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Introduction

Fueled by the research on theories of elementary particles and fundamental fields (Yang-

Mills, Kaluza-Klein, Supergravity, Superstrings. . . ), over the last 30 years, the search for

and study of solutions of theories of gravity coupled to fundamental matter fields (scalars

and vectors in d = 4 and higher-rank differential forms in higher dimensions) has been

enormously successful and it has revolutionized our knowledge of gravity itself. Each new

classical solution to the Einstein equations (vacua, black holes, cosmic strings, domain walls,

black rings, black branes, multi-center solutions. . . ) sheds new light on different aspects

of gravity and, often, on the underlying fundamental theories. For instance, although the

string effective field theories (supergravities, typically) only describe the massless modes of

string theory, it is possible to learn much through them about the massive non-perturbative

states of the fundamental theory because they appear as classical solutions of the effective

theories.1 Beyond this, there is a definite program in the quest to construct horizonless mi-

crostate geometries as classical solutions of Supergravity theories [4, 5]. When interpreted

within the context of the fuzzball conjecture [6], these geometries have been proposed to

correspond to the classical description of black hole microstates. Therefore, in the best

case scenario, it might be possible to find a large collection (∼ eS) of microstate geometries

with the same asymptotic charges as a particular black hole, and, furthermore, to identify

explicitly their role in the ensemble of black-hole microstates. See refs. [7, 8] for recent

progress in that direction.

Apart from the fact that they describe gravity, one of the most interesting features of

string theories is that their spectra include non-Abelian Yang-Mills (YM) gauge fields. This

aspect is crucial for their use in BSM phenomenology but has often been neglected in the

search for classical solutions of their effective field theories, specially in lower dimensions,

which have been mostly focused on theories with Abelian vector fields and with, at most, an

Abelian gauging. Thus, the space of extremal (supersymmetric and non-supersymmetric,

spherically-symmetric and multi-center) black-hole solutions of 4- and 5-dimensional un-

gauged supergravities has been exhaustively explored and progress has been made in the

1See, e.g., refs. [1–3].
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Abelian gauged case, motivated by the AdS/CFT correspondence, but the non-Abelian

case has drawn much less attention in the string community and, correspondingly, there

are just a few solutions of the string effective action (and of supergravity theories in general)

with non-Abelian fields in the literature.

One of the main reasons for that is the intrinsic difficulty of solving the highly non-

linear equations of motion. This difficulty, however, has not prevented the General Relativ-

ity community from attacking the problem in simpler theories such as the Einstein-Yang-

Mills (EYM) or Einstein-Yang-Mills-Higgs (EYMH) theories, although it has prevented

them from finding analytical solutions: most of the genuinely non-Abelian solutions2 are

known only numerically.3 Another reason is that non-Abelian YM solutions are much more

difficult to understand than the Abelian ones (specially when they are known only numer-

ically): in the Abelian case we can characterize the electromagnetic field of a black hole,

say, by its electric and magnetic charge, dipoles and higher multipoles. In the non-Abelian

case the fields are usually characterized by topological invariants or constructions such as

t’ Hooft’s magnetic monopole charge.

In general, the systems studied by the GR community (the EYM or EYMH theories

in particular) are not part of any theory with extended local supersymmetry (a N > 1

supergravity with more than 4 supercharges)4 and, therefore, the use of supersymmetric

solution-generating techniques is not possible. One can, however, consider the minimal

N > 1 supergravity theories that include non-Abelian YM fields, which are amenable

to those methods. Some time ago we started the search for supersymmetric solution-

generating methods in N = 2, d = 4 [13] and N = 1, d = 5 [14–17] Super-Einstein-

Yang-Mills (SEYM) theories. The results obtained have allowed to construct, for the first

time (at least in fully analytical form), several interesting supersymmetric solutions with

genuine non-Abelian hair: global monopoles and extremal static black holes in 4 [18–20] and

5 dimensions [20], rotating black holes and black rings in 5 dimensions [21], non-Abelian

2-center solutions in 4 dimensions [19] and the first non-Abelian microstate geometries [22].

Many of the black-hole solutions found by these methods can be embedded in string

theory and, in that framework, one can try to address the microscopic interpretation of

their entropy, which seems to have relevant contributions from the non-Abelian fields, even

though, typically, they decay so fast at infinity that they do not seem to contribute to

the mass. Following the pioneer’s route [23, 24] requires an understanding of the stringy

objects (D-branes etc.) that contribute to the 4- and 5-dimensional solutions’ charges.

Furthermore, the interpretation of the non-Abelian microstate geometries would benefit

from the knowledge of their stringy origin. In this paper, as a previous step towards the

microscopic interpretation of the 5-dimensional non-Abelian black holes’ entropy which we

2That is, solutions whose non-Abelian fields cannot be rotated into Abelian ones using (singular or non-

singular) gauge transformations. When they can be rotated into a purely Abelian one, it is often referred

to as an “Abelian embedding”.
3The most complete review on non-Abelian solutions containing the most relevant developments until

2001 is ref. [9] complemented with the update ref. [10]. Ref. [11] reviews the anti-De Sitter case. A more

recent but less exhaustive review is ref. [12], although it omits most of the non-Abelian solutions found

recently in the supergravity/superstring context.
4The supersymmetric solutions of N = 1 supergravity are massless (waves) or not asymptotically flat.
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will undertake in a forthcoming publication [25], we identify the elementary component

of the simplest, static, spherically symmetric, non-Abelian 5-dimensional black hole that

carries all the non-Abelian hair. The solution that describes this component turns out to be

asymptotically flat, globally regular, and horizonless and the non-Abelian field is that of a

BPST instanton [26] living in constant-time hypersurfaces. Only a few solutions supported

by elementary fields with these characteristics are known analytically: the global monopoles

found in gauged N = 4, d = 4 supergravity [27–29] and also in N = 2, d = 4 SEYM

theories [13, 19] whose non-Abelian field is that of a BPS ’t Hooft-Polyakov monopole.

The simplest string embedding of this solution is in the Heterotic Superstring and

the 10-dimensional solution whose dimensional reduction over T 5 gives this 5-dimensional

global instanton turns out to be the gauge 5-brane found in ref. [30]. This is, therefore,

the non-Abelian ingredient present in the non-Abelian 5-dimensional black holes and rings

constructed in refs. [20, 21].

In what follows, we are going to derive the global instanton solution as a component of

the 5-dimensional non-Abelian black holes, we show that it is the Heterotic String gauge

5-brane compactified on T 5 and we study the dependence of the distribution of energy on

the instanton’s scale parameter, showing that, no matter how small it is, there is never

more energy concentrated in a 3-sphere of radius R than that of a Schwarzschild-Tangerlini

black hole of radius R.

1 The global instanton solution

We are going to work in the context of the ST[2, 6] model of N = 1, d = 5 supergravity

(which is a model with 5 vector supermultiplets) with an SU(2) gauging in the I = 3, 4, 5

sector. This theory is briefly described in appendix A and the solution-generating tech-

nique that allows us to construct timelike supersymmetric solutions of this theory with one

isometry is explained in appendix B.

Our goal is to construct the minimal non-singular solution that includes in the SU(2)

sector the following solution of the Bogomol’nyi equations

ΦA =
1

g4r(1 + λ2r)

xA

r
, ĂAB = εABC

1

g4r(1 + λ2r)

xC

r
. r2 ≡ xsxs , (1.1)

This solution describes a coloured monopole [18, 20], one of the singular solutions

found by Protogenov [31]. Observe that this solution is written in terms of the 4(= 1 + 3)-

dimensional Yang-Mills coupling constant g4. As shown in [16], the 4-dimensional Euclidean

SU(2) gauge field ÂA that one obtains via eq. (B.10) forH = 1/r is the BPST instanton [26],

which justifies our choice. Using the 4-dimensional radial coordinate ρ2 = 4r, the 5-

dimensional Yang-Mills coupling constant g4 = −2
√

6g, and renaming 4λ−2 = κ2 (the
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instanton scale parameter) it takes the form5

ÂA =
κ2

g(ρ2 + κ2)
vAR , (1.2)

where the vAR are the three SU(2) left-invariant Maurer-Cartan 1-forms.

Let us now consider the ungauged sector. As it is well known, 5-dimensional

asymptotically-flat, static, regular black holes need to be sourced by at least three charges,

associated to three different kind of branes. A popular example is the D1D5W black hole

considered by Strominger and Vafa in ref. [23]. The corresponding solution of the (super-

gravity) effective action is expressed in terms of three independent harmonic functions. In

the basis that we are using, these functions are L0,1,2, where the last two will be used in

the combinations L± = L1 ± L2 in order to make contact with the literature.

Thus, we take6

L0,± = B0,± + q0,±/ρ
2 , (1.3)

and we will assume that all the constants are positive.

This choice gives a static solution (ω̂ = 0, see the appendices for more information)

with the following active fields function

ds2 = f̂2dt2 − f̂−1(dρ2+ρ2dΩ2
(3)) ,

A0 = − 1√
3

1

L̃0

dt , A1 ±A2 = − 2√
3

1

L±
dt , AA =

κ2

g(ρ2 + κ2)
vAR ,

e2φ = 2
L̃0

L−
, k = (3f̂L+)3/4 , (1.4)

where the metric function f̂ is given by

f̂−1 =

{
27

2
L̃0L+L−

}1/3

, (1.5)

and we have defined the combination

L̃0 ≡ L0 −
1

3
ρ2Φ2 , and Φ2 ≡ ΦAΦA =

2κ4

3g2ρ4(ρ2 + κ2)2
. (1.6)

The normalization of the metric at spatial infinity demands 27
2 B0B+B− = 1 and we can

express the three integration constants B in terms of the values of the 2 scalars at infinity:

B0 =
1

3
eφ∞k−2/3

∞ , B− =
2

3
e−φ∞k−2/3

∞ , B+ =
1

3
k4/3
∞ , (1.7)

5Our conventions for the SU(2) gauge fields are slightly different from the ones used in refs. [17, 21]: in

this paper the generators satisfy the algebra [TA, TB ] = +εABCTC (which is equivalent to changing the sign

of all the generators), and the gauge field strength is defined by F = dA + gA ∧ A. The left- and right-

invariant Maurer-Cartan 1-forms vL,R have the same definitions, but the overall signs of the components

are different, as a consequence of the change of sign in the generators TA.
6The simplest 5-dimensional non-Abelian black hole constructed in ref. [17] has L2 = 0, or L+ = L− and,

therefore, it has three Abelian charges as well, but two of them are equal, which obscures the interpretation

of the solution from the string theory point of view.
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and the metric takes the form

f̂−1 =
{

(L̃0/B0) (L+/B+) (L−/B−)
}1/3

, (1.8)

where

L̃0/B0 = 1 +
2e−φ∞k

2/3
∞

3g2

ρ2 + 2κ2

(ρ2 + κ2)2
+ 3e−φ∞k2/3

∞

(
q0 −

2

9g2

)
1

ρ2
,

L−/B− = 1 + 3eφ∞k2/3
∞ q−/(2ρ

2) ,

L+/B+ = 1 + 3k−4/3
∞ q+/ρ

2 .

(1.9)

If q̃0 ≡ q0 − 2
9g2 > 0 and q± 6= 0 there is a regular event horizon with entropy

S =
π2

2G
(5)
N

√
(3q̃0) (3q−/2) (3q+) . (1.10)

The mass, however, depends on q0, not on q̃0

M =
π

4G
(5)
N

[
e−φ∞k2/3

∞ (3q0) + eφ∞k2/3
∞ (3q−/2) + k−4/3

∞ (3q+)
]
, (1.11)

so that the Yang-Mills fields only appear to be relevant in the near-horizon region, a

behavior also observed in 4-dimensional colored black holes refs. [18, 20]. Explaining this

behavior and finding a stringy microscopic interpretation for the entropy of these black

holes will be the subject of a forthcoming paper [25].

One of the main ingredients needed to reach that goal is the list of elementary compo-

nents (branes, waves, KK monopoles. . . ) of the black-hole solution. In the Abelian case,

these are typically associated to the harmonic functions in which the brane charges occur

as coefficients of the 1/ρ2 terms (in 5 dimensions) and these are the charges that appear in

the entropy formula. In the present case L̃0/B0 has a term which is finite in the ρ→ 0 limit

and another term, proportional to q̃0, which goes like 1/ρ2 in that limit, as an ordinary

Abelian contribution would. The presence of the finite term suggests the presence of a

solitonic brane which does not contribute to the entropy.

In order to identify this brane we set q̃0 = q± = 0 in the above solution (but q0 =
2

9g2 6= 0) and we obtain7

ds2 = f̂2dt2 − f̂−1(dρ2 + ρ2dΩ2
(3)) ,

f̂−3 = 1 +
2e−φ∞k

2/3
∞

3g2

ρ2 + 2κ2

(ρ2 + κ2)2
,

A0 = − 1√
3B0

f̂3dt , AA =
κ2

g(ρ2 + κ2)
vAR ,

e2φ = e2φ∞ f̂−3 , k = k∞f̂
3/4 ,

(1.12)

7Notice that the cancellation of the term that diverges in the ρ → 0 limit can only be achieved in the

branch in which L0 > 0. In particular, if either L+ < 0 or L− < 0 we are forced to work in the L0 > 0

branch and that contribution cannot be made to vanish.
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This solution depends on one function, f̂ which has the same profile as the one ap-

pearing in the gauge 5-brane [30].8 The similarity can be made more manifest by using

the relation between the 5-dimensional Yang-Mills coupling constant g, the Regge slope

α′, the string coupling constant gs = eφ∞ and the radius of compactification from 6 to 5

dimensions k∞ = Rz/`s, where `s =
√
α′ is the string length parameter:

g = k1/3
∞ e−φ∞/2/

√
12α′ , (1.13)

which brings e2φ to the form9

e2φ = e2φ∞ f̂−3 = e2φ∞

{
1 + 8α′

ρ2 + 2κ2

(ρ2 + κ2)2

}
. (1.15)

It is not difficult to show that, indeed, this solution is nothing but the double dimen-

sional reduction of the gauge 5-brane compactified on T 5 [25].

From the purely 5-dimensional point of view, apart from the instanton field, the solu-

tion has a vector field A0 which is dual to the Kalb-Ramond 2-form and is sourced by the

instanton number density only, as in the gauge 5-brane [33]. Observe that this means that

the parameter q0 is the sum of the instanton-number contributions (associated to a gauge

5-brane, as we are going to argue) which amount to just 2
9g2 and electric sources of a differ-

ent origin which amount to q̃0 = q0 − 2
9g2 which we have set to zero in the above solution.

The complete identification of the higher-dimensional stringy components of the general

solution will be the subject of the forthcoming paper [25]. Here we just want to study

the above solution, which in its 5-dimensional form is, apart from supersymmetric, clearly

globally regular (at least for finite values of κ), asymptotically flat and horizonless and

they are the higher-dimensional analogue of the global monopole solutions found in gauged

N = 4, d = 4 supergravity [27–29] and also in N = 2, d = 4 SEYM theories [13, 19].

The mass of the global instanton is obtained by replacing q0 by 2
9g2 and setting q± = 0

in eq. (1.11):

M =
π

6g2G
(5)
N

e−φ∞k2/3
∞ = 8

R9 · · ·R5

g2
s`

6
s

, (1.16)

where Ri is the compactification radius of the xi coordinate and where we have used

G
(5)
N =

G
(10)
N

(2π)5R9 · · ·R5
, and G

(10)
N = 8π6g2

s`
8
s . (1.17)

This value is eight times that of a single neutral (solitonic) 5-brane [34, 35].

8More precisely, the function H = e2φ∞ f̂−3.
9In our conventions, which coincide essentially with those of ref. [30], the 10-dimensional Heterotic String

effective action is written in the string frame as

SHet =
g2
s

16πG
(10)
N

∫
dx10

√
|g| e−2φ

[
R− 4(∂φ)2 +

1

12
H2 − α′FAFA

]
. (1.14)

The 10-dimensional string-frame metric solution is normalized such that it becomes (+1,−1, · · · ,−1) at

spatial infinity. The same is true for the 5-dimensional metric, which can be seen as the modified-Einstein-

frame metric in the language of ref. [24]. The relation between these two metrics involves rescalings by

powers of eφ−φ∞ and k/k∞.
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Figure 1. Radial mass density function of the global instanton solution for different values of the

instanton scale, κ2.

The metric depends on the instanton scale κ2, and it becomes singular when κ = 0. It

is tempting to regard that singular metric as the result of concentrating all the mass, which

is independent of κ, in a single point. Thus, one may wonder how the radial distribution

of the energy depends on κ and whether there is a value of κ and ρ such that the energy

enclosed in a 3-sphere of that radius is larger than the mass of a Schwarzschild black hole

of that Schwarzschild radius (R2
S = 3πM/(8G

(5)
N )).

The radial mass density, given by
√
|g|T 00 (T 00 being the tangent-space basis compo-

nent of the energy-momentum tensor) is represented in figure 1 for different values of the

instanton scale and its integral over a sphere of radius R (the mass function) is represented

in figure 2. The values of the integrals at infinity are not exactly equal because, after all,

there is no well-defined concept of energy density in General Relativity and we are just

using a reasonable approximation. In figure 3 we have represented the quotient between

the mass function and the Schwarzschild mass as a function of R and we see that it never

goes above 5/9 for any finite, non-vanishing value of the instanton scale.

2 Conclusions

Globally regular solutions supported by elementary fields are quite remarkable. In the case

of the 4-dimensional global monopoles [13, 19, 27–29] we have argued that they represent

elementary, non-perturbative states of the theory because they do not modify the entropy

of a given Abelian black hole solution when they are added to it. They do contribute to

the mass, though. Adding the global instanton to 5-dimensional black holes should have

the same result: unmodified entropy and increased mass. However, the reverse seems to

happen: the entropy is modified while the mass is not. The construction of the global in-

stanton solution seems to suggest that this is a false appearance caused by an inappropriate

– 7 –



J
H
E
P
0
7
(
2
0
1
7
)
0
1
1

κ=0.01 α ʹ κ=2 α ʹ

κ=5 α ʹ κ=10 α ʹ

0 10 20 30 40

0

1

2

3

4

5

6

ρ/ α ʹ

G
N
(5
)
m
(ρ
)/
α
ʹ

Figure 2. Radial mass function of the global instanton solution for different values of κ2 obtained

by integration of the mass density function in figure 1 with respect to ρ.

κ=0.01 α ʹ κ=0.5 α ʹ

κ=2 α ʹ κ=5 α ʹ

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

ρ/ α ʹ

8
G

N
(5
)
m
(ρ
)

3
π
ρ
2

Figure 3. Quotient between the radial mass function of the global instanton solution and the mass

of the 5-dimensional Schwarzschild black hole for that Schwarzschild radius for different values of

κ2.

definition of the charges involved.10 The exact role in 4-dimensional non-Abelian black-hole

solutions (in which it must appear disguised as a coloured monopole) has to be investigated.

It is also unclear if a global instanton can be added to a Schwarzschild-Tangerlini (or any

other non-extremal black hole) and what the effect would be.

We have tried to deform this solution by adding angular momentum, which in these

theories is always possible, although the simplest ways to do it (adding a non-trivial har-

monic function M to generate a non-vanishing ω5) would also introduce a singularity at

10This solution to the puzzle is explained in ref. [25].
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Figure 4. Value of the Kretschmann invariant for the global instanton solution for different values

of κ2.

the origin. While we have succeeded in producing an ω5 regular at ρ = 0 and dropping at

infinity as ρ−2, the metric function f̂−1 becomes singular at ρ = 0. It is possible to cancel

those singularities by introducing additional Abelian harmonic functions with fine-tuned

coefficients but the resulting f̂−1 either has zeroes, or leads to negative mass or both.

The non-Abelian solutions found so far in the supergravity/superstring context are the

simplest to construct. One can expect, however, a space of solutions far richer than that

of the Abelian ones. Work in this direction is under way.
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A The theory

The theory we are considering is a truncation of the effective field theory of the Heterotic

Superstring compactified on T 5 that preserves an SU(2) triplet of vector fields. The com-

pactification and truncation reduce the theory to a particular model of gauged N = 1, d = 5

supergravity to which one can apply the solution-generating techniques based on the charac-

terization of supersymmetric solutions described in appendix B. The dimensional reduction
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of this model on a circle gives the so-called ST[2, 6] model of N = 2, d = 4 supergravity

coupled to 6 vector multiplets and we will, therefore, refer to it by that name in the 5-

dimensional context as well. Here we are going to give a minimal description of the bosonic

sector of these theories and of the particular model we are considering. More information

can be found in refs. [3, 36, 37].11

The ST[2, 6] model of N = 1, d = 5 supergravity contains 5 vector supermultiplets

labeled by x, y = 1, · · · , 5, each containing a vector field Axµ and a scalar φx. Together

with the graviphoton A0
µ, all the vectors are written AIµ, I, J, . . . = 0, 1, · · · , 5. The only

remaining bosonic field is the spacetime metric gµν . The CIJK tensor has the non-vanishing

components

C0xy =
1

6
ηxy , where (ηxy) = diag(+− · · ·−) , (A.1)

and the Real Special manifold parametrized by the physical scalars can be identified with

the Riemannian symmetric space

SO(1, 1)× SO(1, 4)

SO(4)
. (A.2)

A convenient parametrization of the scalar manifold is

h0 = e−φk2/3 , h1,2 = k−4/3

[
1±

(
`2 +

1

2
eφk2

)]
, h3,4,5 = −2k−4/3`3,4,5 , (A.3)

where φ coincides with the 10-dimensional Heterotic Superstring dilaton field, k is the

Kaluza-Klein scalar of the dimensional reduction from d = 6 to d = 5 and the `A are the

fifth components of the 6-dimensional vector fields. The rest of the components that make

up the 10-dimensional vector fields have been truncated [39].

The group SO(3) acts in the adjoint on the coordinates x = 3, 4, 5 which we are going to

denote by A,B, . . . and this is the sector that is gauged without the use of Fayet-Iliopoulos

terms. This means that R-symmetry is not gauged and there is no scalar potential.12 The

structure constants are fAB
C = +εAB

C .13 We will denote with a, b, . . . = 1, 2 the ungauged

directions. Observe that this sector of the theory corresponds to the so-called STU model:

in absence of the hAs we can make the linear redefinitions

h1′ ≡ 1√
2

(h1 + h2) , h2′ ≡ 1√
2

(h1 − h2) , ⇒ Cabch
ahbhc = h0h1′h2′ . (A.4)

Thus, our model can be also understood as the STU model with an additional SU(2) triplet

of vector multiplets.

11Our conventions are those in refs. [3, 14, 38] which are those of ref. [36] with minor modifications.
12Models of this kind are called model of N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM), which are

the simplest N = 1 supersymmetrization of the 5-dimensional Einstein-Yang-Mills (EYM) theories.
13These indices will always be raised and lowered with δAB , just for esthetical reasons.
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With the above parametrization of the scalar manifold, the action for this model can

be brought to the form

S =

∫
d5x
√
g

{
R+ ∂µφ∂

µφ+
4

3
∂µ log k∂µ log k + 2e−φk−2Dµ`

ADµ`A

− 1

12
e2φk−4/3F 0 · F 0 +

1

12

(
ηxye

−φk2/3 − 9hxhy

)
F x · F y

+
1

24
√

3

εµνρσα
√
g

A0
µηxyF

x
νρF

y
σα

}
,

(A.5)

where

Dµ`
A = ∂µ`

A + gεABCA
B
µ`
C , (A.6)

F 0,a
µν = 2∂[µA

0,a
ν] , (A.7)

FAµν = 2∂[µA
A
ν] + gεABCA

B
µA

C
ν . (A.8)

Notice that A0
µ is sourced by εµνρσαηxyF

x
νρF

y
σα which is related to the instanton

number on the constant-time hypersurfaces. In differential-form language, its equation of

motion is

d(e2φk−4/3 ? F 0) =
1

2
√

3
ηxyF

x ∧ F y = 0 , (A.9)

which is similar to that of the Kalb-Ramond 2-form B. This is because A0 is the 5-

dimensional dual of the dimensionally reduced Heterotic Kalb-Ramond form B. The du-

ality relation is

F 0 = e−2φk4/3 ? H , with H ≡ dB +
1

2
√

3
ωCS , (A.10)

where ωCS is the Chern-Simons 3-form of all the vector fields but A0 itself

ωCS =
1

2
F+ ∧A− +

1

2
F− ∧A + FA ∧AA − 1

3!
gεABCA

A ∧AB ∧AC , (A.11)

satisfying

dωCS = ηxyF
x ∧ F y . (A.12)

B Timelike supersymmetric solutions

As shown in refs. [13–15, 17, 40], the problem of finding timelike supersymmetric solutions

of N = 2, d = 4 SEYM theories and timelike or null supersymmetric solutions with an

additional isometry of N = 1, d = 5 SEYM theories is effectively reduced to a much simpler

problem: finding functions ΦΛ,ΦΛ and vector fields ĂΛ
r
14 in Euclidean 3-dimensional space

E3 solving these three sets of equations:

1

2
εrswF̆

Λ
sw − D̆rΦ

Λ = 0 , (B.1)

D̆rD̆rΦΛ − g2fΛΣ
Ωf∆Ω

ΓΦΣΦ∆ΦΓ = 0 , (B.2)

ΦΛD̆rD̆rΦ
Λ − ΦΛD̆rD̆rΦΛ = 0 , (B.3)

14Λ,Σ, . . . = 0, 1, · · · , nV 5 + 1 where nV 5 is the number of vector supermultiplets in d = 5 and r, s, . . . =

1, 2, 3.
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where D̆r is the gauge covariant derivative in E3 with respect to the connection ĂΛ
r.

Eqs. (B.1) are the Bogomol’nyi equations [41] for a set of real, adjoint, Higgs fields ΦΛ

and gauge vector fields ĂΛ
r on E3. In the Abelian case, the integrability conditions are

the Laplace equations ∂r∂rΦ
Λ = 0 and the vector fields are implicitly determined by the

harmonic functions ΦΛ. In the non-Abelian sector this is no longer true, and the non-linear

equation has to be solved simultaneously for the scalar and the vector fields.

Eqs. (B.2) are equations for the scalar fields ΦΛ linear in them. In the Abelian direc-

tions the ΦΛ are harmonic functions ∂r∂rΦΛ = 0. In the SU(2) directions we are going to

set them to zero.15

Eq. (B.3) is the integrability condition of the equations that define the 1-forms ωr that

appear in the 4- and 5-dimensional metrics

∂[rωs] = 2εrsw

(
ΦΛD̆wΦΛ − ΦΛD̆wΦΛ

)
. (B.4)

and it is guaranteed to be satisfied everywhere except at the loci of the singularities of the

scalar functions ΦΛ,ΦΛ where it lead to the so-called bubble equations.16

For each solution ΦΛ,ΦΛ, Ă
Λ
r we can construct two different solutions of the three

kinds mentioned above. Here we only need the prescription to construct timelike solutions

with an additional isometry of N = 1, d = 5 SEYM theories:

1. The elementary building blocks, namely the 2(nV 5 + 2) functions M,H,KI , LI and

the 1-forms ω, ĂI , χ in E3 are related to the functions ΦΛ,ΦΛ and 1-forms ω, ĂΛ
r

determined by solving eqs. (B.1)–(B.4) by

KI =δIΛΦΛ+1 , LI =−2
√

2

3
δI

ΛΦΛ+1 , H=−2
√

2Φ0 , M=+
√

2Φ0 ,

ω=ω , χr=−2
√

2Ă0
r , ĂI r=δIΛĂ

Λ+1
r , I=0, · · · , nV 5 . (B.5)

All the timelike solutions have necessarily H 6= 0, (Φ0 6= 0).

2. The Yang-Mills coupling constant that appears in eqs. (B.1)–(B.3) can be understood

as the 4(= 1+3)-dimensional one g4. It needs to be replaced by the coupling constant

used in the 5-dimensional theory, which is related to it by

g4 = −
√

24g . (B.6)

3. With the above building blocks we construct first the combinations

hI/f̂ = LI + 8CIJKK
JKK/H , (B.7)

ω̂ = ω5(dz + χ) + ω , (B.8)

ω5 = M + 16
√

2H−2CIJKK
IKJKK + 3

√
2H−1LIK

I , (B.9)

ÂI = 2
√

6
[
H−1KI(dz + χ)− ĂI

]
, (B.10)

F̂ I = 2
√

6
{
D̆
[
KIH−1 ∧ (dz + χ)

]
− ?3HD̆KI

}
. (B.11)

15Non-trivial solutions are also available: for any compact group one can take ΦΛ = KΦΛ for some

constant K and, for SU(2) more interesting solutions have been recently found in ref. [22] using the results

of refs. [32, 42], but they are only relevant in multicenter solutions [43].
16See refs. [4, 44, 45].
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4. The physical fields are recovered from the building blocks as follows:

(a) For Real Special manifolds which are Riemannian symmetric manifolds we can

use this expression

f̂−3 = 33CIJKLILJLK + 34 · 23CIJKCKLMLILJK
LKM/H (B.12)

+ 3 · 26LIK
ICJKLK

JKKKL/H2 + 29
(
CIJKK

IKJKK
)2
/H3 ,

which for the model at hands reduces to

f̂ −1 = H−1

{
1

4
(6HL0 + 8ηxyK

xKy)
[
9H2ηxyLxLy + 48HK0LxK

x

+64(K0)2ηxyK
xKy

]}1/3

.

(B.13)

(b) Using the metric factor we can find the hI from eq. (B.7) and, from these, the

hI using

hI = 27CIJKhJhK . (B.14)

The scalar fields φx can be obtained by inverting the functions hI(φ) or hI(φ).

A possible, but not unique, parametrization can be given by

φx = hx = 9ηxyhyh0 . (B.15)

(c) With the previous results the spacetime metric is completely determined and

has the form

ds2 = f̂ 2(dt+ ω̂)2 − f̂ −1
[
H−1(dz + χ)2 +Hdxrdxr

]
. (B.16)

(d) The 5-dimensional vector fields are given by

AI = −
√

3hIe0 + ÂI , where e0 ≡ f̂(dt+ ω̂) , (B.17)

so that the spatial components, labeled by m,n = z, 1, 2, 3, are

AIm = ÂIm −
√

3hI f̂ ω̂m . (B.18)

Open Access. This article is distributed under the terms of the Creative Commons
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