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1 Introduction

Hidden invariances can be present in Effective Field Theories (EFTs) and explain empiri-

cally observed structures of the EFT, or relations between otherwise free parameters in the

theory. These relations and structures are important to uncover when the Standard Model

(SM) is promoted to the Standard Model Effective Field Theory (SMEFT) in order to sys-

tematically search for the effects of physics beyond the SM. When such physics is present

in corrections to SM predictions, significant phenomenological consequences can result.1

An empirically observed structure of the SMEFT is how the constraints from a large

set of pre-LHC data project onto the Wilson coefficients of higher dimensional operators.

1Examples of non-intuitive aspects of SMEFT phenomenology based on the subtle structure of this field

theory include a unitarity and helicity based understanding of the one loop approximate Holomorphy in

the L6 Renormalization Group [1, 2], non-interferences in tree level scatterings due to helicity [3, 4], and

the global symmetry based structure embedded in the SMEFT operator expansion [5].
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Two unconstrained directions in the SMEFT Wilson coefficient space have been found in

the global ψ̄ψ → ψ̄ψ data set. This fact is manifest in the particular operator basis of

ref. [6], but not in other formalisms. The incorporation of ψ̄ψ → ψ̄ψ ψ̄ψ scattering data is

known to lift these unconstrained directions [7, 8], so it is critical to incorporate this data

in order to globally constrain the SMEFT parameters leading to anomalous Z couplings.

In this paper we explain how the presence of unconstrained directions in ψ̄ψ → ψ̄ψ

scattering data is due to the fact that the description of these processes is invariant under

a particular reparameterization, which is illustrated in detail in section 2. In section 2.3 we

discuss how ψ̄ψ → ψ̄ψ ψ̄ψ scattering data breaks this structure because it does not respect

the same invariance in an operator basis independent manner using a scaling argument.

The reparameterization invariance is not due to a symmetry of the SMEFT, but rather

originates as a property of ψ̄ψ → ψ̄ψ scattering processes. As such, it is always present as

a basis independent feature of this class of measurements. Nonetheless, how this translates

into the appearance of unconstrained directions in a global fit analysis does depend on the

operator basis employed. We discuss the issue of UV assumptions and basis choice, and

how utilizing a mass eigenstate formalism or various power counting assumptions can make

the impact of the reparameterization invariance non-manifest in section 2.2.

The interpretation of this invariance is subtle because it requires the equations of mo-

tion (EOM) to understand and, further, it is a property limited to a subset of observables

used to define the numerical values of the Lagrangian parameters through “input param-

eters”. As a consequence, one could speculate that these unconstrained directions are

just accidental structures related to a particular basis or input parameter set. In order to

examine the input parameter scheme dependence, we perform a global data analysis for

LEPI data on the properties of the Z boson, e+e− → e+e− scattering and e+e− → ψ̄ψψ̄ψ

production data in the {α̂, m̂Z , ĜF } and in the {m̂W , m̂Z , ĜF } input parameter schemes.

In section 3.3 we demonstrate that these results confirm the input parameter independence

of the reparameterization invariance. At the same time, the correlations and constraints

on operators due to observables of different Feynman diagram topologies, even in the same

operator basis, show some numerical scheme dependence, as we also show. These results

also support assigning a SMEFT theoretical error to naive leading order global constraint

analyses, as we discuss in section 3.3.

Finally, in section 4, we conclude with some comments on the impact of these results

on SMEFT analyses of global data sets including LHC data.

1.1 The Standard Model Effective Field Theory

The EFT approach to physics beyond the SM introduces local contact operators to capture

the low energy, or infrared (IR), limit of such physics below new physics scale(s) ∼ Λ.

When the following assumptions are also made, this approach has come to be known as

the SMEFT.

First, it is assumed that SU(2)L × U(1)Y is spontaneously broken to U(1)em by the

vacuum expectation value (〈H†H〉 ≡ v̄2
T /2) of the Higgs doublet field. Second, the observed

scalar is assumed to be JP = 0+ and embedded in a doublet of SU(2)L in the EFT

construction. Thereby, no large non-linearities are introduced by ultraviolet (UV) dynamics
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that is integrated out, which distinguishes this approach from the HEFT (Higgs-EFT)

formalism [9–20]. Finally, the SMEFT also assumes a mass gap so that v̄T /Λ < 1. The

LSMEFT that follows is the sum of SU(3)C × SU(2)L ×U(1)Y invariant higher dimensional

operators built out of SM fields

LSMEFT = LSM + L(5) + L(6) + L(7) + . . . , L(k) =

nk∑
α=1

C
(k)
α

Λk−4
Q(k)
α for k > 4. (1.1)

Here L(k) contains the dimension k operators Q
(k)
α . The number of non redundant operators

in L(5), L(6), L(7) and L(8) is known [6, 21–27]. We adopt a naive power counting in mass

dimension in this paper. This choice makes the reparameterization invariance clearer as we

discuss in section 2.2.1, where we also comment on the impact of alternative operator nor-

malization choices. We employ the Warsaw basis of dimension six operators of ref. [6] with

the notation Qi to denote an operator defined in this basis. See ref. [6] for the explicit op-

erator definitions. We use a notation where we implicitly absorb the factor of 1/Λ2 into the

Ci for most results, unless explicitly noted. Further notational conventions are the use of a

hat superscript for input parameters, or Lagrangian parameters related to input parameters

at tree level, and a bar superscript for canonically normalized LSMEFT parameters.

2 Reparameterization invariance in the SMEFT

When considering small perturbations to SM predictions in an EFT it is required to clearly

distinguish a signal process used to uncover such perturbations from background processes.

Frequently, this signal isolation is done by exploiting tree level resonant exchange with a

minimum number of initial states and final states, so that the signal process is kinematically

distinct enough from the background in how it populates phase space to be well measured.

This practical experimental consideration makes ψ̄ψ → V → ψ̄ψ scattering a critical

process to make precise measurements in a collider environment. Here ψ are spin 1/2

states, so that the intermediate state is spin one or spin zero, and we consider the case that

V is a vector field. The reparameterization invariance at work in the SMEFT in ψ̄ψ → ψ̄ψ

scattering2 is due to the degeneracy in the normalization of the kinetic term of V and V ψ̄ψ

corrections when considering these processes. Consider the following schematic Lagrangian

of d ≤ 4 interactions

LV ψi =
1

2
m2
V V

µ Vµ −
1

4
V µ νVµ ν − g ψ̄iγµψjVµ − g κ ψ̄kγµψlVµ + · · · (2.1)

where V µ ν = ∂µ V ν − ∂ν V µ and mV ∝ g. Here i, j, k, l are flavour indices. It is not

important that the coupling of the vector field to the fermions ψ is normalized to be the

same (as indicated by the rescaling by κ in the last term), only that the couplings are

both proportional to the same parameter. The vector boson can always be transformed

between canonical and non-canonical form in its kinetic term by a field redefinition without

2The same invariance is also present in a subset of the diagrams contributing to other scattering pro-

cesses. An example related to ψ̄ψ → ψ̄ψ ψ̄ψ scattering is shown in section 2.3.
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physical effect due to a corresponding correction in the LSZ formula [28].3 Restricting

one’s attention to the interactions explicit in eq. (2.1), such a shift can be canceled by a

corresponding shift of g. This fact is used in standard formulations of the SMEFT to take

the theory to canonical form, where correlated transformations of the form gb → g′b(1− ε)
and Vb → V ′b (1 + ε), with ε ∼ v̄2

T /Λ
2, that leave gb Vb → g′b V

′
b invariant for Vb = {G,B,W}

are used.4 The freedom to make these transformations also defines an unobservable physical

redundancy of description in a subset of scattering events. The same set of physical ψ̄ψ →
V → ψ̄ψ scatterings at tree level can be parameterized by an equivalence class of fields and

coupling parameters

(V, g)↔
(
V ′ (1 + ε), g′ (1− ε)

)
, (2.2)

where ε ∼ O(v̄2
T /Λ

2). This is clearly reminiscent of reparameterization invariance in Heavy

Quark Effective Field Theory [31, 32], and as a result we will refer to this as SMEFT

reparameterization invariance.

This invariance is present when considering a subclass of observables5 due to the con-

dition that the amplitude derived is proportional to the same power of g and V rescalings.

This invariance has a physical impact through the EOM relations between classes of opera-

tors that have been discussed in the literature a number of times before in refs. [30, 38–40]

although its understanding in terms of an operator basis independent reparameterization

invariance has not been discussed in detail previously.

In this identification of a reparameterization invariance we have neglected the effect

of m2
ψ/m

2
V corrections (we have used Feynman gauge above) and numerically suppressed

terms and loop corrections. The degeneracy of description is present so long as these

effects are neglected. For example, for this class of S matrix elements a condition is that

m2
ψ/m

2
V � Ci v

2/Λ2. This is a good approximation for V = {W,Z} for Λ in the few TeV

range. Neglecting SMEFT loop corrections when considering LEPI near Z pole data is

not advisable [41–47]. Nevertheless, we demonstrate in this paper how the unconstrained

directions present in naive leading order analyses come about due to this invariance.

2.1 EOM implementation of the reparameterization invariance

The consequences of the reparameterization invariance require the use of the EOM to fully

explore. The SM EOM that are relevant are

[Dα,Wαβ ]I = g2j
I
β , DαBαβ = g1jβ , (2.3)

where [Dα,Wαβ ] is the covariant derivative in the adjoint representation for a vector field

tensor Wαβ . The SU(2)L field and coupling are (W, g2) and the U(1)Y field and coupling

are (B, g1). We use I, J,K for SU(2)L indices and i, j, k, l . . . for fermion flavour indices.

3A naive treatment of a massive vector boson as an asymptotic S matrix element can also introduce

challenges from gauge invariance, however, see the discussion in ref. [29], and references therein, on how

this naivety can be avoided.
4See for example the discussion in section 5.4 of ref. [30].
5For further discussions on reparameterization invariance in EFT’s see refs. [33–37].
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The electroweak gauge currents are

jIβ =
1

2
q τ Iγβq +

1

2
l τ Iγβl +

1

2
H† i
←→
D I

βH ,

jβ =
∑

ψκ=u,d,
q,e,l

yk ψκ γβψκ +
1

2
H† i
←→
D βH , (2.4)

where yk are the U(1)Y hypercharges of the fermions, q and l are SU(2)L left handed

doublet fermion fields. The Hermitian derivatives are

H† i
←→
D βH = iH†(DβH)− i(DβH)†H ,

H† i
←→
D I

βH = iH†τ I(DβH)− i(DβH)†τ IH,
(2.5)

with τ I the Pauli matrix. From the EOM, the following operator identities can be ob-

tained [6, 30, 39, 40]

yh g
2
1QHB = g2

1 jβ (H† i
←→
D βH)− 1

2
g1 g2QHWB + 2 i g1(DµH)†(DνH)Bµ ν , (2.6a)

g2
2QHW = 2 g2

2 j
I
β (H† i

←→
D I

βH)− 2 g1 g2 yhQHWB + 4 i g2(DµH)†τ I(DνH)Wµ ν
I . (2.6b)

We now denote by SR the class of ψ̄ψ → ψ̄ψ matrix elements, which are consistent with

the reparameterization invariance of eq. (2.2). When projecting into this specific category

of processes, the following relations are obtained:

〈yhg2
1QHB〉SR = 〈

∑
ψκ=u,d,
q,e,l

ykg
2
1ψκγβψκ(H†i

←→
D βH)+

g2
1

2
(QH�+4QHD)− 1

2
g1g2QHWB〉SR ,

(2.7a)

〈g2
2QHW 〉SR = 〈g2

2(qτ Iγβq + lτ Iγβl)(H
†i
←→
D I

βH)+2g2
2QH�−2g1g2yhQHWB〉SR . (2.7b)

Here 〈· · · 〉SR indicates the projection of operators into the subclass of matrix elements

defined above. When applied on eqs. (2.6), the projection selects the operators that do

contribute at tree level to the SR processes and it removes the other ones. In this case, the

operators of the form (DµH)†XµνDµH (where X = {B,W}) were removed because they

affect triple gauge couplings (TGC) and Higgs-gauge couplings. The effect of QH� can

also be neglected in our case, although formally present through ψ̄ψ → h → ψ̄ψ, as it is

further suppressed by small Yukawa couplings and by the ratio ΓZ/mZ when considering

near Z pole LEPI data. For the ψ̄ψ → ψ̄ψ scatterings of interest we have

〈yh g2
1QHB〉SR →

g2
1 v̄

2
T

4 Λ2
Bµ ν Bµ ν , 〈g2

2QHW 〉SR →
g2

2 v̄
2
T

2 Λ2
Wµ ν
I W I

µ ν . (2.8)

Because of the reparameterization invariance, these structures are not observable in

ψ̄ψ → ψ̄ψ scatterings. The invariance of S matrix elements under field configurations

equivalent by use of the EOM implies, then, that this must also hold for the fixed linear

combinations of operators appearing on the right-hand sides of eqs. (2.7). In the Wilson
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coefficient space, this translates into the fact that ψ̄ψ → ψ̄ψ scattering data alone cannot

access neither the coefficients CHB, CHW nor the two combinations

g2
1 wB = g2

1

v̄2
T

Λ2

(
−1

3
CHd − CHe −

1

2
C

(1)
Hl +

1

6
C

(1)
Hq +

2

3
CHu + 2CHD −

1

2tθ̂
CHWB

)
, (2.9a)

g2
2 wW = g2

2

v̄2
T

Λ2

C(3)
Hq + C

(3)
Hl

2
− tθ̄

2
CHWB

 . (2.9b)

The SR class of data is simultaneously invariant under the two independent reparameteri-

zations that leave the products (g1Bµ) and (g2W
i
µ) unchanged, so that the vectors wB and

wW constitute a basis for the vector space of unconstrained directions. This result holds

independently of whether the operators QHB and QHW themselves are present or not in

the chosen L6 basis.

Using the global fit described in section 3.3 under the assumption of zero SMEFT

theoretical error [41–43, 45, 46], the unconstrained directions in the {α̂, m̂Z , ĜF } scheme

are found to be

wα1 =
v̄2
T

Λ2

(
1

3
CHd−2CHD+CHe+

1

2
C

(1)
Hl −

1

6
C

(1)
Hq−

2

3
CHu−1.29(C

(3)
Hq+C

(3)
Hl )+1.64CHWB

)
,

(2.10a)

wα2 =
v̄2
T

Λ2

(
1

3
CHd−2CHD+CHe+

1

2
C

(1)
Hl −

1

6
C

(1)
Hq−

2

3
CHu+2.16(C

(3)
Hq+C

(3)
Hl )−0.16CHWB

)
.

(2.10b)

These can be projected into the vector space defined by wB,W as

wα1 = −wB − 2.59wW wα2 = −wB + 4.31wW . (2.11)

This result is consistent with these unconstrained directions having their origin in a repa-

rameterization invariance.

The physical consequences of these unconstrained directions are subtle. A direct

matching onto the SMEFT from a UV sector is unlikely to correspond to exactly the

unconstrained directions in ψ̄ψ → ψ̄ψ data in the following sense. So long as the operators

QHB and QHW are retained in the basis they are likely to receive such a direct matching

contribution. The unconstrained directions make manifest the need to measure Feynman

diagrams of different topologies than ψ̄ψ → V → ψ̄ψ in order to constrain the properties

of the gauge bosons vertex corrections to the SM fermions consistently as the Wilson co-

efficients of individual operators can carry different meanings in different operator bases.

As a result, the fit spaces of EFT approaches to physics beyond the SM are expected to be

intrinsically highly correlated across measurement classes. This is exactly found in global

fit results. A consequence is the correct treatment of correlations (both theoretical and

experimental) between measurements is critical to obtain a consistent global constraint

picture. We return to this point below.

– 6 –
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2.2 Basis choices and reparameterization invariance in the SMEFT

When constructing a complete, independent operator basis, eqs. (2.6) are employed to

remove two among the operators appearing in those expressions from the final chosen set. In

particular, eq. (2.6a) allows to remove one among QHB, DµH
†BµνDνH and the fermionic

invariants with a SU(2)L singlet contraction, while eq. (2.6b) allows to remove one among

QHW , DµH
†WµνDνH and the fermionic invariants with a SU(2)L triplet contraction. For

the sake of illustrating the physical interpretation of the reparameterization invariance, we

explore here the consequences of three alternative choices:6

• choosing to remove DµH
†XµνDνH, X = {B,W} as in the Warsaw basis [6].

Since the operators removed do not affect ψ̄ψ → ψ̄ψ scatterings at tree level, the

reparameterization invariance belonging to these processes manifests itself as the

presence of four unconstrained parameters: CHW , CHB and the two combinations

wB, wW defined in (2.9). The inclusion of ψ̄ψ → ψ̄ψ ψ̄ψ data lifts the degeneracies

within wB, wW but leaves CHW , CHB unconstrained.

• choosing to remove QHB, QHW .

As above, the analysis of ψ̄ψ → ψ̄ψ scatterings leaves four quantities unconstrained:

wB, wW and the Wilson coefficients assigned to the two DµH
†XµνDνH operators.

Including ψ̄ψ → ψ̄ψ ψ̄ψ data allows to access two out of these four, but because all

the Wilson coefficients considered contribute to the latter processes, the two residual

unconstrained directions shall be linear combinations of the initial four.

• choosing to remove two fermionic invariants while retaining all the bosonic operators,

as in the case of the construction reported in ref. [48].

Because the fermionic operators participate in ψ̄ψ → ψ̄ψ processes, in this case the

vectors wB, wW do not have any direct physical meaning. However, there are still

four unconstrained parameters in the Z-pole data, namely CHW , CHB and the Wilson

coefficients of the two DµH
†XµνDνH operators, and ψ̄ψ → ψ̄ψ ψ̄ψ data allows to

access the latter two. In practice, the reparameterization invariance is still present

but simply does not manifest itself as the striking presence of two flat directions

involving nine Wilson coefficients. In this sense we refer to this scenario as “hidden

invariance”.

When considering the last case, it is important to stress that choosing a L6 operator basis

does not automatically give the Wilson coefficients a physical meaning. This occurs when

enough measurements are performed and consistently projected onto the field theory so

that all Wilson coefficients in a non-redundant basis are experimentally constrained. In

the case of an operator basis choice where the reparameterization invariance is hidden, the

operators introduced are naively not of a form that corresponds to a modification of the

vector fermion bilinear couplings, but of a TGC vertex. Any extraction of a TGC vertex

experimentally uses asymptotic states where the massive vector bosons have decayed, so

this distinction is not relevant for S matrix elements.
6For previous discussions see refs. [5, 6, 30, 39, 40].
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Finally, we note the choice of removing fermionic invariants from an operator basis

requires some special care due to the presence of flavour indices. The key point here is that

the relations in eqs. (2.7) involve complete sums of SM currents,∑
ψκ=u,d,q,e,l

yκ g
2
1 ψ

i
κ γβψ

i
κ (H† i

←→
D βH). (2.12)

The complete sum of currents involves fermion fields that have the flavour index (i), on

the other hand, the kinetic terms of the vector bosons are not flavour dependent. The

choice of operator basis does not have a physical effect, so long as no flavour symmetry

is explicitly broken by an assumption with choosing a basis, and the operator basis used

respects the equivalence theorem [46, 49–53] in its relation to the Warsaw basis, (i.e. the

operator bases should be related by gauge independent field redefinitions). Once enough

measurements are made and mapped to the SMEFT in a consistent fashion to constrain all

parameters, which requires a combination of Higgs data, ψ̄ψ → ψ̄ψ data and ψ̄ψ → ψ̄ψ ψ̄ψ

data these unconstrained directions in the Wilson coefficient space can be consistently

constrained simultaneously. However, we stress that it is required to not assume correla-

tions or lack thereof between parameters that act to explicitly break the consequences of the

reparameterization invariance while doing so to obtain basis independent results.7

2.2.1 Power counting choices and reparameterization invariance

A number of historical conceptual barriers have blocked this understanding of ψ̄ψ → ψ̄ψ

scatterings in the SMEFT. Until the discovery of the Higgs like boson, it was appropriate

and well motivated to use the STU approach to electroweak precision data (EWPD) [54–60].

This approach was of manifest utility, but it is not field redefinition invariant and it does

not lend itself to this understanding of the reparameterization invariance.8

Differing power counting choices can also block this understanding. In this work we

are using a naive power counting in terms of operator mass dimension, which allows the

reparameterization invariance to be identified directly. The naive dimensional analysis

power counting scheme discussed in refs. [63–66] preserves the relations (2.7) in the sense

that the operators of classes

Xµν X
µν H†H, H†

←→
D µH ψ̄ γµψ, H4D2, (2.13)

are assigned the same power counting. We also note that these operators are assigned

the same chiral number, see ref. [66]. Alternative approaches [67–71] can introduce UV

dependence that can prevent the reparameterization invariance from being manifest. This

is because the relations (2.7) are a property of the SMEFT when treated as a field theory

irrespective of its unknown UV completion, and UV matchings need not preserve it.

For example, some operators in the EOM, and in the unconstrained directions wα1,2
have frequently been associated with ”tree-loop” operator schemes [72] and “universal

theories” [73–75]. The EOM relations in eq. (2.7) directly relate and equate operators of a

7Marginalization over subsets of operator Wilson coefficients with a prior inconsistent with the physical

consequences of the reparameterization invariance is a common way to bias a global analysis.
8See refs. [61, 62] for initial steps in the operator based EFT approach.
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tree and loop form in their projection onto ψ̄ψ → ψ̄ψ scatterings, so this UV bias is very

difficult to reconcile with the reparameterization invariance discussion above. The idea of

universal theories suffers from the same issue, as some operators present in eq. (2.7) are

of a universal form, and others are not. Despite this, so long as the Wilson coefficients

are allowed to counteract such an operator normalization choice when fitting the data

in a global analyses, one can still uncover the unconstrained directions in the L6 Wilson

coefficient space, no matter what operator normalization is adopted.

A recent approach of using mass eigenstate coupling parameters to characterize de-

viations from the Standard Model makes the presence of unconstrained directions even

harder to uncover in data analyses. The EOM relations key to understanding the reparam-

eterization invariance do not have a (manifest) equivalent in the parameterization chosen,

although the fact that there remain un-probed aspects of the Z boson phenomenology in

ψ̄ψ → ψ̄ψ scatterings is acknowledged in refs. [76, 77]. It is also worth noting that defining

correlations for mass eigenstate parameter formalisms in a form that manifestly preserves

the consequences of the reparameterization invariance (while maintaining a consistent use

of the data) in global analyses remains an unsolved problem.

2.3 Scalings of scatterings to break degeneracies

It is understood that ψ̄ψ → ψ̄ψ ψ̄ψ scattering measurements are required to fully constrain

parameters present in LEP data in an unambiguous fashion. This has been observed by

examining higher dimensional operator EOM relations, and also discovered explicitly in

global data analyses [62]. The fact that these measurements break the invariance can be

understood with the following simple operator basis independent scaling argument.

Consider scattering of the form ψ̄ψ → ψ̄ψ ψ̄ψ, as shown in figure 1. The processes

shown in A3 are perturbative corrections to the SM interactions in a manner that preserves

the reparameterization invariance. The topology shown in the middle figure, A2 might be

considered to be perturbated by the rescaling of the SM kinetic term of the SU(2)L field.

However, these corrections drop out, in a manner that is consistent with eq. (2.2) being

preserved, which does not lead to a relative shift in the TGC vertex. As a consequence de-

pendence on the operator QHW cancels in this process. However, the amplitude A2 can also

be perturbed from the SM value by the introduction of the terms labeled in the Effective

Lagrangian with gZ,γ1 , κZ,γ and λZ,γ in eq. (3.21). These non-vanishing contributions, not

definable as a W or B field rescaling consistent the reparameterization invariance, are not

forbidden by any symmetry. The corresponding amplitudes are directly not invariant under

eq. (2.2), due to these unfixed rescaling parameters no matter what basis is chosen. The

degeneracy is weakly broken experimentally as the t-channel neutrino exchange diagram is

dominant numerically [7] near the W+W− threshold that dominates LEPII data.9

9For this reason it is also important to break this degeneracy in a consistent manner by using the

ψ̄ψ → ψ̄ψ ψ̄ψ scattering data, and avoid using constraints modeled and projected onto an effective-TGC

vertex if possible [78]. Numerically this issue does not seem to dramatically effect numerical conclusions

comparing the results in [44, 77], although all of these results are subject to very substantial theoretical

uncertainties [41–47] and the results in [44, 77] are so highly constrained they mimic “one at a time”

operator analyses that cannot be consistent with the consequences of the reparameterization invariance.
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W±

q

q̄

Z/γ

W+

W−

e−

e+

νe

W−

W+

e−

e+

(A1) (A2Z/2A) (A3)

Figure 1. Sample diagram topologies for ψ̄ψ → ψ̄ψ and doubly resonant ψ̄ψ → ψ̄ψ ψ̄ψ scattering

with charged currents.

3 Input parameter independence of physical SMEFT conclusions

A physical reparameterization invariance of ψ̄ψ → ψ̄ψ scatterings should be input param-

eter set independent. Input parameters play a critical role in a perturbative field theory

analysis. The parameters present in the Lagrangian (couplings and scales) need to be

fixed numerically using a set of precisely measured input observables. Nevertheless, the

input parameters are a choice and the existence of a reparameterization invariance and

its consequences should not be limited to only one input parameter set. The reason is

that although the inferred numerically defined Lagrangian used to interpolate between

and define S matrix elements in a perturbative expansion introduces an input parameter

scheme dependence into predictions, if physical observables are related to each other di-

rectly, then this scheme dependence cancels out. In this sense the existence of a physical

reparameterization invariance should not depend on input parameter choice.

Clearly the individual numerical results present in the global fit do depend upon the

input parameter set chosen. To complete this argument, it is required to demonstrate

the input parameter independence of the reparameterization invariance in ψ̄ψ → ψ̄ψ scat-

terings by showing that a decomposition similar to eq. (2.11) can be performed in the

{m̂W , m̂Z , ĜF } input scheme.

The {α̂, m̂Z , ĜF } input scheme is in common use in the literature, so we do not exhaus-

tively discuss this approach here, see refs. [30, 42–44, 77, 79–82]. Results directly related

to the fit in use here are in refs. [30, 42–44, 47] in the SMEFT. We use the numerical values

for the input parameters in table 1. In the next section we develop the {m̂W , m̂Z , ĜF }
scheme for the SMEFT, while in appendix B we do the same for the HEFT Lagrangian, in

the basis of ref. [17].

3.1 {m̂W , m̂Z , ĜF} input parameter scheme

Tree level. In this scheme, the measured SM Lagrangian parameters are inferred follow-

ing the tree level definitions

ĝ2 = 2 · 21/4m̂W

√
ĜF , ĝ1 = 2 · 21/4m̂Z

√
ĜF

(
1− m̂2

W

m̂2
Z

)
, v̂2 =

1√
2ĜF

, (3.1)
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Input parameters Value Ref.

m̂Z 91.1875± 0.0021 [83–85]

ĜF 1.1663787(6)× 10−5 [84, 85]

α̂ew 1/137.035999074(94) [84, 85]

m̂h 125.09± 0.21± 0.11 [86]

m̂t 173.21± 0.51± 0.71 [84]

α̂s 0.1185 [84]

∆α̂ 0.0590 [87]

Table 1. Input parameters values used in the global fit in the {α̂, m̂Z , ĜF } scheme.

and in addition

s2
θ̂

= 1− m̂2
W

m̂2
Z

, ê = 2 · 21/4m̂W

√
ĜF sθ̂. (3.2)

Core shifts parameters. The input parameters are written as their canonically nor-

malized Lagrangian expressions — ȳi — plus a contribution proportional to the relevant

L6 Wilson coefficients, denoted δyi, so that

ŷi = ȳi + δyi, ȳi = {ḠF , m̄2
Z , m̄

2
W } , (3.3)

and we have in the U(3)5 flavour symmetric limit the results for the input parameter shifts10

δGF =
1√

2 ĜF

(√
2C

(3)
H` −

1√
2
Cll

)
, (3.4)

δm2
Z

m̂2
Z

=
1

2
√

2ĜF
CHD +

√
2

ĜF

m̂W

m̂Z

√
1− m̂2

W

m̂2
Z

CHWB, (3.5)

δm2
W

m̂2
W

= 0. (3.6)

In addition we define the short hand notation for the shift in the Weinberg angle in terms

of input parameters

δs2
θ =

1

2
√

2ĜF

m̂2
W

m̂2
Z

CHD +
1√

2ĜF

m̂W

m̂Z

√
1− m̂2

W

m̂2
Z

CHWB. (3.7)

Effective Z couplings. The effective axial and vector couplings of the SMEFT Z boson

are defined with the normalization

LZ,eff = 2 21/4

√
ĜF M̂Z

(
JZ`µ Zµ + JZνµ Zµ + JZuµ Zµ + JZdµ Zµ

)
, (3.8)

10Here we have normalized the operators in L6 in a manner that does not introduce a gauge coupling gi
for each field strength tensor. This is the same normalization as used in refs. [30, 42–44].
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where (JZxµ )pr = x̄p γµ
[
(ḡxV )preff − (ḡxA)preff γ5

]
xr for x = {u, d, `, ν}. Restricting our attention

to a minimal U(3)5 linear MFV scenario (JZxµ )pr ' (JZxµ )δpr we define the shifted effective

axial and vector couplings as

δ(gxV,A)pr = (ḡxV,A)eff
pr − (gxV,A)SM

pr , (3.9)

and

δgfV = δḡZ ḡ
x
V +Qfδs2

θ + ∆f
V , δgfA = δḡZ ḡA + ∆f

A. (3.10)

Our normalization of the couplings in LZ,eff is such that ḡxV = T3/2 − Qx s̄2
θ, ḡA = T3/2

where T3 =1/2 for ui, νi and T3 =−1/2 for di, `i and Qx={−1, 2/3,−1/3} for x={`, u, d}.
∆f
V,A stands for the direct contributions from fermionic operators given by

∆`
V = − 1

4
√

2ĜF

(
C

(1)
H` + C

(3)
H` + CHe

)
∆`
A = − 1

4
√

2ĜF

(
C

(1)
H` + C

(3)
H` − CHe

)
, (3.11)

∆ν
V = − 1

4
√

2ĜF

(
C

(1)
H` − C

(3)
H`

)
∆ν
A = − 1

4
√

2ĜF

(
C

(1)
H` − C

(3)
H`

)
, (3.12)

∆u
V = − 1

4
√

2ĜF

(
C

(1)
Hq − C

(3)
Hq + CHu

)
∆u
A = − 1

4
√

2ĜF

(
C

(1)
Hq − C

(3)
Hq − CHu

)
, (3.13)

∆d
V = − 1

4
√

2ĜF

(
C

(1)
Hq + C

(3)
Hq + CHd

)
∆d
A = − 1

4
√

2ĜF

(
C

(1)
Hq + C

(3)
Hq − CHd

)
, (3.14)

where

δḡZ = − 1√
2
δGF −

1

2

δm2
Z

m̂2
Z

+
sθ̂cθ̂√
2ĜF

CHWB,

= − 1

4
√

2ĜF

(
CHD + 4C

(3)
H` − 2Cll

)
,

(3.15)

and it is unchanged moving between the {m̂W , m̂Z , ĜF } and {α, m̂Z , ĜF } schemes. The

couplings gfA and gνV are also unchanged moving between these schemes.

Effective W± couplings. For the coupling of the W± boson we define

LW,eff = −23/4m̂W

√
ĜFW

+
µ

[
ν̄γµ

(
g
W±,`
V − gW±,`

A γ5

)
e+ūγµ

(
g
W±,q
V −gW±,q

A γ5

)
d
]

+ h.c. ,

(3.16)

with g
W±,`
V/A = (g

W±,`
V/A )SM + δ(g

W±,`
V/A ) and (g

W±,`
V/A )SM = 1/2 while

δ(g
W±,`
V ) = δ(g

W±,`
A ) =

1

2
√

2 ĜF
C

(3)
H` −

δGF

2
√

2
, (3.17)

δ(g
W±,q
V ) = δ(g

W±,q
A ) =

1

2
√

2 ĜF
C

(3)
Hq −

δGF

2
√

2
. (3.18)

Effective photon couplings. For the effective coupling of the photon we define

LA,eff = −ê
[
Qx(1 + δe/ê) JA,xµ

]
Aµ. (3.19)
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and Qx = {2/3,−1/3,−1} for x = {u, d, `}. Where the effective coupling in the canonically

normalized SMEFT [30, 42] expressed in this set of input observables is

δe

ê
≡ δα

2 α̂
= −δGF√

2
+
δm2

Z

m̂2
Z

m̂2
W

2 (m̂2
W − m̂2

Z)
− CHWB√

2 ĜF

m̂W

m̂Z
sθ̂. (3.20)

The observability of shifts in the effective photon couplings requires a measurement in

addition to the near Z-pole LEP measurements to constrain all parameters in the SMEFT.

In the fit results we report below, we use e+e− → e+e− scattering for this purpose.

Triple gauge boson interaction effective couplings. We use the parameterization

of the C and P even Effective TGC Lagrangian [88]

LWWV,eff

−i ĝWWV
= gV1

(
W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κVW
+
µ W

−
ν V

µν +
iλV
m̂2
W

V µνW+ρ
ν W−ρµ,

(3.21)

where V = {Z, γ} while Vµν = ∂µVν − ∂νVµ and W±µν = ∂µW
±
ν − ∂νW±µ . The couplings are

defined as ĝWWZ = ê cot θ̂, ĝWWγ = ê, κV = 1 + δκV , λV = δλV and gV1 = 1 + δgV1 . In the

{m̂W , m̂Z , ĜF } scheme one finds

δgγ1 =
1

4
√

2ĜF

CHD m̂2
W

m̂2
W − m̂2

Z

− 4C
(3)
H` + 2Cll − CHWB

4m̂W√
m̂2
Z − m̂2

W

 , (3.22)

δgZ1 =
1

4
√

2ĜF

(
CHD − 4C

(3)
H` + 2Cll + 4

m̂Z

m̂W

√
1− m̂2

W

m̂2
Z

CHWB

)
, (3.23)

δκγ =
1

4
√

2ĜF

(
CHD

m̂2
W

m̂2
W − m̂2

Z

− 4C
(3)
H` + 2Cll

)
, (3.24)

δκZ =
1

4
√

2ĜF

(
CHD − 4C

(3)
H` + 2Cll

)
, (3.25)

δλγ = 6 sθ̂
m̂2
W

ĝWWA
CW , (3.26)

δλZ = 6 cθ̂
m̂2
W

ĝWWZ
CW . (3.27)

The δκZ = δgZ1 −t2θ δκγ relationship identified holds in the SMEFT Lagrangian with L6 cor-

rections in the {α, m̂Z , ĜF }-scheme, but is not satisfied when including L8 corrections [7].

This relation is not satisfied in the {m̂W , m̂Z , ĜF } scheme, even considering L6 corrections,

however a more general relation

δκZ − δgZ1 = −t2θ(δκγ − δgγ1 ), (3.28)

holds in both schemes considering L6 corrections. The reason this relation holds is effec-

tive TGC corrections come about in two ways considering L6 corrections. Effective shifts

introduced due to relating SM couplings to input parameters and direct contributions to

anomalous TGC couplings (not of a λV form). The former class of corrections come in a

form that respects δκV − δgV1 = 0. The later set of corrections at L6 comes about due to

CHWB in either input parameter set, which respects eq. (3.28). The relation δλγ = δλZ
holds in both input parameter sets.
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3.2 {m̂W , m̂Z , ĜF} scheme benefits

The {m̂W , m̂Z , ĜF } input parameter scheme has been in common use in the SM precision

calculating community [89–91] but this scheme has not been considered extensively in

previous studies in the SMEFT.11 This is an unfortunate historical accident due to the

precise measurement of m̂W at the Tevatron appearing after LEP data. The demonstration

of the robustness of such transverse variable measurements of m̂W against measurement

bias in the SMEFT [95], and the precise measurements starting to appear from LHC [96]

indicates that using this scheme is numerically sound in studies of this form and can have

a number of benefits.

A key benefit is related to lifting the reparameterization invariance present in ψ̄ψ → ψ̄ψ

scattering in global data analyses in a consistent fashion. When the {α̂, m̂Z , ĜF } input

scheme is used and ψ̄ψ → ψ̄ψ ψ̄ψ observables are employed for this purpose, a problem at

leading order is introduced due to the need to expand the pole of the W± boson propagators

in SMEFT corrections. To perform a χ2 fit the expansion

χ̄ (sij) =
1(

sij − m̄2
W

)2
+
(
Γ̄W m̄W

)2 =
1(

sij − m̂2
W

)2
+
(

Γ̂W m̂W

)2 [1 + δχ (sij)] ,

is made, where the propagator modification is given by [44]

δχ (sij) =

[
−2
(
sij − m̂2

W

)
+ Γ2

W

]
δm2

W − 2ΓW m̂
2
W δΓW(

sij − m̂2
W

)2
+
(
m̂W Γ̂W

)2 .

Here the bar superscript indicates a parameter at tree level in the canonically normalized

SMEFT, δX indicates the complete correction to the quantity X due to L6 corrections,

and the hat superscript notation indicates a measured parameter. sij = (pi + pj)
2 for

the four momentum pi,j carried by the final states. The shift in the W± mass pole in the

{α̂, m̂Z , ĜF } scheme is the same order as the SMEFT corrections. This formally introduces

an ambiguity into the global constraint picture of the Wilson coefficient the same order

as the Wilson coefficients fit to, as the requirement to expand around the physical poles

to obtain a gauge invariant decomposition of the total cross section [97–99] is violated.

Using a {m̂W , m̂Z , ĜF } input scheme avoids this shift in the pole mass in an analysis of

ψ̄ψ → ψ̄ψ ψ̄ψ observables.

Another benefit of the {m̂W , m̂Z , ĜF }-input scheme is the one loop corrections in this

scheme are arguably easier to implement [93, 94]. Finally, the measurement scales of the

input parameters are closer together, minimizing large logs in the perturbative expansion

of observables.

3.2.1 {m̂W , m̂Z , ĜF} numerical predictions for LEP observables

Predictions for the observables used in the global data analyses reported in refs. [42–44,

77, 100–103] use the {α̂, m̂Z , ĜF } input parameter set. For many collider observables, the

theoretical and experimental error assigned to a SM prediction is far larger than the scheme

11A notable set of exceptions to this statement are in refs. [41, 46, 92–94].
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Observable {α̂, m̂Z , ĜF } inputs {m̂W , m̂Z , ĜF } inputs Exp. result [83]a

Γe,µ [MeV] 83.966 ± 0.012 83.986 ± 0.020 83.92 ± 0.12

Γτ [MeV] 83.776 ± 0.012 83.796 ± 0.020 84.08 ± 0.22

Γν [MeV] 167.156 ± 0.014 167.158 ± 0.014 166.333 ± 0.5

Γu [MeV] 299.95 ± 0.12 300.149 ± 0.20 –

Γc [MeV] 299.87 ± 0.12 300.07 ± 0.20 300.5 ± 5.3

Γd,s [MeV] 382.78 ± 0.09 382.96 ± 0.18 –

Γb [MeV] 375.73 ± 0.21 375.91 ± 0.26 377.6 ± 1.3

ΓZ [MeV] 2494.3 ± 0.5 2495.3 ± 1.0 2495.2 ± 2.3

R` 20.752 ± 0.005 20.758 ± 0.007 20.767 ± 0.025

Rc 0.17223 ± 0.00005 0.172254 ± 0.000053 0.1721 ± 0.003

Rb 0.2158 ± 0.00015 0.21579 ± 0.00015 0.21619 ± 0.00066

σ0
Had [pb] 41488 ± 6 41486.5 ± 6.1 41541 ± 37

aSpecifically these results are taken from tables 7.1 and 8.4 of ref. [83].

Table 2. Predictions for LEPI observables in the two input parameter schemes.

dependence of an observable. In this case theory predictions being reformulated switching

between input parameter schemes will have small numerical effects on constraints. However,

a subset of the LEPI pseudo-observables are a special case of precision in experimental and

theoretical prediction, rising to ∼ 0.1% level precision in a few cases (R̄`, σ̄h, Γ̄Z), and

should be reformulated switching between schemes.

Predictions of the LEPI pseudo-observables in the {m̂W , m̂Z , ĜF }-input parameter

scheme are produced as follows.12 We use the expansion formula reported in ref. [87] for

the LEPI pseudo-observables as a function of {m̂h, m̂Z , m̂t,∆α̂, α̂(M̂z)} combined with the

expansion formuli reported in ref. [104] for m̂W as a function of the same set of inputs. We

solve the latter for m̂W to replace dependence on ∆α̂ in ref. [87] in favour of m̂W . We use the

quoted value of the Tevatron average measurement of m̂W = 80.387±0.016 GeV to then pro-

duce effective predictions of the LEPI pseudo-observables as a function of {m̂W , m̂Z , ĜF }.
Using this method we find the results in table 2. The observables reported are defined as

Γ̄i =

√
2 ĜF m̂

3
Z Nc

3π

(
|ḡiV |2 + |ḡiA|2

)
, Γ̄had = Γ̄u + Γ̄d + Γ̄c + Γ̄s + Γ̄b, (3.29)

R̄c,b =
Γ̄c,b
Γ̄had

, R̄` =
Γ̄had
Γ̄`

, (3.30)

σ̄0
had =

12π

m̄2
Z

Γ̄e Γ̄had
Γ̄2
Z

. (3.31)

The impact of the change between these schemes is illustrated in figure 2. To shift to the

{m̂W , m̂Z , ĜF } scheme we also introduce a theoretical error for the mW mass. We use the

12We thank A. Freitas for suggesting this approach.
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Figure 2. The left figure shows the relative % level change in each observable shifting from the

{α̂, m̂Z , ĜF } to the {m̂W , m̂Z , ĜF } input scheme defined as (XmW
−Xα)/Xα × 100%. The right

handed figure shows the total theoretical error in each observable in the {α̂, m̂Z , ĜF } scheme (left

handed red bar), the total theoretical error in each observable in the {m̂W , m̂Z , ĜF } scheme (middle

blue bar) and the experimental error (right yellow bar) when quoted in ref. [83]. The numerical

results are reported in table 2.

inferred dependence in the expansion formuli of refs. [87, 104] on m̂W , defining this error

for each observable in the scheme xi = {mW , α} as (∇X)xi where

(∇X)mW =

√
(∇X)2

α +

(∣∣∣∣ ∂X∂mW

∣∣∣∣ (∇mW )

)2

, (3.32)

and (∇mW ) = 0.016 GeV. This study should be supplemented with a dedicated analysis

producing predictions for the full set of EWPD observables directly, without use of the

intermediate expansion formulii in refs. [87, 104]. However, as the theoretical error in both

schemes are below the experimental errors in all cases, this initial study is sufficient for

our purpose.

3.3 Numerical global fit results

A global fit analysis to LEP data using the {α̂, m̂Z , ĜF } and the {m̂W , m̂Z , ĜF } schemes

is used here to quantify the impact of the inputs choice on the resulting constraints on

the Wilson coefficients. This analysis is presented in two consecutive stages: in a first step

only 31 LEPI observables, obtained from measurements of ψ̄ψ → ψ̄ψ scattering processes,

are included. In both schemes the results obtained exhibit two unconstrained directions.

As a second step, LEPII measurements of ψ̄ψ → ψ̄ψψ̄ψ scattering through W± currents

are incorporated in the fit, in order to lift the unconstrained directions.

Fit methodology. We employ the fit method of refs. [43, 44]. The measured value of

a given observable Ôi is assumed to be a gaussian variable centered about the theoretical

prediction in the SMEFT Ōi so that the likelihood function can be defined as

L(C) =
1√

(2π)n det(V )
exp

(
−1

2
(Ô − Ō)TV −1(Ô − Ō)

)
, (3.33)
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where the n dimensional vectors Ô = (Ô1, . . . , Ôn), Ō = (Ō1, . . . , Ōn) have been introduced

and V represents the covariance matrix

Vij = ∆exp
i ρexp

ij ∆exp
j + ∆th

i ρ
th
ij ∆th

j . (3.34)

Here ρexp/ρth are the experimental/theoretical correlation matrices and ∆exp
i /∆th

i are the

experimental/theoretical error of the observable Oi. The theoretical error for each observ-

able is defined so as to contain both the SM theoretical uncertainty ∆i,SM and a constant

relative SMEFT theory error ∆SMEFT [42] defined as

∆th
i =

√
∆2
i,SM + ∆2

SMEFTŌ
2
i . (3.35)

We define the χ2 variable as χ2 = −2 log(L(C)). Potential unconstrained directions in the

analysis can finally be identified as the null eigenvectors of the Fisher information matrix

Iij =
1

2

(
∂2

∂Ci ∂Cj
χ2

)
. (3.36)

3.3.1 LEPI observables

The first stage of the global analysis follows closely the procedure presented in refs. [42, 43],

the main difference being the fact that we use 31 observables measured at LEPI instead

of the 103 observables considered in refs. [42, 43]. This choice does not limit the power of

the fit in a significant way and it suffices to illustrate the main physical conclusions. We

include measurements of

• the near Z-pole observables listed in table 2 and the W± mass,

• the forward-backward asymmetries A0,f
FB for f = {c, b, `},

• the differential distributions of bhabha scattering dσ(e+e− → e+e−)/d cos θ.

Notice that the measurement of the W± mass represents a constraint only when the

{α̂, m̂Z , ĜF } scheme is adopted, while the inclusion of e+e− → e+e− scattering data

is required in order to introduce an independent constraint on the value of α̂ in the

{m̂W , m̂Z , ĜF } scheme.

The theoretical SM predictions in the {m̂W , m̂Z , ĜF } input scheme for the first cat-

egory of observables were computed in the previous section, and the results are listed in

table 2. The theoretical values for the latter two categories, instead, vary by a quantity

smaller than the theoretical error when switching between input parameter schemes. As

such the theory predictions were taken to be the same as the values quoted in ref. [43]

which also lists the experimental data used and errors.

The analytic dependence of the observables on the Lagrangian parameters was given in

ref. [42] and is formally unchanged in the {m̂W , m̂Z , ĜF } scheme. The main difference with

the {α̂, m̂Z , ĜF }-scheme computation is the fact that ᾱ and ḡγ1 now carry a dependence

on the SMEFT parameters, while m̄W does not. For this limited set of observables, the

subset of relevant L6 Wilson coefficients are

C̃i ≡
v̄2
T

Λ2

{
CHe, CHu, CHd, C

(1)
Hl , C

(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHWB, CHD, Cll, Cee, Cle

}
. (3.37)
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Using the {α̂, m̂Z , ĜF } input scheme and normalizing to the coefficient of CHe the null

eigenvectors of the Fisher information matrix are

wα1 =
v̄2
T

Λ2

(
1

3
CHd−2CHD+CHe+

1

2
C

(1)
Hl −

1

6
C

(1)
Hq−

2

3
CHu−1.29(C

(3)
Hq+C

(3)
Hl )+1.64CHWB

)
,

(3.38)

wα2 =
v̄2
T

Λ2

(
1

3
CHd−2CHD+CHe+

1

2
C

(1)
Hl −

1

6
C

(1)
Hq−

2

3
CHu+2.16(C

(3)
Hq+C

(3)
Hl )−0.16CHWB

)
.

(3.39)

Performing the fit in the {m̂W , m̂Z , ĜF } scheme the unconstrained directions are

wmW1 =
v̄2
T

Λ2

(
1

3
CHd−2CHD+CHe+

1

2
C

(1)
Hl −

1

6
C

(1)
Hq−

2

3
CHu−1.24(C

(3)
Hq+C

(3)
Hl )+1.60CHWB

)
,

(3.40)

wmW2 =
v̄2
T

Λ2

(
1

3
CHd−2CHD+CHe+

1

2
C

(1)
Hl −

1

6
C

(1)
Hq−

2

3
CHu+2.20(C

(3)
Hq+C

(3)
Hl )−0.24CHWB

)
.

(3.41)

Since all the observables included are extracted from measurements of ψ̄ψ → ψ̄ψ pro-

cesses, they satisfy the reparameterization invariance presented in section 2.1. As a conse-

quence these unconstrained directions must be a linear combination of the vectors wB,W
defined in eqs. (2.9) if the reparameterization invariance identified is scheme independent.

We find this is the case and the unconstrained directions decompose as

wα1 = −wB − 2.59wW wα2 = −wB + 4.31wW , (3.42)

wmW1 = −wB − 2.48wW wmW2 = −wB + 4.40wW . (3.43)

3.3.2 Incorporating ψ̄ψ → ψ̄ψ ψ̄ψ production data

In a second stage of the analysis, LEPII measurements of ψ̄ψ → ψ̄ψ ψ̄ψ scattering via W±

currents are incorporated in the global fit. We follow the procedure adopted in ref. [44],

computing the total spin-averaged cross section for the process e+e− → ψ̄ψ ψ̄ψ in the

SMEFT with the {m̂W , m̂Z , ĜF } input parameter scheme, for eight different values of the

center-of-mass energy. The results are given in terms of a set of common shift parameter

in table 3. Here the main differences with the computation in the {α̂, m̂Z , ĜF }-scheme

are in the presence of non-vanishing contributions due to δgγ1 and δe/ê ∼ δα/α̂ and in

the treatment of the pole in the W± propagators, which, as detailed in section 3.2, does

not need to be expanded in this case, thus ensuring a more consistent gauge invariant

decomposition of the cross section.

We also compute the angular distribution dσ/d cos θ as in ref. [44], where θ is the

angle formed by the momenta of the W+ and of the incoming e− in the center-of-mass

reference frame. In order to compare the theoretical prediction to LEPII data, we apply

the kinematic cut −0.94 < θ` < 0.94 which ensures that, in the semileptonic final state,
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√
s δΓW

ΓW
δgνW δg±W δgZV δgZA δgZ1 δκγ δκZ δλγ δλZ

δΓZ
ΓZ

δgγ1
δe
e

188.6 -17. 72. 33.4 5.72 0.21 -0.05 -0.57 -0.16 -0.34 0.051 0.0005 -0.41 -0.98

191.6 -17. 72. 33.6 6.26 0.33 -0.07 -0.64 -0.19 -0.37 0.045 0.0005 -0.44 -1.08

195.5 -17. 73. 33.8 6.91 0.50 -0.09 -0.72 -0.22 -0.41 0.035 0.0005 -0.49 -1.20

199.5 -17. 74. 33.7 7.52 0.68 -0.11 -0.79 -0.26 -0.45 0.022 0.0005 -0.53 -1.33

201.6 -17. 74. 33.7 7.82 0.78 -0.12 -0.83 -0.28 -0.47 0.016 0.0005 -0.55 -1.39

204.8 -17. 74. 33.5 8.24 0.93 -0.14 -0.89 -0.32 -0.47 0.005 0.0005 -0.58 -1.47

206.5 -17. 75. 33.4 8.45 1.01 -0.15 -0.92 -0.33 -0.51 -0.001 0.0005 -0.60 -1.52

208. -17. 75. 33.3 8.62 1.08 -0.16 -0.94 -0.35 -0.52 -0.007 0.0005 -0.61 -1.55

Table 3. Total cross section contributions (in pb) to ψ̄ψ → ψ̄ψψ̄ψ production due to common shift

parameters, in the {m̂W , m̂Z , ĜF } scheme. The results are normalized for semileptonic final states:

they should be multiplied for 1.01 (1/4.04) for fully hadronic (leptonic) final states. The quantity

δgνW = δg`W corresponds to the shift in the W± coupling to e+e− in the t-channel diagrams, while

the column δg±W = δg
q/`
W accounts for the shift in each W± coupling to a pair of final state fermions.

The corresponding results obtained in the {α̂, m̂Z , ĜF }-scheme were reported in table 2 of ref. [44].

√
s = 182.66 GeV

Bin δΓW
ΓW

δgνW δg±W δgZV δgZA δgZ1 δκγ δκZ δλγ δλZ δgγ1
δe
e

B1 -1.5 12. 2.9 4.3 3.0 -0.42 -0.37 -0.45 -0.35 -0.43 -0.34 -0.71

B2 -2.8 16. 5.4 3.7 2.3 -0.29 -0.35 -0.38 -0.28 -0.32 -0.27 -0.62

B3 -5.2 22. 10.2 1.7 0.2 -0.04 -0.16 -0.06 -0.08 0.03 -0.12 -0.29

B4 -14.1 40. 27.5 -7.8 -9.0 1.20 0.67 1.27 0.68 1.27 0.64 1.30
√
s = 205.92 GeV

Bin δΓW
ΓW

δgνW δgxW
± δgZV δgZA δgZ1 δκγ δκZ δλγ δλZ δgγ1

δe
e

B1 -0.9 10. 1.8 4.9 2.9 -0.40 -0.47 -0.46 -0.43 -0.43 -0.41 -0.88

B2 -2.0 15. 4.0 5.1 2.8 -0.31 -0.57 -0.51 -0.40 -0.38 -0.35 -0.92

B3 -4.5 22. 8.8 3.7 1.2 -0.17 -0.39 -0.22 -0.21 -0.07 -0.27 -0.66

B4 -19.8 59. 39.0 -9.5 -11.4 1.48 0.88 1.63 0.93 1.67 0.81 1.69

Table 4. Angular bin cross section contributions (in pb) to ψ̄ψ → ψ̄ψψ̄ψ production in the mW -

input scheme due to shift parameters. The overall normalization and notation are the same as those

of table 3. The corresponding results obtained in the {α̂, m̂Z , ĜF }-scheme were reported in table 3

of ref. [44].

the angle θ` between the outgoing charged lepton and the beamline does not exceed the

detector acceptance of 20o. Finally, we compute the cross section for four bins defined by

B1 : −1 ≤ cos θ ≤ −0.8 B2 : −0.4 ≤ cos θ ≤ −0.2

B3 : 0.4 ≤ cos θ ≤ 0.6 B4 : 0.8 ≤ cos θ ≤ 1.
(3.44)

The results are given in terms of the core shift parameters in table 4, while the corre-

sponding values for the {α̂, m̂Z , ĜF } input choice were reported in table 3 of ref. [44].
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Figure 3. Best fit values of the Wilson coefficients (scaled by a factor 100) and corresponding

±1σ confidence regions obtained after profiling away the other parameters. Red (blue) points were

obtained in the {α̂ (m̂W ), m̂Z , ĜF } input parameter scheme. The plot to the left has been obtained

assuming ∆SMEFT = 0, while the one to the right includes a theoretical error ∆SMEFT = 0.01.

Incorporating doubly-resonant e+e− → ψ̄ψ ψ̄ψ data introduces 74 extra observables13 and

an additional set of 8 relevant Wilson coefficients to the global fit:

C̃j =
v̄2
T

Λ2

{
CW , Ceu, Ced, Clu, Cld, C

(1)
lq , C

(3)
lq , Ceq

}
. (3.45)

Because e+e− → ψ̄ψ ψ̄ψ processes are not invariant under the simultaneous rescaling of the

gauge bosons fields and of their associated couplings, their inclusion in the global fit breaks

the unconstrained directions in ψ̄ψ → ψ̄ψ global analyses. Therefore it is possible to infer

bounds on each of the 20 Wilson coefficients after profiling over the others when this data

is included. These constraints are displayed in figure 3 for both the {α̂, m̂Z , ĜF } and the

{m̂W , m̂Z , ĜF } input schemes and for two different choices of the SMEFT theoretical error

due to neglected higher order effects in the analyses. See appendix C for the numerical

13The fit includes a total of 66 measurements of the total cross sections provided independently by

the experiments L3, OPAL and ALEPH for different values of
√
s and final states, plus 8 independent

measurements of the angular distribution.
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Figure 4. Best fit values of the Wilson coefficients (scaled by a factor 100) and corresponding

±1σ confidence regions obtained minimizing the ∆χ2 with one parameter at a time. Red (blue)

points were obtained in the {α̂ (m̂W ), m̂Z , ĜF } input parameter scheme. The plot to the left

has been obtained assuming ∆SMEFT = 0, while the one to the right includes a theoretical error

∆SMEFT = 0.01. Note that in the right plot the x axis has been scaled by a factor 2 and the

coefficient CHd has been moved to the lower panel: increasing the theoretical error enhances the

pull of the A0,b
FB anomaly compared to Z width data, and this relaxes by one order of magnitude

the bound on this parameter.

results that these figures correspond to. Comparing the results of the two schemes, it

is possible to notice the presence of some scheme dependence, that is comparable (but

sub-dominant) to the 1σ theory error that emerges from the fit. Comparing how much the

constraints in the two schemes overlap when a ∼ 1% SMEFT theory error is assigned, shows

how considering a theoretical error for the SMEFT ameliorates the scheme dependence of

global constraint results.

We also show in figure 4, for the sake of comparison, the constraints obtained minimiz-

ing the χ2 with one Wilson coefficient at a time. We stress that such analyses should be

interpreted with significant caution, as they do not seem relatable to a consistent UV sce-

nario inducing an operator matching pattern of this form. This is due to the non-minimal

character of the SMEFT [105] when the new scales introduced (Λ) have a dynamical origin.
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Figure 5. Color map of the correlation matrix among the Wilson coefficients, obtained assuming

zero SMEFT error, for the {α̂, m̂Z , ĜF } input scheme (left) and for the {m̂W , m̂Z , ĜF } input

scheme (right).

Finally, figure 5 gives a graphical representation of the correlation matrices among the

Wilson coefficients obtained in both schemes and tables 5, 6 shown some numerical results.

The fit space is highly correlated, irrespective of the input parameter choice. This is mostly

a physical consequence of the reparameterization invariance as is demonstrated by the fact

that the parameters related to the reparameterization invariance{
CHe, CHu, CHd, C

(1)
Hl , C

(3)
Hl , C

(1)
Hq, C

(3)
Hq, CHD

}
. (3.46)

are found to be strongly correlated. The parameter CHWB is also involved in the uncon-

strained directions but its correlation is significantly washed out by the use of e+e−→ ψ̄ψψ̄ψ

processes to break the reparameterization invariance. The degree to which CHWB is un-

correlated by the inclusion of this data shows significant scheme dependence, being more

correlated in the {m̂W , m̂Z , ĜF } scheme.

4 Conclusions

In this paper we have explained a reparameterization invariance that is present in ψ̄ψ → ψ̄ψ

scattering in the SMEFT. This invariance is broken by the inclusion of scattering data with

different Feynman diagram topologies and it represents an underlying physical reason why

the fit space of the L6 corrections in the SMEFT is so highly correlated. The invariance is

manifest in a particular operator basis, but largely hidden in other formalisms. Nevertheless

the invariance follows from a simple scaling argument and its existence is input parameter

scheme independent. In order to check this, we have developed a {m̂W , m̂Z , ĜF } input

parameter scheme for global SMEFT fits, and applied it to a global analysis of ψ̄ψ → ψ̄ψ

and ψ̄ψ → ψ̄ψ ψ̄ψ scattering data, finding some scheme dependence in the conclusions.

We have also discussed why the adoption of a {m̂W , m̂Z , ĜF } input parameter scheme has

theoretical advantages as the SMEFT is further developed.
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If a formalism is used to globally fit the data in the SMEFT that makes this repa-

rameterization invariance non manifest, then it is essential that the correlations of the

Wilson coefficients, or a power counting assumption, is not simultaneously assumed to be

inconsistent with the consequences of the reparameterization invariance in order to obtain

constraints that are basis independent in the SMEFT. This is already the case in global

analyses when considering ψ̄ψ → ψ̄ψ and ψ̄ψ → ψ̄ψ ψ̄ψ data. Although this can be done

in operator bases in a fairly direct fashion, it is not clear how a mass eigenstate param-

eter formalism and corresponding fits can define such a theoretical correlation matrix14

to ensure the consequences of the reparameterization invariance in Wilson coefficient rela-

tionships is not explicitly broken by assumption, instead of the consistent use of the data.

These challenges can be further emphasised and introduce further inconsistencies with the

inclusion of the vast LHC data set that is being recorded and reported in EFT analyses.

Irrespective of what approach is used, the results of this work favour the use of EFT

formalisms that do not obscure the physical consequences of the relations in eq. (2.7) in

order to obtain a consistent global constraint picture on physics beyond the SM combining

LEP, low energy and LHC data.
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A Jacobian relations between input parameter schemes

The mapping of the shifts in observables in the SMEFT in the {α̂, m̂Z , ĜF }-scheme into the

{m̂W , m̂Z , ĜF }-scheme can be directly inferred as follows. The total shift in an observable

X due to all operators in the SMEFT, computed in a scheme of input parameters {yi} we

denote as

(δX) = (δX)d +
∆X

∆yi
∆yi . (A.1)

14See ref. [44] for discussion and an attempt to define such a correlation matrix, however, we caution

that it does not seem possible to prove that using the bilinear nature of the covariance matrix is comparable

with the EOM consequences of the reparameterization invariance property.
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Here we are denoting a linearized variation at leading order in the power counting of the

SMEFT with the notation ∆ and ∆yi denotes the correction in an input parameter {yi}
of this order so that ∆yi = ŷi − ȳi. (δX)d denotes a direct L6 operator contribution to an

observable due to an operator in L6, present in any scheme. This can be easily translated

into another input parameters set {zj} via

(δX) = (δX)d +
∆X

∆yi
∆yi = (δX)d +

∆X

∆zj

∆zj
∆yi

∆yi = (δX)d +
∆X

∆zj
(∆zj)∑ yi , (A.2)

where (∆zj)∑ yi denotes the shift in the quantity zj computed in the yi scheme due to

input parameter dependence. In the input parameter schemes used in this paper we take

yi = {ḠF , m̄Z , m̄W } and zj = {ḠF , m̄Z , ᾱ}. (A.3)

The overlap of yi, zj and the orthogonality of the input parameters leads to a shift in

translating from the {α̂, m̂Z , ĜF }-scheme into the {m̂W , m̂Z , ĜF }-scheme being given by

∆X

∆yi
∆yi −

∆X

∆zj
(∆zj)∑ yi . (A.4)

For our case, this expression simplifies to a correction of the form

∆X

∆ᾱ
(∆ᾱ)mW . (A.5)

We use this simple cross check of the results reported obtained by direct calculation. This

simple relationship is somewhat accidental in the input parameter sets examined here, and

follows from

(δḠF )mW = (δḠF )α ≡ (∆ḠF ), (A.6)

(δm̄2
Z)mW = (δm̄2

Z)α ≡ (∆m̄2
Z). (A.7)

B {m̂W , m̂Z, ĜF} inputs scheme in the HEFT

In this appendix we develop the {m̂W , m̂Z , ĜF } input scheme for the HEFT Lagrangian,

deriving the corresponding expressions of the core shifts parameters. We employ the basis

of ref. [17] in the U(3)5 flavour symmetric limit and, unlike in the SMEFT case, we use a

notation with dimensionless Wilson coefficients ci, writing explicitly the suppression scale

Λ when necessary. Details about the definition of the fields and operators of the HEFT

Lagrangian can be found in ref. [17].

The input parameter shifts read in this case:

δGF = −64π2

2Ĝ2
F

r`2 − r`5
Λ2

, (B.1)

δm2
Z

m̂2
Z

= −cT − 2
m̂W

m̂Z

√
1− m̂2

W

m̂2
Z

c1, (B.2)

δm2
W

m̂2
W

= −2c12, (B.3)
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where it is worth noting that the operator P12 = (Tr(TWµν))2F12(h), which is equivalent

to the dimension-8 operator (H†WµνH)2, introduces a shift in the m̂W parameter, which

is identically vanishing in the SMEFT case when only including L6 corrections.

The shift in the Weinberg angle is consequently given by

δs2
θ = −2cT

m̂2
W

m̂2
Z

− 2c1
m̂W

m̂Z

√
1− m̂2

W

m̂2
Z

+ 4c12
m̂2
W

m̂2
Z

. (B.4)

The shifts in the Z couplings to fermions can be expressed in the notation of eq. (3.10),

where, for the HEFT theory:

δḡZ = − 1√
2
δGF −

1

2

δm2
Z

m̂2
Z

− s2θ̂c1 = cT +
16π2

√
2ĜF

r`2 − r`5
Λ2

. (B.5)

As in the SMEFT case, the universal shift δḡZ is unchanged when moving from the

{α, m̂Z , ĜF } to the {m̂W , m̂Z , ĜF } scheme. The direct contributions ∆f
V,A read

(∆`
V )pr =

{
1
2(−n`V + 2n`{VT} − n`TVT + 2n`2)pr (p 6= r)

(n`2)rr (p = r)
, (B.6)

(∆`
A)pr =

{
1
2(−n`V + 2n`{VT} − n`TVT − 2n`2)pr (p 6= r)

−(n`2)rr (p = r)
, (B.7)

(∆ν
V )pr = (∆ν

A)pr =

{
1
2(n`V + 2n`{VT} + n`TVT)pr (p 6= r)

0 (p = r)
, (B.8)

(∆u
V )pr =

1

2

(
nQ1 + nQ2 + 2nQ5 + 2nQ6 + nQ7 + nQ8

)
pr
, (B.9)

(∆u
A)pr =

1

2

(
nQ1 − nQ2 + 2nQ5 − 2nQ6 + nQ7 − nQ8

)
pr
, (B.10)

(∆d
V )pr =

1

2

(
−nQ1 − nQ2 + 2nQ5 + 2nQ6 − nQ7 − nQ8

)
pr
, (B.11)

(∆d
A)pr =

1

2

(
−nQ1 + nQ2 + 2nQ5 − 2nQ6 − nQ7 + nQ8

)
pr
, (B.12)

where p, r are flavor indices and we have denoted by n`V, n
`
{VT}, n

`
TVT the Wilson coeffi-

cients, respectively, of the operators

iL̄L,pγµV
µLL,r, iL̄L,pγµ{Vµ,T}LL,r, iL̄L,pγµTVµTLL,r.

The flavor diagonal components of these structures, that correspond to Q(1)
Hl and Q(3)

Hl in

the SMEFT, were removed from the basis of ref. [17] and traded for bosonic operators.

This explains why the shifts in the flavor diagonal Z-lepton couplings are much simplified

compared to the Z-quark couplings.
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The shifts in the W± couplings, in the normalization of eq. (3.16) are

δ(g
W±,`
V )pr = δ(g

W±,`
A )pr =


(
n`V − n`TVT + 2in`1

)
pr
− δGF

2
√

2
(p 6= r)

(2in`1)rr − δGF
2
√

2
(p = r)

, (B.13)

δ(g
W±,q
V )pr =

(
nQ1 − nQ7 + nQ2 − nQ8 + 2i(nQ3 + nQ4 )

)
pr
− δGF

2
√

2
, (B.14)

δ(g
W±,q
A )pr =

(
nQ1 − nQ7 − nQ2 + nQ8 + 2i(nQ3 − nQ4 )

)
pr
− δGF

2
√

2
. (B.15)

Note that in the HEFT formalism it is possible to have W± couplings to righthanded quark

currents at the first order in the power counting: these are parameterized by the coefficients

nQ2 and nQ8 . The same is not true in the lepton sector due to the absence of righthanded

neutrinos. Finally, the coefficients n`1, nQ3 , nQ4 are intrinsically CP odd.

The effective photon couplings are proportional to ê(1 + δe/ê), where

δe

ê
≡ δα

2 α̂
= −δGF√

2
+
δm2

Z

m̂2
Z

m̂2
W

2 (m̂2
W − m̂2

Z)
− δm2

W

m̂2
W

2m̂2
W − m̂2

Z

2(m̂2
W − m̂2

Z)
+ 2c1

m̂W

m̂Z

√
1− m̂2

W

m̂2
Z

.

(B.16)

Finally, variations in the triple gauge boson interaction can be expressed in the pa-

rameterization of ref. [88] as

LWWV,eff

−i ĝWWV
= gV1

(
W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κVW
+
µ W

−
ν V

µν +
iλV
m̂2
W

V µνW+ρ
ν W−ρµ

− igV5 εµνρσ
(
W+
µ ∂ρW

−
ν −W−ν ∂ρW+

µ

)
Vσ, (B.17)

and their expression in terms of the HEFT coefficients are the following:

δgγ1 = 2c1
m̂W√

m̂2
Z − m̂2

W

+ 2c12
2m̂2

W − m̂2
Z

m̂2
W − m̂2

Z

− cT
m̂2
W

m̂2
W − m̂2

Z

+
8
√

2π2

ĜFΛ2
(r`2 − r`5), (B.18)

δgZ1 = 4c12 − 2c1
m̂Z

m̂W

√
1− m̂2

W

m̂2
Z

− cT +
8
√

2π2

ĜFΛ2
(r`2 − r`5) +

√
ĜF

23/4π

m̂2
Z

m̂W
c13, (B.19)

δκγ = −2c12
m̂2
Z

m̂2
W−m̂2

Z

−cT
m̂2
W

m̂2
W−m̂2

Z

+
8
√

2π2

ĜFΛ2
(r`2−r`5)+

√
ĜF m̂W

23/4π

(
2c2

tθ̂
+c3+2c13

)
,

(B.20)

δκZ = −cT +
8
√

2π2

ĜFΛ2
(r`2 − r`5) +

√
ĜF m̂W

23/4π

(
−2tθ̂c2 + c3 + 2c13

)
, (B.21)

δλγ = 6 sθ̂
m̂2
W

ĝWWA
cWWW , (B.22)

δλZ = 6 cθ̂
m̂2
W

ĝWWZ
cWWW , (B.23)

δgγ5 = 0, (B.24)

δgZ5 =

√
ĜF

23/4π

m̂2
Z

m̂W
c14. (B.25)
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Compared to the shifts obtained in the SMEFT, more independent HEFT operators con-

tribute to TGCs. This is partly due to a different basis choice for effects equivalent to

dimension-6 invariants: as an example, the HEFT basis of ref. [17] contains the operators

P2 ∼ BµνTr(T[Vµ,Vν ])F2(h) and P3 ∼ Tr(Wµν [Vµ,Vν ])F3(h), whose linear “siblings”

are the structures DµH†BµνD
νH and DµH†WµνD

νH respectively, that were not retained

in the SMEFT basis of ref. [6]. In addition, triple gauge couplings receive the contribution

of HEFT operators that correspond to terms of dimension d ≥ 8 in the SMEFT formalism,

such as P13 ∼ Tr(TWµν)Tr(T[Vµ,Vν ])F13(h) and P14 ∼ εµνρλTr(TVµ)Tr(VνWρλ)F14(h).

In particular, the latter gives a non-vanishing δgZ5 .

Finally, it is worth noting that due to the contribution of the operator P12, the SMEFT

relationship δκZ = δgZ1 − t2θ(δκγ − δg
γ
1 ) does not hold for the HEFT Lagrangian even at

leading order.

C Numerical global fit results

Ci × v̄2T
Λ2

{α̂, m̂Z , ĜF } scheme {m̂W , m̂Z , ĜF } scheme

(0%) (1%) (0%) (1%)

CHe 47. ± 25. 34. ± 32. 36. ± 21. 26. ± 27.

CHu −31. ± 17. −22. ± 22. −23. ± 14. −16. ± 18.

CHd 12.8 ± 8.4 8. ± 11. 8.3 ± 6.9 4.9 ± 9.2

C
(1)
Hl 24. ± 13. 17. ± 16. 18. ± 10. 13. ± 13.

C
(3)
Hl 81. ± 47. 71. ± 50. 68. ± 42. 61. ± 44.

C
(1)
Hq −7.8 ± 4.2 −5.7 ± 5.4 −6.0 ± 3.5 −4.5 ± 4.5

C
(3)
Hq 80. ± 47. 71. ± 50. 67. ± 42. 61. ± 44.

CHWB 3.4 ± 6.5 −5. ± 13. −2.3 ± 7.7 −8. ± 12.

CHD −94. ± 51. −67. ± 65. −72. ± 41. −52. ± 54.

Cll −0.19 ± 0.18 −0.7 ± 1.0 −0.42 ± 0.56 −0.8 ± 1.1

Cee 9.1 ± 6.3 8.6 ± 7.4 5.3 ± 9.0 6.7 ± 9.4

Cle 4.4 ± 5.5 4.6 ± 5.6 3.6 ± 5.5 3.9 ± 5.8

CW 120. ± 72. 110. ± 75. 99. ± 62. 93. ± 65.

Table 5. Best fit values and corresponding 1σ confidence regions for ∆SMEFT = {0%, 1%} and for

the two input parameter schemes considered in this work. The numbers have been obtaining after

profiling the χ2 over the other parameters and they have been multiplied by a factor 100.
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Ci × v̄2T
Λ2

{α̂, m̂Z , ĜF } scheme {m̂W , m̂Z , ĜF } scheme

(0%) (1%) (0%) (1%)

CHe −0.047 ± 0.036 −0.064 ± 0.079 −0.054 ± 0.037 −0.104 ± 0.092

CHu 0.06 ± 0.25 0.45 ± 0.87 −0.06 ± 0.25 0.462 ± 1.036

CHd −0.35 ± 0.33 −2.1 ± 1.1 −0.152 ± 0.33 −2.4 ± 1.3

C
(1)
Hl 0.016 ± 0.025 −0.07 ± 0.10 0.018 ± 0.026 −0.109 ± 0.11

C
(3)
Hl −0.013 ± 0.025 0.019 ± 0.054 −0.009 ± 0.039 −0.12 ± 0.11

C
(1)
Hq 0.05 ± 0.10 0.05 ± 0.41 0.01 ± 0.11 0.05 ± 0.42

C
(3)
Hq 0.013 ± 0.037 0.21 ± 0.29 −0.005 ± 0.039 0.21 ± 0.30

CHWB −0.008 ± 0.020 0.015 ± 0.029 −0.046 ± 0.053 −0.050 ± 0.061

CHD −0.058 ± 0.051 0.01 ± 0.11 −0.075 ± 0.059 −0.066 ± 0.066

Cll 0.019 ± 0.044 −0.053 ± 0.074 0.011 ± 0.094 −0.79 ± 0.58

Cee 12.4 ± 4.6 12.0 ± 5.4 11.9 ± 4.4 11.5 ± 5.2

Cle 9.8 ± 4.0 8.8 ± 4.2 9.4 ± 3.9 8.5 ± 4.0

CW 1.8 ± 4.5 1.9 ± 4.5 1.9 ± 4.4 2.0 ± 4.5

Table 6. Best fit values and corresponding 1σ confidence regions for ∆SMEFT = {0%, 1%} and for

the two input parameter schemes considered in this work. These numbers have been obtained mini-

mizing the χ2 with one parameter at a time (despite the non-minimal character of the SMEFT [105]),

and they have been multiplied by a factor 100.
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