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1 Introduction

The string theory/gauge theory correspondence [1, 2] is by now a mature framework ex-

ploited to address interesting questions in strongly coupled gauge theories that are often

inaccessible with other theoretical tools. In a nutshell, this duality establishes a holo-

graphic correspondence (a dictionary) between two objects: a non-abelian gauge theory

and a higher-dimensional gravitational theory/string theory in asymptotically anti de-Sitter

space-time. One particularly appealing consequence of this correspondence is the fact that

questions about the gauge theory in strongly coupled regimes are mapped onto questions in

classical gravity. Likewise, a dual gauge theory perspective allows for different, and often

intuitive, understanding of instabilities in black hole/black brane spacetimes.

Indeed, lets recall the physics of holographic superconductors [3, 4]. Consider the

four-dimensional effective gravitational action1 in asymptotically AdS4 (dual to a three-

dimensional conformal field theory CFT3),

S4 =
1

2κ2

∫
M4

dx4

[
R+ 6− 1

4
FµνFµν −

1

2
(∇φ)2 + φ2

]
. (1.1)

1We set the radius L of an asymptotic AdS4 geometry to unity.
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The four dimensional gravitational constant κ is related to a central charge c of the CFT3 as

c =
192

κ2
, (1.2)

Fµν is a field strength of a global U(1) symmetry of the CFT, and φ is a (neutral) gravi-

tational bulk scalar with

L2m2
φ = −2 , (1.3)

which is dual to a dimension ∆φ = 2 operator Oφ of a boundary theory.2 Note that there is

Z2 symmetry in the model, associated with this scalar, φ↔ −φ. As it is well-known, there

are two phases of equilibrium states of this CFT3 at a finite temperature T and a U(1)

global symmetry chemical potential µ, distinguished whether 〈Oφ〉 = 0 or 〈Oφ〉 6= 0. The

〈Oφ〉 = 0 phase exists for arbitrary temperature T ≥ 0 and it is gravitationally described

by Reissner-Nordstrom AdS4 black brane with unbroken Z2 symmetry, correspondingly

φ ≡ 0. For sufficiently small T/µ this Z2 symmetric phase becomes unstable [4]: on the

gauge theory side of the correspondence the instability is a generic instability of the order

parameter in the mean-field theory of thermal second-order phase transitions; on the gravity

side, this is a Gregory-Laflamme (GL) type instability [6] (in the sense of being unstable to

long-wavelength perturbations) due to scalarization of the Reissner-Nordstrom AdS4 black

brane horizon. To understand the gravitational origin of the instability the authors of [4]

noted that even though the scalar φ is above the AdS4 Breitenlohner-Freedman (BF) bound

m2
φ = −2 > m2

BF[AdS4] = −(4− 1)2

4L2
= −9

4
, (1.4)

as the Reissner-Nordstrom AdS4 black brane becomes extremal (T/µ → 0), it develops

AdS2 ×R2 near horizon geometry with the curvature radius L2
2 = L2

6 . In this limit

m2
φ = −2 < m2

BF[AdS2] = −(2− 1)2

4L2
2

= −3

2
, (1.5)

and the bulk scalar φ becomes unstable (the quasinormal frequency of its linearized fluctu-

ations has Im[ω] > 0). The condensation of the gravitational scalar φ at low temperatures

is dynamically saturated by nonlinear effects, spontaneously breaking Z2 symmetry and

leading to a new equilibrium phase of the CFT with 〈Oφ〉 6= 0.

There exist many studies and generalizations of the described phenomena in hologra-

phy.3 In this paper we focus on a less-known, exotic property of certain black brane/black

hole horizons. As in the example of the holographic superconductor above, imagine a

holographic4 horizon with a discrete (or continuous) symmetry. Suppose that there is a

critical energy5 or energy density (for gauge theory states with translational invariance)

below which the horizon becomes unstable with respect to symmetry breaking (GL) fluc-

tuations. There is an equilibrium phase with spontaneously broken symmetry, branching

2φ has two alternative quantizations in AdS4 [5]; our results do not depend on this choice.
3See [7] and references therein.
4We point out this feature occurs in top down holographic models, and thus is of importance to issues

of equilibration and thermalization in strongly coupled gauge theories.
5As we study dynamical phenomena, we work in a microcanonical ensemble.
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off the GL onset of the instability, yet, this phase does not exist below the critical energy;

moreover, it has lower entropy above the criticality than the symmetric phase. Thus, the

horizon representing the symmetric thermal state is unstable, but it is unknown what the

end point of its instability is.

To our knowledge, the first realization of the above exotic scenario appeared in [8]

which was later found in a top-down holographic model in [9]. Finally, the same exotic

physics is behind the leading instability of small black holes in AdS5 × S5 (dual to SO(6)-

symmetric states of strongly coupled N = 4 SYM plasma) [10–13]. Here, we study the

endpoint of this exotic horizon instability.

In the next section we briefly review the bottom-up model of [8]. We discuss the

equilibrium states of the system, and the linearized instability of symmetric phase states

at low energy densities. We construct the symmetry-broken phase of the system and

demonstrate that it is never preferred dynamically. In section 3 we employ a characteristic

formulation of the gravitational dynamics [14] in our exotic model. We confirm the onset

of the GL instability dynamically, and compare the linear growth (below the criticality)

and decay (above the criticality) rates of the symmetry breaking fluctuations with the

corresponding quasinormal mode (QNM) computations of section 2. Next, we present

results for the full-nonlinear evolutions of unstable horizons. Details of the numerical

implementation as well as the convergence and the validation of the code are delegated to

appendix A. We conclude and discuss open questions in section 4.

2 Exotic hairy black holes at equilibrium

In this section we review the bottom-up holographic model of the exotic black holes pre-

sented in [8].

The effective four-dimensional gravitational bulk action, dual to a field-theoretic setup

discussed in the introduction, takes the form

S4 = SCFT + Sr + Si =
1

2κ2

∫
dx4√−γ [LCFT + Lr + Li] , (2.1)

LCFT = R+ 6 , Lr = −1

2
(∇φ)2 + φ2 , Li = −1

2
(∇χ)2 − 2χ2 − gφ2χ2 ; (2.2)

where we split the action into (a holographic dual to) a CFT part SCFT; its deformation

by a relevant operator Or; and a sector Si involving an irrelevant operator Oi along with

its mixing with Or under the renormalization-group dynamics. We take bulk quantization

so that the scaling dimension of Or is ∆r = 2; the scaling dimension of Oi is ∆i = 4 . In

order to have asymptotically AdS4 solutions, we assume that only the normalizable mode

of Oi is nonzero near the boundary.

The gravitational action (2.1) has Z2 × Z2 discrete symmetry that acts as a parity

transformation on the scalar fields φ and χ. The discrete symmetry φ ↔ −φ is explicitly

broken by the relevant deformation of the CFT,

HCFT → HCFT + Λ Or , (2.3)

– 3 –
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Figure 1. Entropy density ssym of the Z2-symmetric phase, i.e., with 〈Oi〉 = 0, of exotic black

holes as a function of energy density E (left panel). As the energy density is decreased below the

critical one Ecrit, denoted by a vertical (red) dashed line, and given that the symmetric phase is

perturbatively unstable with respect to linearized Z2-symmetry breaking fluctuations, the imaginary

part of the frequency ωχ of these fluctuations at zero spatial momenta is positive (right panel).

with Λ being the deformation mass scale, while the χ ↔ −χ symmetry is broken sponta-

neously. The mechanism for the long-wavelength instability at play in (2.1) was motivated

through the following observations [8, 15]:

• consider the linearized dynamics of the χ-sector in the mass-deformed CFT dual to

SCFT + Sr in (2.1);

• for the quartic coupling g < 0, the scalar χ has an effective mass

m2
χ = 4− 2 |g| φ2 ; (2.4)

• homogeneous and isotropic thermal equilibrium states of SCFT + Sr at low temper-

ature (energy densities) would result in large values of φ at the horizon of the dual

gravitational description, thus driving m2
χ below the effective BF bound.6

A detailed analysis of the homogeneous and equilibrium states of the holographic

model (2.1) in the canonical ensemble were presented in [8]. Here, we present results in

the microcanonical ensemble. We omit all the technical details as the following discussion

is a special case of the dynamical setup of section 3.

• There are two equilibrium phases of the holographic model (2.1), distinguished by

the symmetry property under χ↔ −χ: the symmetric phase with 〈Oi〉 = 0, and the

symmetry broken phase with 〈Oi〉 6= 0.

• The entropy density of the symmetric phase ssym as a function of the energy density

E is presented in figure 1. While this phase is thermodynamically stable ∂2E
∂s2sym

> 0,

6Here we take ‘BF bound’ in regards to original AdS4 geometry, neglecting the backreaction of φ scalar.

This is nothing but a motivation for engineering a model (2.1) with a horizon instability. The instability

was explicitly confirmed with direct computations in [16].
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Figure 2. When E < Ecrit, Z2-symmetry breaking fluctuations in the symmetric phase of the exotic

black holes are unstable; the instability persists for the range of the spatial momenta (along the

translationally invariant directions of the horizon) ~k of the fluctuations, |~k| ∈ [0, kmax]. Right panel

shows a characteristic dependence of Im(ωχ) on |~k| (here E/Ecrit = 0.89780(8)).

it is perturbatively unstable with respect to a linearized symmetry breaking fluctua-

tions [16]: for E < Ecrit, with

2κ2Ecrit

Λ3
= 40.320(4) , (2.5)

the quasinormal modes of the symmetry breaking linearized χ-fluctuations de-

velop a positive imaginary part, Im(ωχ) > 0. As emphasized in [16], this model

is one of the explicit counterexamples of the Gubser-Mitra “correlated stability

conjecture” [17, 18].

• Notice that there is a relation between the behavior of the unstable χ-mode and the

‘GL’ instability, in that the χ-instability requires long wavelength modes, i.e., the

instability is cut-off at

|~k| ≤ kmax ∝ (Ecrit − E)1/2 . (2.6)

See figure 2 for further details.

However, there is a clear distinction: in the GL instability [6] the unstable mode is hydro-

dynamic, while the χ-QNM behaves non-hydrodynamically away from the critical point,

i.e., Im(ωχ) 6= 0 as the spatial momentum (along the translationally invariant directions

of the horizon) vanishes, |~k| = 0.

• The expectation value of 〈Oi〉 6= 0 in the symmetry broken phase of the model as a

function of the equilibrium energy density is presented in figure 3. This phase exists

only for E > Ecrit, with

lim
E→Ecrit+

(
〈Oi〉 ∝ − (E − Ecrit)

1/2

)
= 0 . (2.7)

The equilibrium symmetry broken phase is never realized in a microcanonical ensem-

ble as it has smaller entropy density compared to the symmetric phase for the same

energy density.
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Figure 3. Exotic black holes have a new equilibrium phase with spontaneously broken Z2-symmetry

at energy densities exceeding the critical one, denoted by a vertical (red) dashed line. This phase is

characterized by 〈Oi〉 6= 0, with the expectation value vanishing precisely at E = Ecrit (left panel).

The equilibrium symmetry breaking phase 〈Oi〉 6= 0 is never realized in a microcanonical ensemble

as its entropy density is always below the corresponding entropy density of the symmetric phase

(right panel).
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Figure 4. Critical energy density of the leading instability of the symmetric phase as a function of

the nonlinear coupling g. It appears that the instability persists in the limit g → 0− (right panel).

The (red) dashed line identifies the vacuum energy of the symmetric phase, see (2.9).

• figure 1 exhibits the leading instability at low-energies of the symmetric phase in the

holographic model (2.1). In fact, there is a tower of unstable modes (overtones) with

critical energies E(n)
crit,

E(n)
crit < E

(n−1)
crit , E(0)

crit ≡ Ecrit , E(1)
crit ≈ 0.26380(6) Ecrit , (2.8)

parameterized by the number of nodes (n) in the radial profile of the linearized gravi-

tation fluctuations χ. Each subleading instability of the symmetric phase identifies a

branch point of a new unstable phase with 〈Oi〉 6= 0. Properties of these new phases

are analogous to the broken phase in figure 3, see also [8].

• The analysis reported above was performed with the nonlinear coupling in the effec-

tive action (2.1) set to g = −100. The phase diagram of the model does not change
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Figure 5. The left panel shows the energy density of the symmetric phase as a function of the

entropy density. The (red) dashed line is the extrapolation of the energy-entropy data (solid blue

line) in the limit ssym → 0. The extrapolation is used to estimate the vacuum energy of the

symmetric phase (2.9). The right panel shows the dependence of the symmetric phase black hole

temperature as a function of the energy density.

as g changes, as long as g < 0, see figure 4. The (red) dashed line in the right panel

represents the estimate for the vacuum energy of the symmetric phase:

2κ2Evacuum

Λ3
= 0.1233(2) . (2.9)

Notice that Evacuum
sym → 0 in the conformal limit Λ→ 0; to obtain the better estimate

for Evacuum we extended the analysis of the symmetric phase to the low-entropy region,

as shown in figure 5, and extrapolated the energy-entropy data to zero entropy density

(indicated by the (red) dashed line). The right panel shows the dependence of the

temperature Tsym of the symmetric phase black hole — the limit E → Evacuum appears

to correspond to an extremal limit.

In this section we focused on the static phase diagram, along with the linearized

(in)stabilities of these phases, of the holographic action (2.1), dual to non-conformal QFT3

in Minkowski space-time R1,2. In what follows we will discuss the dynamical case. In sec-

tion 4, we comment on properties of the model with QFT3 residing in R×S2. Additionally,

we comment on the extension of the model (2.1) with the gravitational potential for the

scalar χ bounded from below.

3 Dynamics of the exotic unstable horizons

In this section we discuss dynamical properties of the holographic model (2.1), with the

boundary QFT3 formulated in R1,2. We follow closely the holographic numerical framework

in the characteristic formulation as described in, e.g., [14].

– 7 –
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3.1 Dynamical setup

We assume translational invariance along the spatial directions of the boundary. The

relevant fields are described by

ds2
4 = 2dt (dr −A(t, r) dt) + Σ(t, r)2

[
dx2

1 + dx2
2

]
,

φ = φ(t, r) , χ = χ(t, r) .
(3.1)

Einstein equations define the following evolution equations of motion:

0 = d′+Σ + d+Σ (ln Σ)′ − 3

2
Σ− 1

4
Σ
(
φ2 − 2χ2 − gφ2χ2

)
,

0 = d′+φ+ d+φ (ln Σ)′ +
d+Σ

Σ
φ′ + φ

(
1− gχ2

)
,

0 = d′+χ+ d+χ (ln Σ)′ +
d+Σ

Σ
χ′ − χ

(
2 + gφ2

)
,

0 = A′′ − 2
d+Σ

Σ2
Σ′ +

1

2
d+φ φ

′ +
1

2
d+χ χ

′ ,

(3.2)

together with the constraint equations:

0 = Σ′′ +
1

4
Σ
(
(φ′)2 + (χ′)2

)
, (3.3)

0 = d2
+Σ− 2Ad′+Σ− d+Σ

Σ2

(
AΣ2

)′
+

1

4
Σ
(
(d+φ)2 + (d+χ)2 + 2A

(
6 + φ2 − 2χ2 − gφ2χ2

))
, (3.4)

where ′ ≡ ∂r and d+ ≡ ∂t +A ∂r. The constraint equations are preserved by the evolution

equations provided they are satisfied at a given timelike surface (e.g., [19–21]) — which

in our case is the AdS boundary.

The general asymptotic boundary (r → ∞) solution of the equations of motion,

given by

Σ = r + λ(t)− 1

8
p2

1

1

r
+O

(
1

r2

)
,

A =
r2

2
+ λ(t) r − 1

8
p2

1 +
1

2
λ(t)2 − λ̇(t)

+

(
µ− 1

4
p1p2(t)− 1

4
p2

1λ(t)

)
1

r
+O

(
1

r2

)
,

φ =
p1

r
+
p2(t)

r2
+O

(
1

r3

)
,

χ =
q4(t)

r4
+O

(
1

r5

)
, (3.5)

is characterized by two constants {p1, µ}, and three dynamical variables {p2(t), q4(t), λ(t)}.
These parameters have the following interpretation:

– 8 –
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• p1 and p2(t) are correspondingly the non-normalizable and normalizable coefficients

of the bulk scalar φ, identified with the deformation mass scale Λ and the expectation

value of the relevant operator Or of the dual QFT3,

p1 = Λ , p2(t) = 〈Or(t)〉 ; (3.6)

• q4(t) is the normalizable coefficient of the bulk scalar χ, identified with the expecta-

tion value of the Z2-symmetry breaking irrelevant operator Oi of the dual QFT3,

q4(t) = 〈Oi(t)〉 ; (3.7)

• µ is related to the conserved energy density E of the boundary QFT3 as follows

2κ2E
Λ3

=
−4µ

Λ3
; (3.8)

• λ(t) is the residual radial coordinate diffeomorphisms parameter

r → r + λ(t) , (3.9)

which can adjusted to keep the apparent horizon at a fixed location, which in our

case will be r = 1:(
∂t +A(t, r) ∂r

)
Σ(t, r) ≡ d+Σ(t, r)

∣∣∣
r=1

= 0 . (3.10)

To initialize evolution at t = 0, we provide the bulk scalar profiles,

φ(t = 0, r) =
p1

r
+O

(
1

r2

)
, χ(t = 0, r) = O

(
1

r4

)
, (3.11)

along with the values of {p1, µ}, specifying the dual QFT3 mass scale Λ (3.6) and the initial

state energy density E (3.8). The constraint equation (3.3) is then used to determine an

initial profile Σ(t = 0, r). Eqs. (3.2) are then employed to evolve such data (3.11) in

time. The second constraint (3.4), representing the conservation of the energy density,

is enforced requiring that a parameter µ in the asymptotic expansion of A, see (3.5), is

time-independent.

Details of the numerical implementation, specific choices of the initial conditions (3.11)

used, and code convergence tests can be found in appendix A.

3.2 Dynamics of the symmetric sector

To study dynamics in the symmetric sector, we adopt initial conditions as described in

appendix A.3 with Ap 6= 0 and Aq = 0, implying that (in λ0 ≡ 0 gauge)

φ
∣∣∣
t=0

=
p1

r
+Ap

exp
(
−1
r

)
r2

, χ(t, x) ≡ 0 . (3.12)

– 9 –
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Kretschmann scalar (right panel).

Results of a typical evolution are presented in figures 6 and 7. Here, the energy density

is below the critical one (2.5),

E = 0.793642 Ecrit ⇐⇒ µ = −4Λ3 . (3.13)

The left panel of figure 6 shows time evolution of the expectation value of Or. Within a

time scale t ∼ Λ−1 the system equilibrates. The equilibrium expectation value, defined as

〈Oer〉 = lim
tΛ→∞

〈Or(t)〉 , (3.14)

is represented by a (green) dashed line. We used the value of 〈Oer〉 obtained from the

independent analysis of the static configurations, reported in section 2, evaluated at the

energy density (3.13). Consistency of (3.14) is an important check of our evolution. The

right panel of figure 6 illustrates the system’s approach to equilibrium, which displays a

typical φ quasinormal mode ring-down of the exotic black hole horizon.

The entropy density is an intrinsically equilibrium concept in QFTs. One benefit of the

holographic framework is that it provides a well-motivated notion of the non-equilibrium
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(even far from equilibrium) entropy. Following [22, 23] we identify nonequilibrium entropy

density s with the Bekenstein-Hawking entropy corresponding to the apparent horizon

(see (3.10)) area density

s(t) =
2π

κ2
Σ(t, r)2

∣∣∣
r=1

. (3.15)

The right panel of figure 7 shows the evolution of thus defined dynamical entropy density.

Notice that in line with the second law of thermodynamics, ṡ(t) ≥ 0 and approaches at

late times the equilibrium value ssym, computed independently for the static configuration

with the energy density (3.13).

While we can study the non-equilibrium dynamics in Z2-symmetric sector of the holo-

graphic model (2.1), completely suppressing the χ-scalar fluctuations as in (3.12), at

E < Ecrit, and in particular in the discussed example (3.13), this is an unphysical ap-

proximation — in realistic settings the fluctuations of the χ scalar will always be present,

and would destabilize this Z2-symmetric dynamics. In the right panel of figure 7 we show

the time dependence of the bulk Kretschmann scalar K evaluated at the apparent horizon,

K(t) = RabcdR
abcd
∣∣∣
(t,r=1)

, (3.16)

relative to the AdS4 Kretschmann scalar KAdS4 (recall KAdS4 = const = 24), to emphasize

the fact that even if the symmetric sector is unstable, its bulk dynamics is weakly curved.

Thus, higher derivative supergravity and string corrections are arguably irrelevant for the

onset of the Z2 symmetry breaking instability of the exotic black hole horizons.

3.3 Long-wavelength (GL-type) instability of the symmetric sector

In this section we study linearized fluctuations of the Z2 symmetry breaking operator Oi
in the symmetric phase of the holographic model (2.1). We initialize the symmetric sector

of the model as explained in section 3.2 for energy densities above/below the critical one.

The bulk scalar χ, dual to an irrelevant operator Oi, is initialized as (in λ0 = 0 gauge, see

appendix A.3)

χ
∣∣∣
t=0

= Aq
exp

(
−1
r

)
r4

. (3.17)

To treat symmetry breaking in a linear approximation, we set χ(t, x) ≡ 0 in all dynamical

equations, except for the third equation in (3.2) — the only one linear in the field χ and

which determines its dynamics — which is kept unchanged.

Figure 8 presents the linearized fluctuations of the symmetry breaking operator Oi
during evolution of the symmetric sector with

E = 0.793642 Ecrit ⇐⇒ µ = −4Λ3 . (3.18)

After a time t ∼ Λ−1 the symmetric sector equilibrates, and 〈Oi〉 exhibits an exponential

growth with time as it evolves over such state. The growth rate can be extracted at late

times [(red) dashed line, right panel]:

ln |〈Oi〉/Λ4|
∣∣∣
red line fit

= − 0.66414(3) + 1.0869(7) tΛ ,

Im(ωχ)/Λ
∣∣∣
fit

= 1.0869(7) .
(3.19)
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Figure 8. Linearized fluctuations of the symmetry breaking operator Oi during the dynamical

evolution of the Z2-symmetric sector of exotic black holes with E < Ecrit. The dashed red line (right

panel) is the linearized fit to the exponential growth of 〈Oi〉 at late times.
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Figure 9. Linearized fluctuations of the symmetry breaking operator Oi during dynamical evolu-

tion of the Z2-symmetric sector of exotic black holes with E > Ecrit. The (red) dashed line (right

panel) is the linearized fit to the exponential decay of 〈Oi〉 at late times.

This is in excellent agreement with the independent computation of the χ-scalar QNM

frequencies reported in figure 1 at energy density (3.18):

Im(ωχ)
∣∣∣
fit

Im(ωχ)
∣∣∣
QNM

= 0.99997(3) . (3.20)

Figure 9 presents the linearized fluctuations of the symmetry breaking operator Oi
during evolution of the symmetric sector with

E = 1.1904(6) Ecrit ⇐⇒ µ = −6Λ3 . (3.21)

Again, after a time t ∼ Λ−1 the symmetric sector equilibrates, and the evolution of 〈Oi〉
over such state exhibits an exponential decay with time. The decay rate can be extracted
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at late times [(red) dashed line, right panel]:

ln |〈Oi〉/Λ4|
∣∣∣
red line fit

= − 0.28139(8)− 0.90347(9) tΛ ,

Im(ωχ)/Λ
∣∣∣
fit

= − 0.90347(9) .
(3.22)

This also agrees with the independent computation of the χ-scalar QNM frequencies re-

ported in figure 1 at energy density (3.21):

Im(ωχ)
∣∣∣
fit

Im(ωχ)
∣∣∣
QNM

= 1.0000(2) . (3.23)

Notice that the fluctuations of χ do not oscillate (both in the stable, ie. those that

give rise to equilibrium, and unstable scenarios), i.e.,

Re(ωχ)
∣∣∣
QNM

= 0 . (3.24)

We believe this is a reflection of the spontaneous character of the symmetry breaking due

to these fluctuations at the horizon7 together with the boundary conditions adopted.

3.4 Fully non-linear evolutions of stable and unstable black holes

We now turn our attention to the fully non-linear behavior. Thanks to the simulations’

ability to account for the backreaction of the field χ a rich phenomenology is uncovered.

To aid in the interpretation of the results, we monitor several quantities:

• The dynamical behavior of p2 and q4.

• The area of the Apparent and Event horizons (see appendix A.5).

• The behavior of the Kretschmann curvature scalar K = RabcdR
abcd (normalized by

the value of K for pure AdS).

As a first case of study, we confirm that for E > Ecrit the behavior observed is consistent

with that captured by the linearized analysis described in section 3.3. For this case, the

system asymptotically approaches a stationary hairy black hole which is evidenced by a

non-zero asymptotic value of p2 as illustrated in figure 10 as well as the behavior of the

normalized curvature scalar K shown in figure 11. This figure, also shows that at late

times the event and apparent horizon coincide and remain stationary.

On the other hand, the case where E < Ecrit — identified in the previous section as

unstable — leads to a markedly different behavior. For concreteness, we concentrate on

the particular case defined by the following configuration.

• Energy density (with Λ = 1)

E = 0.793642 Ecrit ⇐⇒ µ = −4Λ3 .

7Similar phenomena was observed in [24].
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• Initial conditions are chosen describing a perturbed black hole with both non-zero φ

and χ (as detailed in appendix A.3) with

Ap = 1.0 , Aq = 0.01 .

Under these conditions, the system gives rise to a rich — and very rapidly evolving dynamics

— which we have confirmed through extensive convergent studies. For instance, by inspec-

tion of results obtained with different number of collocation points (N = 20, 30, 40, 50, 60

points), use of adaptive time-stepping to capture the increasing faster dynamics observed,

and employing a different coordinate condition (setting λ(t) = 0) which does not keep the

apparent horizon at a fixed location as done in [25]. All these studies confirm the observed

behavior that we describe next.

As the field φ “rolls down” the unbounded potential, the energy gained impacts the

dynamics of its normalizable coefficient (p2) as well as the normalizable coefficient of χ

which grows without bounds as shown in figure 12. This behavior is evidenced in the black

hole, which grows fast and eventually reaches the AdS boundary in finite asymptotic time

as illustrated in figure 13. The figure shows both the apparent horizon (AH), and the event

horizon (EH) as well as the curvature scalar evaluated on them. Clearly, as time progresses,

the AH approaches the EH and both asymptote to infinite size in a finite amount of time.
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This asymptotic behavior can be fit by the expression

Σ2
EH ∝ 1/(a+ btΛ + c(tΛ)2) , (3.25)

with the following coefficients {a = 3.934(5), b = −1.811(5) and c = 0.2084(5)}. This

fit indicates a finite time divergence at t ≈ 4.30. We find a similar asymptotic behaviour

for the Kretschmann scalar evaluated at the horizon with K ' Σ3
EH, as seen in figure 14.

Thus, at late times,

KEH ∝ Σ3
EH ∝

(
1

a+ btΛ + c(tΛ)2

) 3
2

; (3.26)

consequently, KEH diverges in finite time at the boundary of AdS. Additionally, the (nor-

malized) scalar curvatures on the AH and EH diverge with KEH ≤ KAH. Naturally, the

code is eventually unable to keep up with the radically rapid dynamics which requires ever

smaller timesteps to capture the following behavior. Nevertheless, we have been able to

extract convergent solutions up to a sufficiently late stage to understand the behavior and

fate of the spacetime. The picture that arises is that the spacetime explores arbitrarily large

curvatures in finite time, and outgoing null geodesics emanating from such regions reach

the boundary of AdS in finite asymptotic time as indicated in figure 15. This behavior

would violate the spirit of the weak cosmic censorship conjecture, in that far observers can

be reached by signals emanating from arbitrarily curved spacetime regions, and is similar

to that recently reported in [26].

4 Conclusions

In this work we studied an interesting instability of the black hole horizons, observed

first in [8]: below some critical energy density the horizon is unstable with respect to

fluctuations spontaneously breaking a discrete symmetry. However, there is no static end-

point associated with the nonlinear build-up of the symmetry breaking condensate (scalar

hair at the horizon), as opposed to typical constructions of holographic superconductors [3].

The instability is perturbative in nature (i.e., describing a second order phase transition),

and is triggered by an arbitrary small amplitude of the symmetry breaking mode, provided

the conserved energy density of the state E is below a critical energy density. As a result,
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Figure 15. Schematic spacetime diagram. As time progresses, the apparent horizon approaches

the event horizon in finite time. The scalar curvature diverges and arbitrarily high curvature regions

can be identified by asymptotic observers at finite times. In the diagram, “EoS” refers to the “End

of the Simulation” while the star refers to the blow up of the Kretschmann at the boundary in

finite time.

the onset of the instability, and dynamics close to it, can not be affected by higher-order

nonlinearities in the gravitational scalar potential as long as the amplitude of unstable

modes remain small. Additionally, the instability initiates in the long wavelength regime,
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i.e., at small bulk curvature, and thus can not be removed by higher derivative corrections

to the gravitational effective action.

We studied the future development of the instability, using a characteristic formula-

tion of asymptotically anti-de Sitter gravitational dynamics [14], and argued that, at the

classical level, the end point of the instability induces a curvature singularity at finite

asymptotic time. Specifically, we demonstrated an apparently unbounded growth of the

Kretschmann scalar in the bulk (e.g., evaluated at the location of the apparent horizon).

Thus, our model (2.1) provides a simple example of arbitrarily large curvatures arising in

asymptotically anti-de Sitter space times at sufficiently late times.

While the analysis of this work is focused on a specific phenomenological model of gauge

theory/gravity correspondence, represented by the effective gravitational action (2.1), the

phenomena described, i.e., horizon instability without the static end point, is realized

within bona fide holographic correspondence scenarios (e.g., [9, 13]). We expect that

curvature singularities also arise in those models as well.8 The observation that curvature

singularities might arise dynamically implies that consistent truncations of string theory

and supergravity, while suitable to address static states in the theory, may fail in dynamical

settings — when the evolution enters the regime of highly curved geometry; and in such

cases stringy corrections will be important.

What are the holographic implications of a singularity developing evolution for the

boundary gauge theory? A standard lore is that states of a closed non-integrable interacting

system with large number of degrees of freedom should dynamically equilibrate [28]. In the

context of holography, early indications supported this for generic far-from-equilibrium,

arbitrary low-energy states of strongly coupled conformal gauge theories, even when the

dynamical evolution of these states was artificially restricted to symmetric submanifolds

of the full phase space of the theory9 [29, 30]. Shortly thereafter it was argued [31–33]

that in fact symmetric phase space of holographic conformal field theories has islands

of stability that never equilibrate. In this study we identified yet another possibility:

initial states of holographic strongly coupled gauge theories, well described classically in

the gravitational frame, evolve to a singularity in finite time. Singularity is a signature for

a breakdown of an approximation, and we see two possible reasons. First, it is possible the

singularity is an artifact of our restriction of the state evolution to symmetric submanifolds

of the full phase space of the theory and that symmetry breaking modes would allow for a

smooth evolution. As we discuss below, hydrodynamic modes in the system can be gapped,

leading to the same qualitative behaviour. It is more difficult to argue for the absence of

light modes spontaneously breaking internal symmetries — the singularity observed might

be an indication that some of these symmetries must be dynamically broken during the

evolution (similar ideas were proposed in [27, 34]). Second, the state evolution in the

gravitational frame of the holography might not be always semiclassical.

We find it important to discuss another possible limitation of the study carried out

here and its conclusions. We restricted the dynamics in our model to preserve boundary

8It is a straightforward exercise to examine this in a holographic model [9]; dynamics of small black hole

localization in AdS5 × S5 is much mode difficult [27].
9The states in question were spatially isotropic, and invariant under all global symmetries, i.e., the

R-symmetry.
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homogeneity and isotropy. One might argue that the physical phenomena discussed here

arise as a consequence of such a restriction, and that a sufficiently generic initial state

would smoothly evolve to an end point where these symmetries are spontaneously broken.

We do not have a full answer to this question — gravitational simulations in the presence

of spatial inhomogeneities are beyond the scope of this paper. At the very least, in the

holographic model studies in [35] there is an exotic instability discussed, without the spa-

tially modulated endpoint as well.10 Since the instability and the evolution towards the

singularity in our model can be triggered by arbitrarily small amplitude fluctuations of

the χ-mode, i.e., energetically arbitrary close to the critical point, the potentially physics-

modifying hydrodynamics modes can be gapped, rendering them irrelevant to the question

as to whether or not the singularity observed is physical. To demonstrate this, we modified

our model with a boundary with topology R2 → S2. All the main features described in

the former case remain in the latter, in particular: there is a horizon instability, there is

no static end point below some critical energy density associated with the onset of the per-

turbative instability, the low-energy SO(3)-invariant states evolve to a singular solution.

It would be interesting to explore in details the role of additional massless fields at the

threshold of instability, and their effect on the singularity development.

A feature of the bulk scalar potential of our holographic model (2.1) is that it is

unbounded in the χ-direction (recall that the nonlinear coupling g < 0). We study in

appendix B a modification of the model which “bounds” the χ-potential with higher order,

nonlinear in χ, interactions.11 Of course, the linearized instability is unaffected; likewise,

the unstable phase with 〈Oi〉 6= 0 for E > Ecrit is unchanged qualitatively (close to Ecrit the

higher-order nonlinear terms in the gravitational potential are suppressed). However, we

find a new static black hole phase with 〈Oi〉 6= 0 , that exists both for E < Ecrit and E > Ecrit

for the bounded potentials and, at least in the vicinity of perturbative instability, has higher

entropy density than the symmetric phase. Unlike the exotic branch of the black holes, this

new phase does not bifurcate from the onset of long-wavelength instability of the symmetric

phase. For E < Ecrit this new static phase is always the end point of the evolution; for

E > Ecrit the new symmetry broken phase can only be reached if the initial amplitude of

the symmetry breaking fluctuations is sufficiently large — the symmetry broken phase is a

potential barrier separated from the symmetric phase whenever E > Ecrit. Our model (2.1)

is a phenomenological example of the holographic correspondence, thus one might worry

whether curvature diverging scenarios described here is realized in genuine (top-down)

holographic dualities. We believe the answer to the question is in the affirmative:

• First, the unbounded potentials are ubiquitous in holography — a typical example

is a well-studied N = 2∗ holography [36–38], where the bulk gravitational scalars

{α, χ} effective action takes form,

Sscalar
N=2∗ ∼

1

16πG5

∫
d5x
√−g

(
−12(∂α)2 − 4(∂χ)2 − V

)
,

V (α, χ) = − e−4α − 2e2α cosh 2χ+
1

4
e8α sinh2 2χ .

(4.1)

10We would like to thank Ben Withers for bringing the reference to our attention.
11We would like to thank Jorge Santos for raising the issue of the unboundedness of the scalar potential

in our model with its potential effect on the singular evolution that prompted this analysis.
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The reason why the scalar potentials in supergravity constructions can be unbounded

comes from the fact that they arise from the superpotential as (for the N = 2∗

example (4.1))

V =
1

16

[
1

3

(
∂W

∂α

)2

+

(
∂W

∂χ

)2
]
− 1

3
W 2 ,

W = − e−2α − 1

2
e4α cosh(2χ) .

(4.2)

It is the −1
3W

2 contribution to V in (4.2) that is responsible for the unbounded-

ness of V .

• Second, the scalar potential in the top-down embedding of the exotic black hole

phenomena [8] constructed in [9] (see eq. (2.32) there) is unbounded from below:

V (ϕ) = −2 (2 + cosh(2ϕ)) . (4.3)

There are lots of open questions left for the future. It would be interesting to under-

stand whether the divergent curvature scenario proposed here is universal. Is it possible to

understand analytically the approach towards the singularity as in explorations of the BKL

conjecture? (e.g. [39]). The link between the boundedness of the gravitational potential

and the singular evolution should be studied in more detail. It is certainly important to

understand the consequences of the diverging curvature for the boundary gauge theory. Is

there a QFT-solvable holographic example that captures the proposed singular behavior?
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A Numerical setup

We adapt the characteristic formulation of [14] for the numerical solution of (3.2)–(3.4).

A.1 Field redefinitions and the code equations

We introduce a new radial coordinate

x ≡ 1

r
∈ [0, 1] , d+ = ∂t +A(t, r) ∂r → ∂t − x2A(t, x) ∂x , (A.1)

maintaining ′ ≡ ∂x and ˙ ≡ ∂t, and redefine the fields

{φ , χ , Σ , A , d+φ , d+χ , d+Σ } → { p , q , σ , a , dp , dq , dσ } (A.2)
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as follows

φ(t, x) = x p1 + x p(t, x) ,

χ(t, x) = x3 q(t, x) ,

Σ(t, x) =
1

x
+ σ(t, x) ,

A(t, x) = a(t, x) +
1

2
Σ(t, x)2 ,

d+φ(t, x) = − p1

2
+ x dp(t, x) ,

d+χ(t, x) = x3 dq(t, x) ,

d+Σ(t, x) = x dσ(t, x) +
1

2
Σ(t, x)2 − p1

12
d+φ(t, x) +

p2
1

48
.

(A.3)

Using (3.5), we find the asymptotic boundary expansion x→ 0+ for the new fields:

p = p2(t) x+O(x2) , q = q4(t) x+O(x2) ,

dp = − p2(t)− p1λ(t) +O(x) , dq = − 2q4(t) +O(x) ,

σ = λ(t)− p2
1

8
x+O(x2) , dσ = µ+O(x) ,

a = − λ̇(t) +

(
µ− p2

1

12
λ(t)− p1

12
p2(t)

)
x+O(x2) .

(A.4)

In new variables (A.3), the equations of motion used to evolve the system take form:[
∂2
xx +

2

x
∂x +

x4

4
(3q + xq′)2 +

1

4
(p1 + p+ xp′)2

]
σ = Jσ ,

Jσ{p, p′, q, q′} = − x3

4

(
3q + xq′

)2 − p′

4
(xp′ + 2p+ 2p1)− 1

4x
(p+ p1)2 , (A.5)[

∂x +
12σ + 12xσ′ − xp1(p1 + p+ xp′)

12(1 + xσ)

]
dp+

[
x(p1 + p+ xp′)

1 + xσ

]
dσ = J2 ,[

∂x +
12σ + 12xσ′ + xp1(p1 + p+ xp′)

12(1 + xσ)

]
dσ +

[
−xp

2
1(p1 + p+ xp′)
144(1 + xσ)

]
dp = J3 ,

J2{p, p′, q, σ, σ′} =
1

1 + xσ

(
− 1

16
p′(p2

1 + 8σ2)x− 1

16
(p2

1 + 8σ2)(p+ p1) +
1

2
p1σ
′

− p′σ − p′

2x
+

p

2x2

)
− (p+ p1)q2gx4 ,

J3{p, p′, q, σ, σ′} =
1

1 + xσ

(
−p
′p1

192
(p2

1 + 8σ2)x− p+ p1

192
(48pσ2 + p3

1 + 56p1σ
2)

− σ′

48
(p2

1 + 72σ2)− p1p
′σ

12
+

1

x

(
−σ

2
(p+ p1)2 − 3σσ′ − p′p1

24

)
+

1

x2

(
−p

2

4
− 11

24
pp1 −

3

16
p2

1 −
3

2
σ′
))

+
g

4
σ(p+ p1)2q2x5

+
g

12
(p+ p1)(3p+ 2p1)q2x4 +

1

2
σq2x3 +

1

2
q2x2 , (A.6)
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[
∂x +

2 + 3xσ + x2σ′

x(1 + xσ)

]
dq +

[
−x

2p1q
′ + 3xp1q

12(1 + xσ)

]
dp+

[
x2q′ + 3xq

1 + xσ

]
dσ = J4 ,

J4{p, q, q′, σ} =
1

1 + xσ

(
−
(
qσg(p+ p1)2 +

1

2
σ2q′ +

1

16
p2

1q
′
)
x

− q

16

(
16g(p+ p1)2 + 3p2

1 + 24σ2

)
− σq′

+
1

x

(
−5σq − 1

2
q′
)
− 7q

2x2

)
, (A.7)[

∂2
xx +

2

x
∂x

]
a+

[
1

(1 + xs)2

(
−1

2
p′σ2x2 +

(
−1

2
σ2(p+ p1)− p′σ − 1

6
p1σ
′
)
x

− σ(p+ p1)− p′

2
− 3p+ 2p1

6x

)]
dp+

[
2(x2σ′ − 1)

x(1 + xs)2

]
dσ +

[
−x

3(xq′ + 3q)

2

]
dq = J5 ,

J5{p, p′, q, q′, σ, σ′} =
1

(1 + xs)2

(
σ4

4
(p′)2x4 +

σ3

2
p′(pσ + p1σ + 2p′)x3

+

(
1

4
σ4(p+ p1)2 + 2p′σ3(p+ p1) +

3

2
(p′)2σ2 − (σ′)2σ2

)
x2

+

(
σ3(p+ p1)2 +

1

4
p′σ2(12p+ 11p1) + (p′)2σ − 2(σ′)2σ

)
x

+
1

4
σ2(p+ p1)(6p+ 5p1) +

σ

2
p′(4p+ 3p1) +

1

8
σ′(−p2

1 + 8σ2)

+
1

4
(p′)2 − (σ′)2 +

1

x

(
σ

2
(p+ p1)(2p+ p1) +

1

4
p′(2p+ p1) + 2σσ′

)
+

1

x2

(
p2

4
+
pp1

4
+
p2

1

8
+ σ′

))
+

1

4
x2(q′x+ 3q)2(σx+ 1)2 , (A.8)

ṗ = dp+
1

2
p′(σ2 + 2a)x2 +

(
1

2
(p+ p1)(σ2 + 2a) + p′σ

)
x+ (p+ p1)σ +

p′

2
+

p

2x
,

q̇ = dq +
1

2
q′(σ2 + 2a)x2 +

(
3

2
(σ2 + 2a)q + σq′

)
x+ 3σq +

q′

2
+

3q

2x
. (A.9)

Numerical code is organized as follows.

• [Step 1]: assume that at a time step t we have profiles

{p(t, x) , q(t, x) , p′(t, x) , q′(t, x)} and λ(t) . (A.10)

• [Step 2]: we solve linear in σ equation (A.5), subject to boundary conditions

σ(t, x = 0) = λ(t) , σ′(t, x = 0) = −p
2
1

8
. (A.11)

• [Step 3]: we solve linear in {dp, dσ} system (A.6), subject to the boundary conditions

dp(t, x = 0) = −p′(t, x = 0)− λ(t) p1 , dσ(t, x = 0) = µ . (A.12)

• [Step 4]: we solve linear in dq equation (A.7), subject to the boundary conditions

dq(t, x = 0) = −2q′(t, x = 0) . (A.13)
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• [Step 5]: we solve linear in a equation (A.8), subject to the boundary conditions

a′(t, x = 0) = µ− p2
1

12
λ(t)− p1

12
p′(t, x = 0) , a(t, x = 1) = ah . (A.14)

The value ah is determined from the stationarity of the apparent horizon at x = 1 as

explained in the following subsection.

• [Step 6]: we use evolution equations (A.9), along with (see (A.4))

λ̇(t) = −a(t, x = 0) , (A.15)

to compute

{p(t+ dt, x) , q(t+ dt, x) , λ(t+ dt) . (A.16)

After computing the radial coordinate derivatives {p′(t + dt, x) , q′(t + dt, x)}, we

repeat [Step 1].

Notice that the first equation in (3.2) is redundant in our numerical procedure: rather

than propagating in time Σ, we compute it from the constraint (3.3) at each time step;

nonetheless, we monitor the consistency of that equation during the evolution.

Implementing the code,12 we use spectral methods for the radial coordinate integration,

[Step 2]–[Step 5]. Singularities of the equations at the boundary collocation point x = 0

are resolved using the corresponding boundary conditions instead. We use fourth-order

Runge-Kutta method for the time evolution, [Step 6].

A.2 Apparent horizon and the boundary condition for a

Our numerical implementation requires an independent computation of ah ≡ a(t, x = 1)

(see (A.14)), given radial profiles {p, p′, q, q′, s, s′, dp, ds, dq} and the diffeomorphisms pa-

rameter λ at time t. Following [14], this is done by enforcing the time-independent location

of the horizon. Apparent horizon is located as x = xh such that

d+Σ(t, x)
∣∣∣
x=xh

= 0 . (A.17)

Assuming xh = 1, dxhdt = 0, and using equations of motion (A.5)–(A.9) we compute ah from

∂td+Σ(t, xh)
∣∣∣
xh=1

= 0 . (A.18)

Denoting {
ph , dph , qh , dqh , σh

}
≡ { p , dp , q , dq , σ }

∣∣∣
(t,x=1)

(A.19)

we find

ah =
1

4

((
g
(
qh
)2
− 1

)(
p1 + ph

)2
+ 2

(
qh
)2
− 6

)−1((
2dph − p1

)2
+ 4

(
dqh
)2

+ 2

((
ph + p1

)2
− 2

(
qh
)2

+ 6

)(
σh + 1

)2
− 2

(
qh
)2 (

σh + 1
)2 (

p1 + ph
)2
g

)
.

(A.20)
12Code implementation is similar to the one used in [40].
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A.3 Initial conditions

To evolve (A.5)–(A.9) one has to provide data, at t = 0 as required by [Step 1], see (A.10).

In particular, we need to specify λ0 ≡ λ(t = 0). Once again, we follow [14].

Recall that both φ and χ are left invariant under the reparametrization

transformations:
1

x
→ 1

x
+ λ0 . (A.21)

To maintain this invariance we specify initial conditions for {p, q} (in λ0-invariant way) in

terms of two amplitudes {Ap,Aq}:

p
∣∣∣
t=0

= Ap
x

(1 + xλ0)2
exp

[
− x

1 + xλ0

]
− p1λ0x

1 + xλ0
,

q
∣∣∣
t=0

= Aq
x

(1 + xλ0)4
exp

[
− x

1 + xλ0

]
.

(A.22)

We then proceed as follows:13

• given {Ap,Aq} we set λ0 = 0 and perform [Step 2] (A.11) and [Step 3] (A.12);

• having enough data, we follow (A.3) to compute the profile d+Σ(t = 0, x);

• we find numerically the root x = x0 of the equation

d+Σ(t = 0, x)
∣∣∣
x=x0

= 0 ; (A.23)

• we set the trial value of λ0 as

λ0 =
1

x0
− 1 , (A.24)

which (apart from the numerical errors) would guarantee that the corresponding

location of the apparent horizon is now at x = 1;

• the trial value (A.24) is further adjusted repeatedly performing [Step 2] and [Step 3]

to achieve

d+Σ(t = 0, x)
∣∣∣
x=1

= 0 (A.25)

at a high accuracy.

A.4 Convergence tests

We performed self-convergence tests to verify the validity of the obtained numerical solu-

tions. In particular, we study each configuration numerically under different number of

collocation points N = 20, 30, 40, 50, 60, 80. We monitored the convergence of the residu-

als of the constraint equations to zero as well as each evolved field (and computing self-

convergence test by a suitable interpolation onto a finite difference grid). Additionally, we

confirmed convergence of the location of the event horizon and the Kretschmann scalar

at both the apparent and event horizons. As an illustration, figure 16 displays KAH for

13For this procedure the integration range over the radial coordinate x might exceed unity.
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Figure 16. Kretschmann scalar at apparent horizon. Left panel stable case. Right panel unsta-

ble case.

both the stable and unstable configurations. For the former case, all resolutions show an

excellent agreement. In contrast, the unstable case illustrates a convergence to a divergent

behavior which requires increasingly finer resolutions to be captured. Such more finely

resolved studies provide enough information to understand the late time behaviour, in

particular, up to a time tΛ ' 4.2.

A.5 Event horizon finder

To find the event horizon we trace null geodesics at late times back in time and determine

the surface R(t) where they converge. To do so, we start from

gabn
anb = 0 , (A.26)

where na denotes the null tangent vector to the geodesics. Using (3.1) and the field redef-

inition (A.1) and (A.2) this relation implies

dx

dt
= −x2

(
a(t, x) +

1

2
σ(t, x)2

)
− xσ(t, x)− 1

2
, (A.27)

which we solve numerically using either a RK4 integrator or an second order implicit inte-

grator. The results obtained with both methods converge and are in excellent agreement.

As described briefly above, we consider a collection of starting points at different radii and

bisect the resulting behavior to home-in on R(t). Figure 17 displays eight representative

initial conditions and illustrate the convergent behavior towards the event horizon.

B Bounded scalar potentials in exotic holographic model

In this section we explore modification of the model (2.1) where the potential for the

gravitational scalar χ is bounded; specifically we modify the nonlinear interactions between

φ and χ as follows

− gφ2χ2 → −gφ2χ2
(
1− f χ2

)
, (B.1)
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a zoom-in at late times which aids to visualize how null rays starting at different locations converge

as they are traced backwards in time.
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Figure 18. There is a new symmetry broken phase of the model (2.1) for the modified nonlinear

interaction (B.1); here, f = 55. The left panel shows the difference in the entropy densities between

symmetric and broken phases as a function of energy density. The (red) vertical dashed line is the

onset of the linearized instability of the symmetric phase at E = Ecrit, see (2.5). The (black) vertical

dashed line denotes a new first-order phase transition at E = Eblack, see (B.2). The vertical (green)

dashed lines indicate energy densities used in numerical evolutions, Egreen,left < Ecrit < Egreen,right <
Eblack. The right panel represents the order parameter of the broken phase as a function of the

energy density.

where f = const > 0 is a new parameter. It is straightforward to modify the numerical

code to reflect the change (B.1). We performed various tests and verified convergence of

the new numerical code. In what follows we report the results of the analysis.

Because modification (B.1) is a higher-order χ-nonlinear interaction, the linearized

stability analyses are not affected — there is a linearized instability for E < Ecrit with Ecrit

given by (2.5). Likewise, the static exotic branch bifurcating from the symmetric phase at

the onset of the instability is qualitatively unchanged, see figure 3. However, for a wide

range of f > 0 we found a new phase of the model with 〈Oi〉 6= 0. This new phase exists

for E ≶ Ecrit, though it is numerically challenging to find it as f decreases and E → Ecrit.

The new branch enters a full phase diagram of the model in a fairly complicated fashion.
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Figure 19. New symmetry broken phase dominates the microcanonical ensemble at E = Ecrit for

a wide range of the nonlinear parameter f , “bounding” the scalar potential in (B.1). Right panel

shows the corresponding dependence of the order parameter 〈Oi〉 in the broken phase.

For the results in figure 18 we choose f = 55. The left panel shows the entropy density

difference between the symmetric phase ssym and a new symmetry broken phase sbroken.

The (red) dashed vertical line identifies the onset of the linearized instability at E = Ecrit.

This new phase dominates the microcanonical ensemble all the way to Eblack, denoted by

the (black) vertical dashed line,

sbroken(E) > ssym(E) , for E < Eblack = 1.0057(3) Ecrit . (B.2)

At E = Eblack there is a first-order phase transition, and since the symmetric phase at this

energy density is perturbatively stable, the transition would occur dynamically only if the

amplitude of the symmetry breaking fluctuations is large enough — we explore this below

for the energy density represented by the right (green) vertical dashed line

Ecrit < Egreen,right = 1.0019(7) Ecrit < Eblack . (B.3)

The left (green) vertical dashed line corresponds to the energy density (3.18), Egreen,left <

Ecrit. The right panel in figure 18 shows the order parameter, 〈Oi〉, for the new symmetry

breaking phase as a function of the energy density E .

As figure 19 shows, the new symmetry broken phase dominates the microcanonical

ensemble at E = Ecrit for all values of the f in (B.1) we studied. Notice that as f decreases

the new phase becomes very different from the symmetric phase: it is much strongly favored

entropically, and the symmetry breaking order parameter 〈Oi〉 (right panel) exhibits a rapid

growth. All this is suggests that the limit f → 0+ is a singular one, as expected from the

main text analysis of the f = 0 model (2.1).

Figure 20 represents the time evolution of model with f = 55, E = Egreen,left =

0.793642 Ecrit, and the initial conditions chosen following appendix A.3 with values of

Ap and Aq as in the simulations reported in section 3.4. The symmetry preserving 〈Or〉
(left panel) and the symmetry breaking 〈Oi〉 (right panel) condensates equilibrate to static

values [(red) dashed lines] corresponding to the new symmetry broken phase discussed here.

This should be contrasted with the f = 0 results reported in section 3.4, where the system
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symmetry breaking order parameter 〈Oi〉 (right panel) for E < Ecrit, see (3.18), and f = 55. The

system equilibrates to appropriate static values of the condensates, represented by (red) dashed lines.

The (green) dashed line is the expectation value of Or in the symmetric phase at the corresponding

energy density.
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Figure 21. Dynamics of the model with f = 55 and E = Egreen,right, see (B.3) with initially small

amplitude of the symmetry breaking fluctuations (right panel). Symmetry preserving condensate

〈Or〉 equilibrates to the value in the symmetric phase [(green) dashed line]. The (red) dashed line

is the value of this condensate at the same energy in the symmetry broken phase.

evolves to a naked singularity. We initiate evolution with small amplitude of the symmetry

breaking fluctuation

〈Oi〉
∣∣∣
t=0

= 0.0252 Λ4 ; (B.4)

hence, they do not have enough time to become nonlinear at tΛ ∼ 1, and the symmetric

condensate 〈Or〉 is close to its value in symmetry preserving phase at the corresponding

energy density (represented by (green) dashed line). For tΛ > 1 the symmetry breaking

fluctuations continue to grow, ultimately capping off at the new equilibrium value.

As shown in figure 18, the new symmetry broken phase has an interesting feature in

the narrow energy range:

Ecrit < E < Eblack . (B.5)
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Figure 22. Dynamics of the model with f = 55 and E = Egreen,right, see (B.3) with initially large

amplitude of the symmetry breaking fluctuations (right panel). Symmetry preserving condensate

〈Or〉 approaches the equilibrium value in the symmetry broken phase [ (red) dashed line]. The

(green) dashed line is the value of this condensate at the same energy in the symmetric phase.

Here, the symmetric phase is perturbatively stable, but the new symmetry broken phase is

nonetheless entropically favorable; thus one excepts that the broken phase can be reached

dynamically only if the amplitude of the initial symmetry breaking fluctuations is suf-

ficiently large. We find that this is indeed the case. For the results presented in fig-

ure 21, 〈Oi〉
∣∣
t=0

= 0.0252 Λ4 and the system equilibrates to a (metastable) symmet-

ric phase. Figure 22 represents results of the simulation for the initial condition with

〈Oi〉
∣∣
t=0

= 2.52 Λ4 — here the amplitude is large enough to reach the entropically domi-

nant symmetry broken phase. The approach to equilibrium in both cases is very slow as

the energy density of the simulations is close to the critical one, see (B.3).
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