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ABSTRACT: We consider in any dimension the supersymmetric Zo truncations of the max-
imal supergravity theories. In each dimension and for each truncation we determine all
the sets of 1/2-BPS space-filling branes, i.e. branes whose world-volume invades the whole
of space-time, that preserve the supersymmetry of the truncated theory and the repre-
sentations of the symmetry of such theory to which they belong. We show that in any
dimension below eight these sets always contain exotic branes, that are objects that do
not have a ten-dimensional origin. We repeat the same analysis for half-maximal theories
and for the quarter-maximal theories in four and three dimensions. We then discuss all
the possible gaugings of these theories as described in terms of the embedding tensor. In
general, the truncation acts on the quadratic constraints of the embedding tensor in such
a way that some representations survive the truncation although they are not required by
the supersymmetry of the truncated theory. We show that for any theory, among these rep-
resentations, the highest-dimensional ones are precisely those of the 1/2-BPS space-filling
branes that preserve the same supersymmetry of the truncated theory, and we interpret
this result as the fact that these quadratic constraints after the truncation become tadpole
conditions for such branes.
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1 Introduction

It is well known that the SO(32) type-I string theory in ten dimensions is obtained from
the type-1IB theory by performing the orientifold projection [1, 2]. In the closed sector, the
projection is due to the O9-plane, while the open sector arises due to the presence of D9-
branes [3], and RR and NSNS tadpole cancellations correspond to the fact that the charge
and tension of the O9-plane are cancelled by those of the D9-branes. In the low-energy
theory, the projection in the closed sector acts as a Zy truncation to N' = 1 supergravity,
in which the spinors are halved and, among the gauge potentials, the NSNS 2-form B, and
the RR 4-form C}y are projected out, while the RR 2-form C5 survives.

From the point of view of supergravity, there is another consistent supersymmetric
Zs truncation, in which all RR fields are projected out, leading to the gravity sector of
the heterotic theory. The two truncations are related by S-duality. Denoting with v,
the gravitino of the IIB theory, which is a doublet of Majorana-Weyl spinors of the same



chirality, using the conventions of [4] the gravitino-dependent part of the supersymmetry
transformations of Bs, Cy and Cy can be schematically written in the string frame as

50}”’ = ief(bg’)/[ua'lw,/] + ...
5B;w = iE’Y[MUZSd}u] +... (1.1)
6Cuupa = eid)g’)/[u,jp()'gwg] +...

where the Pauli matrices act on the doublets of spinors. The O9 truncation is then realised
in the spinor sector as the projection

09:V =40,V (1.2)
while the S-dual truncation, which we label SO9, acts as
SO9: ¥ = £o3¥ (1.3)

where with U we denote any spinor in the theory [4]. From eq. (1.1) one can see that the
truncation ¥ = 409V projects out both By and Cy while keeping Cy, and hence does not
lead to a supersymmetric theory.

In the low-energy theory, the occurrence of D9-branes is signalled by the fact that one
can consistently introduce a RR 10-form in the supersymmetry algebra, whose transforma-
tion contains the Pauli matrix o; consistently with the fact that the field survives the O9
truncation [4]. Analogously, one can consider the S-dual of the RR 10-form potential, and
write an effective action for the 1/2-BPS brane that is charged under it [5]. The tension of
such brane scales like g;* [6, 7], and the presence of the Pauli matrix o3 in the supersym-
metry variation of the potential signals that it survives the SO9 truncation.! The presence
of two space-filling 1/2-BPS branes, each of the two surviving each of the two truncations,
is also signalled by the presence of the doublet of central charges Zjj, a = 1,2, in the
supersymmetry algebra. Indeed, if p is along the time direction, this can be dualised to
7

f s> Where the i’s are space indices, which is a doublet of 9-brane central charges [6]. For

each Zy truncation, the supersymmetry preserved by the 1/2-BPS 9-brane that survives
the projection is exactly the supersymmetry of the truncated theory.

The 10-forms that couple to the 9-branes in IIB belong to a quadruplet (i.e. a spin-
3/2 representation) of the global symmetry SL(2,R) of IIB supergravity [8], and are more
precisely the spin 3/2 and —3/2 components (i.e. the longest weights) of that representa-
tion [5, 9]. The same applies to maximal theories in lower dimensions: in any dimension
D one can determine the representation of the global symmetry group G to which the
RR D-form potentials belong [10, 11], and the space-filling 1/2-BPS branes turn out to
correspond to the long weights of that representation [12]. The analysis of [10, 11] was
performed by suitably decomposing the very-extended Kac-Moody algebra Eq; [13], and

n [7] it was conjectured that the SO(32) heterotic theory can be obtained from type-IIB by performing
the S-dual of the orientifold projection, and the charge and tension of the S-dual of the O9-plane are
cancelled by these branes, that are the S-duals of the D9-branes and are defined as end-points of D-strings.
We will not discuss this issue in this paper.



D G repr. branes R-symmetry Z, deg.

1IB SL(2,R) 4 2 U(1) 2 1
9 Rt x SL(2,R) 4 2 U(1) 2 1
8 | SL(3,R) x SL(2,R) | (15,1) 6 U(2) 3 2
7 SL(5,R) 70 20 USp(4) 5 4
6 S0(5,5) %g fg USp(4) x USp(4) | & 1():1()1’ 5) 186
5 Es(6) 1728 432 USp(8) 27 16
4 Ezn 8645 2016 SU(8) 63 32
3 Eg(g) 147250 | 17280 SO(16) 135 128

Table 1. The 1/2-BPS space-filling branes of the maximal theories in any dimension and their
degeneracy [12]. The number of branes is given in the fourth column, while the third column
contains the representation of the corresponding D-form potential. The sixth column contains the
representation of the central charge and in the last column we list the degeneracy, which is simply
the ratio of the number of branes to the dimension of the representation of the central charge. In
six dimensions the first line corresponds to branes supporting a vector multiplet, and the second
line to branes supporting a tensor multiplet.

we will especially make use of the results of [10], where the representations of the potentials
in the lower-dimensional theories were shown to arise from the dimensional reduction of
both standard potentials and mixed-symmetry potentials in ten dimensions, that follow
from the decomposition of the E;; algebra [14].

A crucial result that applies to all the maximal theories in dimension less than ten
is the fact that the 1/2-BPS condition for space-filling branes is degenerate, which means
that different branes can preserve the same supersymmetry [12].2 This degeneracy was
determined in [12] by simply observing that the number of 1/2-BPS space-filling branes,
that are the long weights of the representation of the D-forms, is always a multiple of the
dimension of the R-symmetry group of the vector central charge Z,. As in the IIB theory,
we can associate to each space-filling brane a Zo truncation to the half-supersymmetric
theory, and given that the degenerate branes all preserve the supersymmetry of the same
truncation, we arrive at the obvious conclusion that the number of different supersymmetric
Zsa truncations is precisely the dimension of the representation of the central charge Z,,.
The first result of this paper will be to identify these truncations, and for each truncation
to identify the branes that are not projected out, i.e. the branes that preserve the same
supersymmetry of the truncated theory. We give in table 1 the number of branes and the
corresponding degeneracy in any dimension, as well as the dimension of the vector central
charge, which gives the number of different supersymmetric Zo truncations.

We will start considering explicitly the eight-dimensional case.? We will determine the
supersymmetry transformations of all the fields in a manifestly SL(3,R) x SL(2, R)-covariant

2The same applies to 1/2-BPS defect branes [15] and domain walls [16] of the maximal theories.
3In D = 9 the dimension of the central charge and the degeneracy of the space-filling branes are identical
to the IIB case.



notation,? and we will use this to show that there are three different Zs truncations to
minimal supergravity coupled to two vector multiplets. The R-symmetry of the theory is
SO(3) x SO(2), and we will therefore introduce two sets of Pauli matrices: the matrices o,
i = 1,2,3, generate the SO(3) Clifford algebra, while 7,, a = 1,2, which numerically are
equal to the first two Pauli matrices, generate the SO(2) Clifford algebra, and 73, which is
the third Pauli matrix, is the SO(2) chirality matrix. There are three 2-forms in the theory,
coming from Bs, Cy and the compactified Cy in IIB, and we will find that the gravitino-
dependent part of their supersymmetry transformations can be schematically written in
the string frame as

0C,, = ie_¢€'y[ual7'3wy} + ...
(5B,u1/ = ié’y[uangl/Jy] + ... (1.4)
5Cyu3:1z2 = i€_¢€7[u027—3¢u} +...

where 2% (i = 1,2) are the two compact directions. It is easy to identify the three Zs
truncations as

09: U= :i:O‘ng\I/
SO9: ¥ = +o373¥ (1.5)
o7: v= :EUng\I/ 5

and only one 2-form survives each truncation. The 8-forms that couple to the space-filling
7-branes belong to the (15,1). We will write down the variation of these potentials and
show that for each truncation in eq. (1.5) there are two space-filling branes that survive.

The fact that there are two space-filling branes preserved by each truncation is not
surprising if one considers in particular the O7 truncation. Indeed, we know that the D7-
brane and its S-dual preserve the same supersymmetry [17, 18]. Performing T-dualities
in 2! and 22, the D7-brane is mapped to the D9-brane, while the S-dual of the D7-brane
is mapped to an exotic space-filling brane, i.e. a brane charged with respect to an 8-form
potential whose IIB origin is a mixed-symmetry potential. These branes survive the O9
truncation in eight dimensions. Similarly, by S-duality one obtains the branes that survive
the SO9 truncation. All these arguments can then be repeated in all lower dimensions,
and by multiple T and S-duality transformations one obtains all the different truncations
and all the branes that preserve the same supersymmetry of each truncation. Most of
these branes are exotic, and we identify them with the corresponding components of the
mixed-symmetry potential using the universal T-duality rules derived in [19].

The Z, truncation of the maximal theory in D dimensions gives half-maximal su-
pergravity coupled to d = 10 — D vector multiplets. This theory has global symmetry
R* x SO(d,d) in dimension higher than four, SL(2,R) x SO(6,6) in four dimensions and
SO(8,8) in three dimensions, and we identify in all dimensions the irreducible representa-
tions of these groups that contain the branes preserving the same supersymmetry of the
truncated theory. The particular truncation such that R™ is identified with the string
dilaton scaling (and therefore SO(d, d) is T-duality) is always the SO9 truncation.

4As far as we know, this result was not available in the literature.



D G repr. branes R-symmetry Z, | deg.
35v 8 8
6A RT x SO(4,4) 35g 8 USp(2) x USp(2) | (1,1) | 8
35¢ 8 8
6B SO(5,5) 320 80 USp(4) 5 16
320 80 16
|4 + |4
5 Rt x SO(5,5) 210 80 USp(4) 5 16
(3,495) 480 32
4 L(2,R 4 15
SL(2,R) x SO(6,6) | 1 9079) | 450 U@ 32
3 SO(8,8) 60060 8960 SO(8) 35 256

Table 2. The number and the degeneracy of the 1/2-BPS space-filling branes of the half-maximal
theories which arise as Zg truncations of the maximal ones [20]. In the 6A theory, 8 of the branes
support tensor multiplets and the remaining 16 support hypermultiplets. In the 6B theory the
branes support vector multiplets. In five and four dimensions half of the branes support vector
multiplets and the other half support hypermultiplets [20].

Starting from six dimensions, apart from the branes that preserve the same super-
symmetry of the truncation, there are additional space-filling branes surviving the trun-
cation which are 1/2-BPS states of the truncated theory. As in the maximal case, one
can determine the vector central charge Z,, as a representation of the R-symmetry of the
half-maximal theory, and relate it to the number of space-filling branes to determine their
degeneracy [20]. We list in table 2 the number of 1/2-BPS space-filling branes, the central
charge and the degeneracy for the truncated theories. In the table we denote with 6A the
N = (1,1) theory and with 6B the N’ = (2,0) theory, and the latter case corresponds to
IIB compactified on T%/Zs, so that the truncation is geometric. Exactly as in the maximal
theory, the number of vector central charges gives the number of Zo truncations to quarter-
maximal theories, and the degeneracy gives the number of space-filling branes that preserve
the same supersymmetry of the truncation. We will be able to show that in all cases the
branes that preserve the same supersymmetry of a given truncation of the half-maximal
theory are the union of two different sets of degenerate branes of the maximal theory.

The analysis can be further extended to consider the Z, truncation of the quarter-
maximal theories. Indeed, starting from four dimensions, apart from the branes of the
half-maximal theories that preserve the same supersymmetry of the truncation, there are
additional space-filling branes surviving the truncation which are 1/2-BPS states of the
truncated quarter-maximal theory. In [21] the number of space-filling branes of the quarter-
maximal theories in four and three dimensions was determined and then compared to the
number of vector central charges to obtain the degeneracy. We list the results in table 3.
Again, the number of vector central charges gives the number of Zs truncations to theories
with four supercharges, i.e. N’ = 1 in four dimensions, and the degeneracy gives the number
of space-filling branes that preserve the same supersymmetry of the truncation. We will
show that the branes that preserve the same supersymmetry of a given truncation of the
quarter-maximal theory are the union of four different sets of degenerate branes of the

maximal theory.



D G repr. branes | R-symmetry Z, | deg.
(1,1,1,350) | 96 32
‘ 1,3,3,28) 96 32

4 | SL(2,R)3 4,4 (1,33, 2
SL(2,R)” x S0(4,4) (3,1,3,28) | 96 v 31 g
(3,3,1,28) 96 32
(28, 350) 2304 256

4,4 4,4 2 2

3 80U xS0 | o | gy | SUDXSUR) | (3:3) |

Table 3. The number and the degeneracy of 1/2-BPS space-filling branes of the quarter-maximal
theories resulting from Z, truncations [21] (see also tables 7 and 8 of [22]).

The truncation of the maximal theory to the half-maximal one can also be performed
in the presence of gaugings. In particular, the truncation of N = 8 gauged supergravity to
N = 4 gauged supergravity coupled to six vector multiplets was studied in [23] using the
embedding tensor formalism [24-27]. Decomposing the embedding tensor of the maximal
theory [28] under SL(2,R) x SO(6,6) and projecting out the representations that are odd
under Zo, one is left with the embedding tensor of the half-maximal theory [29]. On the
other hand, by projecting out the representations of the quadratic constraints that are odd
under Zs, one is left with more than the quadratic constraints of the half-maximal theory.
Among the representations of the quadratic constraints that survive the Zo truncation
but are not required by supersymmetry, the highest-dimensional one contains space-filling
branes that preserve the same supersymmetry of the Zs truncation. The fact that this
quadratic constraint is not required in A/ = 4 although it is not projected out has there-
fore the natural interpretation that it becomes a tadpole condition for the corresponding
brane [23].

Using the results of the first part of this paper, we will generalise this to any max-
imal theory. All the space-filling branes that preserve the same supersymmetry of the
Zy truncation belong to the representation of the symmetry of the half-maximal theory
which is the highest-dimensional representation of the quadratic constraint which survives
the truncation but is not required by the supersymmetry of the truncated theory. We
will also show that exactly the same applies for the truncation from the half-maximal to
the quarter-maximal theories, using the quadratic constraints of the embedding tensor of
N = 2 theories discussed in [27]. The truncation of the four-dimensional N’ = 2 theory
whose symmetry appears in table 3 gives the A" = 1 theory with SL(2,R)” global symme-
try. Minimal supersymmetry does not require any quadratic constraint for the embedding
tensor, and consistently we find that all the highest-dimensional representations of the
quadratic constraints of the A/ = 2 theory that survive the Zs truncation coincide with
the representations of the space-filling branes which preserve the same supersymmetry of
the truncation. To obtain this result, we will use the analysis of [30], where the space-
filling branes of the SL(2,R)” A" = 1 model that arises from the IIB 03/07 T%/(Zy x Z2)
orientifold were derived.

Finally, we will discuss the truncations of the gauged theories with lower supersym-
metry from the point of view of the maximal theories. Considering again the IIB O3/07



TC/(Zo x Z3) orientifold, the embedding tensor of the four-dimensional theory arises from
geometric and non-geometric IIB fluxes. These fluxes satisfy Bianchi identities, and we
will show that these Bianchi identities are in the same representations as the space-filling
branes that preserve the same supersymmetry of the orbifold. Again, the SL(2,R)” analysis
performed in [30] will be crucial to get this result. The result also applies to T%/Zy x T™
orientifolds.

The plan of the paper is as follows. In section 2 we derive the supersymmetry transfor-
mations of the fields of maximal supergravity in a manifestly SL(3,R) x SL(2, R)-covariant
notation, and we use this to derive the three independent Zs truncations to the half-
maximal theory coupled to two vector multiplets. We determine the space-filling branes
that for each truncation preserve the same supersymmetry of the truncated theory. In
section 3 we generalise this result to any dimension and any supersymmetry. In section
4 we discuss gauged supergravities, and we show that in general the highest-dimensional
representations of the quadratic constraint that survive the Zsy truncation but are not
required by the supersymmetry of the truncated theory precisely coincide with the repre-
sentations containing the space-filling branes that preserve the same supersymmetry of the
truncation. This is also done for the truncation of theories with lower supersymmetry. In
section 5 we discuss the particular case of the IIB 03/07 T%/(Zy x Zs3) orientifold, and we
show that the Bianchi identities are in the representations of the space-filling branes that
preserve the same supersymmetry of the orbifold truncation. Finally, section 6 contains
our conclusions. The paper also contains an appendix, in which the details of the D = 8
notations and conventions used in section 2 are explained.

2 D = 8 supergravity and its truncations

The SU(2) gauged maximal D = 8 supergravity was originally constructed in [31] by
dimensional reduction from eleven dimensions on an SU(2) group manifold. This was later
generalised in [32] to include more general gaugings. The supersymmetry transformations
in the ungauged case can be recovered from these papers, but they are not suitable for
our purposes, because we need them in a formulation which is manifestly covariant under
SL(3,R)xSL(2,R). In the first subsection we will derive these transformations imposing the
closure of the supersymmetry algebra, and in particular we will write down the gravitino-
dependent part of the supersymmetry transformation of the 8-form potentials. In the
second subsection we will show that the theory admits three different Zs truncations to
the half-maximal theory coupled to two vector multiplets, and by considering the action
of these projections on the 8-forms we will determine the space-filling branes that are not
projected out in each truncation.

2.1 Supersymmetry algebra

We first introduce the notation. We work with a mostly-minus space-time signature, and
we denote the curved space-time indices with Greek letters u,v,..., while the tangent-
space indices are «,3,.... We denote with upstairs indices M = 1,2,3 and A = 1,2
the fundamentals of SL(3,R) and SL(2,R), and with m = 1,2,3 and a = 1,2 the vector



indices of their maximal compact subgroups SO(3) and SO(2).® The seven scalars in the
theory parametrise the coset-space SL(3,R)/SO(3) @ SL(2,R)/SO(2). We describe them
introducing the matrices L'; and V§, together with the inverse matrices LM and VA,
satisfying the identities

TN N T M
N LN = Sy n LM =amn M LN Lpemnp = exnp

Vv B, = o8 VavAb = gab ViVhew = €an - (2.1)
We define the Maurer-Cartan forms as

E%a,uLMn = Qumn + Pp,mn
VaAauVAb = Q,uab + P,uab ) (22)

where the SO(3) and SO(2) connections @Qumn and Q4 are antisymmetric while P, .,
and P, 4, are symmetric and traceless. The other bosonic fields are the vielbein e,“, the
1-form A, a4 in the (3,2), the 2-form Aﬁ/[y in the (3,1) and the 3-forms Aﬁyp in the (1, 2).
The field-strengths of the 3-forms satisfy a self-duality condition.

We now move to discuss the fermionic sector. The eight-dimensional chirality matrix
79 is defined in terms of the gamma matrices v, as

— i H1-..48
79 = Ty s : (2:3)

We also introduce the Pauli matrices o, which act on SO(3) spinor indices. Similarly, we
introduce the matrices 7, acting on the spinor indices of SO(2). Numerically, 73 and 7o
coincide with o1 and o2. We will also need the SO(2) chirality matrix 73, which coincides
numerically with 3. The eight-dimensional fermions are the gravitino ¢, and the spinors
Xm and X, while we denote with € the supersymmetry parameter. They all have also
spinor indices of SO(3) x SO(2), and satisfy a chirality condition with respect to yg7s.
In particular

VoT3u = Yu  V9T3Xm = —Xm  V9T3Xa = Xa  9TIE=€ (2.4)
and thus x,, has opposite ‘chirality’ with respect to all the other fermions. All the fermions
also satisfy the ‘symplectic’ Majorana condition

v=CT (2.5)

where C' is defined as
C = Cgoamy (2.6)

and the eight-dimensional Majorana matrix Cg is symmetric and satisfies

CluCs = -7 . (2.7)

SRepeated m and a indices, regardless of whether they are up or down, are meant to be contracted by
™™ and 5.



It can be shown that the symplectic Majorana condition of eq. (2.5) is compatible with
the chirality conditions defined in eq. (2.4). Finally, the spinors x,, and x, also satisfy the
irreducibility conditions

OmXm = TaXa =0 . (2.8)

The number of on-shell degrees of freedom that these fermions propagate match those of
the bosons. We discuss in more detail the fermionic sector in appendix A, where we also
derive the properties of the various bilinears under Majorana flip.

The way we proceed to derive the supersymmetry transformations of the fields is by
imposing that the supersymmetry algebra closes. We first write down the final outcome
of our analysis, and then we discuss in more detail how the algebra closes on the various
fields. The supersymmetry transformations of the fermionic fields are

v )
6, = Dye — @F P LMVAS  OmTae + 54
1

1
_%pra I/Mm')/,uzzpcrUmTS6 + 6FlwpLMW’L’YVpUmTS6

BT Flﬁ,pa Vaa Y P 1a€

FMy7rA
—Funmaly, Vv omTae

) ~ar~ 1 -~y o~
5Xm - _§Pp,mn7 OnT3€ + 12Fuy MAL]M‘/;;LLY'WI’7_(17_36 + 24Fuy MAL%VaAfmnp’YMVJpTaT\?e

+ 18F,uz/pLMm’7quO-m€ + 36 FuprMnEmnp’}/'mjpap6

j - 1 e
OXaq = —5 ,uab'}/ THE — EF VMAL%VGA’)/MVUmG — EFMVMAL%%AﬁabPYMVUmT?)E

Jr64 FrpsVaay""7e . (2.9)

In the transformation of the gravitino, the derivative D), is covariant with respect to local
Lorentz, local SO(3) and local SO(2), that is

1 ) 1
DM6 = 8M6 + Zw“aﬁ’}/a’ge + ZQ,umnemnpO'p6 + ZQuabEab7—36 . (2‘10)
The field-strengths F},, pra, F) /WP and Flﬁ,po are defined as

F;LVMA = 28[;},141/] MA

3
M MNP AB
Flvp = 30}, AVp] Jr 2 €T AuNatyy P
8 8
A A AB AB
.F:ul,p(7 = 48[ Al/pO’} - §€ A[“MBF pa] A[#V pa.} MB (211)

and they are invariant with respect to the gauge transformations
0A, A = Oulra

1
(SA%[, = 8[ Ey] MNP ABANAFMVPB

8¢
2 4
A AB M ABM
5AHVP - 38[# Vp} 9 AMBF,qu 36 E[# pr] MB . (212)



The supersymmetry transformations of the bosons are

«

de,* = —iey*y,
OLnrim = Lavmn€onTsXm
0Vaa = VabeThXa
A A = LymVaa (i€0mTathy — €Yu0mXa — €YuTaT3Xm)

s f o 1_ 1
SANM, =L} (ze’y[uammd}y] + 26’ywxm> + ZEMNPGABA[H Na0A,) Py

3

4 1
+§€ABAfI\fV5Ap] MB —+ EEABECDEMNPA[M MBAVNcéAp] PD . (213)

~ _ T_ 2
(514:?1,,0 = VaA <€'Y[uu7—a¢p] — €’Yluypxa> — §€ABA[MMB(5A%]

We now discuss in some detail how the analysis of the closure of the supersymmetry
algebra was performed. We have computed the commutator of two supersymmetry trans-
formations of parameters €5 and €; on the bosonic fields, and we have imposed that this
closes on all the local symmetries of the theory. In particular, on the vielbein one obtains

[01,02]e,* = 0,87 €, " + £V 0ve,” + A“’Beug , (2.14)
where the general coordinate transformation parameter is

§u = —i€2Vu€1 (2.15)

and the local Lorentz parameter is

o~ 7 B 51 _
Aaﬁ = f”wuag + L%VQA <24FAleVA€2fyaﬁw,0mTa€1 + 12Fa,8MA€2UmTa€1>

b o Mo 2 _
+Lpm <18FH pMGQ’VaﬁWpUstﬂ + 3Faﬁu€27“0m7'361>

3 _
—i—gFo’?ﬁMVVAaeQ’y”VTael : (2.16)
All the other fields also transform correctly under general coordinate transformations.
One can show that on top of this, on the scalars one produces local SO(3) and SO(2)
transformations. To prove that the supersymmetry algebra closes on the vector A, y74 one
needs the identities

DMLMm = a,u,LMm + Q,uanMn = PuanMn D,ufﬁ]\r{ = _P,umnfﬁj\{[
DuvAa = au‘/Aa + Q,u abVap = P,u abVAb DuVaA = _P,uabf/bA (217)

which follow from the definitions given in eq. (2.2). The final result is that the algebra
produces a gauge transformation of parameter

Apa =N — A ma (2.18)
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where
A;I;ISX = 1LymVAaC20mTa€l . (2.19)

The gauge transformation parameter of the 2-forms is

i = meeyM v Al — éeMNPeABAMNAAS;;y , (2.20)
where .
Sy M — —%in]‘f EXVuomT3€L - (2.21)
Finally, the gauge parameter of the 3-forms is
B, = EA AL, 4 S AP AT L S ATANNT | (222)
where L1
B = gVaAEQ’}/“VTa€1 ) (2.23)

A crucial ingredient to prove the closure of the supersymmetry algebra on the 3-form
doublet is the self-duality relation

1

F;ﬁ.../vaa = _?Qﬂ...u4u1...u45abFV1mV4 AVAb . (2.24)

We refer to appendix A for more details on the self-duality properties in eight dimensions.
Following [8], one can proceed and derive the supersymmetry transformations of the
higher-rank forms by imposing the closure of the supersymmetry algebra, provided that the
first-order duality conditions are imposed. In particular, the algebra closes on the 4-forms
Ay s in the (3,1) that are dual to the 2-forms, on the 5-forms AY4 in the (3,2) that are
dual to the 1-forms, and on the 6-forms Ag ;™" in the (8,1) and Ag s in the (1,3), that
are dual to the scalars. Moreover, the algebra closes on the non-propagating 7-forms in the
(6,2) & (3,2) and 8-forms in the (15,1) & (3,3) & (3,1) ® (3,1) [10, 11]. In particular,
we are interested in the highest-dimensional representation of the 8-forms, which is the
(15,1). Indeed, in general the p-branes of the maximal theory are associated to the long
weights of the highest-dimensional representation of the (p 4+ 1)-forms [12, 33]. The 15 is
the irreducible representation with two symmetric indices up and one down. To determine
how the field AQ/I N b behaves with respect to the different Zs truncations, we only need the
gravitino-dependent part of its supersymmetry transformation, which is

5AH1,‘.H8MNP = L%E%Lpng’y[ul_._lndn?ﬁug] + ... . (2.25)

The 1/2-BPS space-filling branes correspond to the components of the 8-form potential
that satisfy the highest-weight constraint. These in general are all the long weights of the
representation, which in the case of the 15 of SL(3,R) are the six components of Ag™" p
such that M = N and M # P [12]. In the next subsection we will determine the three
different Zs truncations to the half-maximal theory coupled to two vector multiplets, and
we will show that for each truncation there are two space-filling branes that survive the
projection. These are the branes that preserve the supersymmetry of the truncated theory.
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Figure 1. The roots of SL(3,R).

2.2 Zsg truncations to half-supersymmetry and space-filling branes

The maximal theory in D = 8 can be truncated to half-maximal supergravity coupled
to two vector multiplets. The resulting theory has global continuous symmetry R™ x
SL(2,R) x SL(2,R), and therefore there are three independent truncations because there
are three different ways of embedding Rt x SL(2,R) inside SL(3,R). The three different
embeddings can be easily visualised by looking at the root diagram of SL(3,R), which
we draw in figure 1. Each of the three SL(2,R)’s are generated by one positive root, the
corresponding negative root and the corresponding Cartan generator.

We first discuss the scalar sector. The scalars V§ are obviously not projected out
because the truncation does not act on the SL(2,R) factor of the maximal theory. The
index M in the fundamental of SL(3,R) splits as M = (4, A), where A = 1,2 is the index
of the fundamental of the SL(2,R) inside SL(3,R), and similarly the SO(3) index m splits
as m = (f,a), where a is the vector index of the maximal compact subgroup SO(2) of
SL(2,R). The scalars Ly, are truncated to

Larm — (e%,e7%2V,,) (2.26)

where the dilaton ® parametrises RT and the matrix Vi, satisfies the same identities as
Vg given in eq. (2.1).

We then derive how the truncation acts on the fermions. The gravity multiplet of the
truncated theory contains a Majorana gravitino and a Majorana spinor, while each vector
multiplet contains a single Majorana spinor. We find that the truncation (up to an overall

sign) is
Y = o473ty
Xt = O4T3Xy
Xa = —04T3Xa
Xa = —04T3Xa - (2.27)
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Figure 2. The 15 of SL(3,R) to which the 8-forms belong. The longest weights are painted in red,
and for each longest weight we have written the corresponding component of the potential. For
simplicity the space-time indices are omitted. The shortest weights have multiplicity two.

The supersymmetry parameter € is truncated like the gravitino. It can be checked that
the constraints of eq. (2.8) and the Majorana condition of eq. (2.5) are consistent with
the truncation and this implies that one ends up with the correct number of fermions.®
The chirality condition of eq. (2.4) on the truncated fermions gives two spinors of opposite
chirality that can be recast in a single Dirac spinor W satisfying the standard D = 8

Majorana condition ¥ = C’g@T, where Cg = Cg7yg satisfies the condition
CivuCs =17 (2.28)

which has opposite sign with respect to eq. (2.7).

We can now figure out how the truncation acts on the supersymmetry algebra. First
of all, it is straightforward to check that the truncation on the scalars and the one on the
fermions are consistent. On the 1-forms, the fermionic truncation is consistent with keeping
only the components Au ia» because the supersymmetry variation of A, 44 is identically
zero. Similarly, for the 2-form only the singlet component survives because the variation

of Aj,, vanishes identically. Finally, the 3-form is fully projected out. The variation of the
1-forms and 2-form that survive the projection is

0A, ja = e 2V, Vaa (i€04Taty — EVu0aXa — EVuTaTsXa)

. 1_ 1 g
(5Afw =e? <zev[uwy} + 267u,,x;¢> + ZeABeABA[uAAéAV] BB - (2.29)

To summarise, the gauge fields that survive are four vectors and one 2-form, which is
precisely the content of the half-maximal theory.

By projecting the fermions according to eq. (2.27) in the supersymmetry transforma-
tion of the 8-forms whose gravitino term is given in eq. (2.25), one obtains that only the

SIn particular the constraint (2.8) implies that xy = oaXa.
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components Aul,,,ugMNﬁ survive. Out of these, only the 8-forms Am,,.HSABﬁ in the 3 of
SL(2,R) couple to 7-branes, and their supersymmetry transformations have the form

5AM1-~~M8ABﬂ = €2®VdAVdB€7[M1---M7Uﬁwus] T (2.30)

In particular, we are interested in the brane components, which are the long weights of
the 3, i.e. the two components Am,““gAAﬁ. We can understand better how the truncation
acts by looking at the weight diagram of the 15 in figure 2. We fix our conventions so that
# = 3 corresponds to taking the SL(2,R) subgroup as the one generated by the root a; in
figure 1. This SL(2,R) acts on the indices 1 and 2, and the 8-form components that survive
the projection are Am.v.usni’» and Am...usm& If § = 2, the SL(2,R) subgroup is generated
by the root as and acts on the indices 1 and 3. In this case the 8-form components that
survive are Amm#sng and Ayl...u8332- Finally, if § = 1, the SL(2,R) subgroup is generated
by a1 4+ a9 and acts on the indices 2 and 3, and the 8-form components that survive are
Amu_#sml and Am,“us331. To summarise, we find that for each truncation there are two
space-filling branes that preserve the same supersymmetry of the truncation, precisely as
expected from the analysis of the central charges [12].

We now want to understand this result from the perspective of the IIB theory. From
IIB, one expects only four space-filling branes to arise by reducing to eight dimensions,
which are the D9, the D7 and their S-duals. The remaining two 7-branes are exotic and
couple to 8-forms that arise from mixed-symmetry potentials in IIB. These potentials are
derived from a suitable decomposition of the E1; algebra [13], and can be found for instance
in section 3.1 of ref. [20]. One can classify all the mixed-symmetry potentials that give rise
to branes in lower dimensions in terms of the non-positive integer number a denoting how
the tension of the corresponding brane scales with respect to the string coupling gg, and
obviously T-duality relates different potentials with the same value of a. Following [34],
we denote the potentials with o« = —1, —2, —3... with the letters C, D, F and so on. The

8-forms in eight dimensions then arise from the RR potentials Cs and Cjo (with o = —1),
their S-duals Eg and Fjg (with @« = —3 and —4 respectively) and the mixed-symmetry
potentials Eip22 and Fip22 (again with @ = —3 and —4 respectively).” Denoting with

z', i = 1,2 the internal directions in the reduction from ten to eight dimensions, these

two mixed-symmetry potentials give rise to the 8-form potentials £,

F

p1..pug xla2 ple? pla2.

To derive which is the pair of 7-branes that is not projected out in each truncation,

1opig 2la? pla? ola2 and

we move to the string frame, which corresponds to performing the redefinitions
e, = e 3% Yy, = e*%‘ﬁwz e=e"5% . (2.31)

As a convention, we associate to the case § = 3 the reduction to D = 8 of the SO9
truncation. In this case the global symmetry of the truncated theory is perturbative and
the dilaton @ is proportional to the eight-dimensional string dilaton ¢. To get the right

"In general we denote with Ap.q,r,.. @ mixed-symmetry potential in a representation such that p,q,r,...
(with p > ¢ >r...) denote the length of each column of its Young tableau.
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scaling in the string frame we impose
2
SO9: ¢ = —gqﬁ . (2.32)

As a result, the supersymmetry transformations of the four vectors and the 1-form have
no dilaton dependence in front of the gravitino term, as expected from the reduction of
the SO9-truncated ten-dimensional theory. In particular, the 2-form is the NS-NS 2-form
By, and transforms exactly as the second equation in (1.4), while the vectors are B,, ;i and
gy i~ Performing the same rescaling on eq. (2.30), we find that the transformation of both
Am...usllS and AML“M8223 has a factor e=%? in front of the gravitino term, which implies
that the corresponding branes have both o = —4. These are the branes coming from the
IIB potentials Fip and Fig2.

We take the truncation identified by § = 2 to be the O7 truncation. In this case
the SL(2,R) symmetry is non-perturbative, and the components of the matrix V;, scale
differently with respect to the string dilaton. In particular, we take the component with
A = a =1 to scale like ¢?/2, and the one with A = a = 3 to scale like e=%/2. On top of this,
the scalar ® contains a term proportional to the string dilaton. The precise dependence
on the string dilaton of ®, V41 and Vi3 is

d=1¢+...
O7: Vy =e?/2. .. , (2.33)
V33:€7¢/2...

where we have ignored the contribution of the additional scalars. One obtains that the
transformation of the 2-form has an e ¢ factor, as expected because this is the RR 2-form

C

o
dilaton factor (corresponding to B, ,i) and two have a factor e~? (corresponding to Cpzi)-

12 and transforms as the third equation in (1.4). Out of the four vectors, two have no

By performing the rescaling on eq. (2.30), we find that the transformation of A, .2
has a factor e 3%, while the one of Apy s 33, has a factor e=?. We thus identify the former
with the potential Eg and the latter with the potential Cg.

Finally, the truncation identified by # = 1 is the reduction of the O9 truncation. Also
in this case the SL(2,R) symmetry is non-perturbative, and we take the component of V;,
with A = a = 2 to scale like €?/2, and the one with A = @ = 3 to scale like e=%/2. On top
of this, the scalar ® contains a term proportional to the string dilaton precisely as in the
O7 case. We thus get

O=1o+...
09:{ Vg = ?/2 .. : (2.34)
V33:67¢/2...

One obtains that the transformation of the 2-form has an e~? factor, as expected because
this is the RR 2-form C},,, and transforms as the first equation in (1.4). Out of the four
vectors, two have no dilaton factor (corresponding to g, ,:) and two have a factor e=®
(corresponding to C,, ,i). From eq. (2.30) we read that the potential A, . .s**1 has a factor
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Figure 3. The identification of the long weights of the 15 of SL(3,R) with the IIB potentials. The
table should be compared with table 2.

e 3? and thus corresponds to FE10,2,2, while the one of Ammug‘g?’l has a factor e~? and
corresponds to Cqg.

We draw again in figure 3 the weight diagram of the 15, where now the long weights
are identified with the potentials of the IIB theory. We see from the diagram that the
branes on the same horizontal line share the same value of «. This is obvious from the fact
that the SL(2,R) associated to the root «; is part of the T-duality symmetry. In particular,
the branes with a = —4 belong to the 3, the branes with a = —3 belong to the 4 and the
branes with & = —1 belong to the 2 of this SL(2,R). The table also shows that the SL(2,R)
of the IIB theory is the one generated by «s. As we know, the 8-forms belong to the 3,
the 10-forms to the 4 and the mixed-symmetry potentials to the 2 of this other SL(2,R).
Finally, the third SL(2,R), generated by a; + a2, mixes Eg and Fjg, Cg and Fig22 and
Cho and FEyp22. For each truncation, it is the branes in the 3 that survive, as we have
already shown. It is known that in the case of the O7 truncation the potentials Cs and
Fs both survive because the corresponding branes preserve the same supersymmetry, but
what this analysis shows is that in the SO9 truncation one gets that both Fio and Fig 22
are not projected out, while in the case of the O9 truncation both Cjo and E1g 22 survive
the projection. For clarity, we summarise this result in table 4. In the next section we will
show how this result can be generalised to identify in any dimension all truncations and
the various space-filling branes that preserve the same supersymmetry of each truncation.

3 Zs truncations in any dimension

In the previous section we have determined the three different Zy truncations of D = 8
maximal supergravity to the half-maximal theory, and for each truncation we have identi-
fied the two space-filling branes that preserve the same supersymmetry of the truncation.
We have shown that in the case of the O9 and SO9 truncations, one of the two 7-branes
is an exotic brane, which corresponds to the IIB mixed symmetry potentials F1g22 in the
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D = 8 truncations | potentials | brane components
09 Cho Cgp1z2
E10’2,2 Eg a2 pla? gle?
SOQ Fl() F8:L‘112
F10,272 FgIIIQ,le2,1.1:EQ
C C
o7 8 8
FEg FEg

Table 4. The Z, truncations of the maximal theory in D = 8 from the IIB perspective. The indices
2%, i = 1,2, label the internal directions.

09 case and Fjp22 in the SO9 case. In general, exotic branes are associated to specific
components of the ten-dimensional mixed-symmetry potentials Ay,  (withp >¢>1r...)
determined as follows: first of all, only the p set can contain space-time indices, while all
the other sets of indices must be internal, because the space-time indices must be antisym-
metric. On top of this, the p indices must contain all the internal indices g, which must
contain all the internal indices r and so on [15, 34-36]. In [19] a universal rule was de-
rived that relates different brane components of mixed-symmetry potentials by a T-duality
transformation in a given direction. Specifically, given an o = —n brane associated to a
mixed-symmetry potential such that the internal x index occurs N times (in N different
sets of antisymmetric indices), this is mapped by T-duality along x to the brane associ-
ated to the potential in which the x index occurs n — N times. Schematically, this can be

written as
Ty
a=-n : T,Xyoo, T 2 T, Ty ... T . (3.1)
~— ~—_——
N n—N

Using this T-duality rule, if one performs two T-dualities in the directions z' and z?
not only Cgs is mapped to Cg,1,2 as one naturally expects, but also Fg is mapped to
Egg102 4142 4142 and Fg 1,0 is mapped to Fgpip2 p152 1,2 We stress that performing two T-
dualities maps states in IIB to other states in the same theory, and as far as representations
of the perturbative SL(2,R) inside SL(3,R) are concerned, it maps one long weight to
the other. In other words, using the universal T-duality rule in eq. (3.1) we could have
immediately declared that the O7 truncation, in which Cs and Ejg are not projected out, is
mapped by two T-dualities to the O9 truncation, in which Cg 1,2 and Eg 1,2 y1,2 p1,2 are
not projected out, and the latter truncation is mapped to the SO9 truncation, in which
the 8-form potentials that survive are Fg 1,2 and Fgyi2 51,2 4152,

The aim of this section is to show that using eq. (3.1) and S-duality, one can characterise
all truncations in any dimension, and for each truncation determine all the space-filling
branes that are not projected out. We will first discuss the maximal case in any dimension
from seven to three, and we will then move to the Zs truncations of the half-maximal
theories listed in table 2 and finally the Zo truncations of the quarter-maximal theories
listed in table 3.
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3.1 From maximal to half-maximal supergravity

D =7: we want to consider the truncation of maximal supergravity in D = 7 to the
half-maximal theory coupled to three vector multiplets, with symmetry R™ x SO(3,3),
which is isomorphic to GL(4,R). In the truncation, the vectors in the 10 are truncated to
the 6 and the 2-forms in the 5 are truncated to a singlet. There are 5 different ways of
performing this truncation, corresponding to the five different ways in which SL(4,R) can
be embedded in SL(5,R), and this agrees with the dimension of the vector central charge,
which indeed belongs to the vector representation of the R-symmetry SO(5). We denote
with M = 1,...,5 the index of the fundamental of SL(5,R) and with m = 1,...,5 the
vector index of SO(5). As in the previous section, the scalars are encoded in the matrix
Ly, satisfying identities analogous to those in eq. (2.1), with the Maurer-Cartan form
defined as in eq. (2.2).%

The 7-forms Ay, ..M~ p belong to the 70 of SL(5,R), which as in the eight-
dimensional case is the irreducible representation with two symmetric upper indices and
one lower index. The gravitino-dependent part of its supersymmetry transformation is

6Au1.‘.u7MNP = Zi%f’%LPng'Y[mu@Fn¢u7] + o Y (32)

where we denote with I'),, the SO(5) gamma-matrices. The 1/2-BPS space-filling branes
are the 20 components such that M = N and M # P [12].

We truncate the theory by splitting the M index as M = (#, A), where A =1,...,4
is the index of the fundamental of SL(4,R). Similarly, m splits as m = (f,a). The scalars
are truncated to

Lamm — (2,674 V) | (3.3)

where the dilaton ® parametrises R™ and the matrix V4, contains the scalars parametrising
the coset SL(4,R)/SO(4). On v, and € the truncation acts as

Yu = Ty e=Tye . (3.4)

As aresult, after the truncation only the 7-forms A, . WM N 4 survive, and in particular only
the components Am,_,WAB 4 in the 10 of SL(4,RR) couple to 6-branes. Their supersymmetry
transformations have the form

. 3P rAT B -
5A#1~~M7AB11 = ZeQ(I)VaAVaBEV[MWMGwW] LAEERIE (3.5)

In particular, there are four 6-branes in the 10, that all preserve the same supersymmetry
which is the supersymmetry preserved by the truncation.

From the ten-dimensional IIB perspective, the five truncations are the SO9, preserving
the 2-form B,,,,, the O9, preserving the 2-form C),,, and the three different O7,: truncations,

preserving the 2-form C with 4, 7, k all different). As in eight dimensions, we go to

uv ik (
the string frame to get the tension of the 6-branes that are preserved in each truncation.

In seven dimensions, this corresponds to performing the redefinitions

e, = e_§¢eza Yy = e_%d’wz e=e 5% . (3.6)

8We use here exactly the same index notation as for the SL(3,R)/SO(3) coset of the previous section.
We do not expect this to cause any confusion to the reader.

~ 18 —



D =7 truncations | # | potentials | brane components | # branes
09 1 Cio Cr 12243 1
E10,2,2 E7x1x2x3,mi”m‘1,xpzq 3
SO9 1 Fio Fropi2.3 1
F10,2,2 F71'11'213,1'1’:E‘1,1'P:L"1 3
08 07 xt 1
07951 3 Eg E7Ii 1
E972,1 E7xixp,w’7w7’,x77 2

Table 5. The Z, truncations of the maximal theory in D = 7. In the case of the O7 truncation,
the ¢ = 1,2, 3 index labels the truncation while the p and ¢ indices are different from 3.

In the case of the SO9 truncation, the scalar ® is proportional to the string dilaton, and
SL(4,R) is the perturbative T-duality symmetry. More precisely, one gets

S09 : b — —%gb , (3.7)

and from eq. (3.5) one can then check that the four preserved 6-branes have o = —4. For
the other four truncations, the dilaton identification can be taken to be

O=1o+...

09, 07, : , (3.8)

1

diag(VAa)=(e_%¢...,eZ¢...,eZ¢...,eZ¢...)

where as in eight dimensions the dots stand for contributions of the other scalars. One
can check that in this case from eq. (3.5) one gets one a = —1 6-brane and three o = —3
6-branes.

These results could have been easily deduced by compactification from eight dimen-
sions. Indeed, we know from the analysis of the previous section that Fig and Fig22
give rise to 7-branes that are both preserved under the SO9 truncation. This implies that

in seven dimensions the 6-branes coupled to F,, . 215258 2122 2122, Flu o 0 010203 2103 2143
and F, ;212243 2243 o238 must all preserve the same supersymmetry of the one coupled

to Fl, s a1a223. The same applies to the O9 truncation, where Cig and Eyg 22 give rise
to four 6-branes. We can then use the T-duality rules in eq. (3.1) to determine the 6-
branes that are not projected out in each of the O7 truncations. The truncation O7,: is
obtained by performing two T-dualities in the directions 2P and ¢ different from z¢. One
obtains, together with C7,: and F,, i coming from Cg and FEjg, also the two additional
branes E7 yiyp yizp  coming from the mixed-symmetry potential Eg 1. The full result of
the different truncations in seven dimensions is summarised in table 5.

In any dimension D = 10 — d, the potentials Fig 2y, 2, are known to belong to a spe-
cific representation of SO(d, d), which is the self-dual representation with d antisymmetric
indices [20]. As we have seen, the corresponding branes are those preserved by the SO9
truncation. In the following we will show that one can continue the analysis starting from
the SO9 truncation and mapping this to all the other possible truncations in any dimensions
using S-duality and the T-duality transformations in eq. (3.1).
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D = 6A truncations | # | potentials | brane components | # branes
Cho CGml...x4 1
09 1 E10,2,2 Eg zl. .zt aPad,xPad 6
G044 | Geol.at gl ot gl ot 1
Fy F6 1. x4 1
S09 1 F10,2,2 F6 1. x4 xPxd zPxd 6
F10,4,4 FGml...x4,w1...z4,z1...x4 1
08 C6rlT7 1
ES Eﬁm"zj 1
OT7 iy 6 Eg21 B gigigr gigp o 4
E10,4,2 Eﬁxl.“w‘l,zl..w‘l,xpxq 1
G042 Gepl. pt g1, ot grga 1
Cs Cs 1
05 1 E&Q E6mpmq7xpmq 6
G104 Gepl. pt g1, ot 1
Dg Dg 1
SO5 1 D&Q DG xPxd,xPxd 6
Do D1 gt g1 g4 1

Table 6. The Z, truncations of the maximal theory in D = 6 leading to the N’ = (1,1) theory.
The z’s denote the four internal directions. As everywhere else in this section, for each truncation
the ¢, 7, ... indices label the truncation while the p, ¢, ... indices are the remaining ones.

D =6: the maximal theory in six dimensions has global symmetry SO(5,5), and the 6-
form potentials that couple to 5-branes can either support vector or tensor multiplets. The
former belong to the 320, which has 80 long weights, while the latter belong to the 126,
which has 16 long weights [12, 37]. The theory can be truncated to either N' = (1,1)
supergravity coupled to four vector multiples, with global symmetry R x SO(4,4), or
N = (2,0) supergravity coupled to five vector multiples, with global symmetry SO(5,5).
As table 1 shows, in the first case there are ten different truncations, which can be easily
understood by observing that there are ten ways in which one can embed SO(4,4) in
SO(5,5), while in the latter there is only one truncation because the truncated theory has
the same symmetry of the maximal one.

We start considering the truncations to the N/ = (1,1) theory, which we also denote
as 6A. The SO9 truncation is the one that leaves the perturbative T-duality symmetry
SO(4,4) intact. The eight 5-branes charged under the potentials Fg 1,4, Fpy1 4 4ppa goga
and Fig1 g4 51 g4 41 4 are all preserved by the truncation, and correspond to the eight
long weights of the 35y of SO(4,4). This is mapped by S-duality to the O9 truncation,
preserving the branes coupled to C1g and Ejg 22 together with the o = —5 brane coupled
to Gio44. By T-dualising in the directions P and x? one then gets the branes of the
O7,i,; truncations, with 4, j different from p, q. There are six pairs of coordinates that one
can choose, corresponding to six different O7 truncations. One can also perform four T-
dualities on 09, which leads to the O5 truncation. Finally, the tenth truncation is obtained
by performing an S-duality transformation of O5, and we dub this latter truncation SO5.
We give in table 6 the full result, which can be reproduced using eq. (3.1) and the S-duality
transformation rules of the various mixed-symmetry potentials.
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D = 6B truncation | potentials | brane components | # branes
D74 Dg v v 4
Dy : Dg - - 4
tensor 9,3 6 zPxix” xPxdx
F9,3 FG xPrdz” xPrix” 4
Froa11 | Foalatal. atorav 4

Table 7. The Z, truncation of the maximal theory in D = 6 leading to the A" = (2,0) theory. The
branes that survive the projection are 16 and in the maximal theory support tensor multiplets in
their world-volume.

The truncation to the AV = (2,0) or 6B theory is unique. All the 5-branes that support
tensor multiplets on their world-volume preserve the same supersymmetry and all survive
the projection, that we simply label “tensor” truncation. These branes are charged under
the mixed-symmetry potentials D71, Dg 3 with o = —2 and Fy 3 and Fig4,1,1 with o = —4,
and they correspond to the 16 long weights of the 126 of SO(5,5). We report the result in
table 7.

Apart from the space-filling branes that preserve the same supersymmetry of the trun-
cation, starting from six dimensions that are additional space-filling branes that survive
the truncation and are 1/2-BPS states of the truncated theory. In the case of the 6A trun-
cation, these branes are in the 35y @ 355 & 35, as shown in table 2. This result can be
understood in the case of the SO9 truncation, in which case the SO(4,4) symmetry is per-
turbative and the branes that are left are those of the heterotic theory [20]. In particular,
the eight branes in the 35y are the SO5 branes in table 6 and the 16 branes in the 355®35¢
are all those in table 7 (more precisely the first representation contains the o = —2 branes
and the second the a@ = —4 branes [37]). In [20, 38] the world-volume multiplets for each
of these branes in the truncated theory were determined, and in particular it was shown
that the SO5 branes and the o = —2 branes in table 7 support a hypermultiplet, while the
a = —4 branes in table 7 support a tensor multiplet.

For any other truncation to the 6A theory, the space-filling branes that remain as 1/2-
BPS states of the truncated theory can be determined using the properties of the various
truncations under S and T dualities. In particular, the branes in table 7 are present in
every truncation. On top of this, in the O9 case one gets the O5 branes and vice-versa, in
the SO5 case one gets the SO9 branes and in the O7,,; case one gets the O7,x,: branes,
where i, j # k, 1.

The 6A truncation has also a natural interpretation as the untwisted sector of ITA
reduced on the orbifold 7%/Z,. The space-filling branes of this theory were discussed
in [20, 38, 39|, and performing a single T-duality transformation to translate the results
of those papers in the IIB language, one finds that the Zs truncation in this case in the
SO5 one, while the remaining 1/2-BPS space-filling branes in the truncated theory are the
SO9 branes and the branes in table 7. Indeed, one can for instance show that the mixed-
symmetry potentials that are coupled to 5-branes in table 9 of [38] are mapped to the SO9
potentials in table 6 and to the potentials in table 7 by performing a single T-duality using
eq. (3.1).

In the case of the unique 6B truncation, as table 2 shows, all the 80 5-branes in the 320,
i.e. all the branes in table 6, are 1/2-BPS states of the truncated theory. The truncation
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D =5 truncations | # | potentials brane components # branes
Cho C5m1...x5 1
09 1 E102,2 Eso1 45 gpga grga 10
G10,4,4 G5 xl...25 xPaizras aPxiz xS 5
Fio Fyp1. 05 1
S09 1 Fio22 F5a1. 05 gpga gpas 10
F10,4,4 Fs zl.. .ab aPxiaras aPriz s o
CS CBmirjxk 1
Eg Es yiqigh 1
O7zizjg:k 10 E9,2,1 E5 rixd xkap pizp ot 6
E10,4,2 E5zl...x5,m'ixjxpm‘1,wixf 3
G10,4,2 G5z1...x5,xix1mpxq7x"xj 3
G10,574,1 G5 xl..x5 2. 25 xixiakap o 2
Cs Cs i 1
E872 E5 rtxPrd,xPrl 6
0511 5 E9,4,1 E5 xixPrix” xirPris” xt 4
G(10,4 G5x1...x5,xl’x‘1mrm5 1
G10,5,2,1 G5rl...m5,m1...x5,rizi’,x1’ 4
D6 D5 z* 1
D8,2 D5 ztaxPrd,xPxd 6
Sosxi l D10,4 D5 zl..x5 xPaixras 1
F9,4,1 Fy rirPrix” xirPrdz” xt 4
Fro5,.2,1 F5 0. 05 2.5 wiap ap 4
D71 Dy yigp av 4
T2SO5IL 5 ?9,3 ?5 x‘iwpx‘loﬂ,zl’xqm* j
9,3 SxtxPrix” xPrix”
Fio4,1,1 F5 1. 25 apgagras av av 4

Table 8. The Zy truncations of the maximal theory in D = 5.

has a natural geometric interpretation as the untwisted sector of IIB reduced on T%/Zs,
and indeed it is easy to show that the 5-branes listed in table 10 of [38], where the orbifold
analysis was performed in detail, are exactly the branes in table 6.

D =5: as table 1 shows, there are 432 1/2-BPS 4-branes in five dimensions, which are
the long weights of the 1728 of Eg). There are 27 different Zy truncations to the half-
maximal theory coupled to five vector multiplets, with symmetry Rt x SO(5,5), and in
each of these we expect 16 space-filling branes to preserve the same supersymmetry of the
truncation [12].

As in the 6A case, we can start from the SO9 truncation and then obtain all the
others using dualities. The 16 4-branes that preserve the same supersymmetry of the SO9
truncation couple to the potentials F 1,5, F5.1. 25 gpga grgpa a0d F5 1 05 ppgpagres gpgazras,
that correspond to the long weights of the 126 of the SO(5,5) symmetry of the truncated
theory. By S-duality, these are mapped to the O9 truncation, and then by T-dualities the
latter is mapped to 10 O7,:,j,+ truncations and 5 O5,: truncations. The O5 truncations
can then be mapped by S-duality to 5 SO5,: truncations. Finally, we want to derive what
happens if one performs two T-dualities on the SO5,: branes. Using eq. (3.1), one can show
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that if both T-dualities are along directions different from !, then the SO5,: branes are
mapped into themselves. On the other hand, if one T-duality is along z?, then the set of
branes that one ends up with is always the same regardless of which direction one chooses
for the other T-duality transformation. We call the corresponding truncation T2SO5,.
The full result of this analysis is summarised in table 8.

As in six dimensions, for each truncation there are additional space-filling branes that
survive the projection and are 1/2-BPS states of the truncated theory. As table 2 shows,
these branes are in the 320 @ 210 of SO(5,5), and they are 80 for each representation.
To determine what these branes are, we can again consider the SO9 truncation, in which
case the SO(5,5) symmetry is perturbative. From table 5 of ref. [34] we find that for this
truncation the branes in the 210 have & = —2 and those in the 320 have « = —4. Therefore
these branes are all the SO5,; and T?SO5,: branes. Similarly, for different truncations one
can determine the branes that are 1/2-BPS states of the truncated theory using dualities.
As a particular case, the T2SO5,: truncation is the geometric truncation corresponding to
IIB on T%/Zy x S', where z' is the circle direction.

D =4: from table 1 we read that the maximal theory in D = 4 possesses 63 different
Zso truncations to the half-maximal theory, whose symmetry is SL(2,R) x SO(6,6). There
are 2016 space-filling branes belonging to the 8645 of E;(7), and the degeneracy for each
truncation is 32. The mixed-symmetry potentials that couple to the 3-branes that preserve
the same supersymmetry of the SO9 truncation are Fig, Fio,2,2, F10,4,4 and Fip 66, and the
32 brane components are the long weights of the (1,462) representation of the symmetry of
the truncated theory. By S and T dualities, one can determine all the branes that preserve
the same supersymmetry of the truncation for each of the 63 truncations. The result is
summarised in table 9.

We can also determine the 3-branes that in each truncation are not projected out and
become 1/2-BPS states of the truncated theory. These branes are in the (3,495)®(1,2079)
of the SL(2,R) x SO(6,6) symmetry of the truncated theory. In particular, in the case of
the SO9 truncation one finds (see e.g. table 6 of ref. [34]) that there are 240 o = —2 and
240 o« = —6 branes in the 495 and 480 v = —4 branes in the 2079 of SO(6,6). These
are all the SO5,.,; and T2S05,:,; branes. Using S and T dualities one can determine the
960 3-branes that are 1/2-BPS states of the truncated theory for all the other truncations.
The truncations T2SO5,:,; are identified with the geometric compactifications of IIB on
T*/Zy x T?, where 2’2/ are the two torus directions.

D =3: finally we consider the three-dimensional case. In the maximal theory there are
17280 space-filling 1/2-BPS 2-branes belonging to the 147250 of Eg(s). The Zy trunca-
tion leads to the half-maximal theory with symmetry SO(8,8). There are 135 different
truncations, and for each truncation there are 128 1/2-BPS 2-branes preserving the same
supersymmetry of the truncation. To determine these branes in each truncation, one first
has to further decompose SO(8,8) as R x SO(7,7). In the case of the SO9 truncation, as
usual the SO(7,7) symmetry is perturbative. The v = —4 potentials Fjy, Fi02,.2, Fio4.4
and Fig g6 give rise to 64 2-branes that are the long weights of the 1716 of SO(7,7). This
representation embeds in the 6435 of SO(8,8), which also contains the 1716 of SO(7,7),
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D = 4 truncations | # | potentials brane components # branes
C1o Chat. a6 1
09 1| Froz22 Eyp1. 26 avq9,graa 15
G1074,4 G4 1,28 xPrizras xPxizrxs 15
Logs Tygr 26 31, .26 21, 26 1
Fio Fyg1. a0 1
S09 1 F10,2,2 F4x1...a:6,wp:vq,azpwq 15
F10,4,4 F4 zl.. .26 xPrixras xPxizr s 15
F10,6,6 F4 !, .26 21, 26 g1, 26 1
Cs Cy yigi kgl 1
Eg E4xi:cjz’“$l 1
E921 Ey vigizkator zizr zi 8
0753%1'1’“1-1 15 E10,4,2 E4zl..416,1’51-7'115’1‘1,1"51-7 6
G(10,4,2 G4x1..4x5,xix1x1’x‘1,ziz] 6
G10,5 4,1 G4 21,26 pizizkaPrd xicd ckap P 8
G10,6,6,2 Gyal. 46 1. 26 21, 26 gpga 1
11076,6,2 14xl...mﬁ,xl...rﬁ,xlu.xﬁ,:ﬂpzq 1
Cs Chgigi 1
E8,2 E4 zizizPxd,xPzd 6
E9,4,1 E4:c"w7x7’xqu,acizT’xqwr,mi 8
05,.., 15 Eio6,2 By 26 2126 gias 1
G10,4 G4xl..m6,m7’xqwrxs 1
G10,5,2,1 G4zl...x"',xle’quTms,x%P,mp 8
G1076,4,2 G4aclA..wﬁ,wl4.Ax6,acixjw7’x‘7,sz‘7 6
110,6,6,4 I4acl...xﬁ,xl...ms,ml.”zﬁ,r!’qu“"xs 1
C4 C4 1
03 1 E8,4 Ey4 rPrdxxs xPriz” s 15
G10,6,2,2 G4xl...zﬁ,zl...mﬁ,xl’xq,mpxq 15
110,6,6,6 I4x1...z al.x6 ozl 26zl 26 1
Ds Dy yigi 1
D8,2 D4xiszpz‘1,acpx‘7 6
D10,4 D4x1...z6,zpocqxrac5 1
Sosxlﬂ 15 F9,4,1 F4 rixigPrix” xizPriz” xt 8
F10,5,2,1 F4 zl..28 xixPrix” s xixP P 8
HIO,G,Z H4x1.“w6,z1...w6,wiw7 1
H10,6,4,2 H4IL'1...l‘ﬁ,l‘l4...’1,'6,4’1,'7:.”1:-7“’1,‘731'{1,11)?.”1:(1 6
H10,6,6,4 H4z1...x6,xl...mﬁ,zl...xﬁ,xl’xqmrms 1
D7,1 D4zizjzp,zp 4
D9,3 D4I1zjzpzqzr,zpzqz’“ 4
F9,3 F4 zixd xPrix” zPxiz” 4
T2805zi1j 15 FF97572 F4;xfxpx<1zr,zizaxpqur,xixj 4
10,4,1,1 4xt.. 26 xPxixT xS P TP 4
Fip6,3,1 Fygr 2621, 26 gigizp zv 4
H10,6,3,1 H4114..16@1...Iﬁ,zizjzl”,zp 4
H10,6,5,3 H4xl...z6,x1..mﬁ,xixfxpqu",xl’:ﬂ‘lﬂ' 4

Table 9. The Z, truncations of the maximal theory in D = 4.
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whose 64 long weights correspond to the o = —8 potentials Jio,7,7,1,1, J10,7,7,3,3, J10,7,7,5,5
and Jio,7,7,7,7-These o = —4 and o = —8 branes together give the whole set of 128 branes
that preserve the supersymmetry of the SO9 truncations. By performing all possible S and
T duality transformations, one then determines all the other truncations. The result is
summarised in table 10.

As in any other dimension below seven, there are additional space-filling branes that
are preserved by the truncation and become 1/2-BPS states of the truncated theory. These
branes are 8960 and correspond to the long weights of the 60060 of SO(8,8). In the case
of the SO9 truncation, this representation contains 560 o = —2 and 560 o = —10 branes
in the 1001 of SO(7,7), 2240 o« = —4 and 2240 a = —8 in the 11648 of SO(7,7), and
finally 3360 a@ = —6 branes in the 24024 of SO(7,7) (see table 7 of ref. [34]). These are
all the SO5,i; .« and T2SO5,,;,» branes in table 10. We end the analysis of the maximal
theories by observing that the truncations T2SO5,:,,,+ are identified with the geometric

k

compactifications of IIB on T%/Zo x T3, where x'2z/z* are the three torus directions.

3.2 From half-maximal to quarter-maximal supergravity

D =6: both the N' = (1,1) (or 6A) and the N' = (2,0) (or 6B) theories admit Zy
truncations to the N' = (1, 0) supergravity theory coupled to one tensor multiplet and four
hypermultiplets, with the hyper-scalars parametrising the coset manifold SO(4,4)/(SO(4) x
SO(4). The truncation is unique in the case of the N’ = (1,1) theory because the global
symmetry stays the same, while in the case of the N/ = (2,0) there are five different
truncations. We now want to determine for any of these truncations what are the branes
that preserve the same supersymmetry of the truncation.

We start considering the 6A theory. As table 2 shows, the 1/2-BPS space-filling branes
of the 6A theory belong to the 35y @ 355 @ 35¢, and all preserve the same supersymmetry
of the truncated theory. As already discussed in the previous subsection, in the case of
the SO9 truncation to the half-maximal theory, the branes in the 35y are the SO5 branes
while the branes in the 355 @ 35¢ are the “tensor” branes in table 7. As we mentioned
already, the SO5 truncation of the maximal theory is the T-dual of the untwisted sector of
IIA on T%/7Z,, and in this case the 1/2-BPS space-filling branes of the 6A theory are the
SO9 and the tensor branes. In general, from the point of view of the maximal theory, the
35y comes from the 320, while the other two representations come from the 126.

In the case of the 6B theory, there are five different truncations. As mentioned already,
the truncated theory can be viewed as the untwisted sector of IIB on T*/Zs, and we know
that on this theory the O9 and O5 orientifolds preserve the same supersymmetry.” We
therefore label the corresponding truncation as 09/05. By dualities one gets the other
four truncations, and the final result is

09/05, 809/805, 3 % O7ximj/07kal . (3.9)

In each case, these branes are the long weights of the 35y @ 35y representation of the
SO(4,4) symmetry of the truncated theory.

9This model was originally constructed in [40]. For the systematics of orientifold model building, see [41,
42].
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D = 3 truncations | # | potentials brane components # branes

Cio C3a1..07 1
Eo2,2 Ey

xPxd,xPrd 21

GlO,/l,/l GS rl.. 27 xPrixT s TPl T3 35
09 1 Gl().7,7,1,1 G?) ol 27zl 27 2l 27 xP 2P 7
110‘6,6 13 ol a7 xPadzrrsrtoy gPrdx s rtoy 7
110,77773,3 13 2l 27zl 27 2l 27 xPriz” aPxdx” 35
K10,7,7,5.,5 KSzl,..17,1,1...17,z1...z7,z1’m‘1z715z‘,anpz‘lzrzsz‘ 21
A{10,7,7,7,7 ]\/[% .27 2l 27 2l a2l 2T 2l 2T 1
Fio F31. a7 1
F10,2,2 Fle,,.z7,zpz‘1,sz‘i 21
F10,4,4 F3 2127 xPadxr s aPadx s 35
SO9 1 F10,6,6 F3.T o7 gPrixrrsrtrv aPrizr xS atr 7
Jl(),7,77171 J3 gl 2Tzl 27 2l a7 2P xP 7
J10,7,7,3,3 J$ a2l a7zl a7 2l 2T xPadg” aPriz” 35
*]10,7,7754,5 ']321,“ Tl 27 2l 27 aPrizrasyt xPrizT oS xt 21
J10,7,777,7 JS:1:1...17,11.,.174,11,..2:7711...1771,1...17 1
Cy 03 zigdgkglym 1
FEgs E3 igighplym 1
E9,2,1 E3 zizigkalamap pigp ot 10
E1p4,2 B30 07 pigigrge gigi 10
0976,5 G3 sizizkalambrP aixi halamap iz kalam 2
GlO,4,2 GS 2l a7 piziaPxd wind 10
G10,5,4,1 GS 2l a7 wizigkaPrd pizigkap aP 20
GlU,ﬁ,G,Z G311.“17,zizﬂz"'zlzl’z%zzzizkzlzpzq,zpzq 5
O7zi111k11wm 21 G10,7,5,1,1 G3w1. 27,7, wixd xhglam gt 2t 5
110,64,64,2 Ileu o7 wizigkalered pizizkelepad apad 5
Loz7211 T al.al 2
110,7,74,5,3 I3zl.,417,11.,.17,11,4.17,z1171k1pzq,zlzlzk 10
L7511 L0701 22230425 g 2 5
110,7,64,372 IS zl..xT ol 27 xixichalamap xixi zP aiad 20
K10.7,7,6,571 K3:clmz7,aclu. 27 wiziakalerad gizixkalap op 10
K10,7,7,5,3 K3zl...17,11..,17,11..,17,x‘zfzkzl’zq,z’z]zk 10
Kl().7,7,7,772 K3zlA.,z7,.'tl..,ac?,.zl.,mﬁml,,Az7,rl,“m7,zl'r‘1 1
A110,7,7,7,7,2 13zl...17711...17,11...17,1 z7 2l a7 zPxd 1
Cs C3 zigdzk 1
E8,2 E3 wizigkaPrd aPxd 6
E9,4,1 E3 sigigkaPrazr pizPrdzr at 12
E107672 ES ol 27 pieipPrizrzs xixd 3
GQ,G,S G3 2l .27 pizigkaPrazr wici ok
C7‘10,4 G3 zl..27 xPxigr s 1
G10,5,2,1 G? 2l 27 zirPrixT s xizP P 12
Gl(),6,4,2 G3 ol a7 wizgixPadzres aiei zPrd P xd 18
G10,7,6,3 G3 zl..2® 2l 27 gizizkaPaia” aPaiz” 4
Osxiziz’“ 35 G10,7,3,1,1 G3 zl..a7 gl a7 xizixk ot xt 3
110,6.,6,4 IB 127 zixixPrizras aizixPric” s xPrix o3 3
110,7,774,1,1 IS xl.. xlxl " xPrdxt xS xP 2P 4
110,777,7,3 I3 xl. 2Tl T pind gk 1
110,7,64,5,2 13 227 2l a7 wizigkaPrazr xizixPadzr aied 12
110,77573,1 13 ol.xT al 27 pixd xkePrd xixPad 2t 18
110,774,1 I3zl...17,11..,17,11171’61",1”
K10.7,7,7,572 a7zl a2 xl 2T 2l 2T pixd xkaPrd xPad 6
K10,7,7,5,1 K’i ol 2Tzl 27 2l 27 piaxPrizres ot 3
K10.7,7,6,371 K3 ol 272l 27 2l 27 pixd pPriaT oS wizd aP aP 12
A[10,7,7,7,7,4 A{‘S 2l a7zl a7 2l 2T at 2" 2l 2 aPrizras 1

Table 10. (Part 1 of 2) The Z, truncations of the maximal theory in D = 3.
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D = 3 truncations | # | potentials brane components # branes

Cy Cy i 1
E8,4 EB:C’mP:n’I.’nT s xPxdxTxs 15
E9,6,1 ESziszquzszt,zzzpzqzrzszt,zz 6
G10,6,2,2 G3x1.. T aPrizTrsxtat aPrd aPrd 15

610,7,44,3 G3 ol..x7 al 2 xiaPada” xPriz” 20
G9,6,1 G3 rixgPrizrrset rizPrizrxsct xt 6
0311 7 G10,7,171,1 G3 zl..27 2. 27zt zt xi 1
Il(), ,6, I3 ol .27 xPrizrasatat aPrizrasytat aPrixr satot 1
[10,7,74,6,1,1 [5 xl... xlxl a? gPrixrrsatoy xP xP 6
[10,7,5,5,1 IS zl..27 2l 27 xizPrizres xixPrizT xSzt 15
110,7,4,3 I3 2l a7zl 2T xiaxPrdzr xPadz” 20
K10,7,7,6,1,1 K3 ol 27zl 27 2l 27 gPxixr xS atat xP xP 6
K10,7,7‘7,372 Klizl,uz7.zl.., Tl 27 2l 2 piePxd xPrd 15
]\/[10,7,777,7,6 ijii xl.x7al 27 a7l x” al 2" aPrizrasatae 1
Dg D3 aizighk 1
D&Q D3 wixd ghaPrd xPad 6
D10,4 D3 ol 27 aPrizr xS 1
F‘Q,471 ES rizizkaPrdz” pigPriz” 2t 12
F9,64,3 F3 rizizkaPrizr xizgi xkePadzr xizizk 4
F1075,2,1 F3 ! 27 xizPxizr s xixP TP 12
F10,7,4,1 E3 al. a7 al 27 aixixker P
H10,6,2 HS ol 2T wixd xPaizas xizd 3
H10,6,4,2 H3 xl. 27 xizizPrixr s xixizPad Pl 18
SO5LIJ;JL/€ 35 H10,6,6,4 H3 zl..x7 izl xPrdzres xizi xPads oS gPria” s 3
H10,7,3,1,1 H3 2l 27 2l 27 xixixhk xi gt 3
H10,7,5,3,1 H3 zl..xT ol 27 pixizkered pizPrd ot 18
H1077,7,5,1 H& iz al 272l o7 zixPadzrzs ot 3
Jl(),74,6,3 ']3 2l 272l 27 gizi gk aPadar aP iz 4
L]10,7,7,4,1,1 JS zl..xTxl... z7 xPxiz xS 2P TP 4
J10,7,6,5,2 J3 gl 272l a7 pixigkaPaiz” piziaPaiz” xizd 12
J10.7,7A,6,3,1 JS zl.xTal 272l o7 pieizPada”zs xizizP aP 12
L10,717,7,3 LB 2l gl 27 xt a7 2l a7 xizizhk 1
L10,7‘7,7,5,2 L3 zl.aT ol 22l 272l a7 pixixkePad xPad 6
L10,7,777,7,4 LS ol aTal a2l 27 2l a7 2l 27 aPaizras 1
D7,1 D3 zixizkap xP 4
D9¢3 D3 rigizkaPrix” aPrizr 4
F9A,3 FS zizizkaPrix” xPriz” 4
FQ,S,Z E} zizigkaPrizT iz ePrizT xixd 12
F10,4,1,1 F3 zl..x7 xPrdzras P xP 4
F10,6,3,1 Eﬁzl,“17,zlzizpzqzrz5,szJzP,zF 12
H10,6.3,1 H3 zl..27 xiad xPrizr xS wicd zP aP 12
T2SO511z;Ik 35 H10$7y4v211 HS zl..x7 xl a7 xizizkar xizp ot 12
H10,6,5,3 Hiizl..,17,1111szquzs,zlzfzpzqzr,zpzqzr 12
H10,7,6,4,1 H3 2l xl 27 pixdxkaprier pizPria” at 12
Jl[),7,775,2,1 . . aT xiaPrdar xS wiaP P 12
J10,7,7,7,4,1 J311...z7,zl,4. Laxlxt a aizizkap P 4
J10,7,6«,4,1 JZ’) zl.a’al 27 glaiakaPala” xiaPaia” @l 12
Jl(),7,6,6,3 aizigkaPrizr pizizkaPria” xizd ok 4
L10,7,7¢7,4,1 Ly gl zl 27zt 27 2l 27 pizixkaP oP 4
L10,7,7,7,6,3 L3 zl.a%al. 2Tzl a7 2t 2T giadakaPadar aPaiz” 4

Table 10. (Part 2 of 2) The Z, truncations of the maximal theory in D = 3.
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D =5: the five-dimensional half-maximal theory admits five different Zo truncations to
the quarter-maximal theory with symmetry (R*)2 x SO(4, 4), containing gravity coupled to
two vector multiplets and four hypermultiplets. As table 2 shows, the space-filling branes
belong to the 320 ® 210 of SO(5,5). A particular way of realising the half-maximal theory
is by compactifying IIB on SO9, which corresponds to the heterotic truncation, so that the
SO(5,5) symmetry is perturbative. In particular, the branes in the 210 have o = —2 while
the branes in the 320 have a = —4 [20]. These branes are the SO5,:; and T2SO5,: ones in
table 8, where i = 1,...,5 labels each of the five truncations. In other words, the SO(4,4)
of the truncated theory is the one that fixes the particular z* that identifies the truncation.
By looking at table 8, one can show that out of the 320 one selects the 35y @ 35y, while
out of the 210 one selects the 355 @ 35¢.

One can also obtain the half-maximal theory by compactifying IIB on (T%/Zy) x S1,
corresponding to the truncation TQSOE)y7 where g is the S' coordinate. It is instructive to
show how using duality symmetries one can find the five truncations of the TQSOE)y theory
starting from the truncations of the SO9 theory. Denoting the five internal coordinates as
zt,y, with i =1,...,4, we first perform an S-duality transformation to go to 09, then four
T-dualities along the 2* directions to go to 05, then again S-duality to go to SO5,, and
finally two T-dualities along y and any other z direction to go to T2SO5,. If one performs
this chain of transformations on the truncations of the SO9 theory,

SO9 : 4 x SO5,:/T?S05,:, SO5,/T2S05, (3.10)
one finds the truncations of the TQSO5y theory, which are
T2S05, : 09/05,, 3 X OTpiziy/OT S09/805, . (3.11)

D =4: the SL(2,R) x SO(6,6) theory in four dimensions can be truncated to the N’ = 2
theory with symmetry SL(2,R)3 x SO(4,4), describing gravity coupled to three vector

xly

multiplets and four hypermultiplets. There are 15 different truncations, corresponding to
the different ways in which one can embed SO(4,4) into SO(6, 6), and correspondingly the
vector central charge belongs to the 15 of the R-symmetry group U(4). As reported in
table 2, the 960 space-filling branes are the long weights of the (3,495) @ (1,2079) [20],
and for each truncation one expects 64 branes to preserve the same supersymmetry of
the truncation. To figure out what these branes are in each truncation, we focus on the
particular half-maximal theory that results from the SO9 truncation of the maximal one.
In this case the SO(6,6) symmetry is perturbative, and we expect only the branes with
even « to survive as 1/2-BPS states. Therefore we get the 15 truncations

SO9 : 15 x SO5,:,; /T2S05 (3.12)

xtxd )
where for any i,j = 1,...,6 the SO5,:,; and T2SO5,.,; branes preserve the same su-
persymmetry. Fixing ¢ and j to identify a specific truncation to the A/ = 2 theory, the
symmetry SO(4,4) acts on the remaining coordinates, and by looking at table 9 one finds
that the 64 branes that preserve the same supersymmetry of the truncated theory are
(3,495) — (3,1,1,355) @ (3,1,1,35.)
(1,2079) — (1,3,1,35y) ® (1,1,3,35y) . (3.13)
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Apart from the branes in eq. (3.13), that preserve the same supersymmetry of the
truncated theory, in four dimensions there are additional space-filling branes that survive
the projection and are 1/2-BPS states of the N' = 2 theory. These branes are the 384 long
weights of the following representations [21]:

(3,3,1,28) & (3,1,3,28) & (1,3,3,28) & (1,1,1,350) . (3.14)

In the particular case of the SO5,:,; /T?SO5,:,; truncation of the SO9-truncated theory,
these all the SO5,k,: and T2SO5 k. branes with k,1 # 1, j.

Similarly to the five-dimensional case, one can obtain the half-maximal theory by com-
pactifying IIB on (7*/Zs) x T?, corresponding to the truncation T2805y1y2, where y! and
y? are the T? coordinates. As in D = 5, one can show how using duality symmetries
one can find the 15 truncations of the TQSOE)ylyQ half-maximal theory starting from the
truncations of the SO9 half-maximal theory given in eq (3.12). Denoting the six internal
coordinates as x*,y™, with i = 1,...,4 and m = 1,2, we first perform an S-duality trans-
formation to go to 09, then four T-dualities along the z* directions to go to O5,1,2, then
again S-duality to go to SO5,1,2, and finally two T-dualities along one y and any other z

direction to go to T2805y1y2. One finds

TZSO5y1y2 : 09/O5y1y2 s O7m1mx4/03, 3 X O7xixjy1y2/o7mkmlyly2 5
3 X OB,y /O5 ki s SOQ/SO5y1y2 , 3% SOb5,i4i /SOB5 ki s

3 X T?805,1,; /T2S05 1,1 (3.15)

D =3: in three dimensions the SO(8,8) theory is truncated to the SO(4,4) x SO(4,4)
theory, describing supergravity coupled to eight hyper-multiplets. The vector central charge
belongs to the 35 of the R-symmetry SO(8), and correspondingly there are 35 different
truncations, which can be seen as the 3- (%) ways in which one can embed SO(4, 4) x SO(4, 4)
into SO(8,8). As table 2 shows, there are 8960 1/2-BPS 2-branes which are the long
weights of the 600060, and for each truncation one expects 256 branes preserving the same
supersymmetry of the truncation [20]. As in the higher-dimensional cases, to identify each
truncation and the corresponding branes we consider the half-maximal theory resulting
from the SO9 truncation of the maximal one. We get

SO9 : 35 X SO5,iyiph /T2SO5 iyink (3.16)

where the indices 4, j, k run from 1 to 7. Fixing ¢, j, k identifies a specific truncation to the
quarter-maximal theory, and by carefully looking at table 10 and identifying one SO(4,4)
as acting on the four unfixed indices and the other as grouping different potentials together,
one can show that the SO5,:,;,5/T?*SO5i,;,& branes belong to the representation

(35v,355) @ (35v, 35¢) @ (355, 35v) @ (35s,35¢) - (3.17)

Apart from the branes in eq. (3.17), there are additional space-filling branes that
survive the truncation and are 1/2-BPS of the truncated theory. The representation of
such branes is [21]

(350, 28) & (28,350) (3.18)
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corresponding to 4608 branes. In the particular case of the SO5 i, /T2SO5 i % trun-
cation of the SO9-truncated theory, these all the SO5,i,1,m and T2SO5,:,1,m branes with
I,m # j, k. This indeed gives in total 3 (3) - 2- 128 = 4608 branes.

Analogously to the five and four-dimensions cases, one can also obtain the half-maximal
theory as a geometric orbifold (7%/Z2) x T truncation of IIB. Denoting with %, i = 1,...,4
the orbifold coordinates and with y™, m = 1, 2,3, the torus coordinates, this corresponds
to the truncation TQSO5y1y2y3. One can obtain the 35 truncations of the TQSO5y1y2y3 half-
maximal theory starting from the truncations of the SO9 half-maximal theory given in
eq (3.16). We first perform an S-duality transformation to go to 09, then four T-dualities
then again S-duality to go to SO5

along the z directions to go to O5 yly2y3, and

. The result is

yly2y3
finally two T-dualities along one y and one x direction to go to T2805y1y2y3
T2SO5y1y2y3 : O9/O5y1y2y3 , 3 X 0711...x4ym/03ym , 3 X O7$¢$g’y1y2y3/o7xk

9 x O5xixjym/o5xkxlym , SO9/SO5

9 x T2805,.

zlyly2y3
yly2y3 9 x SO5xixjym/SO5xkxzym
m/TQSO5zkxlym . (3.19)

iy
3.3 From quarter-maximal to 1/8-maximal supergravity

D =4: the four-dimensional A" = 2 theory with symmetry (SL(2,R))? x SO(4,4) can
be finally truncated to minimal supergravity coupled to seven chiral multiplets and global
symmetry (SL(2,R))”. The vector central charge belongs to the 3 of the R-symmetry U(2),
and correspondingly there are three different Zs truncations, as expected from the fact
that there are three different ways of embedding SO(2,2) x SO(2,2) inside SO(4, 4), with
SO(2,2) being isomorphic to (SL(2,R))%. The 384 1/2-BPS space-filling branes are the long
weights of the representations given in eq. (3.14), and one expects that for each of the three
truncations 128 branes are not projected out and preserve the same supersymmetry of the
truncation. We can for instance identify these truncations as follows: first truncate from
the maximal theory to the half-maximal one via SO9, and then from the half-maximal to
the N = 2 theory via SO5,5,6 /T2S05,5,6. One is then left with the SO5,:,; and T2SO5
space-filling branes in table 9, with ¢, 7 = 1,...,4, and in each of the three truncations one

xtxd

identifies the branes as follows:
SO9 — SO5,5,6/T?S05,5,6 : 3 X SOB5 45 /SO5 1k yt /T2SO05 iy /T?SO5 ket (3.20)

where the indices 1, j, k,l are all different. By analysing table 9 one can determine the
representations of the SO5i,; /SO5 k1 /T2805,i,i /T2SO05 k1 branes for fixed i, §, k, I that
preserve the supersymmetry of a given truncation. Starting from the representations of
the 1/2-BPS branes in the N' = 2 theory given in eq. (3.14) one gets
(3,3,1,28) —(3,3,1,3,1,1,1)$ (3,3,1,1,3,1,1)
®(3,3,1,1,1,3,1)® (3,3,1,1,1,1,3)
(3,1,3,28) —(3,1,3,3,1,1,1) 9 (3,1,3,1,3,1,1)
®(3,1,3,1,1,3,1) % (3,1,3,1,1,1, 3)
(1,3,3,28) —(1,3,3,3,1,1,1) 9 (1,3,3,1,3,1,1)
®(1,3,3,1,1,3,1)% (1,3,3,1,1,1, 3)
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(1,1,1,350) —(1,1,1,3,3,3,1)® (1,1,1,3,3,1,3)
®(1,1,1,3,1,3,3) @ (1,1,1,1,3,3,3) . (3.21)

The N = 2 theory has also a natural geometric origin as IIB compactified on the
orbifold T°/(Zy x Zs). In this case the torus T° is factorised as T = ®3_,T?, where T7?
indicates the two-dimensional torus with coordinates z¢ and %°, and the two Zy’s act as
(+,—,—) and (—,+,—) on the three pairs of coordinates. We can think of the orbifold
action as the sequence of two truncations, which are the TQSO5z1y1 from the maximal to
the half-maximal theory, and then T2SO5x2y2 / T2SO523y3 from the half-maximal to the
N = 2 theory. The three different truncations of the A/ = 2 theory can then be derived by
a suitable series of dualities starting from eq. (3.20), and the result is

09/05,1,1 /05,242 /05,348, O3/0741,152,2/OTp1,1,8,8/OT 20,38
SO9/SO5$1y1/SO5$2y2/SO5x3y3 . (3.22)

One can recognise the first two as the two T-dual orientifold projections of the IIB theory
on TY/(Zy x Zs) [43, 44], and the last as the projection on the heterotic sector. As we
will show in detail in section 5, the 128 branes in each of these truncations are precisely
those that are responsible for the cancellation of the tadpole conditions when all possible
geometric and non-geometric fluxes are turned on, and for the O3/07 ,1,1,2,2/07,1,1,3,3/

alylay ylady
O7,2,2,3,3 orientifold case, they have been determined in [19, 30].

Y

D =3: the three-dimensional theory with symmetry SO(4,4) x SO(4,4) can be truncated
to the supergravity theory with four supersymmetry coupled to eight scalar multiplets and
global symmetry (SL(2,R))®. As table 3 shows, there are nine different truncations, corre-
sponding to the fact that each of the two SO(4, 4) can be decomposed in (SL(2,R))* in three
different ways. We expect that for each of the nine truncations 512 out of the 4608 2-branes
in the representations of eq. (3.18) survive the are not projected out. These are the branes
that preserve the same supersymmetry of the truncation. To identify these branes and the
corresponding truncations, we proceed as in four dimensions, considering the particular
case of the SO9 truncation of the maximal theory, and the further SO5,5,6,7/T2S05 5 46,7
truncation of the half-maximal theory to the theory with eight supersymmetries. One gets

SO9 — SO5,5,6,7/T2S05,5,56,7 9 X SOB i pk /SOB i gt gm [ T2S05 i i i / T2SO5 it ym,
(3.23)
where ¢ = 5,6,7 and j,k,l,m = 1,...,4 and all different. Fixing ¢, j, k,[, m to identify a
particular truncation, one reads off the corresponding branes from table 10. These branes

belong to representations made of four triplets and four singlets of (SL(2,R))® which arise
from decomposing all the 350 and 28 representations in eq. (3.18) as

350 —(1,3,3,3) @ (3,1,3,3) & (3,3,1,3) & (3,3,3,1)
28 —(3,1,1,1)®(1,3,1,1) 6 (1,1,3,1) & (1,1,1,3) . (3.24)

As in four dimensions, this theory can also be considered as IIB compactified on the
orbifold T9/(Zs x Zs) x S'. Denoting the orbifold coordinates z'y’, i = 1,2,3 as in four
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dimensions, and the circle coordinate z, we can think of the orbifold action as the sequence
of two truncations, which are the T 2805x1y1 . from the maximal to the half-maximal theory,
and then T2SO5x2yzz / T2SO5x3y32 from the half-maximal to the quarter-maximal theory.
The nine different truncations of the N' = 2 theory can then be derived by a suitable series
of dualities starting from eq. (3.23), and the result is

09/05,1,1./05,2,2. /05,171,
S09/S05,1,1, /505,22, /SO5,3,3,
05,124/ 05,1208 /OB, OB,
0514245/ 05,12,/ 05,1345 [ O 12
SO5,1,2,3 /SO5, 1428 /SO5 1,28 /SO5 12,3
SO5,14248/S05,1,2y8 /SO5,142,3 /SO5,1,2,3

032 /0T 1142022/ OT 11,52/ OT 2,5
T?S05,1,2,3/T2S05,1,2,3/T2S05,1,2,3/ T2S05,1,2,3

T?S05,1,2,3/T?S05,1,2,3/T?S05,1,2,3 /T?SO5 1,2, (3.25)

where the corresponding branes can be read in table 10.

To conclude this section, we give in table 11 the summary of all the results, in which
in any dimension and for any supersymmetry we denote in red the representations of
the branes that preserve the same supersymmetry of the truncation, and in black the
ones that are 1/2-BPS states. The three-dimensional theory with four supersymmetries
admits a further truncation to the minimal D = 3 theory. This means that in the three-
dimensional theory with four supersymmetries there are also space-filling branes that are
1/2-BPS states, and this should correspond to representations denoted in black in the
table, that we have not determined. These branes should be the ones that preserve the
same supersymmetry as the truncation to the minimal theory. As we will discuss at the
end of the next section, we leave a careful analysis of this truncation and its relation to
minimal models with fluxes as a future project.

4 Embedding tensor, quadratic constraints and space-filling branes

The previous analysis yields a concrete prescription for finding the irreducible represen-
tations of the quadratic constraint (QC) containing all space-filling branes preserving the
same supersymmetry as the given truncation. The argument we used is inspired by the
properties of mixed symmetry potentials and how they are used to source exotic branes
through Wess-Zumino coupling. The aim of this section is to show that the very same
conclusion can be drawn independently by purely studying Zo truncations within gauged
supergravities in various dimensions to obtain theories with less supersymmetries. The
concrete prescription is to compare all the QC’s required by the theory with more super-
symmetry when restricted to its Zs-even sector with the ones imposed by the consistency
of the theory with halved amount of supersymmetry. The mismatch between the two ex-
actly identifies the irreducible representations containing space-filling branes allowed by the
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# susy 32 16 8 4
g SL(3,R) x SL(2,R) | R* x (SL(2,R))?
(15,1) (3,1)
; SL(5,R) R* x SL(4,R)
70 10
R* x SO(4, 4
S0(5,5) x50(4,4) Rt x SO(4,4)
SO(5,5)
35y 35 35
6 320 VOV v
320 35y @ 35y
— 355 © 35 355 @ 35
196 SE C s @ 39¢
126
Eq(6) R* x SO(5,5) (R*)2 x SO(4,4)
5 320 35y @ 35
1728 126 v &30y
210 353 @ 35¢
En) SL(2,R) x SO(6,6) | (SL(2,R))® x SO(4,4) | (SL(2,R))”
4 ___ (3,495) (32,28)
8645 (1,462) (3,35) 33
(1,2079) (1,350)
Eg(s) SO(8,8) SO(4,4) x SO(4,4) | (SL(2,R))®
3 (350, 28)
147250 6435 60060 (35,35) 34
(28,350)

Table 11. The representations of the space-filling branes that preserve the same supersymmetry
of the truncation (in red) and those that are 1/2-BPS states (in black). In six dimensions the case
with 16 supersymmetry is divided in two rows, with the upper row corresponding to the 6A and the
lower row to the 6B truncation. In four dimensions, the representations of the cases with eight and
four supersymmetry are written in a short-hand notation which stands for egs. (3.13) and (3.14)
(eight supersymmetries) and (3.21). Similarly, in three dimensions the red representations of the
theory with eight supersymmetries are given in egs. (3.17), while those of the theory with four
supersymmetries can be derived from (3.24).

less supersymmetric theory. From the technical viewpoint of gauged supergravity, such a
mismatch represents the set of all closure conditions specified within the [odd, odd] sector.

We will now carry out the aforementioned analysis by treating each number of dimen-
sions separately. This will involve the study of the allowed irreducible representations of
the embedding tensor and the corresponding set of QC’s it is subject to throughout a chain
of Zy truncations.

4.1 Gauged supergravities in D =9

In nine spacetime dimensions 32 and 16 are the only amounts of real supercharges which
are compatible with Lorentz symmetry. We shall refer to these cases as the maximal and
half-maximal theory, respectively. Hence there is only one Zs truncation to be considered
here, i.e. the one relating them (see [45] for details). The most general gauged maximal
theory was studied in [46], it enjoys global symmetry RT x SL(2,R) and it has embedding
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tensor

O € 2043) B 3y - (4.1)
ot (i5)

The discrete truncation yielding the half-maximal theory reads
R+ x SL(2,R) — (R1)?, (4.2)

however this case turns out to be rather trivial since the embedding tensor of the half-
maximal theory belongs to irreducible representations without long weights. This means
that even the only space-filling brane that one expects cannot be sourced by flux tadpoles.

4.2 (Gauged supergravities in D = 8

Moving to the D = 8 case, the only two possibilities available are still just the maximal
and half-maximal theories, which are then related again by a Zs truncation. The most
general gauged maximal theory was studied in [47-49], and it has SL(3,R) x SL(2,R)
global symmetry. The truncation relating the two theories is given by [45]°

SL(3,R) x SL(2,R) — R x (SL(2,R))?)

0 € (3,2) @ (6,2) (2,2)_q) ® (2,2)_q) - (4.3)
?,-/ (mn)
am fa mn QAovi %3

The QC of the maximal theory
€*P Eam Ean = 0, (3,1)
f(anp gﬁ)p =0, (
€ (€mgr o™ 5™ + fa™&pm) = 0, (15,1) & (3,1)

reduce upon truncating to the following set of QC
€*P el g, ag; =0,

Eaﬂ Gij bm' bﬂj =

(

0, (

B € q,,; bg; =0, (

€ aaibg; = 0, (
0

1,1)
1,1)
1,1)_y (4.5)
3,1)
e agibgy =0, (1,3)

while the consistency of the half-maximal theory only requires the last two constraints (that
are the constraints on the triplets) and two combinations of the three singlets. However,
that does not affect our counting of space-filling objects. As far as these are concerned,
the peculiarity here is that the decomposition of the QC in (4.4) would in principle yield
an extra (3,1) containing one space-filling brane which cannot be sourced by any fluxes.
This is due to the fact that the three-form representation of SO(2,2) ~ (SL(2,RR))? does
not have any long weights.

10VWe are using here the notation commonly used in the gauged supergravity literature, which differs from
the one adopted in section 2. This should not cause any confusion to the reader.
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4.3 (Gauged supergravities in D =7

As far as theories in seven dimensions are concerned, the situation remains unchanged, i.e.
only maximal and half-maximal supersymmetry are allowed and they are related by a Zo
truncation. The embedding tensor formulation of gauged maximal D = 7 supergravities
was developed in [50]. The global symmetry is given by SL(5, R), which can be subsequently
broken as follows to yield a half-maximal theory

SL(5, R) 4 R x SL(4,R) ,
©c 15 & 40 1(_g) ® 6(42) © 10(19) © 10(4) . (4.6)
Y'(IMN) ZIMN],P 0 s[mn] Q(mn) Q("LTL)

The QC constraints of the maximal theory
Y Z9NY + 2eppsry ZE5N ZTUP =0, (5 @ 45 @ 70) (4.7)

reduce to
0&mn =0, (6(—6))

(Qmp + fmp) Qpn =0, (Lsg) @ 1504y
Qup € + Emp (Q’m + 6””) =0, (L4 © 15(14))
0Q™ =0,  (10()

where all of the above constraints are demanded for consistency of the half-maximal theory,

(4.8)

except for the singlet part of the second constraint and the last constraint transforming in
the 10. As we are interested in the space-filling branes, we immediately see that the four
objects that we are looking for exactly coincide with the long weights in the 10. Note that
this is perfect agreement with what presented in table 11.

4.4 (Gauged supergravities in D = 6

Moving down to six dimensions, one encounters for the first time the possibility of con-
structing quarter-maximal theories, i.e. preserving only eight real supercharges arranged
within a symplectic Majorana-Weyl (SMW) doublet. Starting from the maximal theory [51]
enjoying SO(5,5) global symmetry, one can perform the following Z, truncation

SO(5,5) —» R* x SO(4,4) ,

6 c144c 87V a8 Y @sel Y, (4.9)
\/A—/ ~—— —— ——
o Cm Em NP

to obtain a theory with sixteen supercharges realising N' = (1, 1) supersymmetry and where
the gravity multiplet is coupled to four vector multiplets.
The QC of the N = (2,2) theory read

04088 nap =0, (10 @ 126¢)

4.10
goA pb(B (70})aﬂ =0, (320) (410
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where 7 is the SO(5, 5)-invariant metric, while {'yA} represent the SO(5, 5) Dirac matrices.
When restricting oneself to the even sector, the above set of constraints takes the following
form (we furthermore set £ = 0)

froun frgt =0, (35(372) ® 35&372)>

funp ¢ =0, (28(+2)
(4.11)

fune fMVE =0, (12)

frunpCgylsp =0, (35(;2))

the last two constraints not being required for the consistency of the (1,1) theory. Hence,
the 8 space-filling branes found in table 11 arise here as the long weights of the 35(S+2) of
Rt x SO(4,4).

Furthermore, a second inequivalent Zo truncation is the one mentioned in the previous
section giving rise to the chiral half-maximal theory with N' = (2,0) supersymmetry and
tensorial matter. This truncation leaves the whole SO(5,5) global symmetry unbroken but
it has no embedding tensor deformations. This means that, even if it has space-filling brane
states available in the spectrum, we have no possibility of cancelling their charge by means
of flux tadpoles.

The last step we still need to discuss within the D = 6 case is the one taking us from
the N = (1,1) to the N/ = (1,0) theory by means of the following truncation

R x SO(4,4) — Rt x SO(4,4) ,
(IS 8(C+3) & S(C_l) & 56(0_1) None , (4.12)
S
Cm Em JM NP

where the resulting A/ = (1,0) theory contains tensor as well as hypermultiplets. However,
no deformation parameters survive the truncation and hence no space-filling branes may
be added by consistently cancelling their charge by means of flux tadpoles.

4.5 (Gauged supergravities in D =5

Now let us move to the five-dimensional case. Here again one can have theories with 32, 16
or 8 real supercharges. Starting from the maximal theory [52] with Egg) global symmetry,
the following Zo truncation

EG(G) — RT x 80(5, 5) s
O € 351 10(42) @ 45(_g) & 120,y , (4.13)
Z[VAB] N—— —— ——
Em C[MN] SN P

produces a half-maximal gauged supergravity [29] with five extra vector multiplets. De-
composing the QC’s of the maximal theory and restricting ourselves to the even part, we
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find the following set of QC’s

EmM =0, (1(+0)
Cun €N =0, (10(_)
funp&f =0, (45(14))
frpan fre) + fiunp &g =0, (210(4.4)) (4.14)
(9 fnpg + € lnp =0, (10(_g) & 120(_y) & 320(_o))
funp fMNP =0, (1(1a))
Jiunpe Corylsp = 0, (126(_9))

which exactly correspond to the QC of the half-maximal theory, plus the last two lines
transforming in the 1(44) and m(_g) as two additional ones. Therefore, the spacefilling
branes of this theory are given by the 16 long weights inside the latter extra QC irreducible
representation. This is once again in agreement with what found in the previous section.

We now want to further truncate the half-maximal theory to obtain a quarter-maximal
theory coupled to four hypermultiplets. This is done through

Rt x SO(5,5) — (R*)? x SO(4,4) ,
(4.15)
© e 10 & 45 & 120 3 x (1 @ 28) ,
&M C[M N fimMNP]

where the resulting embedding tensor can be rearranged into the reducible object de-
noted by ©OA%, where in turn, the index A labels the vectors, while « runs over
adj (RT) & adj (R") @ adj (SO(4,4)). The QC’s (4.14) then reduce to the following ir-
reducible representations:

1 —1 ,

45 — 1 @ 28 @ odd )

(4.16)
210 — 28 @ 28 @ 355 @ 35¢ @ odd ,
120 — 28 © 28 @ odd :
320— 1 @1 ¢ 28 P 28 P 35y ® 35y @ odd ,
to be compared with those ones appearing in the QC’s of the N' =1 [27]
00 O5” fop? + [taly' OO = 0, (4.17)

where {f,37} and {[ta] AF} are the global symmetry generators in the adjoint and vector
representation, respectively. The unneeded QC irreducible representations containing the
longest weights turn out to be 355 & 35¢ @ 35y @ 35y, once again in perfect agreement
with the analysis of section 3.
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4.6 Gauged supergravities in D = 4

In D = 4, the minimal amount of supersymmetry which is consistent with Lorentz sym-
metry is given by four real supercharges rearranged into a single Majorana spinor. This
implies the extra possibility in this case to further truncate a quarter-maximal theory down
to a minimal one. The most general maximal gauged theory was studied in [28] and it turns
out to enjoy E7(7y global symmetry. Furthermore, in [23], the truncation defined by

E7(7) — SL(2,R) X 80(6,6) s
0 c 912 (2,12) & (2,220) , (4.18)
X\/ —_—— —
MNP EaM falMNP)

was found to yield a half-maximal theory [29] coupled to six extra vector multiplets.
The QC of the maximal theory

OME X yvp Xors = 0, (133 @ 8645) (4.19)

give rise to the following QC’s for Zy even objects

Eam M =0, (3,1)
&l foymne =0, (3,66)
3 farn fopQ" — 2 fapmune Epg = 0, (3,495)
*? (&a” fapmn + Eanr&an) = 0, (1,66) (4.20)
€ farnr fop™ + (f€ terms) =0, (1,66) @ (1,2079)
famnpe [N =0, (3,1)
P fomnp fagrs)lsp =0, (1,462)

where one can recognise all the QC’s of N/ = 4 supergravity, plus the last two lines which
therefore contain space-filling branes. In particular, the (1,@) contains exactly the 32
long weights that we expect from the results of the previous section.

To further truncate to the quarter-maximal theories, we perform the following trunca-
tion [53]

SL(2,R) x SO(6,6) — (SL(2,R))® x SO(4,4)

0 € (2,12) & (2,220) (2,2,2,1) @ (2,2,2,28) , (4.21)
N—— N——
SaM JfaMNP]

where once more we may regroup the embedding tensor of the N' = 2 theory into the object
©,4, where A takes values in the (2,2,2,1), while the index A spans the whole adjoint
representation of the global symmetry group.
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The N = 4 QC irreducible representations break into

(3,1) —» (3,1,1,1) ,
(3,66) — (3,3,1,1) @ (3,1,3,1) & (3,1,1,28) @ odd ,
(3,495) —» (3,1,1,1) @ (3,1,1,355) @ (3,1,1,35¢)
©(3,3,1,28) @ (3,1,3,28) @ odd ,
(1,66) — (1,3,1,1) @ (1,1,3,1) & (1,1,1,28) & odd , (4.22)
(1,2079) — (1,3,1,1) ® (1,1,3,1) & (1,3,3,1)
$(1,1,1,28) & (1,3,1,28) & (1,1, 3, 28)
®(1,3,3,28) @ (1,1,1,350)
®(1,3,1,35y) @ (1,1,3,35y) @ odd
The QC’s demanded for consistency of the N' = 2 theory read [27]
01" Os5” fas” + [taly' OO =0, )

oMol =0,

where {f,37} and {[ta] AF} are the global symmetry generators in the adjoint and vector
representation, respectively. The unneeded QC irreducible representations containing the
longest weights turn out to be (3,1,1,355) @ (3,1,1,35¢) ® (1,3,1,35v) ® (1,1, 3,35y),
once again in perfect agreement with the analysis performed in the previous section.

A last step that can be discussed here in four dimensions is the one further breaking
supersymmetry to N/ = 1. This truncation is concretely realised as follows

(SL(2,R))® x SO(4, 4) — (SL(2,R))” ,

(4.24)
0 € (2,2,2,1) & (2,2,2,28) (2,2,2,2,2,2,2) .

However, the minimal theory one ends up with is purely coupled to chiral multiplets and
hence it possesses no vector fields. As a consequence, the obtained supergravity model will
reorganise the embedding tensor deformations surviving the above truncation into massive
deformations not associated with any gauging. In particular, in this model all of them may
be interpreted as parameters inducing a holomorphic superpotential in the seven complex
scalar fields. Due to this, we do not have any QC’s required for consistency and we do
expect all of them to be sourced by space-filling branes. This class of theories will be studied
in detail in the next section, where these parameters will be interpreted as the 27 = 128
generalised fluxes coming from an orbifold compactification of type IIB string theory.

To conclude this section, we quickly comment on the three-dimensional case. The
embedding tensor of the maximal theory belongs to the 1 @ 3875 of Eg(g [24], while the
quadratic constraint belongs to the 3875 @ 147250 [54]. By truncating the theory to the
half-maximal one with symmetry SO(8,8), one can show that the embedding tensor is
truncated to the one of the half-maximal theory [25], while the quadratic constraints are
truncated to the quadratic constraints of the half-maximal theory plus extra constraints,
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and the highest-dimensional representation of such remaining constraints is the 6435,
in agreement with the results of the previous section (see table 11). Similarly, one can
study how the further truncations to the theories with eight and four supersymmetries
give patterns for the quadratic constraints in agreement with table 11. Moreover, the
theory with four supersymmetries in three dimensions can be further truncated to the
minimal theory. Just as in the 4D minimally supersymmetric case, we expect no quadratic
constraint to be present here and hence all highest weights surviving the branching of the
QC’s will correspond to exotic space-filling brane states. Effective descriptions of this type
can be e.g. obtained by compactifying M-theory on Joyce 8-manifolds of Spin(7) holonomy.
Internal manifolds of this type admit an orbifold limit where they are described as T%/T,
where the discrete symmetry I' can be e.g. Z3. These M-theory backgrounds are also
known to have perturbative corners given by type IIA orientifolds of Joyce 7-manifolds
of Gg holonomy [55], or heterotic strings on such Gg-manifolds [56]. However, we leave a
careful analysis of all these features of the three-dimensional case as a future project.

5 1IIB on T°/(Z2 X Z3), fluxes and Bianchi identities

As explained at the end of the previous section, performing three Zs truncations on a
maximal gauged supergravity theory in four dimensions yields an AV = 1 supergravity model
where the supergravity multiplet is coupled to seven chiral multiplets. The scalar sector of
the theory contains seven complex fields spanning the coset space (SL(2,R)/SO(2))” which
are usually denoted by ®* = (5,7;,U;) with i« = 1,2,3. The kinetic Lagrangian follows
from the Kéhler potential

3 3
K = —log(=i(S—=38)) = > log (=i (T; = Ty)) — Y log (=i (U; = Uy)), (5.1)
i=1 i=1

yielding

— 3 —_ —
9508 Z( oT,0T; oU0U; ) 52)

in — — + — + —
i -5 S\ (T -T))? (i -T)

The presence of fluxes induces a scalar potential V for the scalar fields which is given
in terms of the above Kahler potential and a holomorphic superpotential W by

Vo= ek <—3|W!2 + Ko DQWDBW> , (5.3)

where KB is the inverse of the aformentioned Kihler metric and D,, denotes the Kéahler-
covariant derivative.

As already mentioned earlier, the superpotential W is induced by the 128 deformation
parameters surviving the truncation of the 912 of E(7) wih respect to Z3. The form of such
superpotential is given by the most general polynomial in (S, T;,U;) without any mixed
terms, i.e.

We~1+4+ ...+ STHT5T35U, U3 U3, (5.4)

which precisely includes 128 terms, each of which is induced by its own
deformation parameter.
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In what follows we will review how the above class of minimal supergravities arise from
orbifold compactifications of type IIB string theory down to four dimensions. Before moving
to that analysis though, let us note that the consistency of the N' = 1 theory only requires
all massive deformations of this type to be arranged into a holomorphic superpotential.
In our specific case this requirement is automatically fulfilled by any polynomial function
of the type given in (5.4), while no further QC’s on its coefficients are needed. This
means that any QC in terms of the superpotential couplings surviving the Z% truncation is
expected to be relaxed in our compactification yielding minimal supersymmetry by means
of space-filling branes.

As previously anticipated, the above minimal supergravity models with seven chiral
multiplets arise from dimensional reductions of type IIB string theory on T°/(Zs x Zs)
with 03/O7-planes.!! The Zy x Zso orbifold acts on the six internal coordinates precisely
as described below equation (3.21). What further realises a supersymmetry breaking down
to a minimal amount is a Z, flipping the sign of all the coordinates on the 7. There need
to be O3-planes located at each fixed point of this involution, while a triplet of O7-planes
are placed at fixed points of those involutions obtained by combining this last Zs with the
three non-trivial generators of the orbifold group.

Adopting the type IIB language, the seven complex scalars of the N/ = 1 model have
the following physical interpretation

S <« Axiodilaton ,

T; <> Kéhler moduli , (5.5)

U; +» Complex structure moduli .

The first understanding of the mechanism that perturbatively induces a superpotential
from fluxes in this context is due to [58], where a superpotential of the form

Waovw = Pr(U;) +S Pu(Us) , (5.6)
~—— ——
F flux H flux

where Pr & Py are cubic polynomials in the complex structure moduli controlled by R-R
and NS-NS three-form fluxes with different legs in internal space. Superpotentials of this
type were found to describe special type IIB Minkowski backgrounds [59] with no-scale
symmetry due to the absence of T-dependence in W.

In [60] it was argued, on the basis of string dualities, that the superpotential in (5.6)
should be generalised to contain new fluxes which are named non-geometric. Subsequently,
in [61] the set of generalised fluxes was further enlarged to include the complete set of
objects closed under perturbative and non-perturbative string dualities. The corresponding
superpotential reads

W = Pp(Ui) +8 Py(U;) + YTk PY(U:) + S YT PR(Uy)
N—— N—— k

k ~—— N——
F flux H flux Q flux P flux (5 7)
+T11 1515 ( PF/(Uz) + S PH/(UZ) ) -+ ZT¢T] ( ng)(Uz) + S P(lf)(Uz) ) s
N— D k N— e
F’ flux H' flux Q' flux P’ flux

HGee for instance [57] for a review on orientifold models with fluxes.
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where Pp, Py, P, (k) and P( ) are cubic polynomials in the complex structure moduli

given by
y U1 U2 U
Pr(U;) =CL0—ZCL1)U —i—z %—G3U1U2U3 ;
Py (U;) = —bo + Zbgz Ui — Zb(z) 4 g? Us + b3 Uy U Us ;
i i i 5.8)
i iy Ur U U. (
PO = ¢ + chk) Ui = e % - s
(k) U1 Ua Us

rP ;) = —dlP Zd’kU +zd +dP U U, Us

U

while Pp:, Py, ng) and Plgf) are cubic polynomials in the complex structure moduli

given by
i y U1 U2 U

Pr(U;) = Za,( Ui + Z y % = doU1U2Us )

i y U1 U U
PH/(UZ') = U3 + Zb,( U, — Zb/ % + VoUL Uy Us ,

! 5.9)

i y U1 U U (

ng)(Ul) = -l- Zc(k U - Z /(0 ! U2 LA C/(()k) Ul UQ U3 5

Uy Us

U + d,(k) U,UU;s .

(2 (2 U
PY(U;) = —dfg’“ -2 d¥V U+ aiY

Note that the superpotential in (5.7) exactly comprises the aforementioned 128 terms
coming from the Zj truncation of the embedding tensor of maximal gauged supergravity

in four dimensions.

Once we understood these orbifold compactifications of type IIB with fluxes as Z3
truncations of maximal gauged supergravities in D = 4, we would now like to interpret all
the QC irreducible representations accordingly as quadratic conditions for the fluxes which
may be sourced by space-filling objects in string theory. By applying our prescription,
we can identify all the space-filling branes as the longest weights of the QC irreducible
representations of the N' = 2 theory decomposed by performing the last Zs truncation.
All of the other long weights contained in the rest of the Zs even QC irreducible represen-
tations which were unneeded in the two previous steps of the truncation are interpreted
as Bianchi Identities (BI), i.e. consistency constraints of the background itself. To be
more explicit, the BI’s can be seen as conditions for the absence of extra space-filling ob-
jects whose negative-tension counterparts realise the background itself. Mathematically,
those quadratic constraints can be interpreted as conditions enforcing the closure of the
flux-twisted exterior derivative operator.

By following the above prescription, let us now proceed to identify the space-filling
brane states and the BI's for type IIB compactifications on 7°/(Zy x Z3). The truncation
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net reads'?

Er(r)

1 Zs

SL(2,R) x SO(6,6) — (1,462)

v 2 (5.10)
3,1,1,35¢) ¢ (3,1,1,35¢) &
SL(2,R)} x SO(4,4) — ( 5) & ( c)

®(1,3,1,35y) @ (1,1,3,35y)
1 Zy
SL(2,R)"

where the irreducible representations pulled out on the right of the above diagram will
precisely give rise to the BI’s of our theory, upon truncation down to SL(2,R)7, while the
space-filling branes will be captured by those QC irreducible representations surviving the
triple discrete truncation, i.e.

(1,1,1,350) & (1,3,3,28) & (3,1,3,28) & (3,3,1,28) & shorter weights,

of SL(2,R)?; x SO(4,4). Further decomposition down to SL(2,R)" yields the following
space-filling branes

(873, 31,,37,) (1 irrep)
(85,31;,37,) (3 irrep’s) ,
(35,3u,,3u;) (3 irrep’s) , (5.11)
(37;,8v;,3v,) (3 irrep’s) ,
(

(37, 3v;,30;)

which precisely contain the 16 x 23 = 27 = 128 space-filling branes we needed from the

6 irrep’s) ,

previous analysis, while for the BI’s one finds

(3Ti7 3Tja 3Uj) (6 irrep’s) ’

(5.12)
(35'7 3Ti7 3Uj) (6 irrep’s) s

containing 12 x 23 = 96 BI’s in total. Note that this perfectly matches the results of [30],
to which the present analysis can be regarded as an independent check.

A further physical comment concerning the possibility of relaxing the constraints. As
already stated above, each and every quadratic condition for type IIB fluxes appearing
in (5.11) can be relaxed by adding the correspondent space-filling (exotic) brane sourcing
the associated flux tadpole. All those branes are consistently preserving the same four
real supercharges as the very background. On the other hand, it becomes very natural to
ask about a similar possibility for the BI's in (5.12). Indeed, just as any other algebraic
constraint, these are not needed for consistency. Their physical interpretation is that of

'2The consistent identification for the different SL(2,R) labels is SL(2,R)” = SL(2,R)y, x SL(2,R)y, x
SL(Q,R)U3 X SL(2,R)T1 X SL(2,R)T2 X SL(Q,]R)T3 X SL(Q,R)s.
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enforcing the condition for closure of the flux-twisted exterior derivative operator defined on
our CY background. Our intuition seems to suggest that the original CY will be deformed
into an G-structure manifold as an effect of the backreaction of fluxes to the background
geometry. In this context, the twisted exterior derivative operator will now receive torsion-
induced contributions. Following the philosophy of [62], part of the contributions to the
internal curvature can be interpreted as the presence of space-filling KK-monopoles and
T-duals thereof.

6 Conclusions

In this paper we have considered the supergravity theories that arise as sequences of Zo
truncations of the maximal theories. We have determined in all cases the 1/2-BPS space-
filling branes that preserve the supersymmetry of the truncated theory and the representa-
tions of the symmetry of such theory to which they belong. We have then discussed all the
possible gaugings of these theories as described in terms of the embedding tensor. We have
shown that for any theory, among the representations of the quadratic constraint on the
embedding tensor that survive the truncation but are not needed for supersymmetry, the
highest-dimensional ones are precisely those of the 1/2-BPS space-filling branes that pre-
serve the same supersymmetry of the truncated theory. This can be naturally interpreted
as the fact that these quadratic constraints after the truncation become tadpole conditions
for such branes.

We point out that the number of different Zy truncations of a given supergravity theory,
that from a group-theory point of view is given by the number of different ways in which
the symmetry of the truncated theory can be embedded in the symmetry of the original
one, is also given by the number of vector central charges of the supersymmetry algebra.
This rather intriguing result shows once again the deep relation between supersymmetry
and group theory.

Although the analysis in this paper was performed uniquely in terms of the branes of
the IIB theory, it would be interesting to reinterpret this from the point of view of ITA
and also from the point of view of M-theory. In particular, the analysis of the tadpole
conditions for all the possible fluxes that can be included in the 7%/ (Zy x Zs) orientifold
was performed in [30] also in the case of the IIA O6 orientifold, and this could then be
compared with the techniques developed in this paper.

Moreover, one can extend the three-dimensional case to include a more detailed anal-
ysis. In particular, the minimally supersymmetric gauged theories turn out to have fewer
constraints coming from consistency and supersymmetry [63] and hence a further trunca-
tion down to two real supercharges could be a very valuable venue for string model-building.
Three-dimensional theories with minimal supersymmetry can be obtained by compactify-
ing M-theory on Joyce 8-manifolds of Spin(7) holonomy, and internal manifolds of this type
admit an orbifold limit where they are described as T®/I', where the discrete symmetry I'
can be e.g. Z%, so that our techniques can be applied to this case. One can also use the
methods presented in this paper to investigate the duality relations with perturbative cor-
ners given by type ITA orientifolds of Joyce 7-manifolds of Gg holonomy [55], or heterotic
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strings on such Go-manifolds [56]. We leave a careful analysis of all these features of the
three-dimensional case as a future project.

Finally, we stress again that the vast majority of the branes discussed in this paper
are exotic, in the sense that they do not have a clear higher dimensional origin. It would
be of extreme interest to get any understanding of the dynamics of these objects, that in
our analysis must be included for symmetry arguments. This would dramatically improve
our understanding of string theory and our ability to construct models.
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A D = 8 spinor conventions

In this appendix we discuss in detail all the spinor conventions that we have adopted
in section 2. All the fermions of the eight-dimensional maximal theory are spinors of
SO(3) x SO(2). We have denoted with o, (m = 1,2,3) the Pauli matrices of SO(3). The
gamma matrices of SO(2) are the first two Pauli matrices, that we denote with 7, (a = 1, 2),
while the third Pauli matrix is the chiraly matrix of SO(2),

TaTh = 1€qbT3 . (A1)

As eq. (2.4) shows, all the spinors are chiral with respect to 973. They also satisfy the
Majorana condition in eq. (2.5), with C' = Cgoa7y as in eq. (2.6). The matrix Cyg is defined
in eq. (2.7), and commutes with v9. On the other hand, the matrix 73 anticommutes with
73, and hence the matrix C' and ~973 anticommute, so that the chirality conditions in
eq. (2.4) and the Majorana condition in eq. (2.5) are compatible. We call the Majorana
conditions in eq. (2.5) ‘symplectic’ because Cy is symmetric and satisfies the condition in
eq. (2.7) with the minus sign, so that the condition ¥ = Cg@T would not be consistent.
This is standard in the supergravity literature.

We now want to discuss the reality properties and the properties under Majorana flip
of the various fermionic bilinears that can be constructed, and in particular of the ones
that occur in section 2. We make use of the identities

CT%LC = _75
CloC = —ol

Clr,C = rr

ClrC = —13 (A.2)
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bilinear reality property | flip
by real even

@’yﬂ X imaginary odd
VOmX imaginary odd
PTax real even
PT3X imaginary odd
E/YMVX real odd
E’YMO' mX real even
@%Ta X imaginary odd
E%T 3X real even
VO mTaX imaginary odd
PomT3X real even
@’Y;pr imaginary even
E%Wffm X imaginary even
@'yuuTaX real odd
E%uﬂ' 3X imaginary even
@’Yuﬂ mTaX real even
@’yﬂang X imaginary odd
@’YMVPUX real even
E’YuupUmX real odd
JVW,,TQ X imaginary even
E’Y;wp'r?)X real odd
@’ylwamTa X imaginary even
@%uff mT3X real odd
@’muan mX imaginary odd
E’YuupaTaX real even
J’}/MVPO-’VTLTQX real odd
i’y,wpang X imaginary even
@'yu,,pg OmTaX imaginary odd

Table 12. The reality properties and the properties under Majorana flip of various fermionic
bilinears. The analogous properties for all the other bilinears can be derived from those in this
table using the duality relations in eq. (A.3).

the first of which is the same as eq. (2.7). A Majorana spinor ¥, satisfying eq. (2.5),
also satisfies U = —WTCT. As a consequence, for instance the bilinear ¥o,,7,x is equal
to —XomTe¥, which means that the bilinear is odd under Majorana flip. By complex
conjugation the bilinear goes to Xo,,74%, which is minus the bilinear itself because of
Majorana flip. As a conseguence, the bilinear is purely imaginary. One can easily generalise
this to get the reality conditions and the Majorana-flip properties for all the bilinears. We
give a summary of the properties of the various bilinears in table 12.
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We now want to derive the duality relations among different bilinears. Starting from
the definition of the 9 matrix given in eq. (2.3), by multiple contractions from the left
with gamma matrices one gets

()]

¢ v
nl €ut.ftmrr.vnY 1'"“"’79 m+n=8 . (A3)

Yotoppmn = —

Using this relation and the chirality properties in eq. (2.4), the properties of the bilinears
that contain the matrix -y, ,,, are related to those of the bilinears that contain the matrix
Yor..vn,T3. In particular from the bilinears given in table 12 one can derive all the others.
Given a spinor V¥ satisfying v9m3W = W, for the particular case of m = n = 4 one gets
i

7#1...;1,4\11 - _Ielu,l...,LL4V1...V4PYV1...M4T3\II . (A4)

Contracting from the left with 7, and using eq. (A.1), one then obtains the self-duality

condition .

'7#1.../1,47—a\p = _If,ul...,u4y1...l/4€ab')’ylmu47_b\IJ . (A5)
In general, in eight dimensions one can impose on a doublet of 4-forms X, ,,, the
self-duality condition

a V...
X,ul...,u4a = Ee,ul...,uz;ul...meabX Ty (AG)

where « can be either 1 or —1. In particular, eq. (A.5) corresponds to the case a = —1.
On the other hand, in section 2 we have shown that from the field-strength Flﬁ,pg of the
ﬁy o VA that satisfies the
self-duality relation in eq. (2.24), corresponding again to the case & = —1 in eq. (A.6). In

3-form potential A7}, one can construct the composite quantity F ;2, oo

general, if X, 0 and Y, ., q satisfy eq. (A.6) with the same «, one can prove that the
following identities hold:

X;u/pUaY'uypUa =0 Xpuvpo Y Phep =0 . (A7)

These relations have been used to prove the closure of the supersymmetry algebra on the
3-forms in section 2.
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