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1 Introduction

Phases breaking translations spontaneously play a prominent role in the phase diagram

of strongly-correlated Condensed Matter systems, such as high Tc superconductors. After

being anticipated on theoretical grounds [1–3], they were subsequently observed experimen-

tally [4]. In holography, spatially modulated instabilities of translation invariant phases

have been thoroughly studied, see e.g. [5–7]. The corresponding backreacted, spatially

modulated phases have been constructed as well [8–16] and are dual to various kinds of

strongly-coupled density waves.

As translations are not explicitly broken, momentum is still conserved and the DC

conductivities are formally infinite [17–19]

σ(ω) = σo +
ρ2

χPP

(
i

ω
+ πδ(ω)

)
. (1.1)

In the formula above, ρ is the charge density of the state and χPP = δP/δv the momentum

static susceptibility. σo is a transport coefficient that appears at first order in gradients in

the constitutive relation of the current density

j = ρv − σo∂µ+ . . . (1.2)

with µ the chemical potential and v the velocity. The dots stand for terms unimportant to

the conductivity calculation. At zero density and without broken translations, σo would
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represent the quantum critical conductivity due to particle-hole pair creation in the vac-

uum [20]. At non-zero density, it captures the contribution of incoherent, diffusive processes

which do not drag momentum, [21, 22].

It can be defined more formally by a Kubo formula [22]

σo =
1

χPP 2
lim
ω→0

ImGRJincJinc(ω, q = 0)

ω
. (1.3)

It involves the incoherent current

Jinc = χPPJ − ρP , (1.4)

which by construction is orthogonal to momentum, χJincP = 0. σo has been computed

holographically in translation-invariant phases [22–24], phases with weak momentum re-

laxation [21] as well as phases with spontaneous translation symmetry breaking [25, 26].

In the latter case, the breaking was realized homogeneously. The purpose of this note is

to generalize this computation to inhomogeneous, spatially modulated black branes which

break translations spontaneously.

For simplicity, we focus on a parity-preserving Einstein-Maxwell-dilaton model, (2.1),

where [27] has shown spatially modulated instabilities arise given certain conditions on the

behavior of the scalar couplings in the infra red. We will restrict to spontaneous breaking

in one spatial direction only. Our starting point will be the general construction of [28],

turning on an external electric field and a temperature gradient at the boundary. What

we will show, as noticed in [29], is that for spontaneous boundary conditions in the UV,

requesting certain metric elements to fall off sufficiently fast at the boundary imposes a

specific relation between the electric field and the temperature gradient. This is equivalent

to a rotation of sources, which itself implies that only the incoherent current is sourced

and not momentum.

One novelty of our setup is the presence of a pure gauge solution to the equations of

motion, which can be obtained by acting on the static background with a Lie derivative

along the spatially modulated direction. This can loosely be thought of as the Goldstone

mode of spontaneous translation symmetry breaking, the phonon. This mode contributes

to the local, spatially dependent currents and consequently to the local incoherent conduc-

tivity. As we shall see, it drops out after spatial averaging over the system, and so does

not appear in the zero mode of the ac conductivity (1.1). It can be interpreted as the

sliding velocity of the density wave and cannot be fixed simply from data at the horizon,

as pointed out in [13].

Another technical point we clarify is how to define properly the boundary heat current

from a conserved current in the bulk. How this works out for the spatial component

of the heat current has been extensively studied in past holographic literature, starting

with [30]. Drawing on [31, 32], we show that a conserved bulk current can be defined

such that its time component asymptotes to the time component of the boundary heat

current. The main technical concept is based on a generalization of the Iyer-Wald Noether
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charge [33, 34] involving Killing potentials.1 This leads us to an improved definition (2.34)

of the heat current compared to holographic literature, which turns out to be crucial to

properly understand the effect of a non-zero sliding velocity on the spatial currents.

Note added: as this work was nearing completion, [36] appeared which contains some

overlap with our results.

2 Background

In this paper we study a family of actions in a (3 + 1)-dimensional bulk spacetime. Our

starting point is the Einstein-Maxwell-dilaton action, which reads as follows

S =
1

16πGN

∫
d4x
√
−g
(
R− 1

2
∂φ2 − Z(φ)

4
F 2 − V (φ)

)
, (2.1)

where the functions Z and V only depend on the scalar φ and are left unspecified for the

time being. The equations of motion following from (2.1) are

Rµν +
1

2
ZFMSF

S
N −

1

2
∂Mφ∂Nφ =

1

2
gMN

(
R− 1

2
∂φ2 − Z

4
F 2 − V

)
(2.2)

1√
−g

∂M
(√
−g∂Mφ

)
=

1

4
Z ′F 2 + V ′ (2.3)

1√
−g

∂M
(√
−gZ(φ)FMN

)
= 0 . (2.4)

We will focus on asymptotically locally AdS4 solutions to (2.3)–(2.4) which have a

regular Killing event horizon in the IR and exhibit spontaneous translation symmetry

breaking in one of the field theory directions that we take to be x. To this end we adopt

the following Ansatz [28]

g = −U(r)Htt(r, x)dt2 +
Hrr(r, x)

U(r)
dr2 + Σ(r, x)

(
eB(r,x)dx2 + e−B(r,x)dy2

)
(2.5)

A = at(r, x)dt (2.6)

φ = φ(r, x) , (2.7)

where our convention for the radial coordinate r is such that the boundary resides at r =∞
and the horizon is at r = rh. We furthermore restrict to the case where all the functions are

periodic in x with period L, except U which only depends on r without loss of generality.

Restricting to asymptotically AdS4 solutions as r →∞ imposes several conditions on

the scalar functions and the solutions themselves. First of all, the scalar vanishes, leading

to the following expansions

V (φ→ 0) = −6 +
1

2
m2φ2 + . . . , Z(φ→ 0) = 1 + . . . , (2.8)

1Connections between the spatial component of the holographic heat current and the Iyer-Wald formal-

ism were noted previously in [35].
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where we take the scalar mass m2 = −2 in the following to simplify our boundary expan-

sions. Second, the Ansätze for the metric components, Maxwell potential at, and the scalar

φ are expanded as follows

U(r) = r2 +
U (∞)

r
+ . . .

Htt(r, x) = 1 +
H

(∞)
tt (x)

r3
+ . . .

Hrr(r, x) = 1 +
H

(∞)
rr (x)

r3
+ . . .

Σ(r, x) = r2 +
Σ(∞)(x)

r
+ . . .

B(r, x) =
B(∞)(x)

r3
+ . . .

at(r, x) = µ− ρ(x)

r
+ . . .

φ(r, x) =
φvev(x)

r2
+ . . . ,

(2.9)

compatible with AdS4 asymptotics. To ensure translations are only broken spontaneously,

none of the source terms including the chemical potential µ depend on x, while the vevs

ρ(x) and φvev(x) are generically x-dependent functions. We also note that the boundary

metric is simply the Minkowski metric.

Regularity at the horizon r → rh yields the following expansion

U(r → rh) = 4πT (r − rh) + . . .

Htt(r → rh) = Hrr(r → rh) = H
(0)
tt (x) + . . .

Σ(r → rh) = Σ(0)(x) + . . .

eB(r→rh) = eB
(0)(x) + . . .

at(r → rh) = (r − rh)a
(0)
t (x) + . . .

φ(r → rh) = φ(0)(x) + . . . ,

(2.10)

where . . . represent terms that vanish faster as r → rh. This can be checked by changing

to ingoing Eddington-Finkelstein (EF) coordinates, which read close to the horizon

t 7→ v − 1

4πT
ln(r − rh) + . . . . (2.11)

T is the usual Hawking temperature, which can be computed by requiring that the peri-

odicity β = 1/(2πT ) of imaginary time of the Euclidean solution is such that there is no

conical singularity at r = rh.

The behavior of the gauge field also follows from going to EF coordinates and requiring

aMdx
M be regular at r = rh.

– 4 –
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2.1 Pure gauge solution and sliding velocity

The background solution is not unique. The following linearized coordinate transformation2

t 7→ t− δvsx , x 7→ x− δvst (2.12)

together with the gauge transformation A 7→ A + dΛ, Λ(x) = δvsµx also yields solutions

solving the background equations to linear order in δvs, after a suitable modification of the

horizon regularity conditions (2.10). Note that it is crucial to perform all of these operations

simultaneously to avoid introducing new sources at the boundary. δvs is a constant which is

not fixed by the background equations. Physically, it represents the freedom for the CDW

to slide and is directly connected to the existence of a Goldstone mode due to spontaneous

translation symmetry breaking [13]. At the level of the background solution, it is consistent

to pick the gauge vs = 0 where the background is time-independent. This is the gauge we

work with for simplicity in the remainder of this work.

2.2 Boundary stress-energy tensor

To extract the energy-momentum tensor from the bulk metric, we go to the Fefferman-

Graham gauge by means of the following change of radial coordinate:

dz

z
=

√
Hrr

U
dr . (2.13)

In the Fefferman-Graham coordinates the metric close to the boundary z → 0 expands as

g =
1

z2
(dz2 + dxµdx

µ + z3Hµν(z, x)dxµdxν + . . . ) . (2.14)

The boundary energy-momentum tensor 〈Tµν(x)〉 = 3
16πGN

Hµν(z = 0, x) can then be di-

rectly read off from the metric and is spatially dependent. After performing the coordinate

transformation (2.13), we end up with a metric in the form (2.14) from which we extract

the stress-energy tensor

T = −(2U (∞) +H(∞)
rr + 3H

(∞)
tt )dt2 + (−U (∞) + 3B(∞) +H(∞)

rr + 3Σ(∞))dx2

+(−U (∞) − 3B(∞) +H(∞)
rr + 3Σ(∞))dy2 . (2.15)

Here, and in the rest of the article, we have set 16πGN = 1. By further using the UV

expansions of the metric functions, we find the following constraints

H
(∞)
tt +H(∞)

rr + 2Σ(∞) = 0 (2.16)

(H
(∞)
tt − Σ(∞) − 3B(∞))′ = 0 , (2.17)

which are the dilatation and diffeomorphism Ward identities obeyed by the stress tensor

Tµµ = 0 (2.18)

∂µTµν = ∂xTxx = 0 . (2.19)

2It would be interesting to generalize the following discussion to non-linear Lorentz boosts, but for our

purposes it is enough to work to linear order in δvs.
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These are not the only constraints on the boundary data. As we are considering phases

breaking translations spontaneously, we should also require that the free energy is mini-

mized with respect to the periodicity, which identifies the preferred spatially modulated

phase. We will return to this at the end of the next section.

2.3 Charge and entropy density from Noether currents

The solutions we are after have two conserved quantities that will be of interest in the

following. The first one is the total charge density on the boundary corresponding to the

global U(1) gauge symmetry (see eg [37]). The gauge field equation of motion (2.4) states

that the bulk current

JM =
√
−gZ(φ)FMr (2.20)

is conserved

∇MJM =
1√
−g

∂M (
√
−gZFMr) = 0 . (2.21)

In our ansatz only the temporal component of the field strength is non-zero, implying the

following radially conserved current

∂r(
√
−gZF rt) + ∂x(

√
−gZF xt) = 0 (2.22)

→ ∂r

(∫ √
−gZF rt

)
= 0 . (2.23)

Here we have adopted the notation
∫

:= L−1
∫ L
0 dx for the spatial averaging. Since the

above is radially conserved, we can directly evaluate J t at the boundary and link it with

the average charge density of the operator dual to A,

J̄ t =

∫ √
−gZF tr

∣∣∣∣∣
r=∞

=

∫
Z(φ)Σ(r, x)∂rat(r, x)√
Htt(r, x)Hrr(r, x)

∣∣∣∣∣
r=∞

=

∫
ρ(x) ≡ ρ̄ . (2.24)

The other conserved quantity is related to the entropy density and requires slightly

more work to write in closed form. We will eventually find a radially conserved current

that evaluates to sT . Our starting point is the antisymmetric two-form [28, 30, 37]

GMN = ∇MkN +
1

2
Zk[MFN ]IAI +

1

4
(ψ − 2θ)FMN , (2.25)

where k = ∂t is a Killing vector of our solution (Lkg = LkF = Lkφ = 0). The functions

ψ and θ are solutions to LkA = dψ and ikF = dθ. At the practical level, this means that

ψ = 0 and θ = −at. Furthermore, GMN satisfies

∇NGMN = −V (φ)

2
kN . (2.26)

This is not quite on the same footing as the electric current (2.21), as GMN is not conserved.

This can be remedied by the following argument, connected to the so-called Noether en-

tropy current and Komar integrals in the General Relativity literature [31–34]. [31, 32] in

particular were concerned with gravity with a cosmological constant (A = φ = 0). We
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recall their arguments here, and then will generalize them to the case at hand. Since k is

a Killing vector, it obeys the Killing equation and so is divergenceless ∇MkM = 0. This

immediately implies that it can locally be expressed in terms of an antisymmetric two-form

kM = ∇NωNM . This relation is not unique, as we can always shift ωMN by a co-closed

antisymmetric 2-form λMN , ω̃MN = ωMN + λMN . A simple choice is

λrt = −λtr =
α√
−g

(2.27)

and all other components zero, which can readily be checked to verify ∇MλMN = 0 at

background level. This implies is does not affect (2.26), which can be rewritten

∇MGMN = −Λ∇M ω̃MN ⇔ ∇M
(
GMN + Λω̃MN

)
= 0 . (2.28)

The improved bulk current GMN +Λω̃MN is now manifestly conserved. We will see shortly

that its rt-component gives the heat density sT after a suitable choice of α in (2.27). It

also makes it clear that both currents ultimately originate from bulk symmetries.

Now let us go through the same steps in the case with a non-zero scalar field. We

observe that

∇M
(
V (φ)kM

)
= V (φ)∇MkM + V ′kM∇Mφ = 0 (2.29)

where the first term vanishes because k is a Killing vector, and the second because Lkφ = 0.

Thus, we expect we should be able to find a two-form such that V (φ)kM = ∇NωNM .

Indeed, we find by direct computation that3

∂M (
√
−gGMt) +

√
−gV (φ)

2
= ∂r(

√
−gGrt) + ∂x(

√
−gGxt)

+
1

2
∂r(
√
−gωrt(r, x)) +

1

2
∂x(
√
−gωxt(r, x)) = 0 , (2.30)

where ωrt and ωxt are functions involving only metric functions and their derivatives (see

appendix A for details of the derivation). Similarly as above, this yields a radially con-

served current

∂r

∫ (√
−gGrt +

1

2

√
−gωrt +

α

2

)
= 0 . (2.31)

Setting α to zero for now, we can then evaluate (2.31) at the horizon to show that it is

related to the entropy density s:∫ √
−g
(
Grt +

1

2
ωrt
) ∣∣∣∣∣

r=rh

=

∫
Σ2

4
√
−g

(
Σ∂r

(
UHtt

Σ

)
− Zat∂rat + UHtt∂rB

) ∣∣∣∣∣
r=rh

= πT

∫
Σ(0)(x) =

1

4
sT , (2.32)

where in the last step we identified the average Bekenstein-Hawking entropy density s =
1
4

∫
Σ(0)(x) with the entropy density of the boundary theory. Anticipating on the analysis

3This fact was first noticed in the context of a different collaboration between B.G., Richard Davison and

Simon Gentle involving translation-invariant black hole solutions to Einstein-Maxwell-dilaton theories [29].
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of linear fluctuation and to have the correct normalization for the spatial components of

the heat current, we now make the gauge choice

α =
sT

2
(2.33)

so that in the end we define the bulk heat current

QM = 2
√
−gGrM +

√
−gω̃rM . (2.34)

Its zero mode is radially conserved

∂r

∫
Qt(r, x) = 0 (2.35)

and ∫
Qt(r, x)

∣∣∣∣∣
r=rh

= sT . (2.36)

This makes it clear that the entropy density (times temperature) is the Noether charge

associated to the timelike Killing vector k = ∂t [37]. Since the current is radially conserved,

we can also evaluate it at the boundary:∫
Qt
∣∣∣∣∣
r=∞

=
1

2

∫
(Ttt(x) + Tyy(x)− µρ(x)) +

sT

2
. (2.37)

We note that it is crucial to take into account the second term ωrt in order to renormalize

the boundary divergence contained in Grt.

Putting together (2.32) and (2.37) returns an integral Komar (Smarr) relation:

sT + µJ̄ t = T̄ tt + T̄ yy . (2.38)

We noted above an ambiguity in the definition of ωMN → ωMN + λMN . We see that this

ambiguity does not affect the integral relation we have just derived: since λ is itself closed,

its contributions at the boundary and at the horizon are of equal magnitude but opposite

sign, and so drop out from (2.38).

In [12] it was shown that the free energy density for this class of theories read w =

−sT − µJ̄ t + T̄ tt, and that moreover minimizing it with respect to the periodicity (to find

the most stable phase) implied the condition w + T̄ xx = 0. Thus we deduce that in fact

T̄ xx = T̄ yy and B(∞) = 0 from (2.15). We further obtain

T̄ xx = T̄ yy = p =
1

2
T̄ tt =

1

2
ε̄ , sT + µJ̄ t = ε̄+ p , (2.39)

which gives a Smarr-type relation for the background thermodynamic quantities. Thanks

to the underlying relativistic structure of the boundary theory, we can boost this stress-

energy tensor using a velocity uµ to

T̄µν = (p+ ε̄)uµuν + pηµν . (2.40)

– 8 –
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From there, we can compute the momentum static susceptibility by linearizing the averaged

stress-energy tensor around the equilibrium solution

χPP =
δT̄ tx

δvx
= ε̄+ p (2.41)

which matches the result in [36].

3 The incoherent conductivity

In this section we determine the thermoelectric DC conductivities of our system in terms

of horizon data.

3.1 Perturbation ansatz

With a straightforward generalization from [13] we turn on the following perturbations

g 7→ g + (δgtt + δvstU(r)∂xHtt) dt
2 + 2δgtrdtdr +

(
δgrr − δvst

∂xHrr

U(r)

)
dr2

+ 2
(
δgtx − ξHttUt+ δvsHttU(r)− δvsΣeB

)
dtdx+ 2δgrxdxdr

+
(
δgxx − δvst∂x(ΣeB)

)
dx2 +

(
δgyy − δvst∂x(Σe−B)

)
dy2 (3.1)

A 7→ A+ (δat − δvst∂xat) dt+ δardr + (δax + atξt− Et− δvsat + δvsµ) dx (3.2)

φ 7→ φ+ δφ− δvst∂φ . (3.3)

E is a constant and uniform electric field which sources the electric current, ξ a constant and

uniform temperature gradient which sources the heat current.4 E and ξ appear such that

perturbation equations of motion are time independent when background functions are on-

shell.5 δvs terms can be generated through similar gauge and coordinate transformations

as in section 2.1. In contrast to the background, they cannot be gauged away since we have

now turned on sources linear in t, on which the coordinate transformation (2.12) would

act. Indeed, [13] found such terms were necessary to match the AC and DC computation

of the electric conductivity in a probe brane setup. All other perturbations are assumed

to be periodic in x, and decay sufficiently fast at the boundary not to introduce any other

source.

Horizon regularity imposes additional constraints on perturbations, which we have

collected in appendix B.

3.2 Currents and conductivity

Taking our cue from [28], we look for two conserved bulk currents that asymptote to the

spatial component of the electric and heat currents, respectively. We first focus on the

4These sources can also be made periodic [38].
5Setting δvs = 0, the time dependence introduced by E and ξ can be removed by a coordinate transfor-

mation t 7→ t(1− ζ x) and gauge transformation A 7→ A+ dΛ, Λ = t E x, [39].

– 9 –



J
H
E
P
0
7
(
2
0
1
8
)
0
0
4

electric current. Since the CDW slides δvs 6= 0, J x =
√
−gZ(φ)F xr is no longer conserved

but instead it is a function depending on r and x. Indeed:

∂t(
√
−gZ(φ)F tr) + ∂x(

√
−gZ(φ)F xr) = 0 (3.4)

∂t(
√
−gZ(φ)F tx) + ∂r(

√
−gZ(φ)F rx) = 0 . (3.5)

Non-zero temporal derivatives spoil the conservation of J x, so we must find a new combi-

nation that is conserved. This combination is found by observing that to first order, the

following holds

∂t(
√
−gZ(φ)F tr) = −δvs∂x(

√
−gZ(φ)F tr) (3.6)

∂t(
√
−gZ(φ)F tx) = −δvs∂x(

√
−gZ(φ)F tx) . (3.7)

These together with equations of motion imply that

∂r(J x − δvsJ t) = 0 (3.8)

∂x(J x − δvsJ t) = 0 . (3.9)

Thus, we find the following conserved quantity analogous to electric current

J̃ x := J x − δvsJ t . (3.10)

We observe that JM defined in (2.20) transforms under the coordinate change (2.12) with

vs 7→ δvs in such a way to exactly compensate the second term in (3.10). So (3.10) is the

combination invariant under (2.12). Indeed we can check by direct computation that

J x = J x(δvs = 0) + δvsJ t . (3.11)

So all δvs dependence drops out from J̃ x.

This of course has a natural interpretation. As the translation symmetry breaking

is assumed to be spontaneous, the CDW does not have a preferred location to reside.

This does not impede constructing such inhomogeneous solutions numerically by picking

an origin of the x-coordinate and forcing the solution, for example, to have a zero phase

there. When one turns on a constant, uniform electric field perturbation E, in absence of

impurities or pinning potentials, the CDW will immediately react due to Lorentz force and

begin sliding. The traveling CDW carries with itself the charge carriers and the natural

conserved current one would write down is (3.10).

We also note that (3.11) is consistent with how any boundary current Jµ = (J t, δJx, 0)

transforms under (2.12):

Jµ → Jµ = (J t − tδvs∂xJ t, δJx + δvsJ
t, 0) . (3.12)

A similar story holds for the heat current, with a subtlety related to the two-form

ωMN . To first order in perturbations, the Killing vector k (Lkg = LkF = Lkφ = 0) is

k = (1− ξx)∂t + δvs∂x , (3.13)
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implying

θ = −(1− ξx)at(r, x)− δat(r, x)− Ex+ δvst∂xat(r, x) (3.14)

ψ = −Ex . (3.15)

With these choices for k, θ and ψ we know that the two-form satisfies (2.26). We need the

r and x-components which are more explicitly

∂t(
√
−gGtr) + ∂x(

√
−gGxr) = 0 (3.16)

∂t(
√
−gGtx) + ∂r(

√
−gGrx) = δ

(
−
√
−gV (φ)

2
kx
)
. (3.17)

First notice that at background level, kx = 0 and at first order δkx = δvs, meaning that

up to first order

−
√
−gV (φ)

2
kx = −δvs

√
−gV (φ)

2
. (3.18)

Again the following holds

∂t(
√
−gGtr) = −δvs∂x(

√
−gGtr) (3.19)

∂t(
√
−gGtx) = −δvs∂x(

√
−gGtx) (3.20)

which brings the conservation equations of Gµν to the following form

∂x
(√
−gGxr − δvs

√
−gGtr

)
= 0 (3.21)

∂r(
√
−gGrx)− δvs∂x(

√
−gGtx) = −δvs

√
−gV (φ)

2
. (3.22)

The second equation can we rewritten, using background equations for GMN as

∂r(
√
−gGrx + δvs

√
−gGtr)− δvs

√
−gV (φ)

2
= −δvs

√
−gV (φ)

2
, (3.23)

⇒ ∂r(
√
−gGrx + δvs

√
−gGtr) = 0 . (3.24)

The same observations can be made about the combination
√
−gGrx + δvs

√
−gGtr as for

J̃ x: this is a combination invariant under (2.12), it has no δvs dependence left.

However, the combination
√
−gGrx + δvs

√
−gGtr does not match the expected trans-

formation of the boundary heat current (3.12). Indeed, since
∫

2
√
−gGrx asymptotes to

the zero mode of the heat current when δvs = 0, we would have expected it to transform as

2
√
−gGrx 7→ 2

√
−gGrx + δvsQt , (3.25)

where Qt was defined in (2.34). This discrepancy comes precisely from taking into account

the contribution of the-two form ω̃MN . From the previous equations, we know it verifies

∇M ω̃Mx = 0, otherwise it would have contributed explicitly. But it should also transform

appropriately under (2.12):

δω̃rx = −δvsω̃rt = −δvs
(
ωrt +

sT

2
√
−g

)
. (3.26)
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Combined with how Grx is expected to transform, this indeed gives us the correct combi-

nation Qt.
At the end of the day, we define

Q̃x = 2
√
−g
(
Grx − δvsGrt

)
= Qx − δvsQt , Qx = 2

√
−gGrx − δvs

(√
−gωrt +

sT

2

)
(3.27)

in analogy to (3.10). As for the electric current, this amended heat current is conserved

∂rQ̃x = ∂xQ̃x = 0 and finite at the boundary.

Now that we have the conserved quantities J x and Qx, we proceed to evaluate them

on the black hole horizon and extract the associated horizon conductivities. At leading

order we obtain

J̃ x(0) = e−B
(0)(x)Z(φ(0)(x))

(
E + ∂xδa

(0)
t (x)

)
− Z(φ(0)(x))a

(0)
t (x)

H
(0)
tt (x)

(
δg

(0)
tx (x) + δvsΣ

(0)(x)
)

(3.28)

Q̃x(0) = −4πT
(
δg

(0)
tx (x) + δvsΣ

(0)(x)
)

(3.29)

which verify

∇xJ̃ x(0) = 0 , ∇xQ̃x(0) = 0 . (3.30)

By expanding Q̃x to next order in r − rh we find an additional equation

∂x

(
4πT

δg
(0)
tr (x)

H
(0)
tt (x)

− δg
(0)
tx (x) + δvsΣ

(0)(x)

Σ(0)(x)
∂x

(
B(0)(x)− log(H

(0)
tt (x)Σ(0)(x))

))

+
δg

(0)
tx (x) + δvsΣ

(0)(x)

Σ(0)(x)

(
∂x log

eB
(0)(x)

Σ(0)(x)

)2

+
(∂xφ

(0)(x))2

Σ(0)(x)

(
δg

(0)
tx (x) + δvsΣ

(0)(x)
)

+
Z(φ(0)(x))a

(0)
t (x)

H
(0)
tt (x)

(E + ∂xδa
(0)
t (x)) + 4πTξ = 0 . (3.31)

Notice that even though any explicit δvs dependence had dropped out from J̃ x, Q̃x, it

reappears in the equations above due to the horizon regularity conditions.

These can be used to solve for J̃x and Q̃x in terms of background functions at r = rh.

After some algebra, we obtain

J̃ x =σhE + αhξ

Q̃x =ᾱhE + κ̄hξ ,
(3.32)

where

σh =

∫
{. . . }∫

eB
(0)(x)

Z(φ(0)(x))

∫
{. . . } −

(∫ eB
(0)(x)a

(0)
t (x)

H
(0)
tt (x)

)2 (3.33)
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αh = ᾱh =
4πT

∫ eB
(0)(x)a

(0)
t (x)

H
(0)
tt (x)∫

eB
(0)(x)

Z(φ(0)(x))

∫
{. . . } −

(∫ eB
(0)(x)a

(0)
t (x)

H
(0)
tt (x)

)2 (3.34)

κ̄h =
(4πT )2

∫
eB

(0)(x)

Z(φ(0)(x))∫
eB

(0)(x)

Z(φ(0)(x))

∫
{. . . } −

(∫ eB
(0)(x)a

(0)
t (x)

H
(0)
tt (x)

)2 (3.35)

∫
{. . . } =

∫ {
eB

(0)(x)Z(φ(0)(x))a
(0)
t (x)2

H
(0)
tt (x)2

+
1

Σ(0)(x)

(
∂x log

eB
(0)(x)

Σ(0)(x)

)2

+
(∂xφ

(0)(x))2

Σ(0)(x)

}
. (3.36)

Notice that all of these transport coefficients are guaranteed to be positive by a Schwarz-

inequality∫
eB

(0)(x)

Z(φ(0)(x))

∫
eB

(0)(x)Z(φ(0)(x))a
(0)
t (x)2

H
(0)
tt (x)2

≥

(∫
eB

(0)(x)a
(0)
t (x)

H
(0)
tt (x)

)
. (3.37)

Here we emphasize that these horizon conductivities have no meaning by themselves in the

boundary theory. There, since translations are not broken explicitly, all physical conduc-

tivities diverge as ω → 0, see (1.1).

The quantity which is physical at the boundary is captured by the incoherent conduc-

tivity (1.3). As explained in the introduction, it is given by a Kubo formula involving the

boundary incoherent current (1.4). We can then write down a bulk current that asymptotes

to it:

J xinc(r, x) := sTJ x(r, x)− ρ̄Qx(r, x) . (3.38)

Actually, the equations of motion and UV boundary conditions force us to consider

this particular combination. Requiring δgrx to fall-off sufficiently fast at the boundary, the

rx-component of metric perturbation equations near the boundary implies

(E − µξ)ρ̄+ ξ
(
T̄ tt + T̄ xx

)
= 0 . (3.39)

This can be simplified using sT = ε̄+ p− µρ̄ = T̄ tt + T̄ xx − µρ̄. We end up with

−E =
sT

ρ̄
ξ = −sTαinc . (3.40)

This is equivalent to rotating the sources from (E, ξ) to (αinc, 0). We are then led to

rotating the currents Jx, Qx, and find that αinc is the source for the incoherent current,

which is given by the linear combination of the original currents in (1.4).

Plugging (3.10) and (3.27) in (3.38), we obtain

J xinc(r, x) = J̃ xinc(r, x) + δvs
(
sTJ t − ρ̄Qt

)
. (3.41)
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From the conservation of J x and Qx, the zero mode of the incoherent current is radially

conserved, and moreover

J̄ xinc =

∫
J̃ xinc . (3.42)

Evaluating it at the horizon and using (3.32), we can read off the spatially averaged inco-

herent conductivity

σinc =
J̄ xinc
αinc

= (sT )2σh − 2sT ρ̄αh + ρ̄2κ̄h . (3.43)

This is related to the regular contribution to the low frequency AC conductivity

through (1.3),

σo =
σinc
χPP 2

. (3.44)

4 Discussion and outlook

In real systems, translations are inevitably broken explicitly as well, for instance by disorder

or inelastic scattering of the charge carriers with the underlying lattice. If translations

are weakly broken, the long wavelength effective theory of clean charge density waves is

modified in two ways. Firstly, momentum relaxes slowly, which is captured by introducing

a momentum relaxation rate Γ. Secondly, the Goldstone mode (the phonon) acquires a

small mass, but can remain light enough that it does not decouple from the dynamics.

The AC conductivity at low frequencies becomes

σ(ω) = σo +
(χJP )2

χPP

−iω
−iω(Γ− iω) + ω2

o

. (4.1)

ωo is the pinning frequency, which is directly proportional to the phonon mass. The AC

conductivity of a pinned CDW looks quite different from that of a weakly-disordered metal:

it has a finite frequency peak at ω = ωo rather than a Drude-like peak centered at ω = 0.

The DC resistivity is no longer controlled by momentum relaxation. Indeed, setting ω = 0

in (4.1) returns

ρdc =
1

σo
+O(Γ, ωo) . (4.2)

The resistivity is no longer small as in a metal with slow momentum relaxation, where

ρdc ∼ O(Γ). Instead, it is governed by the incoherent conductivity σo. As σo is insensitive

to momentum dynamics at leading order, it can be computed in the clean state without

disorder. This is precisely the computation we have carried out in this work, and what our

formula (3.44) captures. The interplay between weak disorder and the Goldstone dynamics

short-circuits the effects of momentum relaxation on the DC resistivity and this generally

leads to bad metallic behavior, [18].

Pinned collective modes of phases with spontaneous symmetry breaking have been

reported in previous holographic literature [40–42]. In particular, [40, 43] computed the

resistivity of an inhomogeneous spatially modulated phase. Both of the setups contain a

term violating parity, and it would be interesting to generalize our results in this direction,

starting from [44]. In their case, the phase is insulating at low temperatures. It would also
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be worthwhile to connect to the proposal of [18] by realizing ‘metallic’ CDW phases, with

a resistivity decreasing at low temperatures.
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A Derivation of sT

The non-trivial step we skipped in section 2 is the derivation of the equality

√
−gV (φ) = ∂r(

√
−gωrt) + ∂x(

√
−gωrx) . (A.1)

This can be shown for general V (φ) by solving (2.3) and assuming our ansatz (2.5)–(2.7).

The (x, x) and (y, y)-components of Einstein equations can be used to algebraically solve

for V (φ)

V (φ) = − U∂rB∂rHrr

4H2
rr

+
e−B∂xB∂xHrr

4HrrΣ
+
U∂rB∂rHtt

4HrrHtt
+
∂rU∂rB

2Hrr
+
U∂rB∂rΣ

2HrrΣ
+
U∂2rB

2Hrr

+
3e−B∂xB∂xHtt

4HttΣ
+
e−B∂xB∂xΣ

2Σ2
− e−B(∂xB)2

2Σ
+
e−B∂2xB

2Σ
− e−B∂xHrr∂xHtt

4HrrHttΣ

− e−B∂xHrr∂xΣ

4HrrΣ2
− e−B∂xHtt∂xΣ

4HttΣ2
+
e−B(∂xHtt)

2

4H2
ttΣ

− e−B∂2xHtt

2HttΣ
+
e−B(∂xΣ)2

2Σ3

− e−B∂2xΣ

2Σ2
+
U∂rHrr∂rHtt

4H2
rrHtt

+
∂rU∂rHrr

4H2
rr

+
U∂rHrr∂rΣ

4H2
rrΣ

− 3∂rU∂rHtt

4HrrHtt

− 3U∂rHtt∂rΣ

4HrrHttΣ
+
U(∂rHtt)

2

4HrrH2
tt

− U∂2rHtt

2HrrHtt
− ∂rU

′

2Hrr
− ∂rU∂rΣ

HrrΣ
− U∂2rΣ

2HrrΣ
. (A.2)

Notice that all terms have derivatives in them and only of one kind. With the Leibniz rule

we can in the end of the day write the above as

√
−gV (φ) = ∂r

(
Σ2UHtt∂rB − Σ∂r(UHttΣ)

2
√
−g

)
︸ ︷︷ ︸

:=
√
−gωrt

−∂x
(
Hrr∂r(HttΣe

B)

2
√
−g

)
︸ ︷︷ ︸

:=−
√
−gωxt

. (A.3)

Even though
√
−gV (φ) is not radially conserved,

∫ √
−gV (φ) is since the integration makes

the last term to vanish since all the metric functions are periodic in x. This fact is used in

section 2 to find a radially conserved quantity which asymptotes to sT .
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B Near-horizon perturbations

The perturbations are required to be regular at the black hole horizon r = rh. Reg-

ularity is ensured after switching to the ingoing Eddington-Finkelstein coordinate v =

t+ (4πT )−1 log(r − rh) by expanding the perturbations in the following way at r → rh:

δgtt = U(r)δg
(0)
tt (x) + δvs

log(r − rh)

4πT
U(r)∂xHtt(r, x) (B.1)

δgrr =
δg

(0)
rr (x)

U(r)
− δvs

log(r − rh)

4πT

∂xHrr(r, x)

U(r)
(B.2)

δgxx = δg(0)xx (x)− δvs
log(r − rh)

4πT
∂x

(
Σ(r, x)eB(r,x)

)
(B.3)

δgyy = δg(0)yy (x)− δvs
log(r − rh)

4πT
∂x

(
Σ(r, x)e−B(r,x)

)
(B.4)

δgtr = δg
(0)
tr (x) (B.5)

δgtx = eB
(0)(x)(δg

(0)
tx (x) + δg

(l)
tx (x)U(r) logU(r)) + δvsΣ(r, x)eB(r,x) (B.6)

δgrx =
eB

(0)(x)

U(r)
δg(0)rx (x) (B.7)

δat = δa
(0)
t (x)− δvs

log(r − rh)

4πT
∂xat(r, x) (B.8)

δar =
δa

(0)
r (x)

U(r)
(B.9)

δax = log(r − rh)(E − ξat(r, x))δa(0)x (x) (B.10)

subject to

δg(0)rx (x)− δg(0)tx (x) = 0, δg
(0)
tt (x) + δg(0)rr (x)− 2δg

(0)
tr (x) = 0, (B.11)

δa(0)r (x)− δa(0)t (x) = 0, δa(0)x (x) = − 1

4πT
, δg

(l)
tx = −e

−B(0)(x)

4πT
H

(0)
tt (x)ξ . (B.12)

These perturbations are such that along with at(r = rh) = 0 the gauge field one-form A is

regular at the black hole horizon up to first order in perturbations. In particular, δat(rh)

need not vanish as long as δar 6= 0.
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[22] R.A. Davison, B. Goutéraux and S.A. Hartnoll, Incoherent transport in clean quantum

critical metals, JHEP 10 (2015) 112 [arXiv:1507.07137] [INSPIRE].

[23] S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron

resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].

– 17 –

https://doi.org/10.1103/PhysRevD.81.044018
https://doi.org/10.1103/PhysRevD.81.044018
https://arxiv.org/abs/0911.0679
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0679
https://doi.org/10.1007/JHEP08(2011)140
https://arxiv.org/abs/1106.2004
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2004
https://doi.org/10.1007/JHEP10(2011)034
https://arxiv.org/abs/1106.3883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3883
https://doi.org/10.1007/JHEP05(2013)059
https://arxiv.org/abs/1303.7211
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7211
https://doi.org/10.1088/0264-9381/30/15/155025
https://arxiv.org/abs/1304.0129
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0129
https://doi.org/10.1007/JHEP09(2014)102
https://arxiv.org/abs/1407.1085
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1085
https://doi.org/10.1007/JHEP12(2014)083
https://doi.org/10.1007/JHEP12(2014)083
https://arxiv.org/abs/1408.1397
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.1397
https://doi.org/10.1007/JHEP03(2016)148
https://arxiv.org/abs/1512.06861
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06861
https://doi.org/10.1103/PhysRevD.95.086006
https://doi.org/10.1103/PhysRevD.95.086006
https://arxiv.org/abs/1612.07323
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.07323
https://doi.org/10.1103/PhysRevD.95.041901
https://doi.org/10.1103/PhysRevD.95.041901
https://arxiv.org/abs/1612.04385
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.04385
https://doi.org/10.1007/JHEP08(2017)081
https://arxiv.org/abs/1705.05390
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05390
https://doi.org/10.1103/PhysRevLett.119.181601
https://arxiv.org/abs/1706.01470
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.01470
https://doi.org/10.21468/SciPostPhys.3.3.025
https://arxiv.org/abs/1612.04381
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.04381
https://doi.org/10.1103/PhysRevB.96.195128
https://arxiv.org/abs/1702.05104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.05104
https://doi.org/10.1103/PhysRevD.75.085020
https://arxiv.org/abs/hep-th/0701036
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701036
https://doi.org/10.1007/JHEP09(2015)090
https://arxiv.org/abs/1505.05092
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05092
https://doi.org/10.1007/JHEP10(2015)112
https://arxiv.org/abs/1507.07137
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07137
https://doi.org/10.1103/PhysRevD.76.106012
https://arxiv.org/abs/0706.3228
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3228


J
H
E
P
0
7
(
2
0
1
8
)
0
0
4

[24] S. Jain, Universal thermal and electrical conductivity from holography, JHEP 11 (2010) 092

[arXiv:1008.2944] [INSPIRE].
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[29] R.A. Davison, S.A. Gentle and B. Goutéraux, Impact of irrelevant deformations on

thermodynamics and transport in holographic quantum critical states, to appear.

[30] A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons,

JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].

[31] D. Kastor, Komar integrals in higher (and lower) derivative gravity, Class. Quant. Grav. 25

(2008) 175007 [arXiv:0804.1832] [INSPIRE].

[32] D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class.

Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

[33] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427

[gr-qc/9307038] [INSPIRE].

[34] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
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