1. In other words, we have to understand the

behavior of the coefficients cn for n ∼ hp. This is an important future work.

It is also interesting to consider the bootstrap equation in various limits unexplored after

analytic continuations. It might be possible to solve the bootstrap equation analytically in

some of them by using our asymptotic formula.

9 Discussion

In this paper, we study large-c conformal blocks of 4-pt functions on a sphere and find

the simple asymptotic form of the blocks and the transition of the behavior of the blocks

at hA,B = c
32 . This strongly suggests the interesting structures or physical phenomena in

CFT and gravity theory, but for now we can not answer what happens at that point. We

hope to understand how to interpret this interesting phenomena as physics.

One might ask whether there are other situations where the value c
32 appears. Actually,

this dimension can be seen in the twist-2 operator. As mentioned in the last of section 5.2,

we can find the following two facts:

1. For the blocks with the external operators hi = c
32 , the monodromy method can be

solved exactly [41].

2. We can find a relation between the universal prefactor Λ(hp|q) and a character as

Λ
c′
32
, c
′

32
c′
32
, c
′

32 c=c′−1
(hp|q) = 16hpeSanomalyχhp

2
,c= c′

2

(τ) , (9.1)
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where the conformal anomaly factor is given by [62],

〈σ2σ2σ2σ2〉 = e
c′
2
SanomalyZ

c= c′
2

(τ, τ̄) =
∣∣28z(1− z)

∣∣− c′
24 Z

c= c′
2

(τ, τ̄). (9.2)

Moreover, in the large c limit, we can neglect the contribution of the function H(hp|q)
to the Virasoro block [42], in that,

logH
c′
32
, c
′

32
c′
32
, c
′

32 c=c′−1
(hp|q)

c
−−−→
c→∞

0. (9.3)

This is consistent with that the coefficients cn vanish at hA or hB = c
32 , which can

be seen from our formula (3.7). As a result, we obtain the following relation in the

large c limit,

F
c
32
, c
32

c
32
, c
32

(hp|q) = 16hpeSanomalyχhp
2
, c
2

(τ) . (9.4)

We believe that these facts, our formula (3.7) and our conjectures illustrated in figure 1, 7

correlate to each other. It could be a key to understand the transition at c
32 analytically.13

Another future work is to derive the simple asymptotic form in figure 1, 7 by using the

Zamolodchikov recursion relation analytically. Actually it seems to be hard work because

this simplification is attributed to many cancellations of terms in (2.10).14 However, our nu-

merical computation suggests that large c conformal blocks have a simple expression, which

means that it might be possible to derive the large c conformal blocks analytically in some

way. We hope to give the large c blocks, at least the coefficients cn, in some analytic way.

It is also interesting to generalize the sparseness condition [25] from the modular in-

variance to the condition to OPE coefficients from the crossing symmetry (8.3) as in [42]

by using our results for large c conformal blocks.

In this paper, we show only the asymptotic behavior of conformal blocks in the vicinity

of z = 1, but those after picking up a monodromy at OPE singularities also interesting, for

example, they appear in the calculation of Entanglement Entropy and OTOC as argued

in section 7.2. And also, as mentioned in [35], it is intriguing to consider the limit after

picking up a monodromy, which could be a new limit to solve the conformal bootstrap

equation analytically.

One can generalize our analysis to more general blocks, in that, ABCD blocks, which

have four different external dimensions hA, hB, hC , hD. We expect that one can also see the

transition at c
32 for ABCD blocks and find a simple asymptotic expression for the blocks.

However, if one wants to uncover the properties of ABCD blocks, one has to investigate the

blocks with six parameters (hA, hB, hC , hD, hp and c). As one easily expects, it takes much

more time than studying AABB or ABBA blocks, therefore, we leave it as a future work.

13Actually, one can also find the transition at c
32

in the fusion matrix [63].
14One can easily see this cancellations when trying to observe our formula (3.3) for small n.
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Figure 16. The behaviors of the coefficients cn of ABBA blocks. The left is for (hA, hB) = ( c12 ,
c
12 )

and the right is for (hA, hB) = ( c
12 ,

c
240 ). The blue dots are the numerical values of log cn. The red

lines are BnαeA
√
n with the constant B determined by the fit. We now set c = 30.01 and hp = 0.01.
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A More details of numerical computations

A.1 Well-fitted for any n in the heavy-light limit

In this subsection, we display plots of the n dependence of the coefficients cn of ABBA

blocks and we show that the coefficients cn are well-fitted by

cn ∼ nαeA
√
n (A.1)

for higher n.

Figure 16 shows the n dependence of the numerical values of cn (blue dots) and the

fitted function by nαeA
√
n (red line). From these figures, one can find that the numerical

values of cn are well-fitted by nαeA
√
n for higher n. And moreover one can find that in the

heavy-light limit (the right in figure 16), the coefficients cn are also well-fitted for small n,

which implies that

H(hp|q) ' 1 +
∑
n=1

nαeA
√
nqn (A.2)

can be applied for z away from the point z = 1.
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Figure 17. The plots of cn for hA = c
30 and hB = c

24×
6
10 ,

7
10 ,

8
10 ,

9
10 . One can see that approaching

hB = c
32 causes the oscillation of the coefficients cn.
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Figure 18. The behaviors of the coefficients cn of AABB blocks. The left is for (hA, hB) = ( c12 ,
c
12 )

and the right is for (hA, hB) = ( c
12 ,

c
240 ). The blue dots are the numerical values of log cn. The red

lines are BnαeA
√
n with the constant B determined by the fit. We now set c = 100.01 and hp = 0.

Note that in the vicinity of the value hA,B = c
32 , the coefficients cn widely oscillate for

small n as in figure 17. This is the reason why one can see some strange dots near the line

hA,B = c
32 in some figures (for example, figure 3). However, if we extend the analysis of

the behavior of the coefficients cn to higher n, we can again obtain the behavior well-fitted

by (A.1).

Note also that the phenomena that cn are well-fitted in the heavy-light limit can be

also seen in the coefficients of AABB blocks as in figure 18.
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Figure 19. The plots of A (left) and α (right) of AABB blocks for various values of (c, hB) with

hA = c
24 and hp = 0.

A.2 Some extra plots

One might ask whether the transition at c
32 occurs for c > 25 and we could answer “yes”

at least based on our numerical computations. Take a look at figure 19, which shows the

values of A of AABB blocks for various values of (c, hB) with hA = c
24 and hp = 0. It

suggests that the transition point is always at c
32 .

Note that in our numerical computation, we approximate
√
c at 500 digits of accuracy,

which is in particular a rational number. Therefore we always encounter the problem of

the divergence of the denominator of (2.11). In our setup, this problem occurs at very

high n and therefore we can neglect it. However, if one might try to set c small, then the

denominator of (2.11) approaches zero many times, which leads to singular behaviors of cn
in figure 19. Therefore, in our computation, we can not see universal asymptotic form of

cn for small c.

Figure 20 shows the values of A of AABB blocks for various values of (c, hp) with

hA = c
24 and hB = c

240 . One can see that the slope of the values of A vs. c is independent

of hp, which suggests that the coefficients cn have no product term hp × c.
Note that the fits of A and α by using the values cn, (n = 1, 2, . . . , N) are not valid for

hp ∼ N because it is expected that the universal behavior arises from n� hp as discussed

in section 7.1. The steep slope in figure 20 for large hp is caused by this problem, and

consequently, it is meaningless. We have to see only the region hp � N . In figure 20, we

set N = 300.

Figure 21 shows the hp dependence of cn(hp) with fixed n = 10, 100, 500, 1000 for

AABB blocks with (hA, hB) = ( c
24 ,

c
240), which is in the heavy-light region. One can see

that the point of the transition form the gentle slope to steep slope shifts to the right as

we take n larger. This means that the value of hp where our Cardy-like formula breaks

down is of order O(n), in that,

cn(hp) ∼

{
const. , if hp . n,(

1
hp

)const.
, if hp & n.

(A.3)
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Figure 20. The plot of the values of A (left) and α (right) for various values of (c, hp).
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Figure 21. The hp dependence of cn(hp) with fixed n = 10, 100, 500, 1000 for AABB blocks with

(hA, hB) = ( c24 ,
c

240 ), which is in the heavy-light region.

Moreover, this property can be also seen for ABBA blocks. It is shown in figure 22, 23

and 24. We can immediately see from these figures that the relations (5.7), (5.8) and (5.9)

hold not only for AABB blocks but also ABBA blocks.

B Comparing with the semiclassical limit

B.1 Heavy-light limit

In the region hA >
c

32hB < c
32 , AABB blocks have the sign pattern

Sign(c2n) = (−1)n, (B.1)
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Figure 22. The hp dependence of cn(hp) with fixed n = 10, 100, 500, 1000 for ABBA blocks with

(hA, hB) = ( c24 ,
c

240 ), which is in the heavy-light region.
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Figure 23. The hp dependence of cn(hp) with fixed n = 10 (left) and 1000 (right) for ABBA blocks

with (hA, hB) = ( c24 ,
c
16 ), which is in the heavy-light region.

therefore, the function H(hp|q) is described by

∞∑
n=0

(−1)n(2n)αeA
√

2nq2n. (B.2)

Let us consider the limit q → i, which is corresponding to the limit z → 0 after the

transformation (1− z)→ e−2πi(1− z). We know the expression for the large c block in the

heavy light limit,

FHHLL (hp|z) = (1− z)hL(α−1)

(
1− (1− z)α

α

)hp−2hL

2F1(hp, hp, 2hp|1− (1− z)a) (B.3)
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Figure 24. The n dependence of γ(n) for ABBA blocks, which is the power of (5.8). We can see

that the growth of γ(n) with n is slower and slower as n approaches infinity.

where α =
√

1− 24
c hH . In the limit q → i, the asymptotic behavior is

FHHLL,mono(hp|z) −−−→
z→0

O(z0), (B.4)

which leads to

HHH
LL,mono(hp|q) −−−→

z→0
z−

c−1
24

+2hL (log z)−
c−1

4
+4(hH+hL) . (B.5)

And also in the limit q → i, we can approximate the sum (B.2) as

z−
A2

π2 (log z)
3
2

+2α (B.6)

where we used the asymptotic behavior of τ ,

τmono(z) −−−→
z→0

1

2

(
1− πi

2

1

log z
16

)
. (B.7)

Substituting our numerical result (3.4), that is

A = π

√
c− 1

24
− 2hL,

α = 2(hH + hL)− c+ 5

8
,

(B.8)

into the sum approximation (B.6), then we can exactly reproduce the asymptotic behavior

of the HHLL block (B.5).
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We can also consider the limit q → 1, which is corresponding to z → 1. In this case,

one can naively expect that the summation (B.2) could be approximated by

∞∑
n=0

(−1)n(2n)αeA
√

2nq2n =

∞∑
k=0

(4k)αeA
√

4kq4k −
∞∑
k=0

(4k + 2)αeA
√

4k+2q4k+2

'
∞∑
k=0

(4k)αeA
√

4kq4k

(
1−

(
1 +

A√
4k

)
q2

)
−−−→
z→1

(1− z)−
A2

4π2 .

(B.9)

If this is correct, then substituting the value of A in (B.8) leads to

−−−→
z→1

(1− z)
− 1

4

√
c−1
24
−2hL . (B.10)

However, this is different from the behavior from the HHLL block (B.3) in the limit z → 1 as

HHH
LL (hp|q) −−−→

z→1
(1− z)

− c−1
24

+hH+hL

√
1− 24

c
hH . (B.11)

Actually, it is not allowed to approximate the alternating series by the saddle point method

as (B.9). One can see this breakdown easily, for example, if one tries to approximate the

following alternating series in the limit x→∞,∑
n

(−x)n

n!
=
∑
k

x2k

2k!

(
1− x

2k + 1

)
. (B.12)

We know that the exact behavior of this series as ' e−x, however if one approximates

the alternating series by the saddle point approximation, then one gets a wrong behavior

' ex.15 In fact, this is obvious because when the alternating series is split into two parts

as (B.9) and approximated by the saddle point approximation, only the dominant contri-

butions for each of two parts are extracted and other contributions are removed, but the

dominant contributions cancel each other and the correct asymptotic behavior consists of

the subleading contributions, rather than the dominant contributions. Therefore, the sad-

dle point approximation for each of the two terms leads to the wrong asymptotic behavior.

We hope to know how to obtain the correct asymptotic behavior of (B.9), in other words,

how to evaluate an alternating series by approximation.

B.2 Light-light region

In a pat of the light-light region (displayed by the blue region in figure 1), the semiclassical

blocks in the limit ε� 1 can be obtained by using the monodromy method near z = 1 [16],

which is given by

FAABB(hp|1− ε) ∼ ε
− c

12

(
1−
√

1− 24hA
c

)(
1−
√

1− 24hB
c

)
(B.14)

15If the signs are not alternating, we can get the correct answer by using the saddle point approximation,

in that, ∑
n

xn

n!
'
∫

dn en log x−n logn+n ' ex. (B.13)
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and therefore,

HAA
BB(hp|1− ε) ∼ ε

− c−1
24

+hA+hB− c
12

(
1−
√

1− 24hA
c

)(
1−
√

1− 24hB
c

)
. (B.15)

Comparing this with (6.2), we obtain the theoretical value of A as16

A = 2π

√√√√c− 1

24
− hA − hB +

c

12

(
1−

√
1− 24hA

c

)(
1−

√
1− 24hB

c

)
. (B.16)

The block (B.14) is derived under the limit c→∞. It’s natural that the exact expression

can be obtained by a shift of c→ c−1. Therefore, we expect that the explicit A is given by

A = 2π

√√√√c− 1

24
− hA − hB +

c− 1

12

(
1−

√
1− 24hA

c− 1

)(
1−

√
1− 24hB

c− 1

)
. (B.17)

This value is perfectly match our numerical computations. Note that if expanding A at

small hB
c , we obtain the heavy-light limit of A by

A = 2π

√
c− 1

24
− hA − hB

√
1− 24hA

c− 1
, (B.18)

which has been derived by the heavy-light blocks in our previous paper [23].

C The asymptotics of heavy-light-light coefficients

In this section, we will show the heavy-light-light three point function for arbitrary states.

A four point functions can be expanded by17

〈O(∞)O(1)O(x)O(0)〉 = x−2∆O
∑
p

C2
OOpx

∆p , (C.1)

where we set z = z̄ = x and the sum is over all operators in the CFT. This expansion

leads to the bootstrap equation in the limit x→ 1,∑
p

C2
OOpx

∆p ∼ (1− x)−2∆O . (C.2)

From this equation, we can immediately obtain∑
∆p fixed

C2
OOp −−−−→

∆p→∞
(∆p)

2∆O−1 (C.3)

by using the inverse Laplace transformation. This means that the heavy-light-light three

point function for arbitrary states is given by√
C2
OOp −−−−→∆p→∞

e−
S(∆p)

2 . (C.4)

The result (8.14) for only primaries does not reduce to the above three point function even

if c → ∞. However, it’s natural because for general four point conformal blocks, we can

not neglect descendants even if c→∞.

16We are very much grateful to Henry Maxfield for pointing out this to us.
17Here, the convention is different from the usual 2d CFT convention. We consider normalized eigenstates

of L0 as in the former of [30].
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