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obstructions to their breaking even by quantum effects of charged objects. In 4d theories

with a 2-form gauge field (or with an axion scalar), these fields endow Schwarzschild black

holes with quantum hair, a global charge leading to usual trouble with remnants. We

describe precise mechanisms, and examples from string compactifications and holographic

pairs, in which these problems are evaded by either gauging or breaking the global sym-

metry, via (suitable versions of) Stuckelberg or 4-form couplings. We argue that even in

the absence of such couplings, the generic solution in string theory is the breaking of the
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fields. We conjecture that any theory with (standard or higher-degree antisymmetric ten-

sor) gauge fields is in the Swampland unless its effective action includes such Chern-Simons

terms. This conjecture implies that many familiar theories, like QED (even including the

charged particles required by the Weak Gravity Conjecture) or N = 8 supergravity in

four dimensions, are inconsistent in quantum gravity unless they are completed by these

Chern-Simons terms.
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1 Introduction

Global symmetries are a powerful tool in Quantum Field Theory, yet they have convincingly

been argued to be incompatible with theories including Quantum Gravity [1, 2] (see [3, 4]

for recent discussions),1 most notably String Theory [7]. In fact, the absence of exact

global symmetries is the prototype of a set of ideas distilling out the Landscape from

the Swampland [8], i.e. effective field theories which cannot be embedded in a theory of

Quantum Gravity (see e.g. [9, 10] for additional ideas, in particular the Weak Gravity

Conjecture [11] and related recent activity [12–33]).

Most discussions about global symmetries in Quantum Gravity focus on symmetries

under which charged objects are particles. The main argument supporting the violation of

global symmetries involves evaporation of black holes by emission of charged particles, with

some plausible assumption about the number of possible remnants not getting to large in

a consistent gravity theory [4, 34] (in string theory, there are stronger arguments at the

perturbative level [7], or in holographic setups [35]).

In this work, we show that arguments along those lines can also be applied to gener-

alized global symmetries, in the sense of [36]. A prototypical example arises in theories

with (p+ 1)-form gauge fields Cp+1, which in the absence of charges have fields strengths

Fp+2 obeying dFp+2 = 0, d ∗ Fp+2 = 0; they lead to generalized global symmetries with

conserved currents j = Fp+2, j′ = ∗Fp+2, with charged operators given by (exponentials

of) generalized Wilson lines of the electric and magnetic gauge potentials on non-trivial

cycles. In high enough dimension, the existence of charged objects breaks these symmetries

explicitly even in the vacuum e.g. via loop-effects, but in lower dimensions IR effects con-

fine charged objects and prevent this kind of breaking. Concretely, this applies to the shift

symmetry of a 2d periodic axion-like scalar φ, for which the global symmetry is associated

to the current j = dφ. In four spacetime dimensions, which is our main focus, this occurs

for the dynamics of a 4d 2-form gauge field; we actually show the presence of this fields can

endow Schwarzschild black holes with quantum hair, which manifests as a charge under

the corresponding 2-form global symmetry, leading to troubles with remnants. This puts

the incompatibility of generalized global symmetries with Quantum Gravity on a similar

footing to usual global symmetries.

The conclusions generalize to a (p+ 1)-form gauge potential Cp+1 in spacetime dimen-

sion d = p + 3. This can be used to study Quantum Gravity constraints on theories with

(arbitrary-rank antisymmetric tensor) gauge fields. Such constraints can be extended even

to higher dimensions, if we assume the theory should make sense upon compactification.

In particular, in principle any theory with a (p+ 1)-form gauge field in D dimensions is in

danger of falling into in the Swampland, since it can be compactified down to d = p + 3

and lead to problematic global symmetries.

There are several ways in which a theory may escape this fate within field theory,

which roughly amount either to promote the global symmetry to a gauge symmetry, or to

break it. To introduce them, note that the symmetry acts by shifting Cp+1 → Cp+1 + Λp+1

with Λp+1 a closed form. Illustrative examples of the two mechanisms are:

1For alternative viewpoints, see [5, 6].
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• Gauging it by introducing a (p+2)-form gauge potential Cp+2 transforming as Cp+2 →
Cp+2 +dΛp+1, for general Λp+1; the global symmetry thus simply becomes the global

part of a gauge symmetry, obtained by restricting to closed Λp+1. An example is

the removal of the global shift symmetry for a 4d axion φ by introducing a standard

U(1) gauge field A with lagrangian |dφ−A|2. Another example is the gauging of the

symmetry associated to a 2-form field b2 by coupling it to a 3-form c3 with lagrangian

|db2 − c3|3, as in the dual description [37] of axion monodromy [38, 39].

• Breaking it by coupling it to a (d − p − 2)-form gauge potential Cd−p−2 via a d-

dimensional coupling Cp+q Fd−p−1, with Fd−p−1 = dCd−p−2. A prototypical example

is the breaking of the shift symmetry of a 4d axion by coupling it to a 4-form field

strength φF4; as in the 4-form description introduced in [40, 41] and in [42] in a recent

application to axion monodromy.2 Another example is given by BF Stuckelberg

couplings in 4d, in which coupling to a standard U(1) gauge field breaks the global

symmetry shifting periods of the 2-form B2.

It is interesting, and clear from the above examples, that considering the symmetries

associated to a gauge field and its magnetic dual, the gauging of one is equivalent to

breaking of its dual, and vice-versa. It is also interesting that both mechanisms cannot be

present for the same p-form. For instance, a 4d 2-form b2 cannot have simultaneously a

b2F2 Stuckelberg coupling if its dual axion φ has a φF4 4-form coupling, since together they

combine into a Green-Schwarz-like mechanism rendering the theory not gauge invariant.

In string theory realizations, this follows from microscopic consistency conditions [44].3

The above topological couplings are often present in string vacua. For instance, in

4d string compactifications, BF couplings play a fundamental role in making certain U(1)

gauge fields massive (in particular, anomalous ones), see e.g. [45, 46]; also φF4 couplings

underlie stabilization of axion components in moduli [37, 47]. On the other hand, there

are many examples in which such couplings (or their analogues in other dimensions) are

not present. In fact this is the case even for many supersymmetric AdS vacua with well-

defined holographic duals, including the celebrated type IIB on AdS5 × S5. These string

compactifications and constructions would seemingly suffer from the generalized global

symmetry problem, yet they correspond to consistent string theory configurations.

The solution to this conundrum is that string theory provides a slightly more subtle

(yet related) mechanism to break the symmetries,4 as follows. Even in the absence of the

above quadratic couplings, string models contain cubic Chern-Simons couplings, e.g. those

arising upon reduction of the 10d supergravity couplings H3Cp F7−p among NSNS and RR

forms in type II, I theories, and generalizations (or heterotic dual versions) thereof. In

2See also a related realization involving D-brane instantons in string theory [43].
3There is a mixed ’t Hooft anomaly (from a Green-Schwarz diagram) which prevents us from gauging the

two dual potentials at the same time [36]; for F4 = trF 2 for some non-abelian group, both can be present

if there are additional charged matter fermions contributing to the anomaly; the fermion phase contributes

another scalar, which mixes with the axion in two orthogonal combinations, one with Stuckelberg coupling

and one with 4-form coupling.
4As we will discuss in section 4.3, there is an explicit solution in the AdS5×S5 example involving stringy

effects. However, even in this example, the mechanism described in the main text is present.
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the presence of internal fluxes in compactification to e.g. four dimensions, the 4d theory

displays quadratic BF or φF4 couplings, bringing us to the solutions described above. On

the other hand, in the absence of internal flux, there is no actual quadratic coupling, and

the 4d effective theory seems to describe a massless gauge field with a global symmetry

problem. However, the presence of the cubic Chern-Simons term also produces the break-

ing of the symmetry, even in the fluxless vacuum: the theory contains domain walls, that

can be used to nucleate bubbles inside which the flux is turned on; effects of virtual bubbles

of this kind nicely illustrate the breaking of the symmetry. The argument easily generalizes

to arbitrary numbers of dimensions. Therefore, the generalized global symmetry problem

of string compactifications with (possibly antisymmetric-tensor) gauge fields is solved by

the presence of cubic Chern-Simons terms (we also provide additional support from con-

siderations of gauge-gravity holography). Conversely, this provides a partial explanation

for the presence of these terms in the string effective action.

From this latter viewpoint, we can promote our observations to a conjecture, in the

landscape/swampland spirit. Any field theory with (possibly antisymmetric tensor) gauge

fields is not compatible with Quantum Gravity if it does not include Chern-Simons terms

breaking the corresponding generalized global symmetries.5 We provide examples of seem-

ingly reasonable theories which do not survive it, for instance U(1) gauge theory even

after the inclusion of the charged particles required by the Weak Gravity Conjecture, pure

gravity in d ≥ 4 dimensions, or four-dimensional N = 8 SUGRA.

We have learned about the work [49], which focuses on the black holes with B-field

quantum hair which were our original motivation, and studies the dynamics of their evap-

oration to obtain new cutoffs on the effective field theory. The present paper focuses on

the generic mechanism by which the problems with this and similar situations seem to be

resolved in string theory.

The paper is organized as follows: section 2 provides a brief introduction to the as-

pects of generalized global symmetries which will be useful later on. Section 3 discusses a

Schwarzschild black hole with B-field quantum hair, showing that an ungauged/unbroken

symmetry leads to a remnant problem. Section 4 explores the different ways to solve this

problem, either by gauging or breaking the symmetry via different mechanisms. Section 5

presents our conjecture and discusses implications and rationale for it. Section 6 presents

examples in support of the conjecture. Section 7 extends the conjecture to (d − 1)-form

fields in d dimensions. Finally, we present our conclusions in section 8.

We have tried to structure the paper in such a way that the different sections are as

self-contained as possible. Readers interested mostly in black holes with B-field hair can

focus on sections 3 and 4. Those who care mostly about the conjecture, implications, and

“experimental” support, can read from section 4 on, particularly sections 5 and 6. Section 2

is a review which includes no new material.

5Topological Chern-Simons terms have played an important role (albeit seemingly unrelated to ours) in

outcasting to the Swampland certain 10d N = 1 supergravities with groups U(1)496 and E8 ×U(1)248 [48].
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2 A brief review of generalized global symmetries

We will start by reviewing a few aspects of generalized global symmetries which will help

us organize and homogenize the discussion in the rest of the paper. The reader already

familiar with [36] may safely skip this section.

Ordinary symmetries are described by a parameter λ (we will only be concerned with

abelian rank 1 symmetries). This parameter generates a one-parameter family of transfor-

mations on fields, such that expectation values are invariant. It is very natural to think

of λ to vary from point to point, even if the symmetry is global (for instance, this is how

Ward identities are derived, see e.g. [50]). Since local operators are inserted at a point,

namely on a 0-cycle, the infinitesimal action of the symmetry can be recast in terms of the

natural pairing between cycles and forms,

δλφ(x)

φ(x)
= λ(x) =

∫
x
λ. (2.1)

Using Hodge duality, we might as well describe the global symmetry with the d-form Hodge

dual parameter ∗λ.

Generalized global symmetries are constructed by taking the symmetry parameter to

be an arbitrary closed p-form, λp. These symmetries no longer act in a natural way on

local operators, but rather on operators OAp defined on p-cycles Ap, so that

δOp =

(∫
Ap

λp

)
Op. (2.2)

Thus, correlators are invariant under infinitesimal shifts of the Op.
Noether’s theorem relates ordinary global symmetries with conserved currents, 1-forms

satisfying d ∗ j = 0. There is a similar relationship between generalized p-form global

symmetries and (p+ 1) conserved currents, d ∗ Jp+1 = 0.

Gauging the symmetry amounts to dropping the requirement that λp must be closed,

while demanding that (2.2) is still a symmetry. In the 0-form example this amounts to

the familiar condition that symmetry parameter is now allowed to be nonconstant. In this

case, invariance demands the introduction of an additional 1-form potential, and charged

local operators must be dressed by a gauge field Wilson line along a path ending at the

insertion point. The story is similar in the generalized case; one introduces a local p + 1-

form potential Cp+1, which transforms by dλp, and also demands that correlators including

OAp vanish unless they also contain a factor∫
Ap+1

Cp+1 (2.3)

where ∂Ap+1 = Ap. The original generalized global symmetry still survives, as the subgroup

with λp closed. Because of the coupling (2.3), the operator OAp must actually be a singlet

under transformations with closed λp, unless Ap+1 extends all the way to infinity. In

compact spaces this cannot happen, and thus every correlator is forced to be invariant

under the original generalized global symmetry; this is Gauss’ law.

– 5 –
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We can alternatively break the symmetry explicitly. In the 0-form case, this means

that the divergence of the current is now nonvanishing:

d ∗ J 6= 0 (2.4)

A similar statement holds for higher symmetries: the current Jp+1 has vanishing divergence

d ∗ Jp+1. As an illustration, consider QED in four dimensions. There is a putative 1-form

global symmetry, which acts by shifting the periods of the electromagnetic potential A.

The charged operators are Wilson loops, since

exp

(
i

∫
C
A

)
→ exp

(
i

∫
C
λ1

)
exp

(
i

∫
C
A

)
, (2.5)

that is, they are multiplied by a phase. The associated current is just F , and the conser-

vation equation is d ∗ F = 0. This symmetry is broken explicitly by the introduction of

electrically charged particles, since we now have d ∗ F = je, with je the electric current.

Generalized gauge symmetries lead to lower-degree generalized symmetries under com-

pactification. For instance, the 1-form symmetry of QED we just discussed leads to one

0-form and one 1-form symmetry when compactifying on S1 (plus two other symmetries

coming from the magnetic potentials). The 3d 1-form symmetry is the same 4d 1-form

symmetry, restricted to the three-dimensional gauge field, and the 0-form symmetry con-

sists of shifts of the three-dimensional axion φ =
∫
A4. From this perspective, it is clear

that charged objects in the higher-dimensional theory break the symmetry: electric parti-

cles running on the S1 become instantons for the three-dimensional axion φ, breaking its

shift symmetry.

Perhaps the most familiar examples of generalized global symmetries in string theory

is given by p-form gauge potentials from RR and NSNS fields (or heterotic counterparts).

Focusing on e.g. the RR potentials Cp+1, they enjoy a gauge invariance Cp+1 → Cp+1+dλp.

The charged operators are associated to D-branes. A closed λp which does not vanish at

infinity generates a symmetry of the theory, in which the D-branes get a phase given by

their couplings ∫
D-brane

Cp+1. (2.6)

This symmetry is gauged, and so is exact. On top of this, the supergravity action is also

invariant under the ungauged, (p+ 1)-form global symmetries Cp+1 → Cp+1 + Λp+1, where

Λp is any closed p-form, not necessarily exact. These symmetries are explicitly broken

by the D-branes themselves, since their couplings (2.6) are manifestly not invariant under

the symmetry. Another way of saying this is that the associated currents ∗Fp+2 have

nonvanishing divergence, as explained above. The case when p = d′ − 3, where d′ is the

number of noncompact dimensions, requires further consideration, and will be the main

subject of this paper, as explained in section 4.2.

Furthermore, if d > p+ 3, generalized global symmetries can be spontaneously broken

in the vacuum. For instance, in the above 4d QED example, the global 1-form symmetry

is spontaneously broken, and the photon is precisely the Goldstone mode. This in turn

– 6 –
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forces the low-energy lagrangian to be the standard Maxwell term. However, we will also

be concerned with theories with d ≤ p+3, in which the Coleman-Mermin-Wagner prevents

spontaneous breaking of the symmetry.

3 Black holes with generalized global symmetry charge

In this section we consider generalized 2-form global symmetries in 4d, and explore their

role in the physics of Schwarzschild black holes. The purpose is two-fold: on one hand, this

analysis explains the physical black hole arguments underlying the compatibility problems

of generalized global symmetries with quantum gravity, placing then on similar footing with

the problems of usual global symmetries. On the other hand, the Euclidean version of the

system can be regarded as a prototype of a 2d compactification, providing a good template

for other generalized global symmetries. The main discussion for the latter are anyway

recapped and extended in section 4, to which the interested reader may jump safely.

3.1 Global hair for black holes

We will now address the problem that originally motivated this work. It is a widely accepted

folklore theorem that theories of quantum gravity do not have exact global symmetries.6

There are several loose arguments for this. For instance [4, 34] , if we had such a symmetry,

we would be able to build way too many (actually infinitely many) charged black hole states,

which would lead to a pathology at arbitrarily low energies. For instance, the energy density

due to the Unruh effect for a uniformly accelerated observer in flat space would diverge.

Although the argument is not to be taken too seriously, it does tell us that we should be

wary of any theory in which one can endow black holes with “global hair”, which does not

backreact on the metric. In the following we consider one such realization. We will focus

on a simple four-dimensional theory which includes gravity, plus a dynamical 2-form field

B2. Such systems are ubiquitous in string theory: B2 can arise directly from dimensional

reduction from the higher p-form potentials, or as the four-dimensional dual potential to an

axion φ. The latter arises in particular in any axion inflation model (although the standard

inflationary description in terms of the axion does not make it manifest). The relevant part

of the action is roughly of the form∫
1

2
|H3|2, H3 = dB2 (3.1)

where by “roughly” we mean that the kinetic term coefficient can depend on other fields,

such as the dilaton or other moduli of the compactification.

This system enjoys a symmetry given by

B2 → B2 + Λ2, (3.2)

where Λ2 is any closed 2-form. This is an example of 2-form global symmetry, as discussed

in section 2: if the 4d spacetime X4 contains noncontractible 2-cycles Σ, we can compute

6See however [5, 6] for alternative viewpoints.
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the periods ∫
Σ
B2 (3.3)

which are higher-dimensional versions of Wilson lines. In analogy to their their 0-form

counterpart, these periods take values in

H2(X4,R)

H2(X4,Z)
(3.4)

once we account for identifications provided by large gauge transformations (which have

nontrivial cohomology class [Λ2] ∈ H2(X4,Z) ). In this case, the symmetry (3.2) is just a

continuous shift symmetry for the periods of B2.

In this section, we will be interested in a particular solution with nontrivial 2-cycles:

Schwarzschild spacetime. The nontrivial 2-cycle is the homology class of the event horizon,

considering the singularity as excised from the spacetime.7 Using the unit sphere S2 volume

form dΩ, we can introduce a non-trivial B-field background of the form

B = QdΩ. (3.5)

The global symmetry (3.2) with Λ2 = λdΩ shift the B-field period Q over the horizon S2

by an amount λ, and so Q takes values on an S1 of length 1 (since Λ2 = dΩ corresponds

to a large gauge transformation).

Different values of the B field yield a one-parameter family of Schwarzschild solutions,

all with the same metric independent of the B-field value, since H3 ≡ 0 and there is no

backreaction.

This solution was first discussed by Bowick, Giddings, Harvey, Horowitz, and Stro-

minger in [51], hence we dub it the BGHHS black hole. The flat B-field (3.5) was proposed

as an early example of quantum hair on black holes [52, 53]. Classically, the no-hair the-

orem prevents a four-dimensional black hole from carrying any other information apart

from its mass, charge, and angular momentum. The B-field (3.5) is however not a local

observable; on any contractible region it can be simply gauged away. Therefore, no imme-

diate contradiction arises. Since H vanishes everywhere in spacetime (at least outside of

the horizon), turning on this B field does not a priori affect the mass of the black hole or

any other property, like e.g. the dynamics of Hawking evaporation. It follows that, at least

classically, one can build black holes with arbitrary values of mass and Q =
∫
S2 B.

If we take the BGHHS black holes as legitimate states, with no further restrictions on

the value of Q, they render the theory pathological in the same way as remnants do [34].

Since the symmetry shifts Q, it follows that quantum superpositions

|n〉 =

∫
dQe2πinQ|Q〉 (3.6)

have charge n under the global symmetry. This is a global U(1) charge, which can be

added to a black hole with no backreaction on the metric. Notice that this is not the same
7The presence of a non-trivial 2-cycle is actually more manifest in the Euclidean theory, see later.
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as the U(1) charge associated to the shift symmetry of the dual axion, which is broken by

instanton effects; this will be clear later on in the Euclidean picture. For a massive B-field,

the above charge is ZN -valued; see [54] for a general upper bound for N .

The charge Q is an example of a “vortex charge”, and not an electric or magnetic

charge. Electrically charged objects coupled to the B field are strings; magnetically charged

objects are instantons. The BGHHS black hole is a defect around which there is a nontrivial

flat connection of the 2-form gauge field. This is completely analogous to the description

of a vortex in 2+1 dimensions; in fact, in 2+1 dimensions one can turn a standard Wilson

line for the BTZ black hole, yielding a lower-dimensional analog of the BGHHS black hole

(see e.g. [55] for a discussion when Chern-Simons terms are present). Vortices for 1-form

gauge fields are particles in three dimensions or strings in four; vortices for a 2-form gauge

field are particles in four dimensions.

The crucial difference between a vortex and the other objects (charged under gauge

potentials) is that there is no a priori reason why the vortex charge Q should be quantized.

Quantization of electric and magnetic charges stems from Dirac’s argument, which does

not apply to vortices. Certainly, field theory vortices are often quantized; for instance, in

the abelian Higgs model, vortex charge is quantized so that the phase of the Higgs field is

single-valued (modulo 2π) at infinity. In the vortices we are considering, however, there is

no Higgs field whatsoever: the geometry itself supports a flat connection for the gauge field.

We have discussed how BGHHS black holes hide a global charge, at least semiclassically.

Before attempting to fix this, we will argue that these objects can generically be produced

in the theory, and discuss how quantum effects impact the picture.

3.2 Production of BGHHS black holes

Perhaps the most straightforward way to argue for the presence of BGHHS black holes is to

consider an euclidean instanton producing a pair of black holes such as the ones considered

in [56, 57]. A spacetime containing two black holes has a nontrivial 3-chain which stretches

from one horizon to the other. On the boundary of this 3-chain it is possible to turn on

B-field, with H = 0 everywhere, and so without changing the asymptotics. Furthermore if

the lagrangian only depends on B via H, as the cases we have been considering, then the

action will remain unchanged. This B field corresponds precisely to turning a charge of Q

and −Q in the two black holes.

Since the amplitude for producing these black holes is nonvanishing, the states should

indeed be part of the theory, for arbitrary real Q. Notice that the same argument cannot be

made for charges affected by Dirac quantization. For instance, if we consider a U(1) theory,

there is an instanton producing a par of oppositely charged magnetic Reissner-Nordstrom

black holes [58–61]. It seems one can tune the value of the black hole magnetic charge qm
to any real number. However, when computing the actual contribution of the instanton

to the path integral, one has to integrate over quadratic fluctuations around the instanton

background. These will include charged particles of charge qe which, when winding n times

around the Dirac string connecting the two black holes, will yield a phase 2πqmqen to the

amplitude. This will only be well-defined if Dirac quantization is satisfied.

– 9 –
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We could also try to build a BGHHS black hole directly: consider an ordinary

Schwarzschild black hole and a string coupled electrically to the B-field near it. If the

string starts to wiggle, it will produce B-field radiation, some of which will be absorbed by

the black hole. After the string settles down, there will be some H scattered all the way

to infinity, while the part that falls to the black hole endows it with Q-charge.

3.3 Quantum effects and observability of quantum hair

Reference [52] addressed the BGHHS black hole, questioning the observability of Q-hair.

The value of Q can be measured in principle by the holonomy operator exp(2πif
∫
S2 B),

which can be measured via a Aharonov-Bohm effect in which a string circles the black

hole (see also [62] and [63], which extends the discussion to the case of massive B-fields).

However, this picture ignores the backreaction of the fields sourced by the string. An

infinite string sources a logarithmically divergent B field,

B = ln(r)dz ∧ dt (3.7)

where r is the radial distance to the string, which extends along the z axis. The energy

density of this field curves space so strongly that it is not possible to have flat asymptotics

for a single string. This can be shown explicitly: the above H profile corresponds to an

axion of the form φ ∼ θ, so that the integral of the axion profile
∫
S1 dφ = 2πnf . As this

is a topological quantity, this forces nonvanishing dφ even far away from the string, and in

fact using the stress-energy tensor for the scalar field one finds nonvanishing T ∝ (2πnf)2

at infinity, which contradicts flat asymptotics.

This problem can be cured by considering closed strings, or configurations with strings

and anti-strings together. If the string forms a loop of radius R, far away from r the

fieldstrengths of both halves of the string add up with opposite signs, so that

lim
r�R

H ≈
(

1

r −R
+

1

r +R

)
dr ∧ dz ∧ dt ≈ −2R

r2
dr ∧ dz ∧ dt, (3.8)

which is indeed compatible with flat asymptotics. However, near the center of the string,

the large H field sourced by the string adds up instead of cancelling out. As a result,

the energy of the string scales as R log(R). It is energetically favorable, for large R, to

nucleate a concentric string with opposite orientation; as a consequence, the energy of

the configuration will scale as R instead. Actually, once quantum effects are taken into

account, the situation can become much worse: it is possible for the energy to grow as R2,

i.e. the strings are confined. Indeed, it is known [64] that the dimensionally reduced system

of a U(1) gauge field in (2+1) dimensions can show confinement, as shown explicitly by

the behavior of the Wilson loop. The naive logarithmic dependence of the electrostatic

potential between two charges is corrected to a linear one by quantum effects involving

instantons. A slightly more detailed discussion of this effect can be found in appendix A.

Effectively, this means that the B-field is now coupled to an emergent three-form, as we

will discuss in section 4.1.

While these considerations show that the dynamics of lassoing a black hole with a

string are far more complicated that one could have expected, they do not show that such
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a procedure is impossible in principle. The state of a single macroscopic string might be

terribly unstable in practice, but it is a legitimate state of the theory and there will be

some (incredibly suppressed) amplitude for it to return to its initial state, times some

phase. Thus the proposed “experiment” might still possible in principle.

We could also drop any pretense of relating Q to a Aharonov-Bohm experiment and

simply try to understand the spectrum of the gauge-invariant operator exp(2πi
∫
B) in a

black hole background. To do this, it is very convenient to switch to the Euclidean picture.

The discussion is particularly clear because the Euclidean Schwarzschild solution

ds2 =

(
1− 2M

r

)
dτ2 +

dr2

1− 2M
r

+ r2dΩ2
2 (3.9)

does not have any horizons, and the 2-sphere parametrized by the angular coordinates is

now noncontractible (the representative of minimum area is at r = 2M). The topology

of the solution is thus R2 × S2. The R2 is the (r, τ) plane, where τ is the usual periodic

Euclidean time coordinate. The S2 corresponds to the angular variables, and its volume

depends on r. The Euclidean BGHHS black hole has a nontrivial period of B over the S2.

The Euclidean perspective suggests a possible solution to the Q charge problem which

is not easily discussed in the Minkowskian perspective: the effects of euclidean strings can

a priori break the 2-form global symmetry. This is easier to describe by regarding the

systems as an S2 compactification to two dimensions, in which the 2-form symmetry of

interest becomes an ordinary shift symmetry for the 2d axion φ =
∫
S2 B2.

This is superficially analogous to an ordinary 4d gauge field A compactified on S1 to

3d, leading to an axion

φ =

∫
S1

A (3.10)

The higher dimensional theory in principle has a 1-form global symmetry, which shifts the

periods of A. This reduces to an ordinary global shift symmetry φ → φ + c for the axion

field. However, as is well-known (see e.g. [12, 65–67], this symmetry is actually broken by

the coupling of electric particles in the higher-dimensional theory to the gauge field. A

particle of charge q wrapping the S1 has a contribution

e−S+iqφ (3.11)

to the path integral, which manifestly breaks the continuous shift symmetry of φ. The effect

of these particles can be understood as a 1-loop effect in the effective theory involving the

tower of KK modes, and provides a periodic potential for φ in the lower-dimensional theory,

such that the continuous symmetry is spontaneously broken.

One could think that same effect would break the 2-form global symmetry acting on

the periods of a gauge field B wrapped on the S2 of the Euclidean Schwarzschild solution.

Indeed, reducing on the S2 yields an effective 2d theory on the (r, τ) plane, an the 2-form

global symmetry becomes an ordinary global shift symmetry for the axion φ =
∫
S2 B2. The

desired instantons are Euclidean strings wrapping the S2 of smallest volume, at the origin
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of the (r, τ) plane. However, the action of this configuration diverges once we take into

account backreaction, as will be discussed in more detail in section 4.2.

In this way, the symmetry remains unbroken even after accounting for effects of global

strings. Since Z[φ] corresponds to the partition function to the black hole with hair
∫
S2 B =

φ, φ-independence means that also the partition function for the different |n〉 states (3.6)

is independent of n. The total partition function is the sum
∑

n Zn over every sector,

and it diverges as it would do for black holes with an ordinary exactly conserved charge.

Consistency with quantum gravity should exploit other mechanisms to remove the shift

symmetry of φ, which will be the subject of section 4. Before that, let us make a few

further comments on how quantum effects impact the observability of quantum hair.

Classically, the BGHHS charge corresponds, in the 2-dimensional euclidean perspec-

tive, to the vev of φ = Q. Thus, we seem to have a continuous shift symmetry which

is spontaneously broken. However, this cannot happen at the quantum level, due to the

Coleman-Mermin-Wagner theorem [68, 69], which guarantees no spontaneous symmetry

breaking either in the vacuum or in a thermal state. Since the Euclidean Schwarzschild

black hole morally represents a thermal ensemble at Hawking temperature, the theorem

applies in this case as well.8 Thus, the expectation value of any charged operator, such

as exp(iφ), vanishes. Thus the naive semiclassical Q charge actually vanishes in the quan-

tum theory.

To sum up, the Coleman-Mermin-Wagner theorem makes the global charge completely

unobservable from outside of the black hole — but at the expense of an infinite degeneracy

of black hole microstates: the Q charge leads to the same kind of trouble as any other

global charge in quantum gravity, so it should be dealt with accordingly.

4 Breaking generalized global symmetries

We have seen in the previous section how exact generalized global symmetries can lead to

troubles in quantum gravity. Therefore, when faced with a global symmetry in quantum

gravity, there are essentially only two options:

• Gauging

• Breaking

We start reviewing the first option in which the global symmetry becomes the global

part of a gauge symmetry associated to an additional (p + 2)-form gauge field. However,

there are examples in which this is not the case and the global symmetry should therefore

be broken. For the rest of the section we analyze possible mechanisms of breaking the

symmetry, including charged states, exotic stringy effects and explicit breaking by coupling

to a (d − p − 2)-form gauge potential. We arrive at the conclusion that the most generic

mechanism which works for any dimension and is present in all known (at least for us)

8Strictly speaking, a Schwarzschild black hole in flat space is not a thermal state, because it evaporates.

However, the proof of the Coleman-Mermin-Wagner theorem only depends on the IR of the Euclidean

solution, and so it carries over to the Euclidean Schwarzschild solution.
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examples of string theory is an elaborated version of the latter, in which the explicit

breaking comes from the ubiquitous presence of Chern-Simons terms.

4.1 Gauging

Gauging of the shift symmetry of the periods of a p-form potential Bp can be achieved

generically by introduction of a (p + 1) form potential Cp+1, and modifying the kinetic

term to

1

2
|dBp −mCp+1|2, (4.1)

where m is the gauge coupling. This system enjoys a gauge invariance

Bp → Bp + Λp, Cp+1 → Cp+1 + dΛp, (4.2)

which includes shifts of periods of Bp. For p = 2 in four dimensions, the case relevant to

the BGHHS black hole of the previous section, this is the 4-form coupling lagrangian in its

dual formulation [40, 42].

As mentioned briefly in section 2, gauging of the symmetry has dramatic effects for

the charged objects coupled to it: a charged (p− 1)-brane would couple electrically to Bp
via a worldvolume coupling ∫

Wp

Bp, (4.3)

where Wp it s the brane p-dimensional worldvolume. However, it is clear that this is not

invariant under the gauge symmetry (4.2). However, if Wp = ∂Vp+1, then the operator∫
Wp

Bp −m
∫
Vp+1

Cp+1 (4.4)

is indeed gauge invariant. In other words, the (p − 1) branes cannot exist on their own;

they are always the boundary of a p-brane which couples electrically to Cp+1.

We can always use the gauge freedom (4.2) to go to a gauge in which Bp = 0, which

makes Cp+1 massive. This is a higher-dimensional version of the Stuckelberg mechanism;

manifest that by gauging the symmetry we are actually in a Higgsed phase for Cp+1. In

the 2d case, the above mechanism corresponds to a Stuckelberg coupling of the axion to a

1-form gauge field via |dφ+A1|2. Arbitrary shifts of the axion are now symmetries because

they can always be compensated by transformations of the gauge field.

We now describe sketchily how gauging helps with the remnant trouble presented

in the previous section. This is best done in the Euclidean perspective. The Euclidean

Schwarzschild metric asymptotes to the flat metric on S1×S2×R. We may turn on a flat

C3 connection at infinity,

C3 = µdt ∧ dΩ. (4.5)

This implies that as we parallel-transport a charged operator such as exp(in
∫
B2) around

the time circle, it acquires a factor exp(−βµn) as it winds (here β is the asymptotic peri-

odicity of the Euclidean time coordinate). The path integral representation of a chemical
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potential is obtained by specifying that charged operators should pick up a phase after

undergoing parallel transport along the time circle. In other words, this asymptotically

flat connection describes a chemical potential for the 2-form symmetry.

By computing the Euclidean action on the Euclidean Schwarzschild solution with

nonzero µ, we actually get Z(µ), the partition function with a chemical potential for the

global symmetry turned on. The inverse Laplace transform of Z(µ) gives Zn, the partition

function in the sector of charge n. Nontrivial µ dependence means that the Zn are not all

equal; in other words, states with different charge n are not mass-degenerate, avoiding the

trouble with remnants.

We should also remark that the particular case of interest here, gauging of a (d − 2)-

form global symmetry, can be subtle, in that the gauging potential Cd−1 does not have

propagating degrees of freedom. Because of this, it can often show up “for free”, as an

emergent field which is not part of the tree-level description of the theory. As an illustration,

consider again the B-field of the previous section. The dual axion φ is coupled to instantons,

and these may or may not generate a potential for φ, as discussed in appendix A. If they do,

then the strings coupled to the B-field confine; equivalently, there is an emergent dynamical

three-form C3, which couples to B in the 4-form fashion via eq.(4.1), with a noncanonical

kinetic term [40, 43].

As a result, in this example the symmetry is gauged by an emergent three-form. In

any case, there are plenty of examples in string theory in which the shift symmetry is not

gauged — this will happen whenever the instantons do not induce a potential for the dual

axion — so we must also explore the second option, breaking the symmetry.

4.2 Presence of charged states

The first mechanism one might think of to break the global symmetry is the introduction

of electrically charged states. For high enough dimension, these states will explicitly break

the symmetry via loop effects. However, the action of these objects diverge for d ≤ p+ 3.

For instance, we have seen in the previous section that, in a 4d theory with a 2-form

gauge field B2, the global symmetry acting on the periods of B2 is unbroken, even after

introducing quantum effects from charged strings. In terms of the 2d theory obtained upon

compactification, the problem can be traced back to the fact that the instantons which

would break the axion shift symmetry actually turn out to have formally infinite action.

From this perspective, it is clear that this is a generic feature of continuous shift

symmetries in two dimensions, and we will have the same trouble in any two-dimensional

theory of gravity or compactification of string theory to two dimensions. Therefore, it also

applies to global symmetries in high dimension if we impose that the theory should make

sense upon compactification. We will now establish this in general, for any (p + 1)-form

global symmetry, and discuss the IR divergence that prevents the existence of the required

charged objects. We will also consider AdS and dS asymptotics for the metric, which are

clearly interesting.

Consider a p-form gauge symmetry with gauge potential Cp+1 in d dimensions (we will

work in the Euclidean picture). We will assume that the theory is lagrangian, and that the
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leading contribution is the standard canonical kinetic term

1

2
|Fp+2|2. (4.6)

We will also allow for interactions with other fields, dilaton couplings, etc. as long as they

depend only on the fieldstrengths. As described in section 2, the above theory has electric

(p+ 1)- and magnetic (d−p− 3)-form generalized global symmetries, which act on periods

of Cp+1 and of the magnetic potential.

For the remainder of this section we will focus on the electric (p+ 1)-form symmetry.

For high enough dimension d > p+ 3, the (p+ 1)-form global symmetry can be generically

broken by electrically charged objects, as discussed in section 2. A p-brane which couples

electrically to Cp+1 induces a term in the action∫
Wp+1

Cp+1, (4.7)

where Wp+1 is the (p+1)-dimensional worldvolume of the D-brane, which explicitly breaks

the symmetry.

If Cp+1 is homologically trivial, the wrapped branes have finite action and therefore the

(p+ 1)-form symmetry is very generically broken. However, if Cp+1 represents a nontrivial

p + 1-cycle, the branes that break the symmetry carry nontrivial conserved charges. We

will now show that for low dimensionality (d ≤ p + 3) electrically charged objects fail to

break the (p+ 1)-form symmetry, which survives as an exact global symmetry.

The reason for this is that in low dimension and for the action (4.6), the electric fields

sourced by the branes decay so slowly that the action diverges unless the total charge van-

ishes. This is is the same kind of behavior that leads to the Coleman-Mermin-Wagner the-

orem.

More precisely, consider the theory on a manifold with d ≤ p+ 3, which also contains

a nontrivial (p + 1)-cycle. Since we will be discussing an IR effect, let us work on the

dimensionally reduced theory, which lives in d′ = d−p−1 ≤ 2 dimensions. In what follows

we will focus in the d′ = 2 case; the results are similar for d′ = 1, 0. The generalized

global symmetry now becomes an ordinary 0-form continuous shift symmetry of the two-

dimensional axion

φ ≡
∫
Cp+1

Cp+1. (4.8)

Dimensional reduction of (4.6) gives φ a canonical kinetic term, provided that the volume

of Cp+1 is finite. We will assume this from now on, and will comment briefly about alter-

native situations in subsection 4.2.3. Reducing Gauss’ law of the higher-dimensional gauge

theory yields ∫
∗dφ = Q, (4.9)

where Q is the net p-brane charge wrapped on the (p+1)-cycle. In any given configuration

in the path integral sum, symmetry breaking effects are proportional to Q. In d > p + 3,
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that is, when d′ > 2, these terms contribute to the path integral and effectively break the

symmetry. In d ≤ p + 3, however, (4.9) together with the canonical kinetic term for φ

imply that in any such configuration the action suffers from an IR divergence,∫
1

2
|dφ|2 ∼ Q2

∫
dr

rd−p−2
→∞. (4.10)

As a result, a selection rule Q = 0 is imposed, and the two-dimensional partition function is

independent of the particular vev for the axion,φ. We must emphasize that the divergences

we are discussing occur only if the full partition function is computed, after the path integral

over the fluctuations of φ (which are responsible for the backreaction on the instanton) are

included. For the rest of the paper, when we mention the continuous shift symmetry of

the 2d axion, we mean the partition function symmetry Z[φ] = Z[φ+ c].

The conclusion still holds in presence of extra fields or dilatonic couplings: the allowed

configurations should asymptote to the vacuum at large enough r, and so the dilaton and

any other fields should asymptote to their vacuum expectation values. We should require a

finite asymptotic value for the dilaton. The gauge field demanded by (4.9) also asymptotes

to the vacuum, but so slowly that it cannot avoid a divergence. As mentioned in [52],

things are even worse when one couples to gravity: because the gauge field backreacts on

the metric, there are no asymptotically flat Q = 0 solutions at all.

At this point, we should compare with the results of [49], which focuses on the black

holes with B-field hair we discussed in the previous section as motivation. The conclusion

of this reference is that Euclidean strings wrapping the S2 of the Euclidean Schwarzschild

solution do indeed generate a potential for φ, which at first sight might seem at odds with

the discussion in this section, as well as with the results in [52].

There is actually no contradiction, and both results are correct, but [49] and us are

discussing different objects. [49] discusses the quantum effective action Seff[φ], obtained by

performing the path integral over any other fields X different from φ:

e−Seff[φ] =

∫
DXe−S[X,φ]. (4.11)

The effective action is a functional of φ(x), so to compute it, we fix a generic background

φ(x) and compute the path integral over every other field X in this background. It is clear,

in this language, that when computing Seff[φ] one should not take into account backreaction

of the X fields on φ. In particular, an instanton located at x0 only modifies Seff[φ] by a

term
∫
φ(x)δ(x − x0); one does not have to solve the equations of motion for φ, which

would result in a modified φ background.

As a result, the conclusion of [49] that instantons generate a potential in the quantum

effective action is indeed correct. However, as we discussed above, to compute the partition

function one also integrates over fluctuations of φ, which forces the inclusion of backreac-

tion when computing instanton contributions. As we discuss above (see also [52]), this

backreaction makes the instanton action formally infinite, so that the partition function

still has the problematic shift symmetry Z[φ]→ Z[φ+ c].
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4.2.1 The AdS case

There is an obvious caveat to these considerations, the reliance on flat asymptotics. For

most of our examples this is the case of interest, but later on we will also be interested in

the AdS case. The field sourced by the instanton in global Euclidean AdS2 is

φ(r) ∼ ln

(
1− r/l
1 + r/l

)
+ φ0 (4.12)

where l is the AdS radius. Unlike its flat space counterpart, for large r the above propagator

goes as 1/r. This means that the IR divergence present in flat space is absent, so it would

seem that charged states can break the symmetry. The story is a little more subtle, however.

To have a well-defined theory in AdS space, we must specify boundary conditions for the

fields. In the present case of a scalar field, we can specify either Neumann, Dirichlet,

or mixed boundary conditions [70, 71]. The latter two explicitly break the global shift

symmetry of the axion, which forestalls any discussion of spontaneous symmetry breaking;

the electric branes merely generate a contribution to the vacuum energy.

On the other hand Neumann boundary conditions forbid a logarithmic field such as

in (4.12). As a result, the selection rule Q = 0 is again imposed. However, in this case,

masslessness forces the dual operator to sit right at the unitarity bound [71], and therefore

the field is a noninteracting singleton. If we want it to be interacting, the symmetry has

to be explicitly broken. In the context of AdS/CFT, it often happens that the same bulk

theory with different boundary conditions gives rise to different CFT’s. If we want the scalar

to be interacting no matter what boundary conditions we impose, we reach the conclusion

that the symmetry must be explicitly broken, much as in the flat space case. This is

therefore consistent with the absence of the exact global symmetry in quantum gravity.

4.2.2 The dS case

The other case of interest is of course de Sitter space. Euclidean dS2 is just S2 with its

standard metric. The selection rule Q = 0 now becomes Gauss’ law. We thus see that this

case is qualitatively similar to Miknowski.

4.2.3 Final remarks

So far we have implicitly considered compactification on manifolds without warping, but

this ingredient is actually essential for some discussions; for instance, in the Euclidean

Schwarzschild metric the volume of the S2 changes as a function of r. The two-dimensional

axion decay constant will therefore depend on r. Intuitively, the two-dimensional instanton

action will remain divergent as long as the coupling does not go to zero at r → ∞. For

instance, the B2 field in section 3.1 leads to a two-dimensional coupling

1

2r2
|dφ|2, φ =

∫
S2

B2. (4.13)

We see that the coupling diverges as r → infinite, so the instanton action is still divergent;

in fact, it now diverges as R3, rather than logarithmically (as already noticed in [52]).

On the other hand, ϕ, the zero-mode over S2 of the four-dimensional axion dual to B2,
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now has a two-dimensional coupling which goes as 1/r2. This means that the instanton

action is now finite (the IR tail of the field goes as r−1, like in the AdS case), and the

instantons are allowed to contribute to the path integral, as they do in four dimensions.

This illustrates that our results require nonsingular kinetic terms for the 2d axion in the

deep IR. Otherwise, it is possible for the instantons we consider to have finite action [4].

To sum up, we have established that charged objects are not enough to ensure the

breaking of generalized global symmetries in quantum gravity. In particular, when com-

pactifying to two dimensions, they fail to completely break the global shift symmetry of

the resulting axion scalar, so we need another mechanism to guarantee the absence of exact

global symmetries.

We have seen that avoiding trouble with four-dimensional B-field indeed leads us to

require absence of a particular kind of global symmetry in two dimensions. One might get

a similar conclusion by demanding absence of black hole hair in two dimensions. However,

the case for absence of black hole hair in two dimensions is much weaker than in higher

dimensions. We emphasize that at no point we discuss two-dimensional black hole hair;

our motivation comes entirely from higher-dimensional examples.

The above considerations do not mean that low-dimensional charged objects can never

break the symmetry; only that the generic mechanism via instantons available in higher

dimensions does not work for d − p < 3. For instance, chiral matter can result in Chern-

Simons terms under compactification, which can break the 2d axion symmetry. The Chern-

Simons term is induced via a closed loop of the chiral fermions, which does not have net

electric charge and therefore it does not suffer any IR divergence, as expected due to its

topological nature. We will see an example in section 5. Another possibility is a charged

scalar with a potential allowing spontaneous symmetry breaking in three dimensions.

4.3 Symmetry breaking in a holographic example

Having stated the problem, we will now provide a concrete solution in a controlled holo-

graphic example. Notably, the problem of generalized global symmetries is already present

in the canonical example of the AdS/CFT correspondence, type IIB string theory on

AdS5×S5. The IIB RR potential C8 can be wrapped on the S5 to yield a five-dimensional

three-form potential, C3, which leads to a problematic 3-form generalized global symmetry

in AdS5. Actually, we can phrase the problem in terms of black hole physics as in section 3.

In 5d, black holes have a S3 horizon, around which one can wrap a period of C3, resulting

in a five-dimensional AdS version of the BGHHS black hole.

Our first step is to determine the boundary conditions obeyed by C3. This can be

done by noticing that C3 is the dual potential to the RR axion C0. We know that D(−1)

instantons are allowed with the usual boundary conditions [72], which means that we should

sum up over configurations with different values of∫
∂AdS

F4 (4.14)

in the path integral, where F4 = dC3. Similarly, configurations with nonvanishing

∗F4 = dC0 would lead to nonconstant C0 near the boundary, which would conflict with the
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Dirichlet boundary conditions for this field. As a result, we are forced to conclude that C3

is subject to Neumann boundary conditions, which fix the value of the normal derivative

∗F4 near the boundary.

Hence, by the standard AdS/CFT dictionary, ∗F4 sources a deformation of the CFT,∫
CFT
∗5dF4 ∧ ω3, (4.15)

and the dual operator ω3 must be a three-form which is well-defined up to a total derivative.

It is natural to take ω3 as the Chern-Simons three form of N = 4 SYM. Since dω3 = trF 2,

this can be motivated by rewriting the theta term as∫
CFT

C0tr (F ∧ F ) ∼
∫

CFT
∗5dF4 ∧ ω3, (4.16)

which indeed shows that the normal derivative of F4 on the boundary is a source for the

Chern-Simons three-form. Finally, this picture is just a higher p-form version of a Neumann

boundary condition.

The would-be continuous shift symmetry that C3 enjoys in the bulk is mapped to

constant shifts of the Chern-Simons three-form. From this point of view, it is clear that

the symmetry is explicitly broken: any field configuration with non-integer Chern-Simons

number on the sphere must have a nonvanishing fieldstrength (configurations with nCS =

1/2 correspond to sphalerons) and hence nonvanishing energy coming from the Yang-Mills

kinetic term. This is the so-called sphaleron potential [73].

In the gravity dual, we would like to consider the behavior of C3 period over the non-

contractible S3 in the Euclidean Schwarzschild solution associated to the 5d black hole. To

understand the breaking of the 3-form global symmetry, we only need to provide the bulk

description of the sphaleron potential, since the value of C3 is allowed to fluctuate and it

will settle at the minimum of this potential. The analysis is most intuitive if we consider

the dual pair in the thermal state9 [74], in which the boundary SYM lives on S3 × S1.

In the high-temperature phase (large S3 regime), the dominant bulk saddle contains

an euclidean Schwarzschild black hole. As before, the two-dimensional axion

φ =

∫
S3

C3 (4.17)

obtained by wrapping C3 on the black hole non-contractible 3-sphere seems to inherit a

global 0-form shift symmetry. However, at finite N , we should include other saddles of

the Euclidean path integral, such as euclidean AdS. In supergravity, setting up some finite

value asymptotic value of C3 on Euclidean AdS5 creates an unphysical singularity in the

bulk, which formally has infinite action and should not be included in the path integral.

However, this is not the case in string theory, where the singularity is smoothed out. For

instance, for C3 = 1/2, the singularity is replaced by an unstable D0-brane; this is the bulk

description of the CFT sphaleron, see [75, 76].

9The status of the global symmetry in the vacuum can be carried out in the general analysis of section 5,

see section 6.4.
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In other words, the AdS saddle is manifestly not invariant under shifts of C3, but

rather scans the sphaleron potential as we shift C3. Computing the potential explicitly

in the bulk requires string field theory, as it is equivalent to computing the open-string

tachyon potential for the unstable D0 tachyon.

Technically, that solves the problem; the shift symmetry of C3 is broken in the full

theory, as it should. The fact that it seems to be there in the Schwarzschild-AdS saddle is

just a reflection of the fact that it is restored at temperatures much higher than the height

of the sphaleron potential. In the infinite temperature limit, where only Schwarzschild-

AdS contributes and we can think of the symmetry as exact, the Coleman-Mermin-Wagner

theorem ensures that it remains unbroken in the thermal state; as a result, any charged

operators, such as exp(2πi
∫
C3) must have vanishing expectation value. We conclude, as

we did in section 3.3, that there is no associated quantum hair for the black hole; it is

washed out by the quantum mechanics of the zero mode of C3.

Naively, one would expect symmetry-breaking effects to become dominant when the

temperature drops below the height of the sphaleron potential. However, this is not exactly

what happens. The Yang-Mills result [76]

MSph =
3π2

g2
YMR

=
3π2N

λR
, (4.18)

where R is the radius of the S3 where the dual theory lives, is only valid for small ’t Hooft

coupling λ. For the large λ limit we are interested in, the height of the sphaleron is given

by the mass of the unstable D0 brane,

MD0 =

√
2

gs
√
α′

=
4
√

2πN

λ3/4R
=

4
√

2πλ1/4

g2
YMR

. (4.19)

On the other hand, the Hawking-Page phase transition takes place at a temperature ∼ R−1.

So it seems that we transition to the symmetry-preserving phase at a temperature much

lower than the height of the sphaleron barrier. This is due to entropic effects. Because the

black hole has so many microstates as compared to the AdS contribution, they start to

dominate the partition function at temperatures far below their typical energy. Since the

symmetry is approximately restored in the black hole phase, we would expect the black

hole mass at the Hawking-Page threshold to be greater than the height of the sphaleron

potential. The mass of a black hole of radius R is

MBHR ∼
Nλ

g2
YM

, (4.20)

and since Nλ3/4 →∞, this is indeed the case.

It is also interesting to look at how the symmetry-breaking effects look like from the

two-dimensional point of view obtained upon reduction on the S3. The AdS and the AdS-

Schwarzschild saddles only differ in the fact that the S3 collapses to a point in the former,

but not on the latter. From a two-dimensional perspective, one may regard the collapsed

S3 on the AdS saddle as a “bubble” of sorts — a region of size ∼
√
α′ in which the two-

dimensional low-energy theory fails to provide an accurate description of the physics. A
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nontrivial C3 gets a contribution to its potential energy from this small bubble, which is only

well described by stringy physics. The field outside of this stringy region sees no potential;

it doesn’t backreact or source the two-dimensional axion field, as an instanton would. We

interpret this stringy bubble as a particular avatar of the bubbles in the general setup of

sections 4.5, 6.4, albeit localized at the bottom of the AdS gravitational potential well.

4.4 Field theory symmetry breaking by topological mass

The AdS/CFT example shows that in specific circumstances exotic stringy physics comes

to the rescue to break the problematic global symmetry. However, this is neither the most

general nor the simplest possibility. We now show that the breaking can occur purely

within the realm of field theory. In fact, in subsequent sections we will argue that (in

suitable avatars) this is the general solution seemingly present in generic string vacua.

Let us focus on the global shift symmetry of a 2d scalar axion. Due to the CMW the-

orem, the breaking cannot be spontaneous, but due to an explicit term in the Lagrangian,

which preserves the axion discrete periodicity. This restricts us to terms of the form∫
φX2, (4.21)

where X2 has quantized periods over a compact spacetime.

A natural possibility is X2 = NF2, with N and integer and where F2 = dA1 is the

field strength of an ordinary two-dimensional gauge field. Lifting to a four-dimensional

picture in which the axion arises from a 4d 2-form B2, the coupling (4.21) comes from

dimensional reduction of a 4d Stuckelberg BF coupling, rendering the 2-form and the U(1)

gauge boson massive. In the four-dimensional theory, the periods of B are ZN -valued, due

to Dirac quantization [4, 46]. More in detail, introducing the dual photon V such that

dV = ∗F , the Lagrangian can be completed to

1

2
|dV −NB|2. (4.22)

This theory enjoys a gauge invariance B → B+ dλ1, V → V +Nλ1. This implies that the

monopole operators must be dressed into gauge invariant combinations of the form

ei
∫
L V1 eiN

∫
Σ B2 (4.23)

where Σ is a surfaces with boundary ∂Σ = L; namely, monopoles with worldline L must

expel N strings with worldsheet on Σ. Conversely, the worldsheet of N strings coupled

electrically to B2 can nucleate a hole bounded by a monopole of A1. This means that when

using the string to measure the period of B2 on a non-trivial 2-cycle, N times
∫
B must

contribute a trivial phase; as a result,
∫
B is ZN -valued.

We can also see how the quantization coming from the BF terms plays out directly

in two dimensions. Upon reduction to 2d, the integral of ∗4dF on the compactification

manifold is constrained to be an integer k because of Dirac quantization,10 and the effective

10In a more direct 2d language, without resorting to a 4d lift, one can obtain the same result from the

φF2 coupling (4.21) by arguing for the quantization of F2 over the 2d spacetime, or of its 2d dual F0, by

using Dirac quantization for the corresponding domain walls, see later.
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potential for the two-dimensional axion φ is |k−Nφ|2. We recognize the 2d version of the 4-

form lagrangian [42]. There is a multibranched two-dimensional potential, with N minima

at b = k/N . The potential explicitly breaks the continuous shift symmetry of b.

4.5 Field theory symmetry breaking by Chern-Simons term

While the bF2 coupling breaks the continuous shift symmetry, it differs from the holo-

graphic example above in one important aspect: the breaking is explicit in every point of

spacetime, while in the holographic example the symmetry-breaking effects were localized

in a “bubble” of stringy size.

A more general problem is that in many (in fact, most) string compactifications, the

global symmetries associated to p-form gauge fields are neither gauged nor broken (and

made massive) by BF couplings (or their generalizations), and there is no evidence for

miraculous exotic stringy physics coming down to their rescue. Fortunately, there is a

more flexible version of the symmetry breaking mechanism in the previous section, which

is compatible with the massless p-form gauge fields encountered in many string vacua.

We explain it in the following, and moreover claim in section 5 that this is actually the

general mechanism in which string theory (and arguably any theory of quantum gravity)

breaks generalized global symmetries. The mechanism is based on the existence of cubic

Chern-Simons couplings in the effective actions, breaking the symmetry explicitly; even in

configurations where the vacuum value of the fields seems to render the Chern-Simons irrel-

evant, the breaking is manifest the nucleation of bubbles in which the symmetry is broken.

Let us consider the 2d setup with a 0-form global shift symmetry for an axion scalar φ.

The key observation is that there is a slight modification of the breaking shift symmetry

via a bF2 coupling, implemented by triple Chern-Simons term instead,∫
G0 ∧ F2 φ, (4.24)

where G0 is a new ingredient, a (nondynamical) 0-form field strength. This is best regarded

as the 2d dual of another gauge field strength G2. The values of G0 are quantized, and (in

accordance with the completeness principle [4]) the theory now contains membranes under

which G0 shifts by an integer amount N . The theory thus contains different phases, each

having a N φF2 coupling with different values of the coefficient N . Electrically charged

particles coupled to G0 act as domain walls separating one phase from another. It is clear

that the associated current j = dφ now has a nonvanishing divergence,

d ∗ j = G0F2. (4.25)

If we are in a phase with G0 6= 0, then the above argument applies, and the shift

symmetry is broken, exactly as in section 4.4. However, if G0 = 0, it would seem that the

Chern-Simons term (4.24) does not have any effect, and that the symmetry is unbroken.

However, even in this case, we can construct a finite-action configuration of the equations

of motion which manifestly breaks the symmetry. Consider a finite size region with G0 =

N 6= 0. Within it, the U(1) gauge field is in the Higgs branch, eating φ via a N φF2

coupling. This is illustrated in figure 1. Therefore, the only presence of the Chern Simons
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G0 6= 0

G0 = 0

Figure 1. Triple Chern-Simons terms mean that we must include into the path integral configura-

tions with a bubble in which G0 6= 0. Outside of the bubble, in the green area, φ ∼ φ+ c leaves the

action invariant, but in the blue area it does not. As a result, φ→ φ+ c is no longer a symmetry.

term, which allows for the possibility of nucleating bubbles with G0 6= 0, is enough to

ensure breaking of the global symmetry in the full theory.

Inclusion of these bubbles in the path integral leads directly to a loss of the shift

symmetry Z[φ+ c] = Z[φ]. When computing Z, one has to integrate over all fields in the

path integral — and this now includes bubbles —. Consider a two-dimensional bubble of

radius R.11 The φ profile that solves the equations of motion is very simple — it is constant

for r > R, and falls of exponentially to zero for r < R. After computing the action for

R, we should integrate over R, and should also sum over the charge of the bubble, q. The

sum over q will enforce the exact discrete shift symmetry of Z[φ].

We can take a step back and see how the triple Chern-Simons terms affect e.g. the

BGHHS black hole of section 3. We now have a triple G0B2F2 Chern-Simons term in

the action, and can nucleate bubbles within which the gauge field is Higgsed. Within the

bubbles, the value of the B-field is quantized, and related to the electric charge of the black

hole modulo G0 [52]; even if B was freely fluctuating outside, it falls to a definite value

within the bubble. This is a reflection of the 4-form coupling quadratic potential that the

two-dimensional axion feels within the bubbles. We thus break the symmetry via localized

configurations which however do not lead to a IR divergent action, as instantons do. This

is similar to the stringy bubble in the holographic example, with the advantage that there

is a simple field theory description both within and outside of the bubble.

Finally, as we will see in section 6, it is also possible to have bubbles with an effective

NφF2 term inside the bubble, even in vacua when the axion symmetry has been gauged

by a second U(1) A′, and the lagrangian is |dφ− pA′|2. In this case, the gauge symmetry

of A′ only shifts φ outside of the bubble — and is an exact symmetry of the theory. But

the global symmetry, which shifts φ by a constant everywhere, is indeed broken, as above.

11The precise details of the computation depend on the two-dimensional metric and gauge couplings, and

are different in each case.
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Many classes of string compactifications providing explicit examples of the Chern-

Simons mechanism are presented in section 6, suggesting this is the general solution realized

in string theory, and arguably in any theory of quantum gravity. Accordingly, we draw

some general lessons in the next subsections.

5 A conjecture about Chern-Simons terms

We have now formally solved the problem stated in section 3.1: we understand how 2-

form global symmetries in four dimensions can lead to a remnant problem, which is not

solved by symmetry-breaking effects from charged objects (namely, there are no finite-

action instantons in the two dimensional version), but we have learnt the mechanism to

break the symmetries explicitly.

As detailed in the next section, we have found that the triple Chern-Simons terms (4.24)

which give rise to field-theoretic symmetry breaking bubbles are present in all the examples

we have considered. For the remainder of this one, we will upgrade our observations to

a rule, and will propose that consistent theories of quantum gravity suffer from a Chern-

Simons pandemic, i.e. every consistent theory with higher p-form potentials and weakly

coupled gravity there should have the appropriate Chern-Simons terms, so that no global

symmetries actually survive in two dimensions no matter how we compactify. Equivalently,

for any global symmetry in string theory, it seems that we can always find phases in

which the symmetry is either gauged or explicitly broken, and there are always domain

walls taking us from one to the other. Our conjecture elevates this generic property to a

requirement for any consistent theory.

It is worth emphasizing that we are requiring a consistent quantum theory of gravity to

be well-behaved under compactification. Such a requirement is present in several recently

proposed Swampland conjectures, such as [22, 27] or [31].

This conjecture, if correct, is another example of a Swampland criterion [8], which

allows us to further discriminate between effective field theories with and without a sensible

UV completion. If correct, it strongly suggests that the Chern-Simons terms ubiquitous in

string theory are a generic feature of a consistent theory of quantum gravity. Like any other

conjecture, the real support for it comes from examples: in all the stringy examples we have

been able to come up with, the conjecture seems to hold. Even the original holographic

example discussed in section 4.3 admits field-theoretic bubbles related to Chern-Simons

terms, as we will discuss in section 6.4.

In the following we will display the rationale of the conjecture and the arguments why

the Chern-Simons provide in our view the most generic mechanism for breaking the global

symmetries. Then we will discuss some examples of effective theories which do not fulfill

our conjecture as well as possible implications for the SM, leaving the exposure of examples

in string theory supporting the conjecture for section 6.

5.1 Rationale for the conjecture

The examples in the next section provide evidence for the conjecture in a variety of se-

tups, where the Chern-Simons terms break the generalized global symmetries very gener-
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ically. Still, this can only be part of the answer, because as illustrated in section 4.3,

two-dimensional symmetry breaking can also be accomplished by stringy effects without a

simple 2d field theory description. From a four-dimensional point of view, however, what

happens in section 4.3 is clear: the global 3-form symmetry needs a nontrivial bulk 3-cycle

to exist and, because gravity forces us to sum over topologies with the same asymptotics,

we must include configurations where the boundary 3-cycle is contractible and there is no

3-form symmetry at all.

We see no reason however to think that this mechanism will work generically for any

low-dimensional compactification, especially in the Minkowski case.12 Take e.g. Euclidean

quantum gravity on R2 × T 2, plus a gauge field (but no charged particles). Consider

one of the global 1-form symmetry for the periods of A; a Taub-Nut background seems

to break the symmetry because the S1 is contractible. However, the Taub-Nut is a KK

monopole, and because one of the transverse directions is compact, it has real codimension

2 in the non-compact space, so its action has the same kind of IR divergence as discussed

in section 4.2. If we were compactifying to AdS2 × T 2 instead, whether or not the KK

monopole is allowed would depend on the boundary conditions for the KK U(1). By

contrast, the triple Chern-Simons term discussed in section 4 break the symmetry in a

very generic way. In fact, in a certain sense, the Chern-Simons terms allow, in certain

cases, instanton-anti instanton pairs to break the symmetry, giving the two-dimensional

case some resemblance to its higher-dimensional siblings. We elaborate on this point in

appendix C.

The Chern-Simons terms may be understood from a different point of view in the

context of the AdS/CFT correspondence. Consider a bulk AdS theory with a p-form

gauge potential Cp. It is part of the standard dictionary [70] that different boundary

conditions for the bulk fields result in different CFT’s. In the example of section 4.3, the

appropriate boundary conditions demand that the bulk p- form gauge field be dual to a

p-form boundary field (the boundary Chern-Simons form), rather than a conserved p-form

boundary current.

It is not true in general that one can pick whatever boundary conditions and end up

with a consistent theory. Nevertheless, if it is possible to have a consistent theory in which

the bulk p-form gauge field is dual to a boundary current jp, the bulk Chern-Simons terms

ensure that jp is not conserved. This is familiar from the p = 0 case, where Chern-Simons

terms provide the bulk description of an anomalous current [77]. Bulk Chern-Simons

terms are the only way to break invariance under large gauge transformations via bulk

terms without also spoiling the local gauge invariance of Cp.

12Of course, a generic two-dimensional compactification cannot be related straightforwardly to black hole

remnants, as we did in section 3, so that the original motivation for requiring the shift symmetry of the

partition function Z[φ] to be broken is lost. We are merely pointing out that if one requires the shift

symmetry to always be broken, the CS terms are a generic way of achieving this. Turning around the logic,

the fact that these always seem to be present suggests that there may be a reason for the shift symmetry

to be broken in generic compactifications, although we do not have it.
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Thus, in this picture, bulk Chern-Simons terms merely represent the absence of contin-

uous higher p-form symmetries in the dual field theory.13 For the case of a p-form field in

AdSp+2 (this includes the C3 field discussed in section 4.3), we can make a more compelling

argument. If it is consistent to choose boundary conditions such that the dual operator

is a boundary current jp, compactification to three dimensions should give a gauge field

in AdS3, dual to a boundary current. Conformal invariance demands this current to be

anomalous, which translates to a Chern-Simons term involving A the bulk theory [55].14

To sum up, it is unclear that the gravitational effects that work in section 4.3 can

break the symmetry in generic situations, both in Minkowski and in AdS examples with

the “wrong” boundary conditions. On the other hand, the Chern-Simons terms induce a

generic breaking of the symmetry, and are required by the AdS/CFT correspondence in

some cases.

5.2 Implications for Einstein gravity and supergravity

To illustrate the power of our Chern-Simons Swampland criterion, we discuss some interest-

ing theories which do not comply with it, and which we therefore claim are not compatible

with quantum gravity.

Einstein gravity in d ≥ 4. As a first simple example, pure gravity in d ≥ 4 dimensions

is incompatible with our conjecture.15 This is easily seen by compactifying four-dimensional

gravity on a T 2: we get a unstabilized 2d axion φKK, the real part of the torus complex

structure. Performing the compactification in two steps, there is a 3d KK U(1) gauge

boson AKK in the 4d→ 3d compactification, and φKK corresponds to its Wilson line in the

3d→ 2d S1 compactification. The 0-form global shift symmetry for this scalar requires some

Chern-Simons term for its breaking, which is not present in the theory, so it is inconsistent.

We can reach the same conclusion in the case d > 4 by compactifying to four dimensions

on a manifold without isometries and then proceeding as before.16

A simple modification of the theory to render it consistent with our criterion is to e.g.

include a 4d axion ϕ. This allows to consider compactifications with a Scherk-Schwarz

ansatz [81], as follows: a general axion ϕ ∼ ϕ + 2π which is compactified on a circle with

periodic coordinate x ∼ x+ 2π admits a boundary condition

ϕ(x+ 2π) = ϕ(x) + 2πn. (5.1)

13This aligns nicely with the fact that non-abelian gauge theories do not admit continuous elec-

tric/magnetic 1-form global symmetries, since the center of the group is discrete [36]: since gauge strings are

usually dual to fundamental strings in the bulk description [78], this means that there should be a Chern-

Simons term involving B2. Indeed, in the standard AdS5/CFT4 example, we find such a term
∫
NB2∧dC2,

which breaks the global part of the B-field U(1) 1-form symmetry to ZN .
14These comments are very sketchy — the current can in principle mix with other currents, or compact-

ification may change the sign of the vacuum energy so that there is no AdS3 solution. We merely want

to emphasize that the Chern-Simons terms we use to break two-dimensional symmetries can under some

assumptions be related to familiar CFT phenomena.
15This would imply that the asymptotic safety program [79, 80] should not work, at least without inclusion

of matter fields.
16For d = 3 pure gravity is also incompatible with a strengthening of our conjecture which we discuss in

section 7.
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This means that eiϕ has charge n under the KK photon, and thus, the gauge-invariant

quantity in the dimensionally reduced theory is dϕ− nAKK. This provides a mass for the

KK photon, implying that, after further compactification to two dimensions, the axion φKK

obtained from its Wilson line is also massive and the global shift symmetry is broken.

This is equivalent to the Chern-Simons criterion, as follows: in terms of η, the 2d axion

dual to the axion φ, there is triple Chern-Simons n η FKK term, where n should be regarded

as a background geometric flux. According to our general discussion, even in the vacuum

with n = 0 there are effects from bubbles nucleating regions with n 6= 0 which suffice to

break the global symmetry.

This solution, more than a particular case, turns out to be generic in string com-

pactifications, where gravity is always accompanied by the antisymmetric two-form field

B2. Upon T-duality, the Stuckelberg coupling dφ−nAKK transforms into a Chern-Simons

coupling involving B2 and the dual field to the axion, as we will explain in section 6.

Einstein-Maxwell theory. Similarly, the conjecture puts four-dimensional Einstein-

Maxwell theory in the Swampland. Of course, we knew as much from the WGC [11]:

Einstein-Maxwell must be coupled to light superextremal states with m ≤ gMP q. How-

ever, we claim that even this version of Einstein-Maxwell with charged matter is in the

Swampland, since upon reduction on a T 2 the theory lacks one of the required triple

Chern-Simons terms: upon reduction on the first S1, one obtains an axion φA1 (where the

subscript reminds us that this axion comes from the gauge field), two gauge fields A,AKK1

(the latter being a KK photon), and the metric. Reducing again, we get three axions in two

dimensions: φA1 , φA2 coming from holonomies of the gauge field, and φKK , coming from

reduction of AKK1 . The axion φKK may be identified with the real part of the complex

structure parameter of the T 2 discussed in the previous paragraph. We also have three

gauge fields, A,AKK1 , and AKK2 .

The axion φA1 can obtain a potential if we take a Scherk-Schwarz ansatz. In this way,

we can obtain a Chern-Simons term for (the dual of) φA1 with AKK2 , but not for φA2

or φKK . In this case, the theory can be made compliant with the conjecture above by

introducing 4d charged chiral matter, which gives rise to three-dimensional Chern-Simons

terms via the parity anomaly both for A and AKK1 . Upon dimensional reduction, the

3d Chern-Simons term gives the desired 2d terms for φA2 and φKK . The trouble with

φA2 can also be solved by including Chern-Simons terms for the gauge boson A already in

four dimensions.

Four dimensional N = 8 supergravity. A final notable example of theory which

does not comply with our criterion, and we therefore claim belongs to the Swampland, is

4d N = 8 Supergravity. Simply put, the theory contains a 2-form gauge fields leading to

a 2-form generalized global symmetry without the Chern-Simons terms required to break

it. Actually, this theory has already been claimed to be in the Swampland, by different

arguments related to the impossibility of reaching is as a suitable decoupling limit of

toroidally compactified string theory [82]. In our case, consistency of the theory could be

achieved by including the necessary Chern-Simons terms, in particular those involving the

– 27 –



J
H
E
P
0
7
(
2
0
1
7
)
1
2
3

Romans mass parameter (and other in its U-duality orbit), which are present in string

models as required by our conjecture.

There is a line of work (see e.g. [83–85]) trying to figure out whether or not N = 8

SUGRA is perturbatively finite. Our statement does not directly exclude this potential

result, but renders it less relevant. Even if the theory is perturbatively finite, it misses

the non-perturbative domain walls allowing to interpolate to vacua where the generalized

global symmetries are broken, so the corresponding black hole remnant problems excludes

it as a complete theory of quantum gravity.

6 Examples

We now discuss several classes of examples which comprise the main evidence for our

conjecture.

6.1 KK photons

One prominent example of U(1)’s in effective field theories arising from compactification

is that of KK photons, arising from continuous isometries of the internal manifold. These

gauge bosons lead to 1-form generalized global symmetries, and in general lack the topo-

logical mass or Chern-Simons couplings ensuring their breaking. These theories in general

fall in the Swampland, as earlier discussed examples.

However, in string theory these KK photons always turn out to have the required set of

Chern-Simons couplings. This can easily shown in KK compactification on S1, leading to a

U(1) KK gauge boson; for concreteness we focus on type II theories and a KK photon in a

5d→ 4d compactification, other examples being similar. In order to see the Chern-Simons

couplings, let us perform a T-duality along the orbit of the U(1) isometry in the compact

space, in which the KK photon turns into the dimensional reduction of the T-dual NSNS

B field. The 10-dimensional action has the standard Chern-Simons terms involving the

B field, ∫
B ∧ Fp ∧ Fd−p−2 (6.1)

which upon dimensional reduction provide Chern-Simons terms involving A in the four-

dimensional effective field theory. In the original frame, the Chern-Simons term (in the

form of a Stuckelberg Lagrangian) arises from the Scherk-Schwarz compactification of some

RR field.

As a concrete example, consider the compactification of type IIA on M5 × S1. Com-

pactifying on M5 first, we get an axion field φ coming from the period of C5 on M5. Further

compactifying on S1 using a Scherck-Schwartz ansatz φ(y+ 2πR) = φ(y) + 2πN translates

to a Stuckelberg lagrangian in four dimensions. The coupling

Ndφ ∧ ∗A (6.2)

can be integrating by parts,into BF coupling between the KK photon A and the 2-form

C2 4d dual to φ. In the T-dual frame, such a coupling arises from dimensional reduction
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on the circle of the Chern-Simons coupling B2 ∧ F3 ∧ F5, leading to G0B2 ∧ F3 in five

dimensions, with G0 =
∫
M5

F5. This F5-flux corresponds precisely under T-duality to the

axionic flux N =
∫
S1 dφ arising from the Scherk-Schwartz reduction.

This class of examples underlie the solution to the problems with pure Einstein theory

mentioned in section 5.2.

6.2 Type IIA/B flux compactifications

Probably the richer class of examples supporting the conjecture about Chern-Simons cou-

plings are the four-dimensional effective theories obtained from flux compactifications of

type IIA/B string theory. In short, the CS couplings in 10d ensure that all generalized

global symmetries coming from higher RR or NS p-form fields are broken or gauged.17

For concreteness, let us consider again a 2-form field B2 with a 2-form global symme-

try in four dimensions. The couplings inducing the breaking of the symmetry are of the

form G0B2F2 as explained in section 4.5, while couplings inducing its gauging occurs arise

from higher dimensional version of a Stuckelberg coupling G′0(∗4dB2)F4 as explained in

section 4.1. Notice that both couplings can arise from higher dimensional CS terms involv-

ing either B2 or its dual field. In terms of the axion dual to B2, namely dφ = ∗4ddB2, the

above couplings are also responsible for gauging or breaking the 0-form global symmetry,

but yielding the opposite result. The term G0B2F2 breaks the 2-form global symmetry

while gauges the 0-form global symmetry, and G′0φF4 gauges the 2-form global symmetry

while breaks the 0-form global symmetry.

It is an important point that both kinds of 4d terms, Stuckelberg and 4-form coupling,

cannot be present at the same time in the effective theory, since their simultaneous presence

would lead to a Green-Schwarz anomaly, as mentioned in footnote 3. When the couplings

arise both from bulk couplings involving just fluxes, their simultaneous presence should in

principle be avoided by the consistency conditions on fluxes, like the quadratic constraint

in the embedding tensor description of fluxes, see e.g. [86] for a review.

The general lesson is that, given a 4d 2-form gauge field, the CS couplings are such

that there exist domain walls interpolating to phases with Stuckelberg BF couplings, and

domain walls to phases with 4-form couplings, yet there cannot be phases with both cou-

plings present. This implies that in compactifications where the internal fluxes induce a

4d 4-form coupling which gauges the global symmetry, there are no BF terms breaking it.

On the other hand, the theory consistently incorporates domain wall bubbles inside which

the flux inducing the 4-form coupling is absent, but it is precisely in the absence of this

coupling that phases with a Stuckelberg coupling can be turned on.

One may worry about the fate of the gauge symmetry in phases with 4-form couplings

gauging the global symmetry, once we nucleate a bubble in whose interior the symmetry is

broken by BF couplings. The above picture is happily self-consistent, since bubbles with

BF couplings necessarily have the 4-form coupling turned off. Therefore the gauge symme-

17It can happen that the CS coupling does not appear in the 10d supergravity action since involves the

presence of locally non-geometric fluxes. But they will appear as geometric CS terms in the T-dual theory,

as we explain in section 6.4.
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try only acts on the exterior 4-form phase and is unbroken; the global symmetry however,

which acts both on the 4-form and BF phases is broken in the presence of the bubble.

In the following we present a simple example which suffices to illustrate this general

pattern of 4-form vs Stuckelberg couplings. Let us consider Type IIA compactified on a

Calabi-Yau three-fold (without orientifolds), which for simplicity we take with one 3-cycle

A and its dual B. We define∫
A
H3 = p,

∫
A
C5 = b′2,

∫
A
C3 = φ, (6.3)∫

B
H3 = p′,

∫
B
C5 = b2,

∫
B
C3 = φ′ (6.4)

where ∗dφ = b2 and ∗dφ′ = −b′2. By dimensionally reducing the 10d CS couplings H3C3F4

and H3C5F2 we get in four dimensions

L ∼ (pφ′ − p′φ)F4 + (pb2 − p′b′2)F2 (6.5)

The 2-form dual to (pφ′ − p′φ) is (pb′2 + p′b2). Therefore, the two terms in the above

Lagrangian actually correspond to two orthogonal 2-form fields. For the first one the 2-form

global symmetry is gauged while for the second one is explicitly broken. Notice however

that we can always nucleate a domain wall that changes the flux values to q = −p′, q′ = p,

in such a way that both scalars interchange roles. The global symmetry that was gauged

is now broken, and viceversa. In other words, for a fixed combination of fields, when

the coefficient of the 4-form coupling vanishes and the global symmetry is not gauged it

becomes possible to turn on phases with BF couplings, which break the symmetry.

To recap, as we explained in section 4.5, the presence of the CS term G0b2F2 is enough

to break the global symmetry, even in the phase with G0 = 0. However, the same does not

apply for the term gauging the symmetry. In that case, if G0 = 0 asymptotically, we recover

an exact global symmetry. We have seen, though, that we can always nucleate a bubble

in which the coupling responsible for gauging the symmetry disappears and is replaced by

a term explicitly breaking the symmetry. The presence of some regions in space-time in

which the global symmetry is broken is enough to guarantee that the symmetry is broken

in the full theory. Therefore, in the previous example, all the global continuous symmetries

are indeed broken in the full theory.

One may fear that the above situation is non-generic, and that the presence of ori-

entifold projections may remove some of the required couplings. We will now illustrate

that the details of the discussion change, but the general conclusions remain valid. Let us

consider the addition of O6-plane, and consider A to be odd under the Z2 involution. The

orientifold projection only allows for the combinations
∫
AH3 = p,

∫
B C3 = φ′,

∫
AC5 = b′2.

The only 4d coupling surviving the orientifold projection is pφ′F4. Now we cannot play

the same game as before to interchange the couplings, so one may worry about the phase

with p = 0, in which the symmetry is not gauged. However, if we turn off the flux by

setting p = 0, it is now possible to add D6-branes wrapping a 3-cycle Π (and their ori-

entifold images D6’ wrapping Π′), satisfying [Π] − [Π′] = [A], which were not possible for

p 6= 0. From the brane worldvolume we get a new coupling
∫
D6C5trF2 which leads upon
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A

B

O6

D6D6’

→

A

B

O6

D6D6’

→

A

B

O6

D6D6’

Figure 2. Schematic depiction of the transition that takes place across the domain wall described in

the main text. As we cross the domain wall, the D6 brane approaches the O6 plane and reconnects

differently with its orientifold image. In the first picture, the BF couplings of the D6 brane and

its image cancel; in the third, they add up.

dimensional reduction to b′2trF2 in four dimensions. The fact that the D6-branes are only

allowed to wrap a 3-cycle with component along A when p = 0 is due to a Freed-Witten

anomaly induced on the brane when the flux is not vanishing. There is indeed a domain

wall interpolating between the configuration with flux (and branes wrapping 3-cycles with

vanishing component along A) and the configuration without flux (and branes wrapping

the above [Π] 3-cycles). This domain wall corresponds to a 4-chain connecting the 3-cycles

wrapped by both sets of branes.18 As we cross the four-dimensional domain wall, the brane

configuration changes as illustrated in figure 2. The second configuration in the figure can

also be understood in terms of the field theory of the O(2) gauge theory of a D6-brane

sitting on top of the orientifold, as the soliton with nontrivial charge under π0(O(2)) = Z2.

Therefore, starting with a vacuum in which the scalar field coming from C3 has a

pφF4 coupling, we can nucleate a bubble with p = 0 and with the scalar field enjoying a

Stuckelberg coupling instead (a b2F2 for the dual 2-form). The presence of this coupling

in some region of the space-time is enough to ensure that the global symmetry is broken

in the full theory.

6.3 Digression: an M theory BGHHS black hole

The very explicit realization of the Chern-Simons mechanism in terms of fluxes allows the

following explicit discussion of (close cousins) of the BGHHS black hole in M theory. In the

M-theory configuration we consider, the BGHHS black hole becomes a system of branes in

a horizonless geometry, which will allow us to understand how the associated problems are

resolved from an ultraviolet point of view.

Consider compactification of type IIA on e.g. a six-torus to four dimensions, and a

stack of N coincident D6-branes wrapped on the compact manifold. The M-theory lift of

18The existence of these interpolating domain walls introducing wrapped D-branes allows to regard the

BF such couplings as yet another avatar of cubic Chern-Simons couplings. This is particularly explicit in

models like magnetized D-branes, in which certain homological charge classes are associated to world-volume

magnetic fluxes on the D-branes, see [87] for review.
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the D6 brane stack is a multi-center Taub-NUT metric [88] (see also [89])

ds2 = U(d~x · d~x) + U−1(dθ +M), U =
N

r
+

1

λ2
. (6.6)

Here, the Taub-NUT space is described as an S1 fibration over R3, with θ being the

coordinate along the circle, while ~x labels points in R3. Finally, M satisfies dM = ∗dU .

This spacetime has N−1 vanishing 2-cycles, which translate to N−1 normalizable Poincare

dual 2-forms, and an extra non-normalizable self-dual 2-form ω which corresponds to the

center-of-mass motion of the system. An explicit expression for ω in the case N = 1

can be found in [89]. For general N , the center-of-mass self-dual 2-form is given by (see

appendix B)

ω = dΛ,Λ = F (r)(dθ +M), F (r) =
r

r +Nλ2
, (6.7)

Now, consider turning on M-theory 4-form flux G4 along ω ∧ ω. A valid C3 potential

for this is

C3 = Qω ∧ Λ = −QNFdΩ ∧ (dθ +M). (6.8)

At large r, the coordinate θ parametrizes the M theory circle, and one can decompose C3

in terms of CIIA3 and B2 components, obtaining

CIIA3 = −QNMFdΩ B = −QNFdΩ. (6.9)

We see that at large r, the asymptotics is B → −QNdΩ, so that we have obtained a

microscopic description of a (charged, extremal, singular cousin of a) BGHHS black hole.

Although the cost of turning on Q is infinite in type IIA string theory because of the

singular H field at the origin, the uplift to M-theory smoothes out the resulting profile for

the B-field. The B field at the origin, 1/(Nλ2), is controlled by the asymptotic radius of

the Taub-NUT, that is, by the IIA coupling. We see that it indeed diverges in IIA.

It might seem that one can turn on any G4 flux, and hence, that the charge Q is not

quantized. To understand what is going on in detail, we need to solve the supergravity

equations of motion; the flux G4 = Qω ∧ ω will not be a solution for constant Q.

So let us take an ansatz for C3 of the form C3 = Q(r)ω ∧ Λ, and find the effective

action for Q. The minimum will correspond to a stable configuration of G4 flux, supported

by the Taub-NUT geometry. Since the fields only depend nontrivially on four dimensions,

the M-theory Chern-Simons term will not contribute. The only contribution then comes

from the 4-form kinetic term. One can show that

G4 ∧ ∗G4 = −N2
[
g̈2 − U−1(g′)2

] dr
r2
∧ dΩ ∧ dθ ∧ dV6, (6.10)

in terms of g = F 2Q. The differential equation obtained from (6.10) for the eigenmodes

g = gωe
iωt is

d

dr

(
1

Ur2
g′ω

)
+
ω2

r2
gω = 0. (6.11)
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A solution describing BGHHS charge would be stationary and have a constant Q far away

from the hole, so we should set ω = 0 above. The most general solution then depends on

two constants,

g0 = c1

(
Nr2

2
+

r3

3λ2

)
+ c2. (6.12)

At large r, we have approximately constant F (r). Hence, it is clear that solutions with

c1 6= 0 do not describe a localized source with finite BGHHS charge at infinity (and actually

their energy is divergent). On the other hand, since U ∼ 1/r for small r, g must go to zero

as fast as r2 as r → 0 for G4 to actually be smooth near the TN centre. This sets c2 = 0.

Therefore, the boundary conditions forbid stationary solutions, and as a result the

pure D6-brane system does not really carry a nontrivial Q charge. Nonzero frequency

eigenmodes satisfying (6.11) are dispersive; the TN center reflects incoming waves of Q,

but is not able to capture any charge.

We might wonder if this behavior is an artifact caused by the fact that the four dimen-

sional dilaton black hole described by the stack of D6-branes is horizonless. The metric

and dilaton profile are [90]

ds2 = −H−1/2dt2 +H1/2(dr2 + r2dΩ), A0 = ±N
(
H−1 − 1

)
, H = 1 + 2m/r, (6.13)

Due to the presence of unstabilized moduli, the solution does bit present an horizon, having

a naked singularity instead. This has a simple solution: one can turn the D6 system into

a genuine black hole by choosing background gauge fields on the brane which induce lower

D-brane charges [90]. In order to get a Reissner-Nordstrom black hole with a finite horizon,

we need to induce D0-, D2-, and D4-brane charge. Turning a fieldstrength for the gauge

field along the three independent 2-cycles of T 6 will suffice.

This has a very natural interpretation in M-theory: since the D6 gauge field arises

from dimensional reduction of the M-theory 3-form, the above gauge fluxes lift to M-theory

backgrounds for G4 of the form G4 = ω ∧αi, where αi, i = 1, 2, 3 is a basis of independent

2-cycles of the T 6. D4 charge is induced simply because there are nontrivial periods of

G4; D2-charge is induced by the M-theory Chern-Simons coupling. Finally, D0-charge is

induced because the induced M2-charge sits on a magnetic field, and as a result moves

along the compact dimension.

We now have an uplift of a charged extremal dyonic BGHHS black hole to a horizonless

geometric background in M-theory, yet the equations of motion of the three-form remain

the same, because no new contribution comes from the M-theory Chern-Simons term, at

least if we ignore gravitational backreaction. Thus, the dispersive behavior of C3 in the

black hole background is a genuine feature of the M-theory description of the BGHHS black

hole, and not an artifact due to the absence of a horizon in (6.13).

It would seem that the only way for the equation of motion coming from (6.10) to

have a static solution with nonzero constant asymptotics for Q is to allow G4 to diverge

at the origin. Then the solution with c2 6= 0, which corresponds to an asymptotically

constant charge Q = c2/F
2. Here G4 vanishes everywhere but at the TN center. This is
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only consistent if C3 is a gauge transformation of the vacuum, so that

C3 ∈ H3(R4 − {0},Z) (6.14)

describes a pure gauge configuration in singular gauge. Compactness of the gauge group

forces Q to be an integer.

To sum up, the M-theory uplift allows us to see explicitly that there is a potential for

C3, and that the only smooth stationary configurations have trivial C3. This is consistent

with the conjecture advocated in section 5: the IIA Chern-Simons term∫
F8F0B2 (6.15)

becomes upon six-torus compactification a F2B2F0 coupling. Direct comparison to the

M-theory picture is obscured by the somehow cumbersome lift of F0 to M-theory [91].

6.4 Other examples

Here we collect a few more examples without a detailed discussion:

Non-geometric fluxes. The discussion of Chern-Simons terms from internal field

strength fluxes in section 6.2 clearly generalize to more general fluxes in the compacti-

fication, including geometric or non-geometric fluxes (see [87] for review). This is natural,

since they are all on equal footing (due to underlying string dualities) from the perspective

of the lower-dimensional effective theory.

We now describe an instance of Chern-Simons terms involving nongeometric fluxes, by

using T-duality with NSNS 3-form flux. Consider, for instance, type IIB on T 6, or on a

manifold X6 given by a T 3 fibration over a three-dimensional basis B3. In four dimensions,

there is a 2-form C2 obtained from dimensional reduction of the ten-dimensional C8. There

is no apparent Chern-Simons term involving it in the effective field theory, but this is only

because we are ignoring contributions from non-geometric sources. Let us T-dualize three

times along T 3 in order to make the missing CS term manifest, as follows. In the T-dual

type IIA there is a 10d Chern-Simons term C5H3F2 which upon dimensional reduction

leads to hC2F2 where h =
∫
T 3 H3 and C2 =

∫
B3
C5. Upon T-duality, C5 goes to C8, while

F2 turns into F5, and the NSNS flux becomes a locally non-geometric flux of q-type [92].

Therefore, in type IIB we indeed have a 10d coupling qC8F5 which leads to a 4d coupling

hC2F2 upon dimensional reduction on X6. This is the coupling for the 2-form C2 necessary

to break its 2-form generalized global symmetry.

The general lesson is that in string compactifications, whenever there is a BF coupling

missing and the global symmetry seems unbroken, it is simply because we sit in a flux-less

phase in which the tunable parameter G0 has been naively set to zero. A deeper look

reveals that string theory provides the requested Chern-Simons term to break the global

symmetry. In this case, the solution came from the legitimate possibility of nucleating

bubbles with a non-vanishing non-geometric flux inside.
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AdS5×S5 revisited. Keeping on with the philosophy of seeking for Chern-Simons terms

involving any kind of flux, we can provide a nice description of Chern-Simons couplings

breaking the 3-form generalized global symmetry in the AdS5×S5 example of section 4.3.

In order to derive it, we again use T-duality, now along the S1 fiber in the S5 when regarded

as a circle fibration over CP2 [93]. In the T-dual type IIA on AdS5 × CP 2 × S1, there

is a 10d Chern-Simons coupling C7H3F0, which gives a five-dimensional C3H2F0 term,

where C3 =
∫
CP2

C7, H3 =
∫
S1 H3. As shown in section 4.3, we do not actually need this

term to break the symmetry — this can be achieved by stringy effects. Nevertheless, it

is also present, allowing us to understand the symmetry breaking in field theory terms.

Incidentally, it is interesting that it involves the KK U(1) associated to the circle fiber.

Since this is part of the SO(6) isometry group of the S5, it would be interesting, but beyond

our present scope, to explore the general story associated to the non-abelian structure of

this group.

Heterotic CY compactifications. Heterotic string theories have non-abelian gauge

bosons in 10 dimensions. In either ten, or four dimensions after compactification, one

can consider holonomies of the Cartan generators around black objects (7-brane in ten

dimensions, string in four), or non-trivial cycles in spacetime. The shift symmetries of

these holonomies constitute problematic 1-form generalized global symmetries, which string

theory should take care of. The required Chern-Simons terms indeed come from the Green-

Schwarz coupling (see [87] for review)

B2 ∧ tr(F 4). (6.16)

For instance, in compactifications of the SO(32) heterotic on a CY X6 with standard

embedding, the SO(32) gauge group is broken to SO(26) ×U(1). Denoting by F the U(1)

fieldstrength, the coupling (6.16) gives rise to( ∫
X6

tr(F 3
SU(3))

)
B2 ∧ FU(1) . (6.17)

The prefactor is non-zero because it equals the holomorphic Euler characteristic of the CY,

so we get a four-dimensional coupling χB2 ∧ F , which breaks the symmetr. This can be

thought of as a triple CS term by regarding χ as a slightly exotic version of F0 in this

picture. It is quantized, and we can consider four-dimensional domain walls separating

regions with different χ: they can correspond to gauge backgrounds changing the gauge

bundle topology (thus moving onto a non-standard embedding), or more dramatically to

geometric defects interpolating between different CY spaces as we cross the domain wall

(via e.g. conifold transitions).

Similarly, the dual Green-Schwarz coupling B6∧Tr(F ∧F ) results in a four-dimensional

φF ∧ F coupling between the axion dual to B and F . Thus we seem to get an axion φ in

four dimensions with both BF and 4-form like couplings. The low-energy lagrangian

1

2
|dφ−A|2 + φF ∧ F (6.18)
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is not gauge invariant at first sight. However, it is once we take into account the anomalous

variation of the four-dimensional chiral fermions; this is just the four-dimensional version

of the usual Green-Schwarz anomaly cancellation.

6D (2, 0) theories. Six-dimensional (2, 0) theories contain tensor multiplets whose 2-

form gauge fields show an associated 2-form global symmetry. There are no Chern-Simons

terms that we can think of for this field, but there is no need for them either, because

the symmetry always seems to be gauged. When realizing this theory as the worldvolume

theory of a (stack of) M5-branes, the symmetry is gauged by the coupling to the M-theory

three-form C3 (one way to see this is to reduce to IIA, where the M5’s become D4’s and

the coupling between the tensor and C3 becomes the usual coupling between B and F in

the DBI action). The same happens for the realization in terms of IIA NS5-branes. When

the (2, 0) theory arises from type IIB in an ALE singularity, the (2, 0) B-field arises from

reduction of C4 on a basis of normalizable 2-forms of the ALE space. The 3-form also arises

from C4, from the decomposition C4 = B ∧ ω + C3Λ which is reminiscent of the massive

Wilson line examples discussed in [37].

7 3-form global symmetries

So far we have only considered generalized global symmetries arising from periods of p-

form gauge fields from p = 0 to p = d − 2. These cases can lead to the problematic

two-dimensional axion system discussed in section 4.2. The only remaining interesting

possibility in four dimensions is that of a 3-form global symmetry.19

This case doesn’t immediately fit into our framework, because under compactification

to two dimensions it leads to a gauge field, rather than an axion. Additional compactifica-

tion on a circle leads to an axion in 0 + 1 dimensions, that is, the quantum mechanics of a

particle on a circle. It is unclear what the problem is with global symmetries in this case,

if any at all; we do not know how to relate the 0 + 1-dimensional system to any reasonable

black hole background, as we did with the B-field in section 3.1. Some solutions, such as

the Giddings-Strominger wormhole [94], support nontrivial 3-cycles. If there is a 3-form

C3 in our theory, shifts in the period of C3 on such 3-cycle constitute a symmetry of the

theory. This is similar to the 1- and 2-form examples, but the similarities seem to end

there. Because we are necessarily working in the Euclidean theory now, there doesn’t seem

to be an immediate problem with the continuous degree of freedom associated to C3: it is

just another seemingly harmless zero mode of the euclidean solution.

This is reminiscent of the situation one encounters when trying to apply the WGC

to axions [13, 15, 16, 19]: one would like to argue that because of the WGC there should

be some instanton with an action scaling as MP /f , but the usual trouble-with-remnants

justification for the WGC does not work in the Euclidean: there is no natural notion of

“decay” from one instanton to another (see however [28] for a recent proposal).

19A 4-form global symmetry is also possible in the Euclidean theory. We would have a flat D4 potential

with no dynamics (and no charged objects, due to tadpole cancellation), but which might have nontrivial

periods on compact 4-manifolds.
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Because of this, the case for both the WGC to instantons and for our conjecture to

3-forms is weaker than in the other scenarios. In any event, it is interesting exercise, which

we carry out in this section, to explore the implications of the conjecture for 3-form fields

(and d− 1-forms in d dimensions, in general), and to explore a few stringy examples.

As before, we can either break or gauge the 3-form global symmetry. Gauging would

mean introducing a 4-form gauge potential D4, and modifying the 3-form kinetic term to

−1

2
|F4 − kD4|2, (7.1)

which would have a tadpole essentially requiring F4 = 0, thus killing the 3-form itself. This

doesn’t seem a very interesting possibility.

Symmetry breaking requires to have a potential term in the effective action for the ax-

ion in 0+1 dimensions coming from C3. Such a potential can come from higher-dimensional

Chern-Simons terms; for instance, a four-dimensional 4-form coupling∫
G0C3 ∧ dφ (7.2)

would reduce to a triple interaction∫
G0cφ̇dt, c ∼

∫
C3 (7.3)

in 0+1 dimensions. Here φ̇ stands for the time derivative of φ. Thus, if G0 does not vanish

identically (as an operator), this term breaks the symmetry.

If the 3-form version of our conjecture applies as well, it implies that all 3-form gauge

fields should enjoy the appropriate CS term (which in four dimensions corresponds to the

4-form coupling above) to break the global symmetry. This 4-form coupling underlies the

construction of axion monodromy models [37]. There is however a subtlety not present in

the previous p-form symmetries with p ≤ d− 2. Here the parameter G0 is dual to the field

strength of another 3-form field G4 = dC̃3 in four dimensions. The above coupling can

then be understood as a field-dependent kinetic mixing between F4 and G4,∫
φF4 ∧ ∗G4 . (7.4)

The natural question is whether such a coupling also breaks the 3-form global symmetry

of C̃3, in addition to the one of C3. From this point of view both 3-forms are on equal

footing. In fact, one can rewrite this term as 4-form coupling for G4, F0G4φ, leading to

a non-vanishing divergence of the current G4 and breaking the symmetry. Therefore, it is

enough if the dual of C3 appears playing the role of G0 in some 4-form coupling. Support

for this conjecture can be found on the four-dimensional effective theories obtained upon

dimensional reduction of Type IIA/B in a Calabi-Yau manifold. There, all 3-form fields

appear either coupling an axion with a 4-form coupling or playing the role of G0 in another

4-form coupling [95, 96].

This extension of our conjecture may also have implications for the Bousso-Polchinski

mechanism [97], which relies on the presence of (many) non-dynamical 3-forms to provide
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a landscape finely scanning the cosmological constant value. The conjecture we have pre-

sented would imply that there should be a new kind of domain wall in the theory (which

changes G0 in (7.3)), which turns on 4-form couplings for the Bousso-Polchinski 3-forms.

It would be interesting to explore the precise effect these new couplings may have on the

standard Bousso-Polchinski mechanism.

These considerations align nicely with the familiar difficulties with realizing the strict

Bousso-Polchinski mechanism in string theory. To implement Bousso-Polchinski, we need

a decoupled sector with a considerable number of 3-forms. Otherwise, the minimization

conditions that stabilize the axions also fix the value of the field strengths 4-forms in the

vacuum, which does not leave much freedom to implement the mechanism. However, in

practice, the different 3-forms always mix among themselves, and with other fields, as

would necessarily be the case if our conjecture was true.

In section 5, we saw that gravity in d ≥ 4 dimensions would be incompatible with our

conjecture. If the (d− 1)-form version of our conjecture holds, it also excludes d = 3, since

the KK photon would be a 2-dimensional gauge field without Chern-Simons term. It is

worth mentioning that there is a long-standing quest [98–108] to find a holographic dual to

a weakly coupled d = 3 AdS theory of pure gravity. The extended version of our conjecture

would put it in the Swampland, which seems to align nicely with recent results [109]. Our

conjecture doesn’t rule out gravity with minimal matter content. One possibility is adding

a single axion, which can undergo Scherk-Schwarz compactification as in section 5.

8 Conclusions

The motivational observation of this work is that the usual mechanism of explicit breaking

of generalized global symmetries coming from periods of p-form potentials via charged

particles does not seem to work, at least straightforwardly, for low enough dimensions, e.g.

those related to two-dimensional axion systems, where a remnant shift symmetry of the

axion seems to survive.

On the face of it, one can take two different viewpoints: perhaps the presence of

global symmetries is not problematic on such low-dimensional systems, or, alternatively,

the symmetries must be broken by another mechanism. We have given a particular example,

the BGHHS black hole, in which an unbroken symmetry would lead to a remnant problem.

Thus, at least in this particular example, there is a very good case for the symmetry

to be broken. We have found that this is indeed the case in a consistent embedding of

the BGHHS black hole in the AdS5/CFT4 correspondence. The breaking is due to the

contributions of euclidean saddles with the same asymptotics but different topology; from

the two-dimensional point of view, these saddles have stringy-sized “bubbles” where the

effective field theory description breaks down, but which nevertheless break the symmetry.

Even though the bubble that breaks the symmetry in this case is of stringy size, we

have also explored bubbles which admit a field theory description as well. These are

typically related to triple Chern-Simons terms in the effective field theory, which turn on

and off symmetry breaking couplings. We have found these Chern-Simons terms and the

associated bubbles to be a generic feature of string compactifications. They are present
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in every string compactification we have checked so far, and have varied 10-dimensional

origin, ranging from supergravity Chern-Simons terms to non-geometric fluxes and D-brane

Chern-Simons terms. Another way to put it is that string theory always seems to allow

for both breaking or gauging in different phases of the theory, and there are domain walls

which interpolate from one to another.

We have upgraded our observations to a conjecture, claiming that consistent theories

of quantum gravity suffer from a pandemic of Chern-Simons terms. If true, the conjec-

ture further constraints field theories which can be consistently coupled to gravity,20 and

puts Einstein-Maxwell+WGC particles, N = 8 SUGRA, as well as pure gravity in d ≥ 4

dimensions in the Swampland. A slight extension of our conjecture to (d − 1)-forms puts

d = 3, 4 pure gravity in the Swampland as well, and creates some tension between a strict

Bousso-Polchinski mechanism and quantum gravity.

One open question is that we already have a “gravitational” symmetry breaking mech-

anism in the holographic example, related to the sum over topologies in the holographic

description of AdS quantum gravity, so one might wonder if such UV mechanism are more

general, and if so why we need the Chern-Simons terms as well. It is unclear to us whether

this mechanism works in general, irrespectively of which two-dimensional compactification

we consider; in some simple examples, such as a single U(1) on R2×T 2, it naively doesn’t.

By contrast, the Chern-Simons terms (or more precisely, the associated bubbles) explicitly

break the symmetry in any background. We therefore take the presence of the Chern-

Simons terms as a general criterion of consistency of the theory, which must be “ready” to

solve the problems of generalized global symmetries for arbitrary compactifications. Notice

that even in this holographic example, we can also find the appropiate Chern-Simons term

to break the symmetry.

It would be interesting to gain further insight into this criterion in other holographic

setups. A possibly interesting point is that, in the context of the AdS/CFT correspon-

dence, three-dimensional bulk Chern-Simons term can sometimes be related to anomalies

of a CFT2 current, so that if we start with a higher current in a higher-dimensional CFT

and compactify to AdS3, we necessarily generate bulk Chern-Simons terms, as our conjec-

ture demands.

In the end, this work has provided a substantial amount of solid support for our

conjecture, coming from diverse examples. Like other conjectures, it might just be that we

have only looked at special classes of string vacua. However, the conclusion so far seems

strong enough to support the proposal of this criterion as a generic feature of the stringy

landscape/swampland. We expect further work in this direction to lead to progress in the

understanding of generalized global symmetries, and of the role of Chern-Simons terms in

string theory.

20We should remark that the constraints apply to the full theory, and not the low-energy EFT. The

symmetry-breaking Chern-Simons terms must be there, but can show up at any scale, much like we expect

B − L to be broken or gauged in the UV completion of the Standard Model, but we don’t know at which

scale the symmetry breaking effects or unhiggsing takes place.
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Quevedo, Diego Regalado, Pablo Soler, and Gianluca Zoccarato for helpful discussions

and comments. MM is supported by a Postdoctoral fellowship from ITF, Utrecht. AU is

supported by the grants FPA2015-65480-P and SEV-2012-0249 of the “Centro de Excelen-

cia Severo Ochoa” Programme from the Spanish Ministry, and the ERC Advanced Grant

SPLE under contract ERC-2012-ADG-20120216-320421. IV is supported by a grant from

the Max Planck Society. MM thanks the Institute for Advanced Studies at the Hong Kong

University of Science and Technology for hospitality while this work was completed. MM

and IV thank the DESY workshop “New Ideas in String Phenomenology” for a stimulating

atmosphere which led to several fruitful discussions.

A Confinement of strings

It is possible to emulate the original computation in [64] showing confinement in (2 + 1) to

display the same phenomenon for strings in (3 + 1). For simplicity, we ignore the effects

of gravity for the time being. In the euclidean theory, confinement will be shown by the

behavior of the Wilson loop

W [S] =

〈
exp

(
i

∫
S
B

)〉
. (A.1)

If we take the surface S to be C× [0, T ], where C is some closed curve in three dimensions,

then for very large T this represents the amplitude for a nondynamical string to nucleate

along C only to annihilate after a very long time T . In this limit, the amplitude is a

tunneling effect and is approximately e−E[C]T , where E[C] is the energy of the configuration.

However, one may also write

W [S] =

〈
exp

(
i

∫
V
∗dφ

)〉
. (A.2)

where S = ∂V .

The term is just the partition function for an axion. If the dilute-gas approximation

for the instantons is valid (the conclusion can be modified significantly when it is not), we

have an axion with modified action

S =

∫
1

2
dφ ∧ dφ+ Λ(1− cos(φ/f) + dφ ∧ ∗P.D(V ) (A.3)

where P.D(V ) is the Poincaré dual of V . It is straightforward to evaluate this around the

solution to the equations of motion. If we take the curve C to lie in the xy plane, then

P.D(V ) = χ(S)δ(z)dz (A.4)

where S is the region bounded by C and χ(S) is its characteristic function. Then, the

equations of motion are

∇2φ = −Λ sin

(
φ

f

)
+ δ′(z)χ(S). (A.5)
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Far from the boundaries, this is a one-dimensional equation with solution

φ(z) = 4 sign(z) arctan
(
e−m|z|

)
(A.6)

where m =
√

Λ/f2. Plugging back into the path integral, fluctuations around this solution

become gaussian and exactly computable, giving an overall factor. The term coming from

the classical action will give a contribution of the form γVol(V ), where γ is computed by

evaluating the 1-dimensional version of the action (A.3) plugging (A.6).

This area (or rather, volume) behavior of the Wilson loop shows confinement of the

strings. As we try to stretch a string to a length enough to lasso the black hole, an anti-

string will be nucleated.The anti-string will provide an equal and opposite contribution to

the Aharonov-Bohm phase, rendering the charge Q unobservable in practice.

B Self-dual fluxes in Taub-NUT space

In this brief appendix we will derive the expression for the self-dual form of Taub-NUT

space. For convenience, we reproduce again the Taub-NUT metric

ds2 = U(d~x · d~x) + U−1(dθ +M)2, U =
1

λ2
+
N

r
. (B.1)

First we will find a potential for the Taub-NUT self dual 2-form ω = dΛ, with an

ansatz (inspired by the N = 1 case) of the form

Λ = F (r)(dθ +M). (B.2)

A tetrad basis for the metric (B.1) is

e1 =
√
Udr, e2 =

√
Urdθ, e3 =

√
Ur sin θdφ, e4 =

1√
U

(dθ +M). (B.3)

The exterior derivative of (B.2) is

ω = dΛ = F ′e1 ∧ e4 −
NF

Ur2
e2 ∧ e3, (B.4)

since

dM = ∗3DdU = −N
r2
∗3D dr = −NdΩ. (B.5)

Anti-self-duality then amounts to

F ′ =
NF

Ur2
⇒ F =

r

r +Nλ2
. (B.6)

C 2d instantons and Chern-Simons terms

We now discuss a heterotic example which perhaps sheds some light on the relationship

between Chern-Simons terms and charged objects: consider the same heterotic CY com-

pactification as section 6, but focus on a different 4d B-field, coming from wrapping B6

on a 4-cycle A4. The triple Chern-Simons comes from dimensional reduction of B6trF 2,
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where G0 is the component of the first Chern class of the gauge bundle along the 2-cycle

A2 dual to A4.

The 10d Chern-Simons term B6trF 2 also endows heterotic gauge instantons with NS5-

brane charge [110, 111]. The NS5-brane can be regarded as a point-like gauge instanton

of vanishing size or, put in another way, the B6trF 2 term allows NS5-branes to fatten.

The strings coupled to the 4d B field are just NS5-branes wrapped on A4; if we further

compactify to two dimensions, they become instantons for b =
∫
B. As usual, their action

is IR divergent. However, we may fatten the NS5 brane to a SO(32) instanton of radius

ρ. If we are not concerned with solving the Euclidean equations of motion, but only with

finding a finite action deformation of the instanton, we are allowed to replace the NS5 with

a U(1) gauge field configuration with

F = ξ(r)(dV2 + ωA2), (C.1)

where ωA2 is the Poincaré dual to A2, and dV2 is the volume element of the two-dimensional

noncompact factor. The smooth function ξ(r) vanishes for r > ρ and is such that
∫
F ∧ F

has the instanton number of a NS5.

So far, we have only fattened the two-dimensional instanton — but it still has a IR-

divergent action. Consider adding now a anti NS5, on top of the NS5, which fattens to

F = ξ(r)(−dV2 + ωA2). (C.2)

The configuration now consists of an instanton- anti instanton pair, and its action is no

longer divergent. However, the gauge fields (C.1) and (C.2) do not cancel out: they leave

a component along ωA2 or, in other words,

G0 = 2ξ(r), (C.3)

which is precisely one of the bubbles introduced in section 4. At r ∼ ρ, we have dG0 =

d ∗ G2 6= 0 so that the boundary of the bubble is a particle charged electrically under

G2, as discussed there. In other words, the symmetry-breaking bubble can be constructed

by fattening and deforming a finite action instanton- anti instanton configuration. In

section 4.2, we argued that charged objects alone are not enough to break the symmetry.

Here, we see that in the presence of Chern-Simons terms they can fatten, which in turn

allows them to break the two-dimensional symmetry.

This behavior may seem particular to the heterotic case, but we expect it to hold at

least also for type II examples. The D-brane instantons one gets may fatten due to brane

polarization [112]; it is possible to overlap a polarized D-brane instanton-anti instanton

pair to construct the bubble in the same way.
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[25] L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak

gravity conjecture, JHEP 04 (2016) 020 [arXiv:1512.00025] [INSPIRE].

[26] M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP

10 (2016) 159 [arXiv:1606.08438] [INSPIRE].

[27] B. Heidenreich, M. Reece and T. Rudelius, Evidence for a lattice weak gravity conjecture,

arXiv:1606.08437 [INSPIRE].

[28] A. Hebecker, P. Mangat, S. Theisen and L.T. Witkowski, Can gravitational instantons

really constrain axion inflation?, JHEP 02 (2017) 097 [arXiv:1607.06814] [INSPIRE].

[29] P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev. D 95 (2017)

025013 [arXiv:1608.06951] [INSPIRE].
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[45] L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)’s in type-I and type IIB

D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].
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