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dimension below eight these sets always contain exotic branes, that are objects that do

not have a ten-dimensional origin. We repeat the same analysis for half-maximal theories

and for the quarter-maximal theories in four and three dimensions. We then discuss all

the possible gaugings of these theories as described in terms of the embedding tensor. In
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a way that some representations survive the truncation although they are not required by

the supersymmetry of the truncated theory. We show that for any theory, among these rep-

resentations, the highest-dimensional ones are precisely those of the 1/2-BPS space-filling

branes that preserve the same supersymmetry of the truncated theory, and we interpret

this result as the fact that these quadratic constraints after the truncation become tadpole

conditions for such branes.
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1 Introduction

It is well known that the SO(32) type-I string theory in ten dimensions is obtained from

the type-IIB theory by performing the orientifold projection [1, 2]. In the closed sector, the

projection is due to the O9-plane, while the open sector arises due to the presence of D9-

branes [3], and RR and NSNS tadpole cancellations correspond to the fact that the charge

and tension of the O9-plane are cancelled by those of the D9-branes. In the low-energy

theory, the projection in the closed sector acts as a Z2 truncation to N = 1 supergravity,

in which the spinors are halved and, among the gauge potentials, the NSNS 2-form B2 and

the RR 4-form C4 are projected out, while the RR 2-form C2 survives.

From the point of view of supergravity, there is another consistent supersymmetric

Z2 truncation, in which all RR fields are projected out, leading to the gravity sector of

the heterotic theory. The two truncations are related by S-duality. Denoting with ψµ
the gravitino of the IIB theory, which is a doublet of Majorana-Weyl spinors of the same
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chirality, using the conventions of [4] the gravitino-dependent part of the supersymmetry

transformations of B2, C2 and C4 can be schematically written in the string frame as

δCµν = ie−φε̄γ[µσ1ψν] + . . .

δBµν = iε̄γ[µσ3ψν] + . . . (1.1)

δCµνρσ = e−φε̄γ[µνρσ2ψσ] + . . . ,

where the Pauli matrices act on the doublets of spinors. The O9 truncation is then realised

in the spinor sector as the projection

O9 : Ψ = ±σ1Ψ (1.2)

while the S-dual truncation, which we label SO9, acts as

SO9 : Ψ = ±σ3Ψ , (1.3)

where with Ψ we denote any spinor in the theory [4]. From eq. (1.1) one can see that the

truncation Ψ = ±σ2Ψ projects out both B2 and C2 while keeping C4, and hence does not

lead to a supersymmetric theory.

In the low-energy theory, the occurrence of D9-branes is signalled by the fact that one

can consistently introduce a RR 10-form in the supersymmetry algebra, whose transforma-

tion contains the Pauli matrix σ1 consistently with the fact that the field survives the O9

truncation [4]. Analogously, one can consider the S-dual of the RR 10-form potential, and

write an effective action for the 1/2-BPS brane that is charged under it [5]. The tension of

such brane scales like g−4
s [6, 7], and the presence of the Pauli matrix σ3 in the supersym-

metry variation of the potential signals that it survives the SO9 truncation.1 The presence

of two space-filling 1/2-BPS branes, each of the two surviving each of the two truncations,

is also signalled by the presence of the doublet of central charges Zaµ, a = 1, 2, in the

supersymmetry algebra. Indeed, if µ is along the time direction, this can be dualised to

Zai1...i9 , where the i’s are space indices, which is a doublet of 9-brane central charges [6]. For

each Z2 truncation, the supersymmetry preserved by the 1/2-BPS 9-brane that survives

the projection is exactly the supersymmetry of the truncated theory.

The 10-forms that couple to the 9-branes in IIB belong to a quadruplet (i.e. a spin-

3/2 representation) of the global symmetry SL(2,R) of IIB supergravity [8], and are more

precisely the spin 3/2 and −3/2 components (i.e. the longest weights) of that representa-

tion [5, 9]. The same applies to maximal theories in lower dimensions: in any dimension

D one can determine the representation of the global symmetry group G to which the

RR D-form potentials belong [10, 11], and the space-filling 1/2-BPS branes turn out to

correspond to the long weights of that representation [12]. The analysis of [10, 11] was

performed by suitably decomposing the very-extended Kac-Moody algebra E11 [13], and

1In [7] it was conjectured that the SO(32) heterotic theory can be obtained from type-IIB by performing

the S-dual of the orientifold projection, and the charge and tension of the S-dual of the O9-plane are

cancelled by these branes, that are the S-duals of the D9-branes and are defined as end-points of D-strings.

We will not discuss this issue in this paper.
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D G repr. branes R-symmetry Zµ deg.

IIB SL(2,R) 4 2 U(1) 2 1

9 R+ × SL(2,R) 4 2 U(1) 2 1

8 SL(3,R)× SL(2,R) (15,1) 6 U(2) 3 2

7 SL(5,R) 70 20 USp(4) 5 4

6 SO(5, 5)
320 80

USp(4)×USp(4)
(5,1) + (1,5) 8

126 16 (1,1) 16

5 E6(6) 1728 432 USp(8) 27 16

4 E7(7) 8645 2016 SU(8) 63 32

3 E8(8) 147250 17280 SO(16) 135 128

Table 1. The 1/2-BPS space-filling branes of the maximal theories in any dimension and their

degeneracy [12]. The number of branes is given in the fourth column, while the third column

contains the representation of the corresponding D-form potential. The sixth column contains the

representation of the central charge and in the last column we list the degeneracy, which is simply

the ratio of the number of branes to the dimension of the representation of the central charge. In

six dimensions the first line corresponds to branes supporting a vector multiplet, and the second

line to branes supporting a tensor multiplet.

we will especially make use of the results of [10], where the representations of the potentials

in the lower-dimensional theories were shown to arise from the dimensional reduction of

both standard potentials and mixed-symmetry potentials in ten dimensions, that follow

from the decomposition of the E11 algebra [14].

A crucial result that applies to all the maximal theories in dimension less than ten

is the fact that the 1/2-BPS condition for space-filling branes is degenerate, which means

that different branes can preserve the same supersymmetry [12].2 This degeneracy was

determined in [12] by simply observing that the number of 1/2-BPS space-filling branes,

that are the long weights of the representation of the D-forms, is always a multiple of the

dimension of the R-symmetry group of the vector central charge Zµ. As in the IIB theory,

we can associate to each space-filling brane a Z2 truncation to the half-supersymmetric

theory, and given that the degenerate branes all preserve the supersymmetry of the same

truncation, we arrive at the obvious conclusion that the number of different supersymmetric

Z2 truncations is precisely the dimension of the representation of the central charge Zµ.

The first result of this paper will be to identify these truncations, and for each truncation

to identify the branes that are not projected out, i.e. the branes that preserve the same

supersymmetry of the truncated theory. We give in table 1 the number of branes and the

corresponding degeneracy in any dimension, as well as the dimension of the vector central

charge, which gives the number of different supersymmetric Z2 truncations.

We will start considering explicitly the eight-dimensional case.3 We will determine the

supersymmetry transformations of all the fields in a manifestly SL(3,R)×SL(2,R)-covariant

2The same applies to 1/2-BPS defect branes [15] and domain walls [16] of the maximal theories.
3In D = 9 the dimension of the central charge and the degeneracy of the space-filling branes are identical

to the IIB case.
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notation,4 and we will use this to show that there are three different Z2 truncations to

minimal supergravity coupled to two vector multiplets. The R-symmetry of the theory is

SO(3)× SO(2), and we will therefore introduce two sets of Pauli matrices: the matrices σi,

i = 1, 2, 3, generate the SO(3) Clifford algebra, while τa, a = 1, 2, which numerically are

equal to the first two Pauli matrices, generate the SO(2) Clifford algebra, and τ3, which is

the third Pauli matrix, is the SO(2) chirality matrix. There are three 2-forms in the theory,

coming from B2, C2 and the compactified C4 in IIB, and we will find that the gravitino-

dependent part of their supersymmetry transformations can be schematically written in

the string frame as

δCµν = ie−φε̄γ[µσ1τ3ψν] + . . .

δBµν = iε̄γ[µσ3τ3ψν] + . . . (1.4)

δCµν x1x2 = ie−φε̄γ[µσ2τ3ψν] + . . . ,

where xi (i = 1, 2) are the two compact directions. It is easy to identify the three Z2

truncations as

O9 : Ψ = ±σ1τ3Ψ

SO9 : Ψ = ±σ3τ3Ψ (1.5)

O7 : Ψ = ±σ2τ3Ψ ,

and only one 2-form survives each truncation. The 8-forms that couple to the space-filling

7-branes belong to the (15,1). We will write down the variation of these potentials and

show that for each truncation in eq. (1.5) there are two space-filling branes that survive.

The fact that there are two space-filling branes preserved by each truncation is not

surprising if one considers in particular the O7 truncation. Indeed, we know that the D7-

brane and its S-dual preserve the same supersymmetry [17, 18]. Performing T-dualities

in x1 and x2, the D7-brane is mapped to the D9-brane, while the S-dual of the D7-brane

is mapped to an exotic space-filling brane, i.e. a brane charged with respect to an 8-form

potential whose IIB origin is a mixed-symmetry potential. These branes survive the O9

truncation in eight dimensions. Similarly, by S-duality one obtains the branes that survive

the SO9 truncation. All these arguments can then be repeated in all lower dimensions,

and by multiple T and S-duality transformations one obtains all the different truncations

and all the branes that preserve the same supersymmetry of each truncation. Most of

these branes are exotic, and we identify them with the corresponding components of the

mixed-symmetry potential using the universal T-duality rules derived in [19].

The Z2 truncation of the maximal theory in D dimensions gives half-maximal su-

pergravity coupled to d = 10 − D vector multiplets. This theory has global symmetry

R+ × SO(d, d) in dimension higher than four, SL(2,R) × SO(6, 6) in four dimensions and

SO(8, 8) in three dimensions, and we identify in all dimensions the irreducible representa-

tions of these groups that contain the branes preserving the same supersymmetry of the

truncated theory. The particular truncation such that R+ is identified with the string

dilaton scaling (and therefore SO(d, d) is T-duality) is always the SO9 truncation.

4As far as we know, this result was not available in the literature.
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D G repr. branes R-symmetry Zµ deg.

6A R+ × SO(4, 4)

35V 8

USp(2)×USp(2) (1,1)

8

35S 8 8

35C 8 8

6B SO(5, 5) 320 80 USp(4) 5 16

5 R+ × SO(5, 5)
320 80

USp(4) 5
16

210 80 16

4 SL(2,R)× SO(6, 6)
(3,495) 480

U(4) 15
32

(1,2079) 480 32

3 SO(8, 8) 60060 8960 SO(8) 35 256

Table 2. The number and the degeneracy of the 1/2-BPS space-filling branes of the half-maximal

theories which arise as Z2 truncations of the maximal ones [20]. In the 6A theory, 8 of the branes

support tensor multiplets and the remaining 16 support hypermultiplets. In the 6B theory the

branes support vector multiplets. In five and four dimensions half of the branes support vector

multiplets and the other half support hypermultiplets [20].

Starting from six dimensions, apart from the branes that preserve the same super-

symmetry of the truncation, there are additional space-filling branes surviving the trun-

cation which are 1/2-BPS states of the truncated theory. As in the maximal case, one

can determine the vector central charge Zµ as a representation of the R-symmetry of the

half-maximal theory, and relate it to the number of space-filling branes to determine their

degeneracy [20]. We list in table 2 the number of 1/2-BPS space-filling branes, the central

charge and the degeneracy for the truncated theories. In the table we denote with 6A the

N = (1, 1) theory and with 6B the N = (2, 0) theory, and the latter case corresponds to

IIB compactified on T 4/Z2, so that the truncation is geometric. Exactly as in the maximal

theory, the number of vector central charges gives the number of Z2 truncations to quarter-

maximal theories, and the degeneracy gives the number of space-filling branes that preserve

the same supersymmetry of the truncation. We will be able to show that in all cases the

branes that preserve the same supersymmetry of a given truncation of the half-maximal

theory are the union of two different sets of degenerate branes of the maximal theory.

The analysis can be further extended to consider the Z2 truncation of the quarter-

maximal theories. Indeed, starting from four dimensions, apart from the branes of the

half-maximal theories that preserve the same supersymmetry of the truncation, there are

additional space-filling branes surviving the truncation which are 1/2-BPS states of the

truncated quarter-maximal theory. In [21] the number of space-filling branes of the quarter-

maximal theories in four and three dimensions was determined and then compared to the

number of vector central charges to obtain the degeneracy. We list the results in table 3.

Again, the number of vector central charges gives the number of Z2 truncations to theories

with four supercharges, i.e. N = 1 in four dimensions, and the degeneracy gives the number

of space-filling branes that preserve the same supersymmetry of the truncation. We will

show that the branes that preserve the same supersymmetry of a given truncation of the

quarter-maximal theory are the union of four different sets of degenerate branes of the

maximal theory.

– 5 –



J
H
E
P
0
7
(
2
0
1
8
)
0
0
6

D G repr. branes R-symmetry Zµ deg.

4 SL(2,R)3 × SO(4, 4)

(1,1,1,350) 96

U(2) 3

32

(1,3,3,28) 96 32

(3,1,3,28) 96 32

(3,3,1,28) 96 32

3 SO(4, 4)× SO(4, 4)
(28,350) 2304

SU(2)× SU(2) (3,3)
256

(350,28) 2304 256

Table 3. The number and the degeneracy of 1/2-BPS space-filling branes of the quarter-maximal

theories resulting from Z2 truncations [21] (see also tables 7 and 8 of [22]).

The truncation of the maximal theory to the half-maximal one can also be performed

in the presence of gaugings. In particular, the truncation of N = 8 gauged supergravity to

N = 4 gauged supergravity coupled to six vector multiplets was studied in [23] using the

embedding tensor formalism [24–27]. Decomposing the embedding tensor of the maximal

theory [28] under SL(2,R)× SO(6, 6) and projecting out the representations that are odd

under Z2, one is left with the embedding tensor of the half-maximal theory [29]. On the

other hand, by projecting out the representations of the quadratic constraints that are odd

under Z2, one is left with more than the quadratic constraints of the half-maximal theory.

Among the representations of the quadratic constraints that survive the Z2 truncation

but are not required by supersymmetry, the highest-dimensional one contains space-filling

branes that preserve the same supersymmetry of the Z2 truncation. The fact that this

quadratic constraint is not required in N = 4 although it is not projected out has there-

fore the natural interpretation that it becomes a tadpole condition for the corresponding

brane [23].

Using the results of the first part of this paper, we will generalise this to any max-

imal theory. All the space-filling branes that preserve the same supersymmetry of the

Z2 truncation belong to the representation of the symmetry of the half-maximal theory

which is the highest-dimensional representation of the quadratic constraint which survives

the truncation but is not required by the supersymmetry of the truncated theory. We

will also show that exactly the same applies for the truncation from the half-maximal to

the quarter-maximal theories, using the quadratic constraints of the embedding tensor of

N = 2 theories discussed in [27]. The truncation of the four-dimensional N = 2 theory

whose symmetry appears in table 3 gives the N = 1 theory with SL(2,R)7 global symme-

try. Minimal supersymmetry does not require any quadratic constraint for the embedding

tensor, and consistently we find that all the highest-dimensional representations of the

quadratic constraints of the N = 2 theory that survive the Z2 truncation coincide with

the representations of the space-filling branes which preserve the same supersymmetry of

the truncation. To obtain this result, we will use the analysis of [30], where the space-

filling branes of the SL(2,R)7 N = 1 model that arises from the IIB O3/O7 T 6/(Z2 × Z2)

orientifold were derived.

Finally, we will discuss the truncations of the gauged theories with lower supersym-

metry from the point of view of the maximal theories. Considering again the IIB O3/O7

– 6 –
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T 6/(Z2 × Z2) orientifold, the embedding tensor of the four-dimensional theory arises from

geometric and non-geometric IIB fluxes. These fluxes satisfy Bianchi identities, and we

will show that these Bianchi identities are in the same representations as the space-filling

branes that preserve the same supersymmetry of the orbifold. Again, the SL(2,R)7 analysis

performed in [30] will be crucial to get this result. The result also applies to T 4/Z2 × Tn

orientifolds.

The plan of the paper is as follows. In section 2 we derive the supersymmetry transfor-

mations of the fields of maximal supergravity in a manifestly SL(3,R)×SL(2,R)-covariant

notation, and we use this to derive the three independent Z2 truncations to the half-

maximal theory coupled to two vector multiplets. We determine the space-filling branes

that for each truncation preserve the same supersymmetry of the truncated theory. In

section 3 we generalise this result to any dimension and any supersymmetry. In section

4 we discuss gauged supergravities, and we show that in general the highest-dimensional

representations of the quadratic constraint that survive the Z2 truncation but are not

required by the supersymmetry of the truncated theory precisely coincide with the repre-

sentations containing the space-filling branes that preserve the same supersymmetry of the

truncation. This is also done for the truncation of theories with lower supersymmetry. In

section 5 we discuss the particular case of the IIB O3/O7 T 6/(Z2×Z2) orientifold, and we

show that the Bianchi identities are in the representations of the space-filling branes that

preserve the same supersymmetry of the orbifold truncation. Finally, section 6 contains

our conclusions. The paper also contains an appendix, in which the details of the D = 8

notations and conventions used in section 2 are explained.

2 D = 8 supergravity and its truncations

The SU(2) gauged maximal D = 8 supergravity was originally constructed in [31] by

dimensional reduction from eleven dimensions on an SU(2) group manifold. This was later

generalised in [32] to include more general gaugings. The supersymmetry transformations

in the ungauged case can be recovered from these papers, but they are not suitable for

our purposes, because we need them in a formulation which is manifestly covariant under

SL(3,R)×SL(2,R). In the first subsection we will derive these transformations imposing the

closure of the supersymmetry algebra, and in particular we will write down the gravitino-

dependent part of the supersymmetry transformation of the 8-form potentials. In the

second subsection we will show that the theory admits three different Z2 truncations to

the half-maximal theory coupled to two vector multiplets, and by considering the action

of these projections on the 8-forms we will determine the space-filling branes that are not

projected out in each truncation.

2.1 Supersymmetry algebra

We first introduce the notation. We work with a mostly-minus space-time signature, and

we denote the curved space-time indices with Greek letters µ, ν, . . ., while the tangent-

space indices are α, β, . . . . We denote with upstairs indices M = 1, 2, 3 and A = 1, 2

the fundamentals of SL(3,R) and SL(2,R), and with m = 1, 2, 3 and a = 1, 2 the vector

– 7 –
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indices of their maximal compact subgroups SO(3) and SO(2).5 The seven scalars in the

theory parametrise the coset-space SL(3,R)/SO(3) ⊗ SL(2,R)/SO(2). We describe them

introducing the matrices LmM and V a
A , together with the inverse matrices L̃Mm and Ṽ A

a ,

satisfying the identities

LmM L̃
Nnδmn = δNM LmM L̃

Mn = δmn LmML
n
NL

p
P εmnp = εMNP

V a
A Ṽ

Bbδab = δBA V a
A Ṽ

Ab = δab V a
AV

b
Bεab = εAB . (2.1)

We define the Maurer-Cartan forms as

L̃Mm ∂µLMn = Qµmn + Pµmn

Ṽ A
a ∂µVAb = Qµab + Pµab , (2.2)

where the SO(3) and SO(2) connections Qµmn and Qµab are antisymmetric while Pµmn
and Pµab are symmetric and traceless. The other bosonic fields are the vielbein eµ

α, the

1-form AµMA in the (3,2), the 2-form AMµν in the (3,1) and the 3-forms AAµνρ in the (1,2).

The field-strengths of the 3-forms satisfy a self-duality condition.

We now move to discuss the fermionic sector. The eight-dimensional chirality matrix

γ9 is defined in terms of the gamma matrices γµ as

γ9 = − i

8!
εµ1...µ8γ

µ1...µ8 . (2.3)

We also introduce the Pauli matrices σm which act on SO(3) spinor indices. Similarly, we

introduce the matrices τa acting on the spinor indices of SO(2). Numerically, τ1 and τ2

coincide with σ1 and σ2. We will also need the SO(2) chirality matrix τ3, which coincides

numerically with σ3. The eight-dimensional fermions are the gravitino ψµ and the spinors

χm and χa, while we denote with ε the supersymmetry parameter. They all have also

spinor indices of SO(3) × SO(2), and satisfy a chirality condition with respect to γ9τ3.

In particular

γ9τ3ψµ = ψµ γ9τ3χm = −χm γ9τ3χa = χa γ9τ3ε = ε , (2.4)

and thus χm has opposite ‘chirality’ with respect to all the other fermions. All the fermions

also satisfy the ‘symplectic’ Majorana condition

Ψ = CΨ
T

, (2.5)

where C is defined as

C = C8σ2τ1 (2.6)

and the eight-dimensional Majorana matrix C8 is symmetric and satisfies

C†8γµC8 = −γTµ . (2.7)

5Repeated m and a indices, regardless of whether they are up or down, are meant to be contracted by

δmn and δab.
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It can be shown that the symplectic Majorana condition of eq. (2.5) is compatible with

the chirality conditions defined in eq. (2.4). Finally, the spinors χm and χa also satisfy the

irreducibility conditions

σmχm = τaχa = 0 . (2.8)

The number of on-shell degrees of freedom that these fermions propagate match those of

the bosons. We discuss in more detail the fermionic sector in appendix A, where we also

derive the properties of the various bilinears under Majorana flip.

The way we proceed to derive the supersymmetry transformations of the fields is by

imposing that the supersymmetry algebra closes. We first write down the final outcome

of our analysis, and then we discuss in more detail how the algebra closes on the various

fields. The supersymmetry transformations of the fermionic fields are

δψµ = Dµε−
1

48
F νρMAL̃

M
m Ṽ

A
a γµνρσmτaε+

5

24
Fµν MAL̃

M
m Ṽ

A
a γ

νσmτaε

− 1

36
F νρσMLMmγµνρσσmτ3ε+

1

6
FMµνρLMmγ

νρσmτ3ε

− i

16
FAµνρσVAaγ

νρστaε

δχm = − i
2
Pµmnγ

µσnτ3ε+
i

12
Fµν MAL̃

M
m Ṽ

A
a γ

µντaτ3ε+
1

24
Fµν MAL̃

M
n Ṽ

A
a εmnpγ

µνσpτaτ3ε

+
i

18
FMµνρLMmγ

µνρσmε+
1

36
FMµνρLMnεmnpγ

µνρσpε

δχa = − i
2
Pµabγ

µτbε−
i

16
Fµν MAL̃

M
m Ṽ

A
a γ

µνσmε−
1

16
Fµν MAL̃

M
m Ṽ

A
b εabγ

µνσmτ3ε

+
1

64
FAµνρσVAaγ

µνρσε . (2.9)

In the transformation of the gravitino, the derivative Dµ is covariant with respect to local

Lorentz, local SO(3) and local SO(2), that is

Dµε = ∂µε+
1

4
ωµαβγ

αβε+
i

4
Qµmnεmnpσpε+

i

4
Qµabεabτ3ε . (2.10)

The field-strengths Fµν MA, FMµνρ and FAµνρσ are defined as

Fµν MA = 2∂[µAν]MA

FMµνρ = 3∂[µA
M
νρ] +

3

8
εMNP εABA[µNAFνρ]PB

FAµνρσ = 4∂[µA
A
νρσ] −

8

9
εABA[µMBF

M
νρσ] −

8

9
εABAM[µνFρσ]MB (2.11)

and they are invariant with respect to the gauge transformations

δAµMA = ∂µΛMA

δAMµν = 2∂[µΣM
ν] −

1

8
εMNP εABΛNAFµν PB

δAAµνρ = 3∂[µΞAνρ] +
2

9
εABΛMBF

M
µνρ +

4

3
εABΣM

[µFνρ]MB . (2.12)
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The supersymmetry transformations of the bosons are

δeµ
α = −iε̄γαψµ

δLMm = LMnε̄σnτ3χm

δVAa = VAbε̄τbχa

δAµMA = LMmVAa (iε̄σmτaψµ − ε̄γµσmχa − ε̄γµτaτ3χm)

δAMµν = L̃Mm

(
iε̄γ[µσmτ3ψν] +

1

2
ε̄γµνχm

)
+

1

4
εMNP εABA[µNAδAν]PB

δAAµνρ = Ṽ A
a

(
ε̄γ[µντaψρ] −

i

3
ε̄γµνρχa

)
− 2

3
εABA[µMBδA

M
νρ]

+
4

3
εABAM[µνδAρ]MB +

1

6
εABεCDεMNPA[µMBAν NCδAρ]PD . (2.13)

We now discuss in some detail how the analysis of the closure of the supersymmetry

algebra was performed. We have computed the commutator of two supersymmetry trans-

formations of parameters ε2 and ε1 on the bosonic fields, and we have imposed that this

closes on all the local symmetries of the theory. In particular, on the vielbein one obtains

[δ1, δ2]eµ
α = ∂µξ

νeν
α + ξν∂νeµ

α + Λαβeµβ , (2.14)

where the general coordinate transformation parameter is

ξµ = −iε̄2γµε1 (2.15)

and the local Lorentz parameter is

Λαβ = ξνωναβ + L̃Mm Ṽ
A
a

(
i

24
FµνMAε̄2γαβµνσmτaε1 +

5i

12
FαβMAε̄2σmτaε1

)
+LMm

(
i

18
FµνρM ε̄2γαβµνρσmτ3ε1 +

2i

3
Fαβµε̄2γ

µσmτ3ε1

)
+

3

8
FAαβµνVAaε̄2γ

µντaε1 . (2.16)

All the other fields also transform correctly under general coordinate transformations.

One can show that on top of this, on the scalars one produces local SO(3) and SO(2)

transformations. To prove that the supersymmetry algebra closes on the vector AµMA one

needs the identities

DµLMm = ∂µLMm +QµmnLMn = PµmnLMn DµL̃
M
m = −PµmnL̃Mn

DµVAa = ∂µVAa +QµabVAb = PµabVAb DµṼ
A
a = −PµabṼ A

b (2.17)

which follow from the definitions given in eq. (2.2). The final result is that the algebra

produces a gauge transformation of parameter

ΛMA = Λsusy
MA − ξ

µAµMA , (2.18)
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where

Λsusy
MA = iLMmVAaε̄2σmτaε1 . (2.19)

The gauge transformation parameter of the 2-forms is

ΣM
µ = ΣsusyM

µ − ξνAMνµ −
1

8
εMNP εABAµNAΛsusy

PB , (2.20)

where

ΣsusyM
µ = − i

2
L̃Mm ε̄2γµσmτ3ε1 . (2.21)

Finally, the gauge parameter of the 3-forms is

ΞAµν = ΞsusyA
µν − ξρAAρµν +

4

9
εABA[µMBΣsusyM

ν] +
4

9
εABAMµνΛsusy

MB , (2.22)

where

ΞsusyA
µν =

1

3
Ṽ A
a ε̄2γµντaε1 . (2.23)

A crucial ingredient to prove the closure of the supersymmetry algebra on the 3-form

doublet is the self-duality relation

FAµ1...µ4VAa = − 1

4!
εµ1...µ4ν1...ν4εabF

ν1...ν4 AVAb . (2.24)

We refer to appendix A for more details on the self-duality properties in eight dimensions.

Following [8], one can proceed and derive the supersymmetry transformations of the

higher-rank forms by imposing the closure of the supersymmetry algebra, provided that the

first-order duality conditions are imposed. In particular, the algebra closes on the 4-forms

A4M in the (3,1) that are dual to the 2-forms, on the 5-forms AMA
5 in the (3,2) that are

dual to the 1-forms, and on the 6-forms A6M
N in the (8,1) and A6AB in the (1,3), that

are dual to the scalars. Moreover, the algebra closes on the non-propagating 7-forms in the

(6,2) ⊕ (3,2) and 8-forms in the (15,1) ⊕ (3,3) ⊕ (3,1) ⊕ (3,1) [10, 11]. In particular,

we are interested in the highest-dimensional representation of the 8-forms, which is the

(15,1). Indeed, in general the p-branes of the maximal theory are associated to the long

weights of the highest-dimensional representation of the (p + 1)-forms [12, 33]. The 15 is

the irreducible representation with two symmetric indices up and one down. To determine

how the field AMN
8 P behaves with respect to the different Z2 truncations, we only need the

gravitino-dependent part of its supersymmetry transformation, which is

δAµ1...µ8
MN

P = L̃Mm L̃
N
mLPnε̄γ[µ1...µ7σnψµ8] + . . . . (2.25)

The 1/2-BPS space-filling branes correspond to the components of the 8-form potential

that satisfy the highest-weight constraint. These in general are all the long weights of the

representation, which in the case of the 15 of SL(3,R) are the six components of A8
MN

P

such that M = N and M 6= P [12]. In the next subsection we will determine the three

different Z2 truncations to the half-maximal theory coupled to two vector multiplets, and

we will show that for each truncation there are two space-filling branes that survive the

projection. These are the branes that preserve the supersymmetry of the truncated theory.
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Figure 1. The roots of SL(3,R).

2.2 Z2 truncations to half-supersymmetry and space-filling branes

The maximal theory in D = 8 can be truncated to half-maximal supergravity coupled

to two vector multiplets. The resulting theory has global continuous symmetry R+ ×
SL(2,R) × SL(2,R), and therefore there are three independent truncations because there

are three different ways of embedding R+ × SL(2,R) inside SL(3,R). The three different

embeddings can be easily visualised by looking at the root diagram of SL(3,R), which

we draw in figure 1. Each of the three SL(2,R)’s are generated by one positive root, the

corresponding negative root and the corresponding Cartan generator.

We first discuss the scalar sector. The scalars V a
A are obviously not projected out

because the truncation does not act on the SL(2,R) factor of the maximal theory. The

index M in the fundamental of SL(3,R) splits as M = (], Ȧ), where Ȧ = 1, 2 is the index

of the fundamental of the SL(2,R) inside SL(3,R), and similarly the SO(3) index m splits

as m = (], ȧ), where ȧ is the vector index of the maximal compact subgroup SO(2) of

SL(2,R). The scalars LMm are truncated to

LMm → (eΦ, e−Φ/2VȦȧ) , (2.26)

where the dilaton Φ parametrises R+ and the matrix VȦȧ satisfies the same identities as

VAa given in eq. (2.1).

We then derive how the truncation acts on the fermions. The gravity multiplet of the

truncated theory contains a Majorana gravitino and a Majorana spinor, while each vector

multiplet contains a single Majorana spinor. We find that the truncation (up to an overall

sign) is

ψµ = σ]τ3ψµ

χ] = σ]τ3χ]

χȧ = −σ]τ3χȧ

χa = −σ]τ3χa . (2.27)
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Figure 2. The 15 of SL(3,R) to which the 8-forms belong. The longest weights are painted in red,

and for each longest weight we have written the corresponding component of the potential. For

simplicity the space-time indices are omitted. The shortest weights have multiplicity two.

The supersymmetry parameter ε is truncated like the gravitino. It can be checked that

the constraints of eq. (2.8) and the Majorana condition of eq. (2.5) are consistent with

the truncation and this implies that one ends up with the correct number of fermions.6

The chirality condition of eq. (2.4) on the truncated fermions gives two spinors of opposite

chirality that can be recast in a single Dirac spinor Ψ satisfying the standard D = 8

Majorana condition Ψ = C̃8Ψ
T

, where C̃8 = C8γ9 satisfies the condition

C̃†8γµC̃8 = γTµ , (2.28)

which has opposite sign with respect to eq. (2.7).

We can now figure out how the truncation acts on the supersymmetry algebra. First

of all, it is straightforward to check that the truncation on the scalars and the one on the

fermions are consistent. On the 1-forms, the fermionic truncation is consistent with keeping

only the components Aµ ȦA, because the supersymmetry variation of Aµ ]A is identically

zero. Similarly, for the 2-form only the singlet component survives because the variation

of AȦµν vanishes identically. Finally, the 3-form is fully projected out. The variation of the

1-forms and 2-form that survive the projection is

δAµ ȦA = e−Φ/2VȦȧVAa (iε̄σȧτaψµ − ε̄γµσȧχa − ε̄γµτaτ3χȧ)

δA]µν = e−Φ

(
iε̄γ[µψν] +

1

2
ε̄γµνχ]

)
+

1

4
εȦḂεABA[µ ȦAδAν] ḂB . (2.29)

To summarise, the gauge fields that survive are four vectors and one 2-form, which is

precisely the content of the half-maximal theory.

By projecting the fermions according to eq. (2.27) in the supersymmetry transforma-

tion of the 8-forms whose gravitino term is given in eq. (2.25), one obtains that only the

6In particular the constraint (2.8) implies that χ] = σȧχȧ.
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components Aµ1...µ8
MN

] survive. Out of these, only the 8-forms Aµ1...µ8
ȦḂ

] in the 3 of

SL(2,R) couple to 7-branes, and their supersymmetry transformations have the form

δAµ1...µ8
ȦḂ

] = e2ΦṼ Ȧ
ȧ Ṽ

Ḃ
ȧ ε̄γ[µ1...µ7σ]ψµ8] + . . . . (2.30)

In particular, we are interested in the brane components, which are the long weights of

the 3, i.e. the two components Aµ1...µ8
ȦȦ

]. We can understand better how the truncation

acts by looking at the weight diagram of the 15 in figure 2. We fix our conventions so that

] = 3 corresponds to taking the SL(2,R) subgroup as the one generated by the root α1 in

figure 1. This SL(2,R) acts on the indices 1 and 2, and the 8-form components that survive

the projection are Aµ1...µ8
11

3 and Aµ1...µ8
22

3. If ] = 2, the SL(2,R) subgroup is generated

by the root α2 and acts on the indices 1 and 3. In this case the 8-form components that

survive are Aµ1...µ8
11

2 and Aµ1...µ8
33

2. Finally, if ] = 1, the SL(2,R) subgroup is generated

by α1 + α2 and acts on the indices 2 and 3, and the 8-form components that survive are

Aµ1...µ8
22

1 and Aµ1...µ8
33

1. To summarise, we find that for each truncation there are two

space-filling branes that preserve the same supersymmetry of the truncation, precisely as

expected from the analysis of the central charges [12].

We now want to understand this result from the perspective of the IIB theory. From

IIB, one expects only four space-filling branes to arise by reducing to eight dimensions,

which are the D9, the D7 and their S-duals. The remaining two 7-branes are exotic and

couple to 8-forms that arise from mixed-symmetry potentials in IIB. These potentials are

derived from a suitable decomposition of the E11 algebra [13], and can be found for instance

in section 3.1 of ref. [20]. One can classify all the mixed-symmetry potentials that give rise

to branes in lower dimensions in terms of the non-positive integer number α denoting how

the tension of the corresponding brane scales with respect to the string coupling gS , and

obviously T-duality relates different potentials with the same value of α. Following [34],

we denote the potentials with α = −1,−2,−3 . . . with the letters C, D, E and so on. The

8-forms in eight dimensions then arise from the RR potentials C8 and C10 (with α = −1),

their S-duals E8 and F10 (with α = −3 and −4 respectively) and the mixed-symmetry

potentials E10,2,2 and F10,2,2 (again with α = −3 and −4 respectively).7 Denoting with

xi, i = 1, 2 the internal directions in the reduction from ten to eight dimensions, these

two mixed-symmetry potentials give rise to the 8-form potentials Eµ1...µ8 x1x2,x1x2,x1x2 and

Fµ1...µ8 x1x2,x1x2,x1x2 .

To derive which is the pair of 7-branes that is not projected out in each truncation,

we move to the string frame, which corresponds to performing the redefinitions

eµ
α = e−

1
3
φesµ

α ψµ = e−
1
6
φψsµ ε = e−

1
6
φεs . (2.31)

As a convention, we associate to the case ] = 3 the reduction to D = 8 of the SO9

truncation. In this case the global symmetry of the truncated theory is perturbative and

the dilaton Φ is proportional to the eight-dimensional string dilaton φ. To get the right

7In general we denote with Ap,q,r,.. a mixed-symmetry potential in a representation such that p, q, r, . . .

(with p ≥ q ≥ r . . .) denote the length of each column of its Young tableau.
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scaling in the string frame we impose

SO9 : Φ = −2

3
φ . (2.32)

As a result, the supersymmetry transformations of the four vectors and the 1-form have

no dilaton dependence in front of the gravitino term, as expected from the reduction of

the SO9-truncated ten-dimensional theory. In particular, the 2-form is the NS-NS 2-form

Bµν and transforms exactly as the second equation in (1.4), while the vectors are Bµxi and

gµxi . Performing the same rescaling on eq. (2.30), we find that the transformation of both

Aµ1...µ8
11

3 and Aµ1...µ8
22

3 has a factor e−4φ in front of the gravitino term, which implies

that the corresponding branes have both α = −4. These are the branes coming from the

IIB potentials F10 and F10,2,2.

We take the truncation identified by ] = 2 to be the O7 truncation. In this case

the SL(2,R) symmetry is non-perturbative, and the components of the matrix VȦȧ scale

differently with respect to the string dilaton. In particular, we take the component with

Ȧ = ȧ = 1 to scale like eφ/2, and the one with Ȧ = ȧ = 3 to scale like e−φ/2. On top of this,

the scalar Φ contains a term proportional to the string dilaton. The precise dependence

on the string dilaton of Φ, V11 and V33 is

O7 :


Φ = 1

3φ+ . . .

V11 = eφ/2 . . .

V33 = e−φ/2 . . .

, (2.33)

where we have ignored the contribution of the additional scalars. One obtains that the

transformation of the 2-form has an e−φ factor, as expected because this is the RR 2-form

Cµν x1x2 and transforms as the third equation in (1.4). Out of the four vectors, two have no

dilaton factor (corresponding to Bµxi) and two have a factor e−φ (corresponding to Cµxi).

By performing the rescaling on eq. (2.30), we find that the transformation of Aµ1...µ8
11

2

has a factor e−3φ, while the one of Aµ1...µ8
33

2 has a factor e−φ. We thus identify the former

with the potential E8 and the latter with the potential C8.

Finally, the truncation identified by ] = 1 is the reduction of the O9 truncation. Also

in this case the SL(2,R) symmetry is non-perturbative, and we take the component of VȦȧ
with Ȧ = ȧ = 2 to scale like eφ/2, and the one with Ȧ = ȧ = 3 to scale like e−φ/2. On top

of this, the scalar Φ contains a term proportional to the string dilaton precisely as in the

O7 case. We thus get

O9 :


Φ = 1

3φ+ . . .

V22 = eφ/2 . . .

V33 = e−φ/2 . . .

. (2.34)

One obtains that the transformation of the 2-form has an e−φ factor, as expected because

this is the RR 2-form Cµν and transforms as the first equation in (1.4). Out of the four

vectors, two have no dilaton factor (corresponding to gµxi) and two have a factor e−φ

(corresponding to Cµxi). From eq. (2.30) we read that the potential Aµ1...µ8
22

1 has a factor
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Figure 3. The identification of the long weights of the 15 of SL(3,R) with the IIB potentials. The

table should be compared with table 2.

e−3φ and thus corresponds to E10,2,2, while the one of Aµ1...µ8
33

1 has a factor e−φ and

corresponds to C10.

We draw again in figure 3 the weight diagram of the 15, where now the long weights

are identified with the potentials of the IIB theory. We see from the diagram that the

branes on the same horizontal line share the same value of α. This is obvious from the fact

that the SL(2,R) associated to the root α1 is part of the T-duality symmetry. In particular,

the branes with α = −4 belong to the 3, the branes with α = −3 belong to the 4 and the

branes with α = −1 belong to the 2 of this SL(2,R). The table also shows that the SL(2,R)

of the IIB theory is the one generated by α2. As we know, the 8-forms belong to the 3,

the 10-forms to the 4 and the mixed-symmetry potentials to the 2 of this other SL(2,R).

Finally, the third SL(2,R), generated by α1 + α2, mixes E8 and F10, C8 and F10,2,2 and

C10 and E10,2,2. For each truncation, it is the branes in the 3 that survive, as we have

already shown. It is known that in the case of the O7 truncation the potentials C8 and

E8 both survive because the corresponding branes preserve the same supersymmetry, but

what this analysis shows is that in the SO9 truncation one gets that both F10 and F10,2,2

are not projected out, while in the case of the O9 truncation both C10 and E10,2,2 survive

the projection. For clarity, we summarise this result in table 4. In the next section we will

show how this result can be generalised to identify in any dimension all truncations and

the various space-filling branes that preserve the same supersymmetry of each truncation.

3 Z2 truncations in any dimension

In the previous section we have determined the three different Z2 truncations of D = 8

maximal supergravity to the half-maximal theory, and for each truncation we have identi-

fied the two space-filling branes that preserve the same supersymmetry of the truncation.

We have shown that in the case of the O9 and SO9 truncations, one of the two 7-branes

is an exotic brane, which corresponds to the IIB mixed symmetry potentials E10,2,2 in the
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D = 8 truncations potentials brane components

O9
C10 C8x1x2

E10,2,2 E8x1x2,x1x2,x1x2

SO9
F10 F8x1x2

F10,2,2 F8x1x2,x1x2,x1x2

O7
C8 C8

E8 E8

Table 4. The Z2 truncations of the maximal theory in D = 8 from the IIB perspective. The indices

xi, i = 1, 2, label the internal directions.

O9 case and F10,2,2 in the SO9 case. In general, exotic branes are associated to specific

components of the ten-dimensional mixed-symmetry potentials Ap,q,r,.. (with p ≥ q ≥ r . . .)
determined as follows: first of all, only the p set can contain space-time indices, while all

the other sets of indices must be internal, because the space-time indices must be antisym-

metric. On top of this, the p indices must contain all the internal indices q, which must

contain all the internal indices r and so on [15, 34–36]. In [19] a universal rule was de-

rived that relates different brane components of mixed-symmetry potentials by a T-duality

transformation in a given direction. Specifically, given an α = −n brane associated to a

mixed-symmetry potential such that the internal x index occurs N times (in N different

sets of antisymmetric indices), this is mapped by T-duality along x to the brane associ-

ated to the potential in which the x index occurs n−N times. Schematically, this can be

written as

α = −n : x, x, . . . , x︸ ︷︷ ︸
N

Tx←→ x, x, . . . ., x︸ ︷︷ ︸
n−N

. (3.1)

Using this T-duality rule, if one performs two T-dualities in the directions x1 and x2

not only C8 is mapped to C8x1x2 as one naturally expects, but also E8 is mapped to

E8x1x2,x1x2,x1x2 and F8x1x2 is mapped to F8x1x2,x1x2,x1x2 . We stress that performing two T-

dualities maps states in IIB to other states in the same theory, and as far as representations

of the perturbative SL(2,R) inside SL(3,R) are concerned, it maps one long weight to

the other. In other words, using the universal T-duality rule in eq. (3.1) we could have

immediately declared that the O7 truncation, in which C8 and E8 are not projected out, is

mapped by two T-dualities to the O9 truncation, in which C8x1x2 and E8x1x2,x1x2,x1x2 are

not projected out, and the latter truncation is mapped to the SO9 truncation, in which

the 8-form potentials that survive are F8x1x2 and F8x1x2,x1x2,x1x2 .

The aim of this section is to show that using eq. (3.1) and S-duality, one can characterise

all truncations in any dimension, and for each truncation determine all the space-filling

branes that are not projected out. We will first discuss the maximal case in any dimension

from seven to three, and we will then move to the Z2 truncations of the half-maximal

theories listed in table 2 and finally the Z2 truncations of the quarter-maximal theories

listed in table 3.
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3.1 From maximal to half-maximal supergravity

D = 7: we want to consider the truncation of maximal supergravity in D = 7 to the

half-maximal theory coupled to three vector multiplets, with symmetry R+ × SO(3, 3),

which is isomorphic to GL(4,R). In the truncation, the vectors in the 10 are truncated to

the 6 and the 2-forms in the 5 are truncated to a singlet. There are 5 different ways of

performing this truncation, corresponding to the five different ways in which SL(4,R) can

be embedded in SL(5,R), and this agrees with the dimension of the vector central charge,

which indeed belongs to the vector representation of the R-symmetry SO(5). We denote

with M = 1, . . . , 5 the index of the fundamental of SL(5,R) and with m = 1, . . . , 5 the

vector index of SO(5). As in the previous section, the scalars are encoded in the matrix

LMm satisfying identities analogous to those in eq. (2.1), with the Maurer-Cartan form

defined as in eq. (2.2).8

The 7-forms Aµ1...µ7
MN

P belong to the 70 of SL(5,R), which as in the eight-

dimensional case is the irreducible representation with two symmetric upper indices and

one lower index. The gravitino-dependent part of its supersymmetry transformation is

δAµ1...µ7
MN

P = iL̃Mm L̃
N
mLPnε̄γ[µ1...µ6Γnψµ7] + . . . , (3.2)

where we denote with Γm the SO(5) gamma-matrices. The 1/2-BPS space-filling branes

are the 20 components such that M = N and M 6= P [12].

We truncate the theory by splitting the M index as M = (], A), where A = 1, . . . , 4

is the index of the fundamental of SL(4,R). Similarly, m splits as m = (], a). The scalars

are truncated to

LMm → (eΦ, e−Φ/4VAa) , (3.3)

where the dilaton Φ parametrises R+ and the matrix VAa contains the scalars parametrising

the coset SL(4,R)/SO(4). On ψµ and ε the truncation acts as

ψµ = Γ]ψµ ε = Γ]ε . (3.4)

As a result, after the truncation only the 7-forms Aµ1...µ7
MN

] survive, and in particular only

the components Aµ1...µ7
AB

] in the 10 of SL(4,R) couple to 6-branes. Their supersymmetry

transformations have the form

δAµ1...µ7
AB

] = ie
3
2

ΦṼ A
a Ṽ

B
a ε̄γ[µ1...µ6ψµ7] + . . . . (3.5)

In particular, there are four 6-branes in the 10, that all preserve the same supersymmetry

which is the supersymmetry preserved by the truncation.

From the ten-dimensional IIB perspective, the five truncations are the SO9, preserving

the 2-form Bµν , the O9, preserving the 2-form Cµν and the three different O7xi truncations,

preserving the 2-form Cµν xjxk (with i, j, k all different). As in eight dimensions, we go to

the string frame to get the tension of the 6-branes that are preserved in each truncation.

In seven dimensions, this corresponds to performing the redefinitions

eµ
α = e−

2
5
φesµ

α ψµ = e−
1
5
φψsµ ε = e−

1
5
φεs . (3.6)

8We use here exactly the same index notation as for the SL(3,R)/SO(3) coset of the previous section.

We do not expect this to cause any confusion to the reader.
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D = 7 truncations # potentials brane components # branes

O9 1
C10 C7x1x2x3 1

E10,2,2 E7x1x2x3,xpxq ,xpxq 3

SO9 1
F10 F7x1x2x3 1

F10,2,2 F7x1x2x3,xpxq ,xpxq 3

O7xi 3

C8 C7xi 1

E8 E7xi 1

E9,2,1 E7xixp,xixp,xi 2

Table 5. The Z2 truncations of the maximal theory in D = 7. In the case of the O7 truncation,

the i = 1, 2, 3 index labels the truncation while the p and q indices are different from i.

In the case of the SO9 truncation, the scalar Φ is proportional to the string dilaton, and

SL(4,R) is the perturbative T-duality symmetry. More precisely, one gets

SO9 : Φ = −4

5
φ , (3.7)

and from eq. (3.5) one can then check that the four preserved 6-branes have α = −4. For

the other four truncations, the dilaton identification can be taken to be

O9 , O7xi :

Φ = 1
5φ+ . . .

diag(VAa) = (e−
3
4
φ . . . , e

1
4
φ . . . , e

1
4
φ . . . , e

1
4
φ . . .)

, (3.8)

where as in eight dimensions the dots stand for contributions of the other scalars. One

can check that in this case from eq. (3.5) one gets one α = −1 6-brane and three α = −3

6-branes.

These results could have been easily deduced by compactification from eight dimen-

sions. Indeed, we know from the analysis of the previous section that F10 and F10,2,2

give rise to 7-branes that are both preserved under the SO9 truncation. This implies that

in seven dimensions the 6-branes coupled to Fµ1...µ7 x1x2x3,x1x2,x1x2 , Fµ1...µ7 x1x2x3,x1x3,x1x3

and Fµ1...µ7 x1x2x3,x2x3,x2x3 must all preserve the same supersymmetry of the one coupled

to Fµ1...µ7 x1x2x3 . The same applies to the O9 truncation, where C10 and E10,2,2 give rise

to four 6-branes. We can then use the T-duality rules in eq. (3.1) to determine the 6-

branes that are not projected out in each of the O7 truncations. The truncation O7xi is

obtained by performing two T-dualities in the directions xp and xq different from xi. One

obtains, together with C7xi and E7xi coming from C8 and E8, also the two additional

branes E7xixp,xixp,xi coming from the mixed-symmetry potential E9,2,1. The full result of

the different truncations in seven dimensions is summarised in table 5.

In any dimension D = 10 − d, the potentials F10,2n,2n are known to belong to a spe-

cific representation of SO(d, d), which is the self-dual representation with d antisymmetric

indices [20]. As we have seen, the corresponding branes are those preserved by the SO9

truncation. In the following we will show that one can continue the analysis starting from

the SO9 truncation and mapping this to all the other possible truncations in any dimensions

using S-duality and the T-duality transformations in eq. (3.1).
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D = 6A truncations # potentials brane components # branes

O9 1

C10 C6x1...x4 1

E10,2,2 E6x1...x4,xpxq ,xpxq 6

G10,4,4 G6x1...x4,x1...x4,x1...x4 1

SO9 1

F10 F6x1...x4 1

F10,2,2 F6x1...x4,xpxq ,xpxq 6

F10,4,4 F6x1...x4,x1...x4,x1...x4 1

O7xixj 6

C8 C6xixj 1

E8 E6xixj 1

E9,2,1 E6xixjxp,xixp,xi 4

E10,4,2 E6x1...x4,x1...x4,xpxq 1

G10,4,2 G6x1...x4,x1...x4,xpxq 1

O5 1

C6 C6 1

E8,2 E6xpxq ,xpxq 6

G10,4 G6x1...x4,x1...x4 1

SO5 1

D6 D6 1

D8,2 D6xpxq ,xpxq 6

D10,4 D6x1...x4,x1...x4 1

Table 6. The Z2 truncations of the maximal theory in D = 6 leading to the N = (1, 1) theory.

The x’s denote the four internal directions. As everywhere else in this section, for each truncation

the i, j, . . . indices label the truncation while the p, q, . . . indices are the remaining ones.

D = 6: the maximal theory in six dimensions has global symmetry SO(5, 5), and the 6-

form potentials that couple to 5-branes can either support vector or tensor multiplets. The

former belong to the 320, which has 80 long weights, while the latter belong to the 126,

which has 16 long weights [12, 37]. The theory can be truncated to either N = (1, 1)

supergravity coupled to four vector multiples, with global symmetry R+ × SO(4, 4), or

N = (2, 0) supergravity coupled to five vector multiples, with global symmetry SO(5, 5).

As table 1 shows, in the first case there are ten different truncations, which can be easily

understood by observing that there are ten ways in which one can embed SO(4, 4) in

SO(5, 5), while in the latter there is only one truncation because the truncated theory has

the same symmetry of the maximal one.

We start considering the truncations to the N = (1, 1) theory, which we also denote

as 6A. The SO9 truncation is the one that leaves the perturbative T-duality symmetry

SO(4, 4) intact. The eight 5-branes charged under the potentials F6x1...x4 , F6x1...x4,xpxq ,xpxq

and F6x1...x4,x1...x4,x1...x4 are all preserved by the truncation, and correspond to the eight

long weights of the 35V of SO(4, 4). This is mapped by S-duality to the O9 truncation,

preserving the branes coupled to C10 and E10,2,2 together with the α = −5 brane coupled

to G10,4,4. By T-dualising in the directions xp and xq one then gets the branes of the

O7xixj truncations, with i, j different from p, q. There are six pairs of coordinates that one

can choose, corresponding to six different O7 truncations. One can also perform four T-

dualities on O9, which leads to the O5 truncation. Finally, the tenth truncation is obtained

by performing an S-duality transformation of O5, and we dub this latter truncation SO5.

We give in table 6 the full result, which can be reproduced using eq. (3.1) and the S-duality

transformation rules of the various mixed-symmetry potentials.
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D = 6B truncation potentials brane components # branes

tensor

D7,1 D6xp,xp 4

D9,3 D6xpxqxr,xpxqxr 4

F9,3 F6xpxqxr,xpxqxr 4

F10,4,1,1 F6x1...x4,x1...x4,xp,xp 4

Table 7. The Z2 truncation of the maximal theory in D = 6 leading to the N = (2, 0) theory. The

branes that survive the projection are 16 and in the maximal theory support tensor multiplets in

their world-volume.

The truncation to the N = (2, 0) or 6B theory is unique. All the 5-branes that support

tensor multiplets on their world-volume preserve the same supersymmetry and all survive

the projection, that we simply label “tensor” truncation. These branes are charged under

the mixed-symmetry potentials D7,1, D9,3 with α = −2 and F9,3 and F10,4,1,1 with α = −4,

and they correspond to the 16 long weights of the 126 of SO(5, 5). We report the result in

table 7.

Apart from the space-filling branes that preserve the same supersymmetry of the trun-

cation, starting from six dimensions that are additional space-filling branes that survive

the truncation and are 1/2-BPS states of the truncated theory. In the case of the 6A trun-

cation, these branes are in the 35V ⊕ 35S ⊕ 35C, as shown in table 2. This result can be

understood in the case of the SO9 truncation, in which case the SO(4, 4) symmetry is per-

turbative and the branes that are left are those of the heterotic theory [20]. In particular,

the eight branes in the 35V are the SO5 branes in table 6 and the 16 branes in the 35S⊕35C

are all those in table 7 (more precisely the first representation contains the α = −2 branes

and the second the α = −4 branes [37]). In [20, 38] the world-volume multiplets for each

of these branes in the truncated theory were determined, and in particular it was shown

that the SO5 branes and the α = −2 branes in table 7 support a hypermultiplet, while the

α = −4 branes in table 7 support a tensor multiplet.

For any other truncation to the 6A theory, the space-filling branes that remain as 1/2-

BPS states of the truncated theory can be determined using the properties of the various

truncations under S and T dualities. In particular, the branes in table 7 are present in

every truncation. On top of this, in the O9 case one gets the O5 branes and vice-versa, in

the SO5 case one gets the SO9 branes and in the O7xixj case one gets the O7xkxl branes,

where i, j 6= k, l.

The 6A truncation has also a natural interpretation as the untwisted sector of IIA

reduced on the orbifold T 4/Z2. The space-filling branes of this theory were discussed

in [20, 38, 39], and performing a single T-duality transformation to translate the results

of those papers in the IIB language, one finds that the Z2 truncation in this case in the

SO5 one, while the remaining 1/2-BPS space-filling branes in the truncated theory are the

SO9 branes and the branes in table 7. Indeed, one can for instance show that the mixed-

symmetry potentials that are coupled to 5-branes in table 9 of [38] are mapped to the SO9

potentials in table 6 and to the potentials in table 7 by performing a single T-duality using

eq. (3.1).

In the case of the unique 6B truncation, as table 2 shows, all the 80 5-branes in the 320,

i.e. all the branes in table 6, are 1/2-BPS states of the truncated theory. The truncation
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D = 5 truncations # potentials brane components # branes

O9 1

C10 C5x1...x5 1

E10,2,2 E5x1...x5,xpxq ,xpxq 10

G10,4,4 G5x1...x5,xpxqxrxs,xpxqxrxs 5

SO9 1

F10 F5x1...x5 1

F10,2,2 F5x1...x5,xpxq ,xpxq 10

F10,4,4 F5x1...x5,xpxqxrxs,xpxqxrxs 5

O7xixjxk 10

C8 C5xixjxk 1

E8 E5xixjxk 1

E9,2,1 E5xixjxkxp,xixp,xi 6

E10,4,2 E5x1...x5,xixjxpxq ,xixj 3

G10,4,2 G5x1...x5,xixjxpxq ,xixj 3

G10,5,4,1 G5x1...x5,x1...x5,xixjxkxp,xp 2

O5xi 5

C6 C5xi 1

E8,2 E5xixpxq ,xpxq 6

E9,4,1 E5xixpxqxr,xixpxqxr,xi 4

G10,4 G5x1...x5,xpxqxrxs 1

G10,5,2,1 G5x1...x5,x1...x5,xixp,xp 4

SO5xi 5

D6 D5xi 1

D8,2 D5xixpxq ,xpxq 6

D10,4 D5x1...x5,xpxqxrxs 1

F9,4,1 F5xixpxqxr,xixpxqxr,xi 4

F10,5,2,1 F5x1...x5,x1...x5,xixp,xp 4

T2SO5xi 5

D7,1 D5xixp,xp 4

D9,3 D5xixpxqxr,xpxqxr 4

F9,3 F5xixpxqxr,xpxqxr 4

F10,4,1,1 F5x1...x5,xpxqxrxs,xp,xp 4

Table 8. The Z2 truncations of the maximal theory in D = 5.

has a natural geometric interpretation as the untwisted sector of IIB reduced on T 4/Z2,

and indeed it is easy to show that the 5-branes listed in table 10 of [38], where the orbifold

analysis was performed in detail, are exactly the branes in table 6.

D = 5: as table 1 shows, there are 432 1/2-BPS 4-branes in five dimensions, which are

the long weights of the 1728 of E6(6). There are 27 different Z2 truncations to the half-

maximal theory coupled to five vector multiplets, with symmetry R+ × SO(5, 5), and in

each of these we expect 16 space-filling branes to preserve the same supersymmetry of the

truncation [12].

As in the 6A case, we can start from the SO9 truncation and then obtain all the

others using dualities. The 16 4-branes that preserve the same supersymmetry of the SO9

truncation couple to the potentials F5x1...x5 , F5x1...x5,xpxq ,xpxq and F5x1...x5,xpxqxrxs,xpxqxrxs ,

that correspond to the long weights of the 126 of the SO(5, 5) symmetry of the truncated

theory. By S-duality, these are mapped to the O9 truncation, and then by T-dualities the

latter is mapped to 10 O7xixjxk truncations and 5 O5xi truncations. The O5 truncations

can then be mapped by S-duality to 5 SO5xi truncations. Finally, we want to derive what

happens if one performs two T-dualities on the SO5xi branes. Using eq. (3.1), one can show
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that if both T-dualities are along directions different from xi, then the SO5xi branes are

mapped into themselves. On the other hand, if one T-duality is along xi, then the set of

branes that one ends up with is always the same regardless of which direction one chooses

for the other T-duality transformation. We call the corresponding truncation T2SO5xi .

The full result of this analysis is summarised in table 8.

As in six dimensions, for each truncation there are additional space-filling branes that

survive the projection and are 1/2-BPS states of the truncated theory. As table 2 shows,

these branes are in the 320 ⊕ 210 of SO(5, 5), and they are 80 for each representation.

To determine what these branes are, we can again consider the SO9 truncation, in which

case the SO(5, 5) symmetry is perturbative. From table 5 of ref. [34] we find that for this

truncation the branes in the 210 have α = −2 and those in the 320 have α = −4. Therefore

these branes are all the SO5xi and T2SO5xi branes. Similarly, for different truncations one

can determine the branes that are 1/2-BPS states of the truncated theory using dualities.

As a particular case, the T2SO5xi truncation is the geometric truncation corresponding to

IIB on T 4/Z2 × S1, where xi is the circle direction.

D = 4: from table 1 we read that the maximal theory in D = 4 possesses 63 different

Z2 truncations to the half-maximal theory, whose symmetry is SL(2,R)× SO(6, 6). There

are 2016 space-filling branes belonging to the 8645 of E7(7), and the degeneracy for each

truncation is 32. The mixed-symmetry potentials that couple to the 3-branes that preserve

the same supersymmetry of the SO9 truncation are F10, F10,2,2, F10,4,4 and F10,6,6, and the

32 brane components are the long weights of the (1,462) representation of the symmetry of

the truncated theory. By S and T dualities, one can determine all the branes that preserve

the same supersymmetry of the truncation for each of the 63 truncations. The result is

summarised in table 9.

We can also determine the 3-branes that in each truncation are not projected out and

become 1/2-BPS states of the truncated theory. These branes are in the (3,495)⊕(1,2079)

of the SL(2,R)× SO(6, 6) symmetry of the truncated theory. In particular, in the case of

the SO9 truncation one finds (see e.g. table 6 of ref. [34]) that there are 240 α = −2 and

240 α = −6 branes in the 495 and 480 α = −4 branes in the 2079 of SO(6, 6). These

are all the SO5xixj and T2SO5xixj branes. Using S and T dualities one can determine the

960 3-branes that are 1/2-BPS states of the truncated theory for all the other truncations.

The truncations T2SO5xixj are identified with the geometric compactifications of IIB on

T 4/Z2 × T 2, where xixj are the two torus directions.

D = 3: finally we consider the three-dimensional case. In the maximal theory there are

17280 space-filling 1/2-BPS 2-branes belonging to the 147250 of E8(8). The Z2 trunca-

tion leads to the half-maximal theory with symmetry SO(8, 8). There are 135 different

truncations, and for each truncation there are 128 1/2-BPS 2-branes preserving the same

supersymmetry of the truncation. To determine these branes in each truncation, one first

has to further decompose SO(8, 8) as R+ × SO(7, 7). In the case of the SO9 truncation, as

usual the SO(7, 7) symmetry is perturbative. The α = −4 potentials F10, F10,2,2, F10,4,4

and F10,6,6 give rise to 64 2-branes that are the long weights of the 1716 of SO(7, 7). This

representation embeds in the 6435 of SO(8, 8), which also contains the 1716 of SO(7, 7),
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D = 4 truncations # potentials brane components # branes

O9 1

C10 C4x1...x6 1

E10,2,2 E4x1...x6,xpxq ,xpxq 15

G10,4,4 G4x1...x6,xpxqxrxs,xpxqxrxs 15

I10,6,6 I4x1...x6,x1...x6,x1...x6 1

SO9 1

F10 F4x1...x6 1

F10,2,2 F4x1...x6,xpxq ,xpxq 15

F10,4,4 F4x1...x6,xpxqxrxs,xpxqxrxs 15

F10,6,6 F4x1...x6,x1...x6,x1...x6 1

O7xixjxkxl 15

C8 C4xixjxkxl 1

E8 E4xixjxkxl 1

E9,2,1 E4xixjxkxlxp,xixp,xi 8

E10,4,2 E4x1...x6,xixjxpxq ,xixj 6

G10,4,2 G4x1...x6,xixjxpxq ,xixj 6

G10,5,4,1 G4x1...x6,xixjxkxpxq ,xixjxkxp,xp 8

G10,6,6,2 G4x1...x6,x1...x6,x1...x6,xpxq 1

I10,6,6,2 I4x1...x6,x1...x6,x1...x6,xpxq 1

O5xixj 15

C6 C4xixj 1

E8,2 E4xixjxpxq ,xpxq 6

E9,4,1 E4xixjxpxqxr,xixpxqxr,xi 8

E10,6,2 E4x1...x6,x1...x6,xixj 1

G10,4 G4x1...x6,xpxqxrxs 1

G10,5,2,1 G4x1...x6,xixpxqxrxs,xixp,xp 8

G10,6,4,2 G4x1...x6,x1...x6,xixjxpxq ,xpxq 6

I10,6,6,4 I4x1...x6,x1...x6,x1...x6,xpxqxrxs 1

O3 1

C4 C4 1

E8,4 E4xpxqxrxs,xpxqxrxs 15

G10,6,2,2 G4x1...x6,x1...x6,xpxq ,xpxq 15

I10,6,6,6 I4x1...x6,x1...x6,x1...x6,x1...x6 1

SO5xixj 15

D6 D4xixj 1

D8,2 D4xixjxpxq ,xpxq 6

D10,4 D4x1...x6,xpxqxrxs 1

F9,4,1 F4xixjxpxqxr,xixpxqxr,xi 8

F10,5,2,1 F4x1...x6,xixpxqxrxs,xixp,xp 8

H10,6,2 H4x1...x6,x1...x6,xixj 1

H10,6,4,2 H4x1...x6,x1...x6,xixjxpxq ,xpxq 6

H10,6,6,4 H4x1...x6,x1...x6,x1...x6,xpxqxrxs 1

T2SO5xixj 15

D7,1 D4xixjxp,xp 4

D9,3 D4xixjxpxqxr,xpxqxr 4

F9,3 F4xixjxpxqxr,xpxqxr 4

F9,5,2 F4xixjxpxqxr,xixjxpxqxr,xixj 4

F10,4,1,1 F4x1...x6,xpxqxrxs,xp,xp 4

F10,6,3,1 F4x1...x6,x1...x6,xixjxp,xp 4

H10,6,3,1 H4x1...x6,x1...x6,xixjxp,xp 4

H10,6,5,3 H4x1...x6,x1...x6,xixjxpxqxr,xpxqxr 4

Table 9. The Z2 truncations of the maximal theory in D = 4.
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whose 64 long weights correspond to the α = −8 potentials J10,7,7,1,1, J10,7,7,3,3, J10,7,7,5,5

and J10,7,7,7,7.These α = −4 and α = −8 branes together give the whole set of 128 branes

that preserve the supersymmetry of the SO9 truncations. By performing all possible S and

T duality transformations, one then determines all the other truncations. The result is

summarised in table 10.

As in any other dimension below seven, there are additional space-filling branes that

are preserved by the truncation and become 1/2-BPS states of the truncated theory. These

branes are 8960 and correspond to the long weights of the 60060 of SO(8, 8). In the case

of the SO9 truncation, this representation contains 560 α = −2 and 560 α = −10 branes

in the 1001 of SO(7, 7), 2240 α = −4 and 2240 α = −8 in the 11648 of SO(7, 7), and

finally 3360 α = −6 branes in the 24024 of SO(7, 7) (see table 7 of ref. [34]). These are

all the SO5xixjxk and T2SO5xixjxk branes in table 10. We end the analysis of the maximal

theories by observing that the truncations T2SO5xixjxk are identified with the geometric

compactifications of IIB on T 4/Z2 × T 3, where xixjxk are the three torus directions.

3.2 From half-maximal to quarter-maximal supergravity

D = 6: both the N = (1, 1) (or 6A) and the N = (2, 0) (or 6B) theories admit Z2

truncations to the N = (1, 0) supergravity theory coupled to one tensor multiplet and four

hypermultiplets, with the hyper-scalars parametrising the coset manifold SO(4, 4)/(SO(4)×
SO(4). The truncation is unique in the case of the N = (1, 1) theory because the global

symmetry stays the same, while in the case of the N = (2, 0) there are five different

truncations. We now want to determine for any of these truncations what are the branes

that preserve the same supersymmetry of the truncation.

We start considering the 6A theory. As table 2 shows, the 1/2-BPS space-filling branes

of the 6A theory belong to the 35V⊕35S⊕35C, and all preserve the same supersymmetry

of the truncated theory. As already discussed in the previous subsection, in the case of

the SO9 truncation to the half-maximal theory, the branes in the 35V are the SO5 branes

while the branes in the 35S ⊕ 35C are the “tensor” branes in table 7. As we mentioned

already, the SO5 truncation of the maximal theory is the T-dual of the untwisted sector of

IIA on T 4/Z2, and in this case the 1/2-BPS space-filling branes of the 6A theory are the

SO9 and the tensor branes. In general, from the point of view of the maximal theory, the

35V comes from the 320, while the other two representations come from the 126.

In the case of the 6B theory, there are five different truncations. As mentioned already,

the truncated theory can be viewed as the untwisted sector of IIB on T 4/Z2, and we know

that on this theory the O9 and O5 orientifolds preserve the same supersymmetry.9 We

therefore label the corresponding truncation as O9/O5. By dualities one gets the other

four truncations, and the final result is

O9/O5 , SO9/SO5 , 3×O7xixj/O7xkxl . (3.9)

In each case, these branes are the long weights of the 35V ⊕ 35V representation of the

SO(4, 4) symmetry of the truncated theory.

9This model was originally constructed in [40]. For the systematics of orientifold model building, see [41,

42].
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D = 3 truncations # potentials brane components # branes

O9 1

C10 C3x1...x7 1

E10,2,2 E3x1...x7,xpxq ,xpxq 21

G10,4,4 G3x1...x7,xpxqxrxs,xpxqxrxs 35

G10,7,7,1,1 G3x1...x7,x1...x7,x1...x7,xp,xp 7

I10,6,6 I3x1...x7,xpxqxrxsxtxu,xpxqxrxsxtxu 7

I10,7,7,3,3 I3x1...x7,x1...x7,x1...x7,xpxqxr,xpxqxr 35

K10,7,7,5,5 K3x1...x7,x1...x7,x1...x7,xpxqxrxsxt,xpxqxrxsxt 21

M10,7,7,7,7 M3x1...x7,x1...x7,x1...x7,x1...x7,x1...x7 1

SO9 1

F10 F3x1...x7 1

F10,2,2 F3x1...x7,xpxq ,xpxq 21

F10,4,4 F3x1...x7,xpxqxrxs,xpxqxrxs 35

F10,6,6 F3x1...x7,xpxqxrxsxtxu,xpxqxrxsxtxu 7

J10,7,7,1,1 J3x1...x7,x1...x7,x1...x7,xp,xp 7

J10,7,7,3,3 J3x1...x7,x1...x7,x1...x7,xpxqxr,xpxqxr 35

J10,7,7,5,5 J3x1...x7,x1...x7,x1...x7,xpxqxrxsxt,xpxqxrxsxt 21

J10,7,7,7,7 J3x1...x7,x1...x7,x1...x7,x1...x7,x1...x7 1

O7xixjxkxlxm 21

C8 C3xixjxkxlxm 1

E8 E3xixjxkxlxm 1

E9,2,1 E3xixjxkxlxmxp,xixp,xi 10

E10,4,2 E3x1...x7,xixjxpxq ,xixj 10

G9,6,5 G3xixjxkxlxm5xp,xixjxkxlxmxp,xixjxkxlxm 2

G10,4,2 G3x1...x7,xixjxpxq ,xixj 10

G10,5,4,1 G3x1...x7,xixjxkxpxq ,xixjxkxp,xp 20

G10,6,6,2 G3x1...x7,xixjxkxlxpxq ,xixjxkxlxpxq ,xpxq 5

G10,7,5,1,1 G3x1...x7,7,xixjxkxlxm,xi,xi 5

I10,6,6,2 I3x1...x7,xixjxkxlxpxq ,xixjxkxlxpxq ,xpxq 5

I10,7,7,2,1,1 I3x1...x7,x1...x7,x1...x7,xpxq ,xp,xp 2

I10,7,7,5,3 I3x1...x7,x1...x7,x1...x7,xixjxkxpxq ,xixjxk 10

I10,7,5,1,1 I10,7,x1x2x3x4x5,xi,xi 5

I10,7,6,3,2 I3x1...x7,x1...x7,xixjxkxlxmxp,xixjxp,xixj 20

K10,7,7,6,5,1 K3x1...x7,x1...x7,x1...x7,xixjxkxlxpxq ,xixjxkxlxp,xp 10

K10,7,7,5,3 K3x1...x7,x1...x7,x1...x7,xixjxkxpxq ,xixjxk 10

K10,7,7,7,7,2 K3x1...x7,x1...x7,x1...x7,x1...x7,x1...x7,xpxq 1

M10,7,7,7,7,2 I3x1...x7,x1...x7,x1...x7,x1...x7,x1...x7,xpxq 1

O5xixjxk 35

C6 C3xixjxk 1

E8,2 E3xixjxkxpxq ,xpxq 6

E9,4,1 E3xixjxkxpxqxr,xixpxqxr,xi 12

E10,6,2 E3x1...x7,xixjxpxqxrxs,xixj 3

G9,6,3 G3x1...x7,xixjxkxpxqxr,xixjxk 4

G10,4 G3x1...x7,xpxqxrxs 1

G10,5,2,1 G3x1...x7,xixpxqxrxs,xixp,xp 12

G10,6,4,2 G3x1...x7,xixjxpxqxrxs,xixjxpxq ,xpxq 18

G10,7,6,3 G3x1...x7,x1...x7,xixjxkxpxqxr,xpxqxr 4

G10,7,3,1,1 G3x1...x7,x1...x7,xixjxk,xi,xi 3

I10,6,6,4 I3x1...x7,xixjxpxqxrxs,xixjxpxqxrxs,xpxqxrxs 3

I10,7,7,4,1,1 I3x1...x7,x1...x7,x1...x7,xpxqxrxs,xp,xp 4

I10,7,7,7,3 I3x1...x7,x1...x7,x1...x7,x1...x7,xixjxk 1

I10,7,6,5,2 I3x1...x7,x1...x7,xixjxkxpxqxr,xixjxpxqxr,xixj 12

I10,7,5,3,1 I3x1...x7,x1...x7,xixjxkxpxq ,xixpxq ,xi 18

I10,7,4,1 I3x1...x7,x1...x7,xixjxkxp,xp 4

K10,7,7,7,5,2 K3x1...x7,x1...x7,x1...x7,x1...x7,xixjxkxpxq ,xpxq 6

K10,7,7,5,1 K3x1...x7,x1...x7,x1...x7,xixpxqxrxs,xi 3

K10,7,7,6,3,1 K3x1...x7,x1...x7,x1...x7,xixjxpxqxrxs,xixjxp,xp 12

M10,7,7,7,7,4 M3x1...x7,x1...x7,x1...x7,x1...x7,x1...x7,xpxqxrxs 1

Table 10. (Part 1 of 2) The Z2 truncations of the maximal theory in D = 3.
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D = 3 truncations # potentials brane components # branes

O3xi 7

C4 C3xi 1

E8,4 E3xixpxqxrxs,xpxqxrxs 15

E9,6,1 E3xixpxqxrxsxt,xixpxqxrxsxt,xi 6

G10,6,2,2 G3x1...x7,xpxqxrxsxtxu,xpxq ,xpxq 15

G10,7,4,3 G3x1...x7,x1...x7,xixpxqxr,xpxqxr 20

G9,6,1 G3xixpxqxrxsxt,xixpxqxrxsxt,xi 6

G10,7,1,1,1 G3x1...x7,x1...x7,xi,xi,xi 1

I10,6,6,6 I3x1...x7,xpxqxrxsxtxu,xpxqxrxsxtxu,xpxqxrxsxtxu 1

I10,7,7,6,1,1 I3x1...x7,x1...x7,x1...x7,xpxqxrxsxtxu,xp,xp 6

I10,7,5,5,1 I3x1...x7,x1...x7,xixpxqxrxs,xixpxqxrxs,xi 15

I10,7,4,3 I3x1...x7,x1...x7,xixpxqxr,xpxqxr 20

K10,7,7,6,1,1 K3x1...x7,x1...x7,x1...x7,xpxqxrxsxtxu,xp,xp 6

K10,7,7,7,3,2 K3x1...x7,x1...x7,x1...x7,x1...x7,xixpxq ,xpxq 15

M10,7,7,7,7,6 M3x1...x7,x1...x7,x1...x7,x1...x7,x1...x7,xpxqxrxsxtxu 1

SO5xixjxk 35

D6 D3xixjxk 1

D8,2 D3xixjxkxpxq ,xpxq 6

D10,4 D3x1...x7,xpxqxrxs 1

F9,4,1 F3xixjxkxpxqxr,xixpxqxr,xi 12

F9,6,3 F3xixjxkxpxqxr,xixjxkxpxqxr,xixjxk 4

F10,5,2,1 F3x1...x7,xixpxqxrxs,xixp,xp 12

F10,7,4,1 F3x1...x7,x1...x7,xixjxkxp,xp 4

H10,6,2 H3x1...x7,xixjxpxqxrxs,xixj 3

H10,6,4,2 H3x1...x7,xixjxpxqxrxs,xixjxpxq ,xpxq 18

H10,6,6,4 H3x1...x7,xixjxpxqxrxs,xixjxpxqxrxs,xpxqxrxs 3

H10,7,3,1,1 H3x1...x7,x1...x7,xixjxk,xi,xi 3

H10,7,5,3,1 H3x1...x7,x1...x7,xixjxkxpxq ,xixpxq ,xi 18

H10,7,7,5,1 H3x1...x7,x1...x7,x1...x7,xixpxqxrxs,xi 3

J10,7,6,3 J3x1...x7,x1...x7,xixjxkxpxqxr,xpxqxr 4

J10,7,7,4,1,1 J3x1...x7,x1...x7,x1...x7,xpxqxrxs,xp,xp 4

J10,7,6,5,2 J3x1...x7,x1...x7,xixjxkxpxqxr,xixjxpxqxr,xixj 12

J10,7,7,6,3,1 J3x1...x7,x1...x7,x1...x7,xixjxpxqxrxs,xixjxp,xp 12

L10,7,7,7,3 L3x1...x7,x1...x7,x1...x7,x1...x7,xixjxk 1

L10,7,7,7,5,2 L3x1...x7,x1...x7,x1...x7,x1...x7,xixjxkxpxq ,xpxq 6

L10,7,7,7,7,4 L3x1...x7,x1...x7,x1...x7,x1...x7,x1...x7,xpxqxrxs 1

T2SO5xixjxk 35

D7,1 D3xixjxkxp,xp 4

D9,3 D3xixjxkxpxqxr,xpxqxr 4

F9,3 F3xixjxkxpxqxr,xpxqxr 4

F9,5,2 F3xixjxkxpxqxr,xixjxpxqxr,xixj 12

F10,4,1,1 F3x1...x7,xpxqxrxs,xp,xp 4

F10,6,3,1 F3x1...x7,xixjxpxqxrxs,xixjxp,xp 12

H10,6,3,1 H3x1...x7,xixjxpxqxrxs,xixjxp,xp 12

H10,7,4,2,1 H3x1...x7,x1...x7,xixjxkxp,xixp,xi 12

H10,6,5,3 H3x1...x7,xixjxpxqxrxs,xixjxpxqxr,xpxqxr 12

H10,7,6,4,1 H3x1...x7,x1...x7,xixjxkxpxqxr,xixpxqxr,xi 12

J10,7,7,5,2,1 J3x1...x7,x1...x7,x1...x7,xixpxqxrxs,xixp,xp 12

J10,7,7,7,4,1 J3x1...x7,x1...x7,x1...x7,x1...x7,xixjxkxp,xp 4

J10,7,6,4,1 J3x1...x7,x1...x7,xixjxkxpxqxr,xixpxqxr,xi 12

J10,7,6,6,3 J3x1...x7,x1...x7,xixjxkxpxqxr,xixjxkxpxqxr,xixjxk 4

L10,7,7,7,4,1 L3x1...x7,x1...x7,x1...x7,x1...x7,xixjxkxp,xp 4

L10,7,7,7,6,3 L3x1...x7,x1...x7,x1...x7,x1...x7,xixjxkxpxqxr,xpxqxr 4

Table 10. (Part 2 of 2) The Z2 truncations of the maximal theory in D = 3.
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D = 5: the five-dimensional half-maximal theory admits five different Z2 truncations to

the quarter-maximal theory with symmetry (R+)2×SO(4, 4), containing gravity coupled to

two vector multiplets and four hypermultiplets. As table 2 shows, the space-filling branes

belong to the 320⊕210 of SO(5, 5). A particular way of realising the half-maximal theory

is by compactifying IIB on SO9, which corresponds to the heterotic truncation, so that the

SO(5, 5) symmetry is perturbative. In particular, the branes in the 210 have α = −2 while

the branes in the 320 have α = −4 [20]. These branes are the SO5xi and T2SO5xi ones in

table 8, where i = 1, . . . , 5 labels each of the five truncations. In other words, the SO(4, 4)

of the truncated theory is the one that fixes the particular xi that identifies the truncation.

By looking at table 8, one can show that out of the 320 one selects the 35V ⊕ 35V, while

out of the 210 one selects the 35S ⊕ 35C.

One can also obtain the half-maximal theory by compactifying IIB on (T 4/Z2) × S1,

corresponding to the truncation T2SO5y, where y is the S1 coordinate. It is instructive to

show how using duality symmetries one can find the five truncations of the T2SO5y theory

starting from the truncations of the SO9 theory. Denoting the five internal coordinates as

xi, y, with i = 1, . . . , 4, we first perform an S-duality transformation to go to O9, then four

T-dualities along the xi directions to go to O5y, then again S-duality to go to SO5y, and

finally two T-dualities along y and any other x direction to go to T2SO5y. If one performs

this chain of transformations on the truncations of the SO9 theory,

SO9 : 4× SO5xi/T
2SO5xi , SO5y/T

2SO5y , (3.10)

one finds the truncations of the T2SO5y theory, which are

T2SO5y : O9/O5y , 3×O7xixjy/O7xkxly , SO9/SO5y . (3.11)

D = 4: the SL(2,R)× SO(6, 6) theory in four dimensions can be truncated to the N = 2

theory with symmetry SL(2,R)3 × SO(4, 4), describing gravity coupled to three vector

multiplets and four hypermultiplets. There are 15 different truncations, corresponding to

the different ways in which one can embed SO(4, 4) into SO(6, 6), and correspondingly the

vector central charge belongs to the 15 of the R-symmetry group U(4). As reported in

table 2, the 960 space-filling branes are the long weights of the (3,495)⊕ (1,2079) [20],

and for each truncation one expects 64 branes to preserve the same supersymmetry of

the truncation. To figure out what these branes are in each truncation, we focus on the

particular half-maximal theory that results from the SO9 truncation of the maximal one.

In this case the SO(6, 6) symmetry is perturbative, and we expect only the branes with

even α to survive as 1/2-BPS states. Therefore we get the 15 truncations

SO9 : 15× SO5xixj/T
2SO5xixj , (3.12)

where for any i, j = 1, . . . , 6 the SO5xixj and T2SO5xixj branes preserve the same su-

persymmetry. Fixing i and j to identify a specific truncation to the N = 2 theory, the

symmetry SO(4, 4) acts on the remaining coordinates, and by looking at table 9 one finds

that the 64 branes that preserve the same supersymmetry of the truncated theory are

(3,495) → (3,1,1,35S)⊕ (3,1,1,35C)

(1,2079) → (1,3,1,35V)⊕ (1,1,3,35V) . (3.13)
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Apart from the branes in eq. (3.13), that preserve the same supersymmetry of the

truncated theory, in four dimensions there are additional space-filling branes that survive

the projection and are 1/2-BPS states of the N = 2 theory. These branes are the 384 long

weights of the following representations [21]:

(3,3,1,28)⊕ (3,1,3,28)⊕ (1,3,3,28)⊕ (1,1,1,350) . (3.14)

In the particular case of the SO5xixj/T
2SO5xixj truncation of the SO9-truncated theory,

these all the SO5xkxl and T2SO5xkxl branes with k, l 6= i, j.

Similarly to the five-dimensional case, one can obtain the half-maximal theory by com-

pactifying IIB on (T 4/Z2)×T 2, corresponding to the truncation T2SO5y1y2 , where y1 and

y2 are the T 2 coordinates. As in D = 5, one can show how using duality symmetries

one can find the 15 truncations of the T2SO5y1y2 half-maximal theory starting from the

truncations of the SO9 half-maximal theory given in eq (3.12). Denoting the six internal

coordinates as xi, ym, with i = 1, . . . , 4 and m = 1, 2, we first perform an S-duality trans-

formation to go to O9, then four T-dualities along the xi directions to go to O5y1y2 , then

again S-duality to go to SO5y1y2 , and finally two T-dualities along one y and any other x

direction to go to T2SO5y1y2 . One finds

T2SO5y1y2 : O9/O5y1y2 , O7x1...x4/O3 , 3×O7xixjy1y2/O7xkxly1y2 ,

3×O5xixj/O5xkxl , SO9/SO5y1y2 , 3× SO5xixj/SO5xkxl ,

3× T2SO5xixj/T
2SO5xkxl . (3.15)

D = 3: in three dimensions the SO(8, 8) theory is truncated to the SO(4, 4) × SO(4, 4)

theory, describing supergravity coupled to eight hyper-multiplets. The vector central charge

belongs to the 35 of the R-symmetry SO(8), and correspondingly there are 35 different

truncations, which can be seen as the 1
2 ·
(

8
4

)
ways in which one can embed SO(4, 4)×SO(4, 4)

into SO(8, 8). As table 2 shows, there are 8960 1/2-BPS 2-branes which are the long

weights of the 600060, and for each truncation one expects 256 branes preserving the same

supersymmetry of the truncation [20]. As in the higher-dimensional cases, to identify each

truncation and the corresponding branes we consider the half-maximal theory resulting

from the SO9 truncation of the maximal one. We get

SO9 : 35× SO5xixjxk/T
2SO5xixjxk , (3.16)

where the indices i, j, k run from 1 to 7. Fixing i, j, k identifies a specific truncation to the

quarter-maximal theory, and by carefully looking at table 10 and identifying one SO(4, 4)

as acting on the four unfixed indices and the other as grouping different potentials together,

one can show that the SO5xixjxk/T
2SO5xixjxk branes belong to the representation

(35V,35S)⊕ (35V,35C)⊕ (35S,35V)⊕ (35S,35C) . (3.17)

Apart from the branes in eq. (3.17), there are additional space-filling branes that

survive the truncation and are 1/2-BPS of the truncated theory. The representation of

such branes is [21]

(350,28)⊕ (28,350) (3.18)
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corresponding to 4608 branes. In the particular case of the SO5xixjxk/T
2SO5xixjxk trun-

cation of the SO9-truncated theory, these all the SO5xixlxm and T2SO5xixlxm branes with

l,m 6= j, k. This indeed gives in total 3 ·
(

4
2

)
· 2 · 128 = 4608 branes.

Analogously to the five and four-dimensions cases, one can also obtain the half-maximal

theory as a geometric orbifold (T 4/Z2)×T 3 truncation of IIB. Denoting with xi, i = 1, . . . , 4

the orbifold coordinates and with ym, m = 1, 2, 3, the torus coordinates, this corresponds

to the truncation T2SO5y1y2y3 . One can obtain the 35 truncations of the T2SO5y1y2y3 half-

maximal theory starting from the truncations of the SO9 half-maximal theory given in

eq (3.16). We first perform an S-duality transformation to go to O9, then four T-dualities

along the xi directions to go to O5y1y2y3 , then again S-duality to go to SO5y1y2y3 , and

finally two T-dualities along one y and one x direction to go to T2SO5y1y2y3 . The result is

T2SO5y1y2y3 : O9/O5y1y2y3 , 3×O7x1...x4ym/O3ym , 3×O7xixjy1y2y3/O7xkxly1y2y3 ,

9×O5xixjym/O5xkxlym , SO9/SO5y1y2y3 , 9× SO5xixjym/SO5xkxlym ,

9× T2SO5xixjym/T
2SO5xkxlym . (3.19)

3.3 From quarter-maximal to 1/8-maximal supergravity

D = 4: the four-dimensional N = 2 theory with symmetry (SL(2,R))3 × SO(4, 4) can

be finally truncated to minimal supergravity coupled to seven chiral multiplets and global

symmetry (SL(2,R))7. The vector central charge belongs to the 3 of the R-symmetry U(2),

and correspondingly there are three different Z2 truncations, as expected from the fact

that there are three different ways of embedding SO(2, 2)× SO(2, 2) inside SO(4, 4), with

SO(2, 2) being isomorphic to (SL(2,R))4. The 384 1/2-BPS space-filling branes are the long

weights of the representations given in eq. (3.14), and one expects that for each of the three

truncations 128 branes are not projected out and preserve the same supersymmetry of the

truncation. We can for instance identify these truncations as follows: first truncate from

the maximal theory to the half-maximal one via SO9, and then from the half-maximal to

theN = 2 theory via SO5x5x6/T
2SO5x5x6 . One is then left with the SO5xixj and T2SO5xixj

space-filling branes in table 9, with i, j = 1, . . . , 4, and in each of the three truncations one

identifies the branes as follows:

SO9→ SO5x5x6/T
2SO5x5x6 : 3× SO5xixj/SO5xkxl/T

2SO5xixj/T
2SO5xkxl , (3.20)

where the indices i, j, k, l are all different. By analysing table 9 one can determine the

representations of the SO5xixj/SO5xkxl/T
2SO5xixj/T

2SO5xkxl branes for fixed i, j, k, l that

preserve the supersymmetry of a given truncation. Starting from the representations of

the 1/2-BPS branes in the N = 2 theory given in eq. (3.14) one gets

(3,3,1,28)→(3,3,1,3,1,1,1)⊕ (3,3,1,1,3,1,1)

⊕ (3,3,1,1,1,3,1)⊕ (3,3,1,1,1,1,3)

(3,1,3,28)→(3,1,3,3,1,1,1)⊕ (3,1,3,1,3,1,1)

⊕ (3,1,3,1,1,3,1)⊕ (3,1,3,1,1,1,3)

(1,3,3,28)→(1,3,3,3,1,1,1)⊕ (1,3,3,1,3,1,1)

⊕ (1,3,3,1,1,3,1)⊕ (1,3,3,1,1,1,3)
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(1,1,1,350)→(1,1,1,3,3,3,1)⊕ (1,1,1,3,3,1,3)

⊕ (1,1,1,3,1,3,3)⊕ (1,1,1,1,3,3,3) . (3.21)

The N = 2 theory has also a natural geometric origin as IIB compactified on the

orbifold T 6/(Z2 × Z2). In this case the torus T 6 is factorised as T 6 = ⊗3
i=1T

2
i , where T 2

i

indicates the two-dimensional torus with coordinates xi and yi, and the two Z2’s act as

(+,−,−) and (−,+,−) on the three pairs of coordinates. We can think of the orbifold

action as the sequence of two truncations, which are the T2SO5x1y1 from the maximal to

the half-maximal theory, and then T2SO5x2y2/T
2SO5x3y3 from the half-maximal to the

N = 2 theory. The three different truncations of the N = 2 theory can then be derived by

a suitable series of dualities starting from eq. (3.20), and the result is

O9/O5x1y1/O5x2y2/O5x3y3 , O3/O7x1y1x2y2/O7x1y1x3y3/O7x2y2x3y3 ,

SO9/SO5x1y1/SO5x2y2/SO5x3y3 . (3.22)

One can recognise the first two as the two T-dual orientifold projections of the IIB theory

on T 6/(Z2 × Z2) [43, 44], and the last as the projection on the heterotic sector. As we

will show in detail in section 5, the 128 branes in each of these truncations are precisely

those that are responsible for the cancellation of the tadpole conditions when all possible

geometric and non-geometric fluxes are turned on, and for the O3/O7x1y1x2y2/O7x1y1x3y3/

O7x2y2x3y3 orientifold case, they have been determined in [19, 30].

D = 3: the three-dimensional theory with symmetry SO(4, 4)×SO(4, 4) can be truncated

to the supergravity theory with four supersymmetry coupled to eight scalar multiplets and

global symmetry (SL(2,R))8. As table 3 shows, there are nine different truncations, corre-

sponding to the fact that each of the two SO(4, 4) can be decomposed in (SL(2,R))4 in three

different ways. We expect that for each of the nine truncations 512 out of the 4608 2-branes

in the representations of eq. (3.18) survive the are not projected out. These are the branes

that preserve the same supersymmetry of the truncation. To identify these branes and the

corresponding truncations, we proceed as in four dimensions, considering the particular

case of the SO9 truncation of the maximal theory, and the further SO5x5x6x7/T
2SO5x5x6x7

truncation of the half-maximal theory to the theory with eight supersymmetries. One gets

SO9→ SO5x5x6x7/T
2SO5x5x6x7 : 9× SO5xixjxk/SO5xixlxm/T

2SO5xixjxk/T
2SO5xixlxm ,

(3.23)

where i = 5, 6, 7 and j, k, l,m = 1, . . . , 4 and all different. Fixing i, j, k, l,m to identify a

particular truncation, one reads off the corresponding branes from table 10. These branes

belong to representations made of four triplets and four singlets of (SL(2,R))8 which arise

from decomposing all the 350 and 28 representations in eq. (3.18) as

350→ (1,3,3,3)⊕ (3,1,3,3)⊕ (3,3,1,3)⊕ (3,3,3,1)

28→ (3,1,1,1)⊕ (1,3,1,1)⊕ (1,1,3,1)⊕ (1,1,1,3) . (3.24)

As in four dimensions, this theory can also be considered as IIB compactified on the

orbifold T 6/(Z2 × Z2) × S1. Denoting the orbifold coordinates xiyi, i = 1, 2, 3 as in four
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dimensions, and the circle coordinate z, we can think of the orbifold action as the sequence

of two truncations, which are the T2SO5x1y1z from the maximal to the half-maximal theory,

and then T2SO5x2y2z/T
2SO5x3y3z from the half-maximal to the quarter-maximal theory.

The nine different truncations of the N = 2 theory can then be derived by a suitable series

of dualities starting from eq. (3.23), and the result is

O9/O5x1y1z/O5x2y2z/O5x3y3z

SO9/SO5x1y1z/SO5x2y2z/SO5x3y3z

O5y1y2y3/O5y1x2x3/O5x1y2x3/O5x1x2y3

O5x1x2x3/O5x1y2y3/O5y1x2y3/O5y1y2x3

SO5y1y2y3/SO5y1x2x3/SO5x1y2x3/SO5x1x2y3

SO5x1x2x3/SO5x1y2y3/SO5y1x2y3/SO5y1y2x3

O3z/O7x1y1x2y2z/O7x1y1x3y3z/O7x2y2x3y3z

T2SO5x1x2x3/T
2SO5x1y2y3/T

2SO5y1x2y3/T
2SO5y1y2x3

T2SO5y1y2y3/T
2SO5y1x2x3/T

2SO5x1y2x3/T
2SO5x1x2y3 , (3.25)

where the corresponding branes can be read in table 10.

To conclude this section, we give in table 11 the summary of all the results, in which

in any dimension and for any supersymmetry we denote in red the representations of

the branes that preserve the same supersymmetry of the truncation, and in black the

ones that are 1/2-BPS states. The three-dimensional theory with four supersymmetries

admits a further truncation to the minimal D = 3 theory. This means that in the three-

dimensional theory with four supersymmetries there are also space-filling branes that are

1/2-BPS states, and this should correspond to representations denoted in black in the

table, that we have not determined. These branes should be the ones that preserve the

same supersymmetry as the truncation to the minimal theory. As we will discuss at the

end of the next section, we leave a careful analysis of this truncation and its relation to

minimal models with fluxes as a future project.

4 Embedding tensor, quadratic constraints and space-filling branes

The previous analysis yields a concrete prescription for finding the irreducible represen-

tations of the quadratic constraint (QC) containing all space-filling branes preserving the

same supersymmetry as the given truncation. The argument we used is inspired by the

properties of mixed symmetry potentials and how they are used to source exotic branes

through Wess-Zumino coupling. The aim of this section is to show that the very same

conclusion can be drawn independently by purely studying Z2 truncations within gauged

supergravities in various dimensions to obtain theories with less supersymmetries. The

concrete prescription is to compare all the QC’s required by the theory with more super-

symmetry when restricted to its Z2-even sector with the ones imposed by the consistency

of the theory with halved amount of supersymmetry. The mismatch between the two ex-

actly identifies the irreducible representations containing space-filling branes allowed by the
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PPPPPPPPPD

# susy
32 16 8 4

8
SL(3,R)× SL(2,R) R+ × (SL(2,R))2

(15,1) (3,1)

7
SL(5,R) R+ × SL(4,R)

70 10

6

SO(5, 5)
R+ × SO(4, 4)

R+ × SO(4, 4)
SO(5, 5)

320
35V 35V 35V

320 35V ⊕ 35V

126
35S ⊕ 35C 35S ⊕ 35C

126

5

E6(6) R+ × SO(5, 5) (R+)2 × SO(4, 4)

1728 126
320 35V ⊕ 35V

210 35S ⊕ 35C

4

E7(7) SL(2,R)× SO(6, 6) (SL(2,R))3 × SO(4, 4) (SL(2,R))7

8645 (1,462)
(3,495)

(3,35)
(32,28)

33

(1,2079) (1,350)

3

E8(8) SO(8, 8) SO(4, 4)× SO(4, 4) (SL(2,R))8

147250 6435 60060 (35,35)
(350,28)

34

(28,350)

Table 11. The representations of the space-filling branes that preserve the same supersymmetry

of the truncation (in red) and those that are 1/2-BPS states (in black). In six dimensions the case

with 16 supersymmetry is divided in two rows, with the upper row corresponding to the 6A and the

lower row to the 6B truncation. In four dimensions, the representations of the cases with eight and

four supersymmetry are written in a short-hand notation which stands for eqs. (3.13) and (3.14)

(eight supersymmetries) and (3.21). Similarly, in three dimensions the red representations of the

theory with eight supersymmetries are given in eqs. (3.17), while those of the theory with four

supersymmetries can be derived from (3.24).

less supersymmetric theory. From the technical viewpoint of gauged supergravity, such a

mismatch represents the set of all closure conditions specified within the [odd, odd] sector.

We will now carry out the aforementioned analysis by treating each number of dimen-

sions separately. This will involve the study of the allowed irreducible representations of

the embedding tensor and the corresponding set of QC’s it is subject to throughout a chain

of Z2 truncations.

4.1 Gauged supergravities in D = 9

In nine spacetime dimensions 32 and 16 are the only amounts of real supercharges which

are compatible with Lorentz symmetry. We shall refer to these cases as the maximal and

half-maximal theory, respectively. Hence there is only one Z2 truncation to be considered

here, i.e. the one relating them (see [45] for details). The most general gauged maximal

theory was studied in [46], it enjoys global symmetry R+ × SL(2,R) and it has embedding
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tensor

Θ ∈ 2(+3)︸ ︷︷ ︸
θi

⊕ 3(−4)︸ ︷︷ ︸
κ(ij)

. (4.1)

The discrete truncation yielding the half-maximal theory reads

R+ × SL(2,R) −→ (R+)
2
, (4.2)

however this case turns out to be rather trivial since the embedding tensor of the half-

maximal theory belongs to irreducible representations without long weights. This means

that even the only space-filling brane that one expects cannot be sourced by flux tadpoles.

4.2 Gauged supergravities in D = 8

Moving to the D = 8 case, the only two possibilities available are still just the maximal

and half-maximal theories, which are then related again by a Z2 truncation. The most

general gauged maximal theory was studied in [47–49], and it has SL(3,R) × SL(2,R)

global symmetry. The truncation relating the two theories is given by [45]10

SL(3,R)× SL(2,R) −→ R+ ×
(
SL(2,R))2

)
,

Θ ∈ (3,2)︸ ︷︷ ︸
ξαm

⊕
(
6,2

)︸ ︷︷ ︸
fα

(mn)

(2,2)(−1)︸ ︷︷ ︸
aαi

⊕ (2,2)(−1)︸ ︷︷ ︸
bαi

. (4.3)

The QC of the maximal theory

εαβ ξαm ξβn = 0 ,
(
3,1

)
f(α

np ξβ)p = 0 ,
(
3,3

)
εαβ (εmqr fα

qn fβ
rp + fα

np ξβm) = 0 ,
(
15,1

)
⊕
(
3,1

) (4.4)

reduce upon truncating to the following set of QC

εαβ εij aαi aβj = 0 , (1,1)(−2)

εαβ εij bαi bβj = 0 , (1,1)(−2)

εαβ εij aαi bβj = 0 , (1,1)(−2)

εij a(αi bβ)j = 0 , (3,1)(−2)

εαβ aα(i bβj) = 0 , (1,3)(−2)

(4.5)

while the consistency of the half-maximal theory only requires the last two constraints (that

are the constraints on the triplets) and two combinations of the three singlets. However,

that does not affect our counting of space-filling objects. As far as these are concerned,

the peculiarity here is that the decomposition of the QC in (4.4) would in principle yield

an extra (3,1) containing one space-filling brane which cannot be sourced by any fluxes.

This is due to the fact that the three-form representation of SO(2,2) ∼ (SL(2,R))2 does

not have any long weights.

10We are using here the notation commonly used in the gauged supergravity literature, which differs from

the one adopted in section 2. This should not cause any confusion to the reader.
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4.3 Gauged supergravities in D = 7

As far as theories in seven dimensions are concerned, the situation remains unchanged, i.e.

only maximal and half-maximal supersymmetry are allowed and they are related by a Z2

truncation. The embedding tensor formulation of gauged maximal D = 7 supergravities

was developed in [50]. The global symmetry is given by SL(5,R), which can be subsequently

broken as follows to yield a half-maximal theory

SL(5,R) −→ R+ × SL(4,R) ,

Θ ∈ 15︸︷︷︸
Y(MN)

⊕ 40︸︷︷︸
Z[MN ],P

1(−8)︸ ︷︷ ︸
θ

⊕ 6(+2)︸ ︷︷ ︸
ξ[mn]

⊕ 10(+2)︸ ︷︷ ︸
Q(mn)

⊕ 10(+2)︸ ︷︷ ︸
Q̃(mn)

. (4.6)

The QC constraints of the maximal theory

YMQ Z
QN,P + 2εMRSTU Z

RS,N ZTU,P = 0 , (5 ⊕ 45 ⊕ 70) (4.7)

reduce to
θ ξmn = 0 ,

(
6(−6)

)(
Q̃mp + ξmp

)
Qpn = 0 ,

(
1(+4) ⊕ 15(+4)

)
Qmp ξ

pn + ξmp

(
Q̃pn + ξpn

)
= 0 ,

(
1(+4) ⊕ 15(+4)

)
θ Q̃mn = 0 ,

(
10(−6)

)
(4.8)

where all of the above constraints are demanded for consistency of the half-maximal theory,

except for the singlet part of the second constraint and the last constraint transforming in

the 10. As we are interested in the space-filling branes, we immediately see that the four

objects that we are looking for exactly coincide with the long weights in the 10. Note that

this is perfect agreement with what presented in table 11.

4.4 Gauged supergravities in D = 6

Moving down to six dimensions, one encounters for the first time the possibility of con-

structing quarter-maximal theories, i.e. preserving only eight real supercharges arranged

within a symplectic Majorana-Weyl (SMW) doublet. Starting from the maximal theory [51]

enjoying SO(5, 5) global symmetry, one can perform the following Z2 truncation

SO(5, 5) −→ R+ × SO(4, 4) ,

Θ ∈ 144C︸ ︷︷ ︸
θαA

8
(+3)
C︸ ︷︷ ︸
ζM

⊕ 8
(−1)
C︸ ︷︷ ︸
ξM

⊕ 56
(−1)
C︸ ︷︷ ︸

f[MNP ]

, (4.9)

to obtain a theory with sixteen supercharges realising N = (1, 1) supersymmetry and where

the gravity multiplet is coupled to four vector multiplets.

The QC of the N = (2, 2) theory read

θαA θβB ηAB = 0 , (10 ⊕ 126C)

θαA θβ[B
(
γC]
)
αβ

= 0 , (320)
(4.10)
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where η is the SO(5, 5)-invariant metric, while
{
γA
}

represent the SO(5, 5) Dirac matrices.

When restricting oneself to the even sector, the above set of constraints takes the following

form (we furthermore set ξ = 0)

fR[MN fPQ]
R = 0 ,

(
35

(−2)
S ⊕ 35

(−2)
C

)
fMNP ζ

P = 0 ,
(
28(+2)

)
fMNP f

MNP = 0 ,
(
1(−2)

)
f[MNP ζQ]|SD = 0 ,

(
35

(+2)
S

) (4.11)

the last two constraints not being required for the consistency of the (1, 1) theory. Hence,

the 8 space-filling branes found in table 11 arise here as the long weights of the 35
(+2)
S of

R+ × SO(4, 4).

Furthermore, a second inequivalent Z2 truncation is the one mentioned in the previous

section giving rise to the chiral half-maximal theory with N = (2, 0) supersymmetry and

tensorial matter. This truncation leaves the whole SO(5, 5) global symmetry unbroken but

it has no embedding tensor deformations. This means that, even if it has space-filling brane

states available in the spectrum, we have no possibility of cancelling their charge by means

of flux tadpoles.

The last step we still need to discuss within the D = 6 case is the one taking us from

the N = (1, 1) to the N = (1, 0) theory by means of the following truncation

R+ × SO(4, 4) −→ R+ × SO(4, 4) ,

Θ ∈ 8
(+3)
C︸ ︷︷ ︸
ζM

⊕ 8
(−1)
C︸ ︷︷ ︸
ξM

⊕ 56
(−1)
C︸ ︷︷ ︸

f[MNP ]

None , (4.12)

where the resulting N = (1, 0) theory contains tensor as well as hypermultiplets. However,

no deformation parameters survive the truncation and hence no space-filling branes may

be added by consistently cancelling their charge by means of flux tadpoles.

4.5 Gauged supergravities in D = 5

Now let us move to the five-dimensional case. Here again one can have theories with 32, 16

or 8 real supercharges. Starting from the maximal theory [52] with E6(6) global symmetry,

the following Z2 truncation

E6(6) −→ R+ × SO(5, 5) ,

Θ ∈ 351︸︷︷︸
Z[AB]

10(+2)︸ ︷︷ ︸
ξM

⊕ 45(−4)︸ ︷︷ ︸
ζ[MN ]

⊕ 120(+2)︸ ︷︷ ︸
f[MNP ]

, (4.13)

produces a half-maximal gauged supergravity [29] with five extra vector multiplets. De-

composing the QC’s of the maximal theory and restricting ourselves to the even part, we
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find the following set of QC’s

ξM ξM = 0 ,
(
1(+4)

)
ζMN ξ

N = 0 ,
(
10(−2)

)
fMNP ξ

P = 0 ,
(
45(+4)

)
fR[MN fPQ]

R + f[MNP ξQ] = 0 ,
(
210(+4)

)
ζM

Q fNPQ + ξM ζNP = 0 ,
(
10(−2) ⊕ 120(−2) ⊕ 320(−2)

)
fMNP f

MNP = 0 ,
(
1(+4)

)
f[MNP ζQR]|SD = 0 ,

(
126(−2)

)

(4.14)

which exactly correspond to the QC of the half-maximal theory, plus the last two lines

transforming in the 1(+4) and 126(−2) as two additional ones. Therefore, the spacefilling

branes of this theory are given by the 16 long weights inside the latter extra QC irreducible

representation. This is once again in agreement with what found in the previous section.

We now want to further truncate the half-maximal theory to obtain a quarter-maximal

theory coupled to four hypermultiplets. This is done through

R+ × SO(5, 5) −→ (R+)
2 × SO(4, 4) ,

Θ ∈ 10︸︷︷︸
ξM

⊕ 45︸︷︷︸
ζ[MN ]

⊕ 120︸︷︷︸
f[MNP ]

3 × (1 ⊕ 28) , (4.15)

where the resulting embedding tensor can be rearranged into the reducible object de-

noted by ΘΛ
α, where in turn, the index Λ labels the vectors, while α runs over

adj (R+) ⊕ adj (R+) ⊕ adj (SO(4, 4)). The QC’s (4.14) then reduce to the following ir-

reducible representations:

1 −→ 1 ,

10 −→ 1 ⊕ 1 ⊕ odd ,

45 −→ 1 ⊕ 28 ⊕ odd ,

210 −→ 28 ⊕ 28 ⊕ 35S ⊕ 35C ⊕ odd ,

120 −→ 28 ⊕ 28 ⊕ odd ,

320 −→ 1 ⊕ 1 ⊕ 28 ⊕ 28 ⊕ 35V ⊕ 35V ⊕ odd ,

(4.16)

to be compared with those ones appearing in the QC’s of the N = 1 [27]

ΘΛ
α ΘΣ

β fαβ
γ + [tα]Λ

Γ ΘΣ
α ΘΓ

γ = 0 , (4.17)

where {fαβγ} and
{

[tα]Λ
Γ
}

are the global symmetry generators in the adjoint and vector

representation, respectively. The unneeded QC irreducible representations containing the

longest weights turn out to be 35S ⊕ 35C ⊕ 35V ⊕ 35V, once again in perfect agreement

with the analysis of section 3.
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4.6 Gauged supergravities in D = 4

In D = 4, the minimal amount of supersymmetry which is consistent with Lorentz sym-

metry is given by four real supercharges rearranged into a single Majorana spinor. This

implies the extra possibility in this case to further truncate a quarter-maximal theory down

to a minimal one. The most general maximal gauged theory was studied in [28] and it turns

out to enjoy E7(7) global symmetry. Furthermore, in [23], the truncation defined by

E7(7) −→ SL(2,R)× SO(6, 6) ,

Θ ∈ 912︸︷︷︸
XMNP

(2,12)︸ ︷︷ ︸
ξαM

⊕ (2,220)︸ ︷︷ ︸
fα[MNP ]

, (4.18)

was found to yield a half-maximal theory [29] coupled to six extra vector multiplets.

The QC of the maximal theory

ΩMQXMNP XQRS = 0 , (133 ⊕ 8645) (4.19)

give rise to the following QC’s for Z2 even objects

ξαM ξβ
M = 0 , (3,1)

ξ(α
P fβ)MNP = 0 , (3,66)

3 fαR[MN fβPQ]
R − 2 f(α[MNP ξβ)Q] = 0 , (3,495)

εαβ
(
ξα
P fβPMN + ξαM ξβN

)
= 0 , (1,66)

εαβ fαMNR fβPQ
R + (f ξ terms) = 0 , (1,66) ⊕ (1,2079)

fαMNP fβ
MNP = 0 , (3,1)

εαβ fα[MNP fβQRS]|SD = 0 ,
(
1,462

)

(4.20)

where one can recognise all the QC’s of N = 4 supergravity, plus the last two lines which

therefore contain space-filling branes. In particular, the
(
1,462

)
contains exactly the 32

long weights that we expect from the results of the previous section.

To further truncate to the quarter-maximal theories, we perform the following trunca-

tion [53]

SL(2,R)× SO(6, 6) −→ (SL(2,R))3 × SO(4, 4) ,

Θ ∈ (2,12)︸ ︷︷ ︸
ξαM

⊕ (2,220)︸ ︷︷ ︸
fα[MNP ]

(2,2,2,1) ⊕ (2,2,2,28) , (4.21)

where once more we may regroup the embedding tensor of the N = 2 theory into the object

ΘΛ
A, where Λ takes values in the (2,2,2,1), while the index A spans the whole adjoint

representation of the global symmetry group.
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The N = 4 QC irreducible representations break into

(3,1) −→ (3,1,1,1) ,

(3,66) −→ (3,3,1,1) ⊕ (3,1,3,1) ⊕ (3,1,1,28) ⊕ odd ,

(3,495) −→ (3,1,1,1) ⊕ (3,1,1,35S) ⊕ (3,1,1,35C)

⊕ (3,3,1,28) ⊕ (3,1,3,28) ⊕ odd ,

(1,66) −→ (1,3,1,1) ⊕ (1,1,3,1) ⊕ (1,1,1,28) ⊕ odd ,

(1,2079) −→ (1,3,1,1) ⊕ (1,1,3,1) ⊕ (1,3,3,1)

⊕ (1,1,1,28) ⊕ (1,3,1,28) ⊕ (1,1,3,28)

⊕ (1,3,3,28) ⊕ (1,1,1,350)

⊕ (1,3,1,35V) ⊕ (1,1,3,35V)⊕ odd .

(4.22)

The QC’s demanded for consistency of the N = 2 theory read [27]

ΘΛ
α ΘΣ

β fαβ
γ + [tα]Λ

Γ ΘΣ
α ΘΓ

γ = 0 ,

ΘΛ[α ΘΛ
β] = 0 ,

(4.23)

where {fαβγ} and
{

[tα]Λ
Γ
}

are the global symmetry generators in the adjoint and vector

representation, respectively. The unneeded QC irreducible representations containing the

longest weights turn out to be (3,1,1,35S)⊕ (3,1,1,35C)⊕ (1,3,1,35V)⊕ (1,1,3,35V),

once again in perfect agreement with the analysis performed in the previous section.

A last step that can be discussed here in four dimensions is the one further breaking

supersymmetry to N = 1. This truncation is concretely realised as follows

(SL(2,R))3 × SO(4, 4) −→ (SL(2,R))7 ,

Θ ∈ (2,2,2,1) ⊕ (2,2,2,28) (2,2,2,2,2,2,2) .
(4.24)

However, the minimal theory one ends up with is purely coupled to chiral multiplets and

hence it possesses no vector fields. As a consequence, the obtained supergravity model will

reorganise the embedding tensor deformations surviving the above truncation into massive

deformations not associated with any gauging. In particular, in this model all of them may

be interpreted as parameters inducing a holomorphic superpotential in the seven complex

scalar fields. Due to this, we do not have any QC’s required for consistency and we do

expect all of them to be sourced by space-filling branes. This class of theories will be studied

in detail in the next section, where these parameters will be interpreted as the 27 = 128

generalised fluxes coming from an orbifold compactification of type IIB string theory.

To conclude this section, we quickly comment on the three-dimensional case. The

embedding tensor of the maximal theory belongs to the 1⊕ 3875 of E8(8) [24], while the

quadratic constraint belongs to the 3875⊕ 147250 [54]. By truncating the theory to the

half-maximal one with symmetry SO(8, 8), one can show that the embedding tensor is

truncated to the one of the half-maximal theory [25], while the quadratic constraints are

truncated to the quadratic constraints of the half-maximal theory plus extra constraints,
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and the highest-dimensional representation of such remaining constraints is the 6435,

in agreement with the results of the previous section (see table 11). Similarly, one can

study how the further truncations to the theories with eight and four supersymmetries

give patterns for the quadratic constraints in agreement with table 11. Moreover, the

theory with four supersymmetries in three dimensions can be further truncated to the

minimal theory. Just as in the 4D minimally supersymmetric case, we expect no quadratic

constraint to be present here and hence all highest weights surviving the branching of the

QC’s will correspond to exotic space-filling brane states. Effective descriptions of this type

can be e.g. obtained by compactifying M-theory on Joyce 8-manifolds of Spin(7) holonomy.

Internal manifolds of this type admit an orbifold limit where they are described as T 8/Γ,

where the discrete symmetry Γ can be e.g. Z4
2. These M-theory backgrounds are also

known to have perturbative corners given by type IIA orientifolds of Joyce 7-manifolds

of G2 holonomy [55], or heterotic strings on such G2-manifolds [56]. However, we leave a

careful analysis of all these features of the three-dimensional case as a future project.

5 IIB on T 6/(Z2 × Z2), fluxes and Bianchi identities

As explained at the end of the previous section, performing three Z2 truncations on a

maximal gauged supergravity theory in four dimensions yields an N = 1 supergravity model

where the supergravity multiplet is coupled to seven chiral multiplets. The scalar sector of

the theory contains seven complex fields spanning the coset space (SL(2,R)/SO(2))7 which

are usually denoted by Φα ≡ (S, Ti, Ui) with i = 1, 2, 3. The kinetic Lagrangian follows

from the Kähler potential

K = − log
(
−i (S − S)

)
−

3∑
i=1

log
(
−i (Ti − T i)

)
−

3∑
i=1

log
(
−i (Ui − U i)

)
, (5.1)

yielding

Lkin =
∂S∂S(

−i(S − S)
)2 +

3∑
i=1

(
∂Ti∂T i(

−i(Ti − T i)
)2 +

∂Ui∂U i(
−i(Ui − U i)

)2
)
. (5.2)

The presence of fluxes induces a scalar potential V for the scalar fields which is given

in terms of the above Kähler potential and a holomorphic superpotential W by

V = eK
(
−3 |W |2 + Kαβ̄ DαW Dβ̄W

)
, (5.3)

where Kαβ̄ is the inverse of the aformentioned Kähler metric and Dα denotes the Kähler-

covariant derivative.

As already mentioned earlier, the superpotential W is induced by the 128 deformation

parameters surviving the truncation of the 912 of E7(7) wih respect to Z3
2. The form of such

superpotential is given by the most general polynomial in (S, Ti, Ui) without any mixed

terms, i.e.

W ∼ 1 + . . . + S T1 T2 T3 U1 U2 U3 , (5.4)

which precisely includes 128 terms, each of which is induced by its own

deformation parameter.
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In what follows we will review how the above class of minimal supergravities arise from

orbifold compactifications of type IIB string theory down to four dimensions. Before moving

to that analysis though, let us note that the consistency of the N = 1 theory only requires

all massive deformations of this type to be arranged into a holomorphic superpotential.

In our specific case this requirement is automatically fulfilled by any polynomial function

of the type given in (5.4), while no further QC’s on its coefficients are needed. This

means that any QC in terms of the superpotential couplings surviving the Z3
2 truncation is

expected to be relaxed in our compactification yielding minimal supersymmetry by means

of space-filling branes.

As previously anticipated, the above minimal supergravity models with seven chiral

multiplets arise from dimensional reductions of type IIB string theory on T 6/ (Z2 × Z2)

with O3/O7-planes.11 The Z2 × Z2 orbifold acts on the six internal coordinates precisely

as described below equation (3.21). What further realises a supersymmetry breaking down

to a minimal amount is a Z2 flipping the sign of all the coordinates on the T 6. There need

to be O3-planes located at each fixed point of this involution, while a triplet of O7-planes

are placed at fixed points of those involutions obtained by combining this last Z2 with the

three non-trivial generators of the orbifold group.

Adopting the type IIB language, the seven complex scalars of the N = 1 model have

the following physical interpretation

S ↔ Axiodilaton ,

Ti ↔ Kähler moduli ,

Ui ↔ Complex structure moduli .

(5.5)

The first understanding of the mechanism that perturbatively induces a superpotential

from fluxes in this context is due to [58], where a superpotential of the form

WGVW = PF (Ui)︸ ︷︷ ︸
F flux

+S PH(Ui)︸ ︷︷ ︸
H flux

, (5.6)

where PF & PH are cubic polynomials in the complex structure moduli controlled by R-R

and NS-NS three-form fluxes with different legs in internal space. Superpotentials of this

type were found to describe special type IIB Minkowski backgrounds [59] with no-scale

symmetry due to the absence of T -dependence in W .

In [60] it was argued, on the basis of string dualities, that the superpotential in (5.6)

should be generalised to contain new fluxes which are named non-geometric. Subsequently,

in [61] the set of generalised fluxes was further enlarged to include the complete set of

objects closed under perturbative and non-perturbative string dualities. The corresponding

superpotential reads

W = PF (Ui)︸ ︷︷ ︸
F flux

+S PH(Ui)︸ ︷︷ ︸
H flux

+
∑
k

Tk P
(k)
Q (Ui)︸ ︷︷ ︸
Q flux

+ S
∑
k

Tk P
(k)
P (Ui)︸ ︷︷ ︸
P flux

+T1 T2 T3

(
PF ′(Ui)︸ ︷︷ ︸
F ′ flux

+S PH′(Ui)︸ ︷︷ ︸
H′ flux

)
+
∑
k

Ti Tj
(
P

(k)
Q′ (Ui)︸ ︷︷ ︸
Q′ flux

+ S P
(k)
P ′ (Ui)︸ ︷︷ ︸
P ′ flux

)
,

(5.7)

11See for instance [57] for a review on orientifold models with fluxes.
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where PF , PH , P
(k)
Q and P

(k)
P are cubic polynomials in the complex structure moduli

given by

PF (Ui) = a0 −
∑
i
a

(i)
1 Ui +

∑
i
a

(i)
2

U1 U2 U3

Ui
− a3 U1 U2 U3 ,

PH(Ui) = −b0 +
∑
i
b
(i)
1 Ui −

∑
i
b
(i)
2

U1 U2 U3

Ui
+ b3 U1 U2 U3 ,

P
(k)
Q (Ui) = c

(k)
0 +

∑
i
c

(ik)
1 Ui −

∑
i
c

(ik)
2

U1 U2 U3

Ui
− c

(k)
3 U1 U2 U3 ,

P
(k)
P (Ui) = −d(k)

0 −
∑
i
d

(ik)
1 Ui +

∑
i
d

(ik)
2

U1 U2 U3

Ui
+ d

(k)
3 U1 U2 U3 ,

(5.8)

while PF ′ , PH′ , P
(k)
Q′ and P

(k)
P ′ are cubic polynomials in the complex structure moduli

given by

PF ′(Ui) = a′3 −
∑
i
a′

(i)
2 Ui +

∑
i
a′

(i)
1

U1 U2 U3

Ui
− a′0 U1 U2 U3 ,

PH′(Ui) = −b′3 +
∑
i
b′

(i)
2 Ui −

∑
i
b′

(i)
1

U1 U2 U3

Ui
+ b′0 U1 U2 U3 ,

P
(k)
Q′ (Ui) = c′

(k)
3 +

∑
i
c′

(ik)
2 Ui −

∑
i
c′

(ik)
1

U1 U2 U3

Ui
− c′

(k)
0 U1 U2 U3 ,

P
(k)
P ′ (Ui) = −d′(k)

3 −
∑
i
d′

(ik)
2 Ui +

∑
i
d′

(ik)
1

U1 U2 U3

Ui
+ d′

(k)
0 U1 U2 U3 .

(5.9)

Note that the superpotential in (5.7) exactly comprises the aforementioned 128 terms

coming from the Z3
2 truncation of the embedding tensor of maximal gauged supergravity

in four dimensions.

Once we understood these orbifold compactifications of type IIB with fluxes as Z3
2

truncations of maximal gauged supergravities in D = 4, we would now like to interpret all

the QC irreducible representations accordingly as quadratic conditions for the fluxes which

may be sourced by space-filling objects in string theory. By applying our prescription,

we can identify all the space-filling branes as the longest weights of the QC irreducible

representations of the N = 2 theory decomposed by performing the last Z2 truncation.

All of the other long weights contained in the rest of the Z2 even QC irreducible represen-

tations which were unneeded in the two previous steps of the truncation are interpreted

as Bianchi Identities (BI), i.e. consistency constraints of the background itself. To be

more explicit, the BI’s can be seen as conditions for the absence of extra space-filling ob-

jects whose negative-tension counterparts realise the background itself. Mathematically,

those quadratic constraints can be interpreted as conditions enforcing the closure of the

flux-twisted exterior derivative operator.

By following the above prescription, let us now proceed to identify the space-filling

brane states and the BI’s for type IIB compactifications on T 6/(Z2 × Z2). The truncation
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net reads12

E7(7)

↓ Z2

SL(2,R)× SO(6, 6) →
(
1,462

)
↓ Z2

SL(2,R)3
U × SO(4, 4) →

(3,1,1,35S)⊕ (3,1,1,35C)⊕
⊕ (1,3,1,35V)⊕ (1,1,3,35V)

↓ Z2

SL(2,R)7

(5.10)

where the irreducible representations pulled out on the right of the above diagram will

precisely give rise to the BI’s of our theory, upon truncation down to SL(2,R)7, while the

space-filling branes will be captured by those QC irreducible representations surviving the

triple discrete truncation, i.e.

(1,1,1,350)⊕ (1,3,3,28)⊕ (3,1,3,28)⊕ (3,3,1,28)⊕ shorter weights ,

of SL(2,R)3
U × SO(4, 4). Further decomposition down to SL(2,R)7 yields the following

space-filling branes (
3Ti ,3Tj ,3Tk

)
(1 irrep) ,(

3S ,3Ti ,3Tj
)

(3 irrep’s) ,(
3S ,3Ui ,3Uj

)
(3 irrep’s) ,(

3Ti ,3Uj ,3Uk
)

(3 irrep’s) ,(
3Ti ,3Ui ,3Uj

)
(6 irrep’s) ,

(5.11)

which precisely contain the 16 × 23 = 27 = 128 space-filling branes we needed from the

previous analysis, while for the BI’s one finds(
3Ti ,3Tj ,3Uj

)
(6 irrep’s) ,(

3S ,3Ti ,3Uj
)

(6 irrep’s) ,
(5.12)

containing 12× 23 = 96 BI’s in total. Note that this perfectly matches the results of [30],

to which the present analysis can be regarded as an independent check.

A further physical comment concerning the possibility of relaxing the constraints. As

already stated above, each and every quadratic condition for type IIB fluxes appearing

in (5.11) can be relaxed by adding the correspondent space-filling (exotic) brane sourcing

the associated flux tadpole. All those branes are consistently preserving the same four

real supercharges as the very background. On the other hand, it becomes very natural to

ask about a similar possibility for the BI’s in (5.12). Indeed, just as any other algebraic

constraint, these are not needed for consistency. Their physical interpretation is that of

12The consistent identification for the different SL(2,R) labels is SL(2,R)7 ≡ SL(2,R)U1 × SL(2,R)U2 ×
SL(2,R)U3 × SL(2,R)T1 × SL(2,R)T2 × SL(2,R)T3 × SL(2,R)S .
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enforcing the condition for closure of the flux-twisted exterior derivative operator defined on

our CY background. Our intuition seems to suggest that the original CY will be deformed

into an G-structure manifold as an effect of the backreaction of fluxes to the background

geometry. In this context, the twisted exterior derivative operator will now receive torsion-

induced contributions. Following the philosophy of [62], part of the contributions to the

internal curvature can be interpreted as the presence of space-filling KK-monopoles and

T-duals thereof.

6 Conclusions

In this paper we have considered the supergravity theories that arise as sequences of Z2

truncations of the maximal theories. We have determined in all cases the 1/2-BPS space-

filling branes that preserve the supersymmetry of the truncated theory and the representa-

tions of the symmetry of such theory to which they belong. We have then discussed all the

possible gaugings of these theories as described in terms of the embedding tensor. We have

shown that for any theory, among the representations of the quadratic constraint on the

embedding tensor that survive the truncation but are not needed for supersymmetry, the

highest-dimensional ones are precisely those of the 1/2-BPS space-filling branes that pre-

serve the same supersymmetry of the truncated theory. This can be naturally interpreted

as the fact that these quadratic constraints after the truncation become tadpole conditions

for such branes.

We point out that the number of different Z2 truncations of a given supergravity theory,

that from a group-theory point of view is given by the number of different ways in which

the symmetry of the truncated theory can be embedded in the symmetry of the original

one, is also given by the number of vector central charges of the supersymmetry algebra.

This rather intriguing result shows once again the deep relation between supersymmetry

and group theory.

Although the analysis in this paper was performed uniquely in terms of the branes of

the IIB theory, it would be interesting to reinterpret this from the point of view of IIA

and also from the point of view of M-theory. In particular, the analysis of the tadpole

conditions for all the possible fluxes that can be included in the T 6/ (Z2 × Z2) orientifold

was performed in [30] also in the case of the IIA O6 orientifold, and this could then be

compared with the techniques developed in this paper.

Moreover, one can extend the three-dimensional case to include a more detailed anal-

ysis. In particular, the minimally supersymmetric gauged theories turn out to have fewer

constraints coming from consistency and supersymmetry [63] and hence a further trunca-

tion down to two real supercharges could be a very valuable venue for string model-building.

Three-dimensional theories with minimal supersymmetry can be obtained by compactify-

ing M-theory on Joyce 8-manifolds of Spin(7) holonomy, and internal manifolds of this type

admit an orbifold limit where they are described as T 8/Γ, where the discrete symmetry Γ

can be e.g. Z4
2, so that our techniques can be applied to this case. One can also use the

methods presented in this paper to investigate the duality relations with perturbative cor-

ners given by type IIA orientifolds of Joyce 7-manifolds of G2 holonomy [55], or heterotic
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strings on such G2-manifolds [56]. We leave a careful analysis of all these features of the

three-dimensional case as a future project.

Finally, we stress again that the vast majority of the branes discussed in this paper

are exotic, in the sense that they do not have a clear higher dimensional origin. It would

be of extreme interest to get any understanding of the dynamics of these objects, that in

our analysis must be included for symmetry arguments. This would dramatically improve

our understanding of string theory and our ability to construct models.

Acknowledgments

We would like to thank G. Pradisi for carefully reading and suggesting corrections to

the manuscript, and in particular N. Gubernari who contributed during his master thesis

project to the derivation of the D = 8 truncations. The authors would like to thank the

Galileo Galilei Institute (GGI) in Florence for hosting the workshop “Supergravity: what

next?” where this project was conceived. We furthermore respectively acknowledge the

hospitality of the theory group of the University of Uppsala and La Sapienza University in

Rome, where different parts of this project were completed. The work of GD is funded by

the Swedish Research Council (VR).

A D = 8 spinor conventions

In this appendix we discuss in detail all the spinor conventions that we have adopted

in section 2. All the fermions of the eight-dimensional maximal theory are spinors of

SO(3)× SO(2). We have denoted with σm (m = 1, 2, 3) the Pauli matrices of SO(3). The

gamma matrices of SO(2) are the first two Pauli matrices, that we denote with τa (a = 1, 2),

while the third Pauli matrix is the chiraly matrix of SO(2),

τaτb = iεabτ3 . (A.1)

As eq. (2.4) shows, all the spinors are chiral with respect to γ9τ3. They also satisfy the

Majorana condition in eq. (2.5), with C = C8σ2τ1 as in eq. (2.6). The matrix C8 is defined

in eq. (2.7), and commutes with γ9. On the other hand, the matrix τ1 anticommutes with

τ3, and hence the matrix C and γ9τ3 anticommute, so that the chirality conditions in

eq. (2.4) and the Majorana condition in eq. (2.5) are compatible. We call the Majorana

conditions in eq. (2.5) ‘symplectic’ because C8 is symmetric and satisfies the condition in

eq. (2.7) with the minus sign, so that the condition Ψ = C8Ψ
T

would not be consistent.

This is standard in the supergravity literature.

We now want to discuss the reality properties and the properties under Majorana flip

of the various fermionic bilinears that can be constructed, and in particular of the ones

that occur in section 2. We make use of the identities

C†γµC = −γTµ
C†σmC = −σTm
C†τaC = τTa

C†τ3C = −τ3 , (A.2)
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bilinear reality property flip

ψχ real even

ψγµχ imaginary odd

ψσmχ imaginary odd

ψτaχ real even

ψτ3χ imaginary odd

ψγµνχ real odd

ψγµσmχ real even

ψγµτaχ imaginary odd

ψγµτ3χ real even

ψσmτaχ imaginary odd

ψσmτ3χ real even

ψγµνρχ imaginary even

ψγµνσmχ imaginary even

ψγµντaχ real odd

ψγµντ3χ imaginary even

ψγµσmτaχ real even

ψγµσmτ3χ imaginary odd

ψγµνρσχ real even

ψγµνρσmχ real odd

ψγµνρτaχ imaginary even

ψγµνρτ3χ real odd

ψγµνσmτaχ imaginary even

ψγµνσmτ3χ real odd

ψγµνρσσmχ imaginary odd

ψγµνρστaχ real even

ψγµνρσmτaχ real odd

ψγµνρσmτ3χ imaginary even

ψγµνρσσmτaχ imaginary odd

Table 12. The reality properties and the properties under Majorana flip of various fermionic

bilinears. The analogous properties for all the other bilinears can be derived from those in this

table using the duality relations in eq. (A.3).

the first of which is the same as eq. (2.7). A Majorana spinor Ψ, satisfying eq. (2.5),

also satisfies Ψ = −ΨTC†. As a consequence, for instance the bilinear ψσmτaχ is equal

to −χσmτaψ, which means that the bilinear is odd under Majorana flip. By complex

conjugation the bilinear goes to χσmτaψ, which is minus the bilinear itself because of

Majorana flip. As a conseguence, the bilinear is purely imaginary. One can easily generalise

this to get the reality conditions and the Majorana-flip properties for all the bilinears. We

give a summary of the properties of the various bilinears in table 12.
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We now want to derive the duality relations among different bilinears. Starting from

the definition of the γ9 matrix given in eq. (2.3), by multiple contractions from the left

with gamma matrices one gets

γµ1...µm = −(−)[
n+1
2 ]i

n!
εµ1...µmν1...νnγ

ν1...µnγ9 m+ n = 8 . (A.3)

Using this relation and the chirality properties in eq. (2.4), the properties of the bilinears

that contain the matrix γµ1...µm are related to those of the bilinears that contain the matrix

γν1...νnτ3. In particular from the bilinears given in table 12 one can derive all the others.

Given a spinor Ψ satisfying γ9τ3Ψ = Ψ, for the particular case of m = n = 4 one gets

γµ1...µ4Ψ = − i

4!
εµ1...µ4ν1...ν4γ

ν1...µ4τ3Ψ . (A.4)

Contracting from the left with τa and using eq. (A.1), one then obtains the self-duality

condition

γµ1...µ4τaΨ = − 1

4!
εµ1...µ4ν1...ν4εabγ

ν1...µ4τbΨ . (A.5)

In general, in eight dimensions one can impose on a doublet of 4-forms Xµ1...µ4 a the

self-duality condition

Xµ1...µ4 a =
α

4!
εµ1...µ4ν1...ν4εabX

ν1...ν4
b , (A.6)

where α can be either 1 or −1. In particular, eq. (A.5) corresponds to the case α = −1.

On the other hand, in section 2 we have shown that from the field-strength FAµνρσ of the

3-form potential AAµνρ one can construct the composite quantity FAµνρσVAa that satisfies the

self-duality relation in eq. (2.24), corresponding again to the case α = −1 in eq. (A.6). In

general, if Xµ1...µ4 a and Yµ1...µ4 a satisfy eq. (A.6) with the same α, one can prove that the

following identities hold:

Xµνρσ aY
µνρσ

a = 0 Xµνρσ aY
µνρσ

bεab = 0 . (A.7)

These relations have been used to prove the closure of the supersymmetry algebra on the

3-forms in section 2.
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