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PT-symmetric for h, x ∈ R. It is found that H1 has a real spectrum in the weak coupling
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postulates of PT-symmetric quantum mechanics.
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1 Introduction

The Hill’s equation is a second-order linear ordinary differential equation of the (Schrö-

dinger-like) form:

− ψ′′(x) +Q(x)ψ(x) = λψ(x), x ∈ R/πZ, (1.1)

where the function Q(x) may generically be complex valued and it is assumed to be of

bounded variation and periodic, with the base period π, i.e., Q(x+π) = Q(x) [1]. The two

fundamental solutions to eq. (1.1) can be cast into the form that reveals their periodicity

which is possible due to the Floquet’s Theorem (for more details see appendix A). Moreover,

the Oscillation Theorem asserts that the (real) spectrum of the Hill’s operator with real

Q(x) reveals a band structure [1]. The bands are open sets in the positive real line,

separated by gaps. The solutions that depend on spectral values that fall into the bands

have bounded variation in opposite to those whose spectral values fall into gaps.

The simplest, but very important special cases of the Hill equation are the Mathieu

equation [2] which assumes the form:

Q(x) = 2h2 cos 2x, (1.2)

and the Whittaker-Hill equation [1] for which1

Q(x) = A cos 4x+ Bcos 2x. (1.3)

1In the present work: A = 1

2
h2, B = 4hµ.
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Eqs. (1.1)–(1.2) and (1.1)–(1.3) occur in a broad spectrum of physical problems. Their

solutions proved useful in many fields of engineering [3, 4], quantum chemistry [5] and pure

physics ranging from some topologically non-trivial gauge theories [6] to cosmology [7, 8]

and D-brane physics [9–11]. Obviously, Schrödinger operators with periodic potentials

are of special importance in solid state physics. The potentials (1.2) and (1.3) are real,

hence corresponding quantum-mechanical (QM) hamiltonians are hermitian and have real

spectra. Recall, that also some complex potentials have applications in quantum physics,

for instance, in nuclear theory [12]. Other especially interesting complex potentials are

those which yield PT-symmetric QM hamiltonians.2 Case studies show that PT-symmetric

hamiltonians may have real spectra.3 In the present work we consider the eigenvalue

problem (1.1) with the complex potential:

Q(x) =
1

4
h2e−4ix + 2h2 cos 2x (1.4)

which is obviously PT-symmetric for h, x ∈ R.4

The Mathieu and Whittaker-Hill equations can be studied using conventional, well

known methods such as the Hill determinant or WKB, cf. e.g. [1, 18–20]. On the other

hand, it has been observed lately that Schrödinger equations with potentials (1.2)–(1.4)

emerge entirely within the framework of two-dimensional conformal field theory (2dCFT)

as the classical limit of the null vector decoupling (NVD) equations obeyed by certain 3-

point degenerate irregular conformal blocks [21–25]. Moreover, as a manifestation of the

correspondence between the “semiclassical” 2dCFT and the Nekrasov-Shatashvili limit of

the Ω-deformed N =2 super Yang-Mills theories (cf. figure 1) the spectrum of the Mathieu

and related operators can be investigated with the use of tools of the N =2 SUSY gauge

theories, cf. e.g. [22, 26].

Interestingly, it is not the first time when the Mathieu equation appears within the

framework of 2dCFT. The (modified) Mathieu equation was also studied by Zamolodchikov

in the context of the so-called ODE/IM correspondence [27–29].5 The abbreviation ODE

stands for “ordinary differential equations” and IM for “integrable models”. The ODE/IM

duality also connects 2dCFT to generalized spectral problems which include PT-symmetric

Schrödinger eigenvalue problems as well.6

2The hamiltonian H is PT-symmetric if it satisfies H = (PT)H(PT), where the symbol P represents the

space reflection operator (parity operator) and T stands for the time reversal operator, cf. [13]. The effect

of P and T on the QM coordinate operator x̂ and the momentum operator p̂ is as follows:

P x̂P = −x̂, P p̂P = −p̂,

T x̂T = x̂, T p̂T = −p̂.

In the Schrödinger eigenvalue problem Hψ = λψ we have x̂ 7→ x and p̂ 7→ −i d
dx

. The parity operator P is

a linear operator and that it leaves invariant the commutation relation [x̂, p̂] = i~. The same is true for T

if it is assumed that TiT = −i. Since P and T are reflection operators, their squares are the unit operator:

P
2 = T

2 = 1. Finally, it follows that [P,T] = 0.
3Precisely, the eigenvalues of a particular PT-symmetric hamiltonian are real if every eigenfunction of a

PT-symmetric hamiltonian is also an eigenfunction of the PT operator, cf. [13].
4
PT-symmetric complex potentials satisfy Q(x) = Q(−x).

5Cf. the talk by V. Bazhanov [http://cft-im.bo.infn.it/2011/talks/Bazhanov.pdf].
6For more details, see the excellent introduction to the subject [29].
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Figure 1. The triple correspondence in the case of the Virasoro classical conformal blocks links

the latter to SU(2) instanton twisted superpotentials which describe the spectra of some quantum-

mechanical systems. The Bethe/gauge correspondence on the r.h.s. connects the SU(N) N = 2

SYM theories with the N-particle quantum integrable systems. An extension of the above triple

relation to the case N > 2 needs to consider on the l.h.s. the classical limit of the WN symmetry

conformal blocks according to the known extension [14] of the AGT conjecture (see e.g. [15–17]).

In our previous works [22, 23] we have found that the Mathieu eigenvalue can be

expressed in terms of the pure gauge classical irregular block and such expression exactly

coincides with the well known weak coupling expansion of the Mathieu eigenvalue in the

case in which the auxiliary parameter is the non-integer Floquet exponent. Furthermore,

it has been shown that the formula for the corresponding eigenfunction obtained from

the irregular block reproduces the so-called Mathieu exponent from which the non-integer

order elliptic cosine and sine functions may be constructed.

In the present paper we continue the line of research initiated in [22, 23] and study

the eigenvalue problem (1.1) for potentials (1.3) and (1.4) using methods of 2dCFT. The

purpose of this work is to answer the question of what kind of solutions are possible to be

obtained in this way. This knowledge paves the way for studying spectra of Schrödinger

operators with potentials (1.3) and (1.4) employing non-perturbative tools of 2dCFT. Pre-

cisely, it seems to be possible to connect different regions of spectra of mentioned operators

using duality relations for four-point spherical conformal blocks. This is the main motiva-

tion for our research.

The organization of the paper is as follows. In section 2 we introduce the Gaiotto

vectors (GV) related to the N =2 SYM theories with Nf = 0, 1 flavors and define two types

of irregular conformal blocks, i.e.: (a) the products of GV, and (b) the matrix elements

of certain degenerate chiral vertex operators between GV. Then, we discuss some basic

properties of these blocks. In particular, we propose a classical asymptotic behavior for

irregular blocks of the type (a) which is inspired by the semiclassical behavior of the physical

Liouville field theory correlators and consistent with the Nekrasov-Shatashvili limit of the

corresponding Nekrasov instanton functions. Moreover, using this proposal we compute

power expansions of the classical Nf = 1, 2 irregular conformal blocks.7 Finally, we derive

7Cf. [24, 30], where the classical irregular blocks have been also studied using methods of matrix models.
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certain null vector decoupling equations obeyed by the Nf = 1, 2 degenerate irregular

blocks of the type (b).

In section 3 we derive classical limit of the NVD equations fulfilled by the Nf = 1, 2

degenerate irregular blocks. As a result we get closed expressions for some solutions of

the eigenvalue problem (1.1) with the PT-symmetric complex potential (1.4) and the

Whittaker-Hill potential (1.3).8 More concretely, we have found that (i) for each po-

tential (1.3) and (1.4) the corresponding eigenvalue λ and the two independent solutions

of the eq. (1.1) are given in terms of the classical limit of irregular blocks; (ii) for the

complex potential (1.4) the spectrum λ is indeed real for h, x ∈ R and ν ∈ R \ Z; (iii) our
fundamental solutions to eqs. (1.1)–(1.3) and (1.1)–(1.4) are nothing but the non-integer

order Floquet solutions in the weak coupling (small h) region.9

In section 4 we present our conclusions. The problems that are still open and the

possible extensions of the present work are discussed.

2 Quantum and classical Nf = 1, 2 irregular blocks

As we have mentioned earlier in our previous paper in the sequel [23] the Moore-Seiberg

formalism of rational conformal field theory can be successfully extended to the case of

non-rational 2dCFT. Therefore the central role in the forthcoming discussion is played

by the chiral vertex operators (CVO’s) that constitute building blocks for physical fields

in the Moore-Seiberg formalism. CVO’s are assumed here to act between highest weight

representations of Virasoro algebra.

2.1 Regular and Nf = 1, 2 irregular blocks

For the sake of definiteness let V n
c,∆ denote the vector space generated by all vectors of

the form

| ν∆,I 〉 = L−I | ν∆ 〉 := L−k1 . . . L−kj−1
L−kj | ν∆ 〉, ∀

i∈N
L−i ∈ Virc, (2.1)

where I = (k1, . . . , kj−1, kj) is an ordered (k1 ≥ . . . ≥ kj ≥ 1) sequence of positive integers

of the length |I| ≡ k1 + . . .+ kj = n, and | ν∆ 〉 is the highest weight vector:

L0| ν∆ 〉 = ∆| ν∆ 〉, ∀
n∈N

Ln| ν∆ 〉 = 0 . (2.2)

The Verma module of the central charge c and the highest weight ∆ is the Z-graded

representation of the Virasoro algebra determined on the space:

Vc,∆ =
⊕

n≥0

V n
c,∆, dimV n

c,∆ = p(n) ,

8Note that an appropriate substitution transforms the Whittaker-Hill equation to the so-called equation

of Ince, cf. [http://dlmf.nist.gov/28.31]. Hence, our formulae may also be useful to express some solutions

of the Ince equation.
9For the definition and classification of the Floquet solutions of the Hill equation, see appendix A.
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where p(n) is the number of partitions of n (with the convention p(0) = 1). It is an

eigenspace of L0 with the eigenvalue ∆ + n. On Vn
c,∆ there exists the symmetric bilinear

form 〈 · | · 〉 uniquely defined by the relations

〈 ν∆ | ν∆ 〉 = 1 and (Ln)
† = L−n.

The Gram matrix Gc,∆ of the form 〈 · | · 〉 is block-diagonal in the basis {| ν∆,I 〉} with blocks

[
Gn

c,∆

]
IJ

= 〈 ν∆,I | ν∆,J 〉 = 〈 ν∆ |(L−I)
†L−J | ν∆ 〉.

The Verma module Vc,∆ is irreducible if and only if the form 〈 · | · 〉 is non-degenerate. The
criterion for irreducibility is vanishing of the determinant detGn

c,∆ of the Gram matrix,

known as the Kac determinant, given by the formula [31–35]:

det Gn
c,∆ = Cn

∏

1≤rs≤n

(∆−∆rs)
p(n−rs), (2.3)

where Cn is a constant and ∆rs are the weights form the Kac table

∆rs(c) =
Q2

4
− 1

4

(
rb+

s

b

)2
, r, s ∈ N, (2.4)

for which the central charge is given by c = 1 + 6Q2 with Q = b+ b−1.

The non-zero element |χrs 〉 ∈ Vc,∆rs(c) of degree n = rs is called a null vector if

L0 |χrs 〉 = (∆rs+ rs) |χrs 〉, and Lk |χrs 〉 = 0, ∀ k > 0. Hence, |χrs 〉 is the highest weight
state which generates its own Verma module Vc,∆rs(c)+rs, which is a submodule of Vc,∆rs(c).

One can prove that each submodule of the Verma module Vc,∆rs(c) is generated by a null

vector. Then, the module Vc,∆rs(c) is irreducible if and only if it does not contain null

vectors with positive degree.

For non-degenerate values of ∆, i.e. for ∆ 6= ∆rs(c), there exists the basis {| νt∆,I 〉}I⊢n
in Vn

c,∆ whose elements are defined by the relation 〈 νt∆,I | ν∆,J 〉 = δIJ for all | ν∆,J 〉 ∈ Vn
c,∆.

The basis vectors | νt∆,I 〉 have the following representation in the standard basis

| νt∆,I 〉 :=
∑

J⊢n

[
Gn

c,∆

]IJ
| ν∆,J 〉,

∑

K⊢n

[
Gn

c,∆

]IK[
Gn

c,∆

]
KJ

= δIJ .

The chiral vertex operator is the linear map V ∆3
∞

∆2
z

∆1

0 : V∆2
⊗ V∆1

→ V∆3
such that

for all | ξ2 〉 ∈ V∆2
the operator

V (ξ2|z) ≡ V ∆3
∞

∆2
z

∆1

0 (| ξ2 〉 ⊗ · ) : V∆1
→ V∆3

satisfies the following conditions

[Ln, V (ν2|z)] = zn
(
z
∂

∂z
+ (n+ 1)∆2

)
V (ν2|z) , n ∈ Z (2.5)

V (L−1ξ2|z) =
∂

∂z
V (ξ2|z) , (2.6)

– 5 –
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V (Lnξ2|z) =
n+1∑

k=0

(
n+ 1

k

)
(−z)k [Ln−k, V (ξ2|z)] , n > −1, (2.7)

V (L−nξ2|z) =
∞∑

k=0

(
n− 2 + k

n− 2

)
zk L−n−k V (ξ2|z)

+ (−1)n
∞∑

k=0

(
n− 2 + k

n− 2

)
z−n+1−k V (ξ2|z) Lk−1, n > 1. (2.8)

The commutation relation (2.5) defines the primary vertex operator corresponding to the

highest weight state | ν2 〉 ∈ V∆2
. The matrix element of the primary CVO between basis

states in V |I|,|J |
∆a,c

fulfills the following relation

〈 ν∆a,I |V (ν∆b
|z) | ν∆c,J 〉 = z∆a−∆b−∆c+|I|−|J |〈ν∆a |V (ν∆b

|1) |ν∆c〉. (2.9)

In what follows we assume the normalization 〈ν∆a |V (ν∆b
|1) |ν∆c〉 = 1.

In analogy to the Heisenberg algebra it is possible to form coherent states for generators

of the Virasoro algebra. Indeed, as it was first shown by Gaiotto [36] and in refs. [25, 37–39]

the Virasoro generators for each n > 0 in the highest weight condition in eq. (2.2) may be

treated as “annihilation” operators. Hence, there is a vector on which a certain finite set of

positive indexed generators of Virasoro algebra act diagonally termed the irregular vector.

The Virasoro algebra each positive indexed generator obeys induces corresponding algebra

of differential operators in the space of parameters labeling the irregular vector [39]. In

what follows we are concerned with only two simplest cases that due to AGT correspond to

gauge theories with Nf = 0 and Nf = 1, where there are at most two parameters labeling

the irregular vector.10

Let us recall that the Virasoro irregular vector that is a “coherent state” of L1 to which

we further refer as to the “zero flavor” or Nf = 0 state fulfills the following conditions:

L0|∆,Λ2〉 =
(
∆+

Λ

2

∂

∂Λ

)
|∆,Λ2〉, L1|∆,Λ2〉 = Λ2|∆,Λ2〉, Ln|∆,Λ2〉 = 0 ∀ n ≥ 2.

Making use of the above algebra it can be developed in Vc,∆ as follows11

|∆,Λ2〉 =
∑

I∈Y

|ν∆,I〉〈νt∆,I |∆,Λ2〉 =
∞∑

n=0

Λ2n
∑

I⊢n

[
Gn

c,∆

](1n)I
| ν∆,I 〉 , (2.10G1)

where we used the projector (identity operator in Vc,∆):

P∆ =
∑

I∈Y

|ν∆,I〉 ⊗ 〈νt∆,I | =
∑

n≥0

∑

I,J⊢n

[
Gn

c,∆

]IJ |ν∆,I〉 ⊗ 〈ν∆,J | ,

10In the present paper we adopt the following nomenclature: “zero flavor”, “single flavor” and so on for

Gaiotto’s states and then for irregular blocks as these objects are related to corresponding quantities in the

N = 2 super-Yang-Mills theories with Nf = 0, 1, . . . — zero, one and more flavors.
11The symbol Y denotes the set of all partitions or equivalently the Young diagrams of all natural numbers

that in the mathematical literature is termed the Young lattice.

– 6 –



J
H
E
P
0
7
(
2
0
1
6
)
1
3
1

and a convenient normalization 〈ν∆|∆,Λ2〉 = 1. The irregular vector to which we further

refer as to the “single flavor” or Nf = 1 state fulfills the following defining conditions

L0|∆,Λ,m 〉 =
(
∆+Λ

∂

∂Λ

)
|∆,Λ,m 〉, L1|∆,Λ,m 〉 = mΛ|∆,Λ,m 〉,

L2|∆,Λ,m 〉 = Λ2|∆,Λ,m 〉, Ln|∆,Λ,m 〉 = 0 ∀ n ≥ 3.

Proceeding analogously as in Nf = 0 case we obtain

|∆,Λ,m 〉 =
∞∑

n=0

Λn

[n2 ]∑

p=0

mn−2p
∑

I⊢n

[
Gn

c,∆

](1n−2p 2p)I
| νn∆,I 〉 . (2.10G2)

The quantum irregular conformal blocks are defined as inner products of the irregular

vectors [36, 37]:12

Fc,∆(Λ,m) = 〈∆,
1

2
Λ, 2m |∆,Λ2 〉 (2.11)

=
∞∑

n=0

(
1

2
Λ3

)n [n2 ]∑

p=0

(2m)n−2p
[
Gn

c,∆

](1n−2p 2p)(1n)
,

Fc,∆(Λ,m1,m2) = 〈∆,
1

2
Λ, 2m1 |∆,

1

2
Λ, 2m2 〉 (2.12)

=
∞∑

n=0

(
Λ

2

)2n [n2 ]∑

p,p′=0

(2m1)
n−2p

[
Gn

c,∆

](1n−2p 2p) (1n−2p 2p)
(2m2)

n−2p′ .

Irregular blocks (2.11)–(2.12) can be recovered from conformal blocks on the torus and on

the sphere in a properly defined decoupling limits of external conformal weights [37, 40].

To see this let Cg,n denote the Riemann surface with genus g and n punctures. Let x be

the modular parameter of the 4-punctured Riemann sphere then the s-channel conformal

block on C0,4 is defined as the following formal x-expansion:

Fc,∆

[
∆2 ∆3

∆1 ∆4

]
(x) = x∆−∆3−∆4

(
1 +

∞∑

n=1

xnF n
c,∆

[
∆2 ∆3

∆1 ∆4

])
, (2.13a)

where the coefficients of the conformal block are defined as

F n
c,∆

[
∆2 ∆3

∆1 ∆4

]
=

∑

I,J⊢n

〈ν∆1
|V∆2

(1)|νn∆,I〉
[
Gn

c,∆

]IJ
〈νn∆,J |V∆3

(1)|ν∆4
〉. (2.13b)

12In fact, there is much more Gaiotto’s states than just these two written in eqs. (2.10G1) and (2.10G2),

see for instance [25, 38, 39]. In the present paper we confine ourselves to study irregular blocks being inner

products of (2.10G1), (2.10G2) or matrix elements between these two states. Possible extensions of the

present work taking into account existence of the other Gaiotto states are discussed in conclusions.
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Now, employing a suitable AGT inspired parametrization of the external weights ∆i and

the central charge c, i.e.:

∆i =
αi(ǫ− αi)

ǫ1ǫ2
, c = 1 + 6

ǫ2

ǫ1ǫ2
, ǫ = ǫ1 + ǫ2 ,

α1 =
1

2
(ǫ+ µ1 − µ2), α2 =

1

2
(µ1 + µ2), α3 =

1

2
(µ3 + µ4), α4 =

1

2
(ǫ+ µ3 − µ4),

and introducing the dimensionless expansion parameters: Λ = Λ̂/(−ǫ1ǫ2)
1

2 and mi =

m̂i/(−ǫ1ǫ2)
1

2 , where m̂ = µ1 − 1
2ǫ, m̂1,4 = µ1,4 − 1

2ǫ, one obtains [37, 40]:

x∆3+∆4−∆Fc,∆

[
∆2 ∆3

∆1 ∆4

]
(x)

µ2,µ3,µ4 →∞−−−−−−−−→
xµ2µ3µ4=Λ̂3

Fc,∆(Λ,m),

x∆3+∆4−∆Fc,∆

[
∆2 ∆3

∆1 ∆4

]
(x)

µ2,µ3 →∞−−−−−−→
xµ2µ3=Λ̂2

Fc,∆(Λ,m1,m4).

The above conformal blocks may be related by means of AGT correspondence to their

gauge theoretic counterparts, that is SU(2) Nekrasov’s instanton partition functions with

Nf = 1, 2 flavors [36, 41–43]:

Fc,∆(Λ,m) = ZSU(2),Nf=1
inst (Λ̂, a, m̂, ǫ1, ǫ2), (2.14)

Fc,∆(Λ,m1,m2) = ZSU(2),Nf=2
inst (Λ̂, a, m̂1, m̂2, ǫ1, ǫ2). (2.15)

The relations (2.14)–(2.15), which are understood as equalities between the coefficients of

the expansions of both sides, hold for

Λ =
Λ̂√−ǫ1ǫ2

, mi =
m̂i√−ǫ1ǫ2

, ∆ =
ǫ2 − 4a2

4ǫ1ǫ2
, c = 1 + 6

ǫ2

ǫ1ǫ2
≡ 1 + 6Q2 (2.16)

where

Q = b+
1

b
≡

√
ǫ2
ǫ1

+

√
ǫ1
ǫ2
, b =

√
ǫ2
ǫ1
. (2.17)

The study of the Nekrasov partition functions ZNekrasov = ZpertZinst in the limit ǫ2 → 0

has revealed that it behaves exponentially [44]. In particular, for the instanton part of the

partition function we have

Zinst( · , ǫ1, ǫ2) ǫ2→0∼ exp

{
1

ǫ2
Winst( · , ǫ1)

}
. (2.18)

Therefore, in view of eqs. (2.14)–(2.15), and relation between Liouville and deformation

parameters in eq. (2.17) from the Nekrasov-Shatashvili limit in eq. (2.18) one can expect

the exponential behavior of irregular blocks in the limit b → 0, i.e.:

F1+6Q2,∆(Λ,m)
b→0∼ exp

{
1

b2
f1

δ

(
Λ̂/ǫ1, m̂/ǫ1

)}
, (2.19)

F1+6Q2,∆(Λ,m1,m2)
b→0∼ exp

{
1

b2
f2

δ

(
Λ̂/ǫ1, m̂1/ǫ1, m̂2/ǫ1

)}
, (2.20)
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where ∆ = 1
b2
δ, δ = O(b0). The classical behaviors (2.19)–(2.20) are very nontrivial state-

ments concerning quantum irregular blocks. Although there is no proof of eqs. (2.19)–(2.20)

the existence of the classical irregular blocks f1, f2 can be verified through direct calcula-

tion order by order in Λ̂/ǫ1. Using power expansions of quantum irregular blocks (2.11)–

(2.12) and eqs. (2.19)–(2.20) up to n = 3 one finds

(i) the classical irregular block with “single flavor” Nf = 1:

f1

δ

(
Λ̂/ǫ1, m̂/ǫ1

)
= lim

b→0
b2 logF1+6Q2, 1

b2
δ

(
Λ̂/(ǫ1b), m̂/(ǫ1b)

)

=

∞∑

n=1

(
Λ̂/ǫ1

)3n
f1,n
δ

(
m̂

ǫ1

)
, (2.21a)

where the coefficients read as follows

f1,1
δ

(
m̂

ǫ1

)
=

1

2δ

m̂

ǫ1
,

f1,2
δ

(
m̂

ǫ1

)
=

5δ − 3

16δ3(4δ + 3)

(
m̂

ǫ1

)2

− 3

16δ(4δ + 3)
,

f1,3
δ

(
m̂

ǫ1

)
=

δ(9δ − 19) + 6

48δ5(δ + 2)(4δ + 3)

(
m̂

ǫ1

)3

+
6− 7δ

48δ3(δ + 2)(4δ + 3)

m̂

ǫ1
;

(2.21b)

(ii) the classical irregular block with “two flavors” Nf = 2:

f2

δ

(
Λ̂/ǫ1, m̂1/ǫ1, m̂2/ǫ1

)
= lim

b→0
b2 logF1+6Q2, 1

b2
δ

(
Λ̂/(ǫ1b), m̂2/(ǫ1b), m̂1/(ǫ1b)

)

=
∞∑

n=1

(
Λ̂/ǫ1

)2n
f2,n
δ

(
m̂1

ǫ1
,
m̂2

ǫ1

)
, (2.22a)

where the coefficients are of the form

f2,1
δ

(
m̂1

ǫ1
,
m̂2

ǫ1

)
=

1

2δ

m̂1

ǫ1

m̂2

ǫ1
,

f2,2
δ

(
m̂1

ǫ1
,
m̂2

ǫ1

)
=

δ2
(
δ − 3

(
m̂2

ǫ1

)2
)
+
(
m̂1

ǫ1

)2
(
(5δ − 3)

(
m̂2

ǫ1

)2
− 3δ2

)

16δ3(4δ + 3)
,

f2,3
δ

(
m̂1

ǫ1
,
m̂2

ǫ1

)
=

1

48δ5(δ + 2)(4δ + 3)

m̂1

ǫ1

m̂2

ǫ1

[
(6− 7δ)δ2

(
m̂2

ǫ1

)2

+

(
m̂1

ǫ1

)2
(
(δ(9δ − 19) + 6)

(
m̂2

ǫ1

)2

+ (6− 7δ)δ2

)
+ 5δ4

]
.

(2.22b)

As another yet consistency check of our approach let us observe that combining (2.14)–

(2.17) and (2.19)–(2.20) one gets an identification between classical irregular blocks and

SU(2) Nf = 1, 2 effective twisted superpotentials:

f1,2
1

4
−a2

ǫ2
1

(
Λ̂/ǫ1, ·

)
=

1

ǫ1
WSU(2), Nf=1,2

inst

(
Λ̂, a, · , ǫ1

)
. (2.23)
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Note that the classical conformal weight δ in the eq. (2.23) above is expressed in terms of

the gauge theory parameters a, ǫ1. Indeed, one finds

δ = lim
b→0

b2∆ = lim
ǫ2→0

ǫ2
ǫ1
∆ =

1

4
− a2

ǫ21
.

By means of the expansions (2.21a)–(2.22a) and theirs analogues for the twisted superpo-

tentials obtained independently from the instanton partition functions one can confirm the

identities (2.23) up to desired order.

2.2 Null vector decoupling equations

In this subsection we shall derive partial differential equations obeyed by the degenerate

irregular blocks, cf. [21]. The latter we define as matrix elements of the degenerate chiral

vertex operator,13 V+(z) = V (|ν∆+
〉|z), where ∆+ ≡ ∆21 = −3

4b
2 − 1

2 , between Gaitto’s

states (2.10G1)–(2.10G2):

Ψ1(z; Λ,m) := 〈∆′,
1

2
Λ, 2m |V+(z)| ∆̃,Λ2 〉, (2.24Ψ1)

Ψ2(z; Λ,m1,m2) := 〈∆′,
1

2
Λ, 2m1 |V+(z)| ∆̃,

1

2
Λ, 2m2 〉. (2.24Ψ2)

One of the tools that allows to derive the so-called null vector decoupling (NVD)

equations is the following:

Theorem 1 (Feigin-Fuchs [33], cf. [45]). Let i, j, k ∈ {1, 2, 3} be chosen such that j 6= i,

k 6= i, j 6= k. Let us assume that

1. ∆i = ∆rs ≡ 1
4Q

2 − 1
4

(
rb+ sb−1

)2
, r, s ∈ N;

2. the vector |ξi〉 lies in the singular submodule generated by the null vector |χrs〉, i.e.:
|ξi〉 ∈ Vc,∆rs(c)+rs ⊂ Vc,∆rs(c).

Then, 〈ξ3|V (ξ2|z2)|ξ1〉 = 0 if and only if

∆j = ∆βj
≡ Q2

4
− 1

4
β2
j and ∆k = ∆βk

≡ Q2

4
− 1

4
β2
k (2.25)

satisfy the fusion rules βj − βk = pb + qb−1, where p ∈ {1 − r, 3 − r, . . . , r − 1} and

q ∈ {1− s, 3− s, . . . , s− 1}.

We will apply the Feigin-Fuchs Theorem in the case when ∆2 = ∆+ ≡ ∆21. Therefore,

we have to assume that the weights ∆1 = ∆̃ and ∆3 = ∆′ of in and out states are related

by the fusion rule I or II:

I : ∆̃ = ∆β1
, ∆′ = ∆β3

= ∆β1+b ⇔ β3 = β1 + b, (2.26)

II : ∆̃ = ∆β1
, ∆′ = ∆β3

= ∆β1−b ⇔ β3 = β1 − b. (2.27)

13Calculations presented in this subsection hold also for V∆12
(z).
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In our calculation we will use a little bit modified (compering to (2.25)) parametrization

of conformal weights, namely

∆(σ) ≡ Q2

4
− σ2, (2.28)

in which the fusion rules assumed above reads as follows

I : ∆̃ = ∆

(
σ − b

4

)
, ∆′= ∆

(
σ +

b

4

)
, (2.29)

II : ∆̃ = ∆

(
σ +

b

4

)
, ∆′= ∆

(
σ − b

4

)
. (2.30)

The matrix elements such as (2.24Ψ1) or (2.24Ψ2), i.e. with the conformal weights fulfill-

ing (2.26), (2.27) or (2.29), (2.30) will be denoted by Ψi

I, Ψ
i

II.

Hence, by virtue of the Feigin-Fuchs Theorem we have four equations for Nf = 1, 2

written in a concise form as

〈∆′,
1

2
Λ, 2m|χ+(z)|∆̃, · 〉 = 0 , (2.31)

where

(a) χ+(z) is the null vertex operator,

χ+(z) =

(
L̂−2(z)−

3

2(2∆+ + 1)
L̂ 2
−1(z)

)
V+(z) ≡ V

((
L−2 +

1

b2
L2
−1

)
| ν∆+

〉 | z
)
,

(2.32)

which corresponds to the null vector

|χ+ 〉 = χ+(0)| 0 〉 =
(
L−2 +

1

b2
L2
−1

)
| ν∆+

〉,

from the second level of the Verma module V∆+
;

(b) the dot stands for the set of parameters Λ2 and 1
2Λ, 2m for “zero flavor” and “single

flavor” irregular vector, respectively;

(c) the conformal weights obey (2.29) or (2.30).

In order to convert eqs. (2.31) to PDE’s obeyed by the degenerate irregular blocks Ψi
ι,

i = 1,2, ι = I, II one needs to employ the following Ward identities

〈∆′,
1

2
Λ, 2m|T (w)V+(z)|∆̃, · 〉 =

[
z

w(w − z)

∂

∂z
+

∆+

(w − z)2
+ U i

ι

]
Ψi

ι, (2.33)

where14

U1

ι =
1

4
Λ2 +

mΛ

w
+

Λ2

w3
+

1

3w2

(
Λ

∂

∂Λ
+∆′ + 2∆̃−∆+ − z

∂

∂z

)
, (2.33U1)

U2

ι =
1

4
Λ2 +

m1Λ

w
+

m2Λ

w3
+

1
4Λ

2

w4
+

1

2w2

(
Λ

∂

∂Λ
+∆′ + ∆̃−∆+ − z

∂

∂z

)
. (2.33U2)

14Here, U i

ι , i = 1,2 depend on ι = I, II via terms ∆′ + 2∆̃−∆+ and ∆′ + ∆̃−∆+.
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From eq. (2.33) and using the formula [46]:

L̂−k(z) =
1

2πi

∮

Cz

dw(w − z)1−k T (w),

one finds that

〈∆′,
1

2
Λ, 2m|L̂−2(z)V+(z)|∆̃, · 〉 =

[
−1

z

∂

∂z
+ U i

ι

∣∣
w→z

]
Ψi

ι, (2.34)

where U i
ι are given in eqs. (2.33U1) and (2.33U2). Finally, taking into account that matrix

elements of the descendant operator L̂2
−1(z)V+(z) between irregular vectors result in ∂2

zΨ
i
ι,

from eq. (2.32), eqs. (2.31) and eqs. (2.34) we get the sought-after partial differential

equations:

1. for “single flavor” degenerate irregular blocks:

[
1

b2
z2

∂2

∂z2
− 4z

3

∂

∂z
+

1

4
z2Λ2 + z mΛ +

Λ2

z
+

Λ

3

∂

∂Λ
+

2∆̃ + ∆′ −∆+

3

]
Ψ1

ι = 0 ,

(2.35D1)

2. for “two flavors” degenerate irregular blocks:

[
1

b2
z2

∂2

∂z2
− 3z

2

∂

∂z
+

1

4
Λ2

(
z2 +

1

z2

)
+ Λ

(
zm1 +

m2

z

)

+
Λ

2

∂

∂Λ
+

∆̃ +∆′ −∆+

2

]
Ψ2

ι = 0 . (2.35D2)

In the next section we will consider the limit b → 0 each of these equations separately.

The steps in forthcoming analysis follows directly those that has been already done in

our previous work [23]. The experience gained in this study helps us to compute the

semi-classical limit of eqs. (2.35D1) and (2.35D2).

3 Classical limit of Nf = 1, 2 NVD equations

The differential equations we derived in the previous section are a starting point to the

derivation of the differential equations some of which are well known in mathematics and

physics. In what follows we take the classical limit of NVD eqs. (2.35D1) and (2.35D2) as

well as the functions that solve them. As steps leading to the equations are the same in

both cases Nf = 1, 2 we discuss them in full generality.

The functions15 Ψ1
ι , Ψ2

ι , ι = I, II that solve eqs. (2.35D1), (2.35D2), that are the

degenerate irregular blocks given in eqs. (2.24Ψ1) and (2.24Ψ2) can be given explicit form

15Let us recall that indices I, II mean that different fusion rules, namely (2.29) and (2.30), have been

assumed.
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by means of eqs. (2.10G1), (2.10G2) and eq. (2.9) which results in

Ψ1

ι (z; Λ,m) = z∆
′−∆+−∆̃

∑

r,s≥0

2−rΛ2s+rzr−s

[ r2 ]∑

p=0

(2m)r−2p

×
∑

I⊢r

∑

J⊢s

[
Gr

c,∆′

](2p,1r−2p)I
〈ν∆′,I |V+(1)|ν∆̃,J〉

[
Gs

c,∆̃

]J(1s)
(3.1Ψ1)

and

Ψ2

ι (z; Λ,m1,m2) = z∆
′−∆+−∆̃

∑

r,s≥0

(
1

2
Λ

)r+s

zr−s

[ r2 ]∑

p=0

(2m1)
r−2p

[ s2 ]∑

p′=0

(2m2)
s−2p′

×
∑

I⊢r

∑

J⊢s

[
Gr

c,∆′

](2p,1r−2p)I
〈ν∆′,I |V+(1)|ν∆̃,J〉

[
Gs

c,∆̃

]J(2p′ ,1s−2p′ )
.

(3.1Ψ2)

In what follows it will be convenient to introduce the following notation

Ψi

ι(z; Λ, · ) = zκι Φi

ι(z; Λ, · ) , i = 1,2, ι = I, II, (3.2)

where

κι = ∆′ −∆+ − ∆̃ =




∆
(
σ + b

4

)
−∆+ −∆

(
σ − b

4

)
= −bσ −∆+ if ι = I

∆
(
σ − b

4

)
−∆+ −∆

(
σ + b

4

)
= bσ −∆+ if ι = II.

(3.3)

Let us notice that Φi
ι(z; Λ, · ) can be split into “diagonal” r = s and “off-diagonal” r 6= s

parts Φi
ι(z; Λ, · ) = Φi

ι,r=s(Λ, · )+Φi

ι,r 6=s(z; Λ, · ). The former does not depend on z leaving

this dependence entirely to the latter. Making use of this observation Ψi
ι(z; Λ, · ) can be

cast into the factorized form

Ψi

ι(z; Λ, · ) = zκι eY
i
ι(Λ, · ) eX

i
ι (z;Λ, · ), i = 1,2, ι = I, II. (3.4)

The functions in the exponent take the form

Y i

ι(Λ, · ) = logΦi

ι,r=s(Λ, · ), X i

ι (z; Λ, · ) = log

(
1 +

Φi

ι,r 6=s(z; Λ, · )
Φi
ι,r=s(Λ, · )

)
.

The factorized form in eq. (3.4), as we soon see, gives one some insight into the behavior

of Ψi
ι in the classical limit. The equations (2.35D1) and (2.35D2) under substitution (3.2)

take the form
[
1

b2
z2

∂2

∂z2
+

(
2κι
b2

− 5− i

4− i

)
z
∂

∂z
+

Λ

4− i

∂

∂Λ
+ U i

ι (z; Λ, · )
]
Φi

ι(z; Λ, · ) = 0 , (3.5)

where i = 1,2, ι = I, II and

U1

ι (z;Λ,m) =
κι(κι−1)

b2
−4κι

3
+
1

4
z2Λ2+zmΛ+

Λ2

z
+
2∆̃+∆′−∆+

3
,

U2

ι (z;Λ,m1,m2) =
κι(κι−1)

b2
−3κι

2
+
1

4
Λ2

(
z2+

1

z2

)
+Λ

(
zm1+

m2

z

)
+
∆̃+∆′−∆+

2
.
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Let us consider the limit b → 0 of eqs. (3.5). To this purpose it is convenient to replace

the parameter σ in ∆′ and ∆̃ with ξ = bσ, cf. (2.28). Recall that the weights ∆′, ∆̃ are

related by the fusion rules written in eqs. (2.29) and (2.30). Hence, in the limit b → 0

— the conformal weights in eqs. (3.5) read as follows

∆′, ∆̃
b→0∼ 1

b2
δ, where δ = lim

b→0
b2∆′ = lim

b→0
b2∆̃ =

1

4
− ξ2,

∆+
b→0∼ O(b0) and 2∆̃ + ∆′ −∆+

b→0∼ 1

b2
3δ, ∆̃ + ∆′ −∆+

b→0∼ 1

b2
2δ;

— the κι’s yield (cf. (3.3))

κι
b→0−−→

{
−ξ + 1

2 if ι = I

ξ + 1
2 if ι = II

κι (κι − 1)
b→0−−→ −

(
1

4
− ξ2

)
= −δ for ι = I, II.

Making use of the relationship between CFT and instanton parameters given in eqs. (2.16),

(2.17) that reveals their b dependence i.e., Λ = Λ̂/(ǫ1b), m = m1 = m̂1/(ǫ1b), m2 =

m̂2/(ǫ1b), and taking into account the fact that the external conformal weights ∆′, ∆̃ are

heavy in the classical limit, while the degenerate weight ∆+ labeling the degenerate vertex

operator is light, we conjecture that the degenerate irregular blocks given in eqs. (2.24Ψ1)

and (2.24Ψ2) factorize into the light and the heavy parts in the classical limit. For Φi
ι =

z−κιΨi
ι this assertion translates into the following asymptotic behavior in the limit b → 0

Φi

ι(z; Λ̂/(ǫ1b), · )
b→0∼ ϕi

ι

(
z; Λ̂/ǫ1, ·

)
e

1

b2
f i

δ(Λ̂/ǫ1, · ), i = 1,2, ι = I, II. (3.6)

Comparing the right hand sides of eqs. (3.6) to eqs. (3.4) one can expect that

ϕi

ι

(
z; Λ̂/ǫ1, ·

)
= lim

b→0
eX

i
ι (z;Λ, · ) = lim

b→0

(
1 +

Φi

ι,r 6=s(z; Λ̂/(ǫ1b), · )
Φi
ι,r=s(Λ̂/(ǫ1b), · )

)
, (3.7ϕ)

f i

δ

(
Λ̂/ǫ1, ·

)
= lim

b→0
b2Y i

ι(Λ, · ) = lim
b→0

b2 log Φi

ι,r=s

(
Λ̂/(ǫ1b), ·

)
for ι = I, II.

(3.7f)

In ref. [23], where the similar discussion was performed for the Nf = 0 case to obtain the

Mathieu equation, we were able to prove this conjecture keeping only dominating factors in

b−2 and neglecting all the sub-dominating ones. Although much complex, a similar proof, in

principle, could be performed in the case under study. We expect, however, similar results,

therefore, in what follows, we are content with the assumption of the factorization (3.6) as

a fact.

Taking into account the factorization (3.6), in the limit b → 0 from eqs. (3.5) one gets

— for ι = I:
[
z2

d2

dz2
+ 2

(
1

2
− ξ

)
z
d

dz
+ U

i(z;Λ̂/ǫ1, · ) +
Λ̂

4− i
∂Λ̂f

i

δ(Λ̂/ǫ1, · )
]
ϕi

I(z;Λ̂/ǫ1, · ) = 0,

(3.8)
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— for ι = II:
[
z2

d2

dz2
+ 2

(
1

2
+ ξ

)
z
d

dz
+ U

i(z;Λ̂/ǫ1, · ) +
Λ̂

4− i
∂Λ̂f

i

δ(Λ̂/ǫ1, · )
]
ϕi

II(z;Λ̂/ǫ1, · ) = 0,

(3.9)

where i = 1,2 and

U
1

(
z;

Λ̂

ǫ1
,m

)
=

1

4

Λ̂2

ǫ21
z2 +

Λ̂m̂

ǫ21
z +

Λ̂2

ǫ21

1

z
, (3.9U 1)

U
2

(
z;

Λ̂

ǫ1
,m1,m2

)
=

1

4

Λ̂2

ǫ21

(
z2 +

1

z2

)
+

Λ̂

ǫ1

(
m̂1

ǫ1
z +

m̂2

ǫ1

1

z

)
. (3.9U 2)

The classical blocks f1

δ , f
2

δ are defined in eqs. (2.19) and (2.20). Deriving the above equa-

tions (3.8) and (3.9) we assumed that b2Λ̂∂Λ̂ϕ
i
ι → 0 for b → 0. This conjecture was verified

by direct computations of Λ̂/ǫ1 expansion of ϕi
ι (see below). Although it has not been

proved, in analogy to the Nf = 0 case in ref. [23], where it was proved up to leading order

in b−2 that ϕ0 is independent of b , it is here expected that ϕi
ι also does not depend on b

as well as its Λ̂ derivative.

In order to get rid of the first order differential operator in eqs. (3.8) and (3.9) we

redefine the functions ϕi

I, ϕ
i

II:

ϕi

I = zξψi

I, ϕi

II = z−ξψi

II (3.10)

and subsequently change a variable z = ew. In result we obtain
[

d2

dw2
+ U

i(ew; Λ̂/ǫ1, · ) +
Λ̂

4− i
∂Λ̂f

i

δ(Λ̂/ǫ1, · )− ξ2

]
ψi

I(e
w; Λ̂/ǫ1, · ) = 0 , i = 1,2

(3.11)

and the same equations for the second solutions ψi

II(e
w; Λ̂/ǫ1, · ). Potentials U i are defined

in eqs. (3.9U 1), (3.9U 2). Thus we have obtained two complex second order Schrödinger

type differential equations with spectra λi

ξ/4 := ξ2 − Λ̂∂Λ̂f
i

δ/(4 − i), i = 1,2 and pairs

(ψi

I, ψ
i

II) of independent solutions. Below we address each of the case Nf = 1 and Nf = 2

separately, where we compute the spectra and eigenfunctions of relevant operators.

3.1 Single flavor case: solvable complex potential

In this subsection we narrow down the discussion to Nf = 1 case. In order to obtain

the differential equation for this case that takes the form of Hill’s equation (1.1), but that

possesses a complex periodic potential, we identify the “coupling constant” as h = 2m̂/ǫ1 =

2Λ̂/ǫ1 in eq. (3.11) with potential (3.9U 1) and, after the change of variable w = −2ix, we

obtain16 [
− d2

dx2
+

h2

4
e−4ix + 2h2 cos 2x

]
ψ1 = λ1

ξ ψ
1 , x ∈ R/πZ. (3.12)

16A reason we choose this particular change of variable is dictated by experience gained in ref. [23], where

this choice led to the coincidence of the expansion of pure gauge three-point degenerate irregular block with

similar “weak coupling” expansion of the Mathieu exponent meν(x).
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This is the Schrödinger equation with complex odd potential on unit circle. The eigenvalue

λ1

ξ can be obtained from eqs. (2.21a) and (2.21b) with parametric relation to Floquet’s

exponent ξ = ν/2,

λ1

ν(h) = ν2 − 4h

3
∂hf

1
1

4
(1−ν2)

(
1

2
h,

1

2
h

)

= ν2 +
2

3(ν2 − 1)
h4 +

3

32(ν2 − 4)(ν2 − 1)
h6 +

5ν2 + 7

8(ν2 − 4)(ν2 − 1)3
h8 +O(h10).

(3.13)

The expression (3.13) is well defined for ν /∈ Z. The first few terms in the expansion (3.13)

suggest that the spectrum λ1
ν(h) is real for h ∈ R and ν ∈ R\Z. Indeed, from our approach

easily follows that the quantity λ1
ν(h) is real-valued for b, Λ̂, m̂, ǫ1, ξ ∈ R. The eigenvalue

λ1
ν(h) in eq. (3.13) is given by the logarithmic derivative of the Nf = 1 classical irregular

block:

f1

δ

(
Λ̂/ǫ1, m̂/ǫ1

)
= lim

b→0
b2 logF1+6Q2, 1

b2
δ

(
Λ̂/(ǫ1b), m̂/(ǫ1b)

)
.

Let us recall that the Nf = 1 quantum irregular block Fc,∆(Λ,m) is defined as an expan-

sion in Λ and m with coefficients which are elements of the inverse of the Gram matrix,

i.e., rational functions of c and ∆. Therefore, Fc,∆(Λ,m) is real-valued function when all

its parameters:

c = 1 + 6Q2, ∆ =
1

b2
δ =

1

b2

(
1

4
− ξ2

)
, Λ = Λ̂/(ǫ1b), m = m̂/(ǫ1b)

are real. Hence, in particular, for b, Λ̂, m̂, ǫ1, ξ ∈ R and Fc,∆(Λ,m) ≥ 0 the function

logFc,∆(Λ,m) is real-valued. If Fc,∆(Λ,m) < 0 then the function logFc,∆(Λ,m) will have

constant imaginary part iπ which vanishes in the limit b → 0.

In our approach the corresponding eigenfunctions, i.e. two independent solutions of

eq. (3.12) can be given in the “weak coupling” expansion (small h). The eigenfunctions are

calculable from the classical limit of the “off-diagonal” part of Φ1

ι,r 6=s given in eq. (3.1Ψ1)

(see also eqs. (3.7ϕ) and (3.10)) in the same manner as in ref. [23]. As a result one finds17

ψ1

I ≡ ψ1

I

(
e−2ix;

1

2
h,

1

2
h

)
= eiνx lim

b→0

(
1 +

Φ1

I,r 6=s

(
e−2ix; h

2b ,
h
2b

)

Φ1

I,r=s

(
h
2b ,

h
2b

)
)

= eiνx +
∑

n≥1

R1

I,n(x; ν)

(
h

2

)2n

, (3.14a)

where three first coefficients are found to take the form

R1

I,1(x;ν) =
e(ν−2)ix

ν−1
−e(ν+2)ix

ν+1
+
e(ν−4)ix

8(ν−2)
,

R1

I,2(x;ν) =
1

2

(
(5−ν)e(ν−2)ix

4(ν−2)(ν2−1)
+

e(ν−4)ix

(ν−2)(ν−1)
+

e(ν+4)ix

(ν+1)(ν+2)
− (5−3ν)e(ν−6)ix

12(ν−3)(ν−2)(ν−1)

+
e(ν−8)ix

64(ν−4)(ν−2)

)
,

17Here, ξ = ν/2.
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R1

I,3(x;ν) =
1

2

((
ν2−4ν+7

)
e(ν−2)ix

(ν−2)(ν−1)3(ν+1)
−
(
ν2+4ν+7

)
e(ν+2)ix

(ν−1)(ν+1)3(ν+2)
+

2e(ν−4)ix

3(ν−3)(ν−2)(ν2−1)

− e(ν+6)ix

3(ν+1)(ν+2)(ν+3)
+

e(ν−6)ix

3(ν−3)(ν−2)(ν−1)

+
(9−ν)e(ν−6)ix

64(ν−4)(ν−2)(ν−1)(ν+1)
+

(3ν−7)e(ν−8)ix

6(ν−4)(ν−3)(ν−2)(ν−1)

+

(
15ν2−80ν+89

)
e(ν−10)ix

960(ν−5)(ν−4)(ν−3)(ν−2)(ν−1)
+

e(ν−12)ix

1536(ν−6)(ν−4)(ν−2)

)
,

(3.14b)

and so on. Analogously, the second solution that solves eq. (3.12) is given by the formula:

ψ1

II ≡ ψ1

II

(
e−2ix;

1

2
h,

1

2
h

)
= e−iνx lim

b→0

(
1 +

Φ1

II,r 6=s

(
e−2ix; h

2b ,
h
2b

)

Φ1

II,r=s

(
h
2b ,

h
2b

)
)
. (3.15)

We have found no examples in the literature for this equation and its solutions which we

could compare with.

3.2 Two flavors case: Whittaker-Hill equation

In Nf = 2 case, after change of variable w = −2ix in eq. (3.11) for i = 2 with poten-

tial (3.9U 2), and identifying the “coupling constant” h = 2Λ̂/ǫ1, and introducing the

second parameter µ = m̂1/ǫ1 = m̂2/ǫ1 the equation assumes the form:

[
− d2

dx2
+

1

2
h2 cos 4x+ 4hµ cos 2x

]
ψ2 = λ2

ξ ψ
2 , (3.16)

which is a specific example of the Hill equation (1.1) termed the Whittaker-Hill equation.

The eigenvalue λ2

ξ , after the identification ξ = ν/2, is given by the following formula

(cf. (2.22a) and (2.22b))

λ2

ν(h,µ) = ν2−2h∂hf
2
1

4
(1−ν2)

(
1

2
h,µ,µ

)

= ν2+
2

ν2−1
µ2h2+

(
1

2(ν2−4)
+

12

(ν2−1)(ν2−4)
µ2+

8(5ν2+7)

(ν2−4)(ν2−1)3
µ4

)
h4

16

+

(
20

(ν2−9)(ν2−4)(ν2−1)
µ2+

32
(
7ν2+17

)

(ν2−9)(ν2−4)(ν2−1)3
µ4

+
64
(
9ν4+58ν2+29

)

(ν2−9)(ν2−4)(ν2−1)5
µ6

)
h6

64
+O((h/2)8) .

Hence, as before the 2dCFT technics led to the so-called non-integer order (ν /∈ Z) solution

of the Whittaker-Hill equation. The above expression for λ2
ν exactly coincides with that

obtained in ref. [24] by means of the perturbation calculus (see [19]) applied to eq. (3.16).
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As in the previous case, the two independent solutions of eq. (3.16) can be given in the

“weak coupling” expansions and are computed from the classical limit of the “off-diagonal”

part of Φ2

ι,r 6=s given in eq. (3.1Ψ2) (see also eqs. (3.7ϕ) and (3.10)). As a result one finds

ψ2

I ≡ ψ2

I

(
e−2ix;

1

2
h, µ, µ

)

= eiνx lim
b→0

(
1 +

Φ2

I,r 6=s

(
e−2ix; h

2b ,
µ
b ,

µ
b

)

Φ2

I,r=s

(
h
2b ,

µ
b ,

µ
b

)
)

= eiνx +
∑

n≥1

R2

I,n(x; ν, µ)

(
h

2

)2n

, (3.17a)

where the first tree coefficients of the Whittaker-Hill function take the form:

R2

I,1(x; ν, µ) = µ

(
e−ix(ν+2)

ν − 1
− e−ix(ν−2)

ν + 1

)
,

R2

I,2(x; ν, µ) =
e−ix(ν+4)

8(ν − 2)
− e−ix(ν−4)

8(ν + 2)
+

1

2
µ2

(
e−ix(ν−4)

(ν + 1)(ν + 2)
+

e−ix(ν+4)

(ν − 2)(ν − 1)

)
,

R2

I,3(x; ν, µ) = µ

(
− (ν − 5)e−ix(ν+2)

8(ν − 2)(ν − 1)(ν + 1)
− (ν + 5)e−ix(ν−2)

8(ν − 1)(ν + 1)(ν + 2)

+
(3ν − 5)e−ix(ν+6)

24(ν − 3)(ν − 2)(ν − 1)
+

(3ν + 5)e−ix(ν−6)

24(ν + 1)(ν + 2)(ν + 3)

)

+ µ3

( (
ν2 − 4ν + 7

)
e−ix(ν+2)

2(ν − 2)(ν − 1)3(ν + 1)
−

(
ν2 + 4ν + 7

)
e−ix(ν−2)

2(ν − 1)(ν + 1)3(ν + 2)

+
e−ix(ν+6)

6(ν − 3)(ν − 2)(ν − 1)
− e−ix(ν−6)

6(ν + 1)(ν + 2)(ν + 3)

)
.

(3.17b)

In order to obtain the second solution it suffices to take

ψ2

II ≡ ψ2

II

(
e−2ix;

1

2
h, µ, µ

)
= e−iνx lim

b→0

(
1 +

Φ2

II,r 6=s

(
e−2ix; h

2b ,
µ
b ,

µ
b

)

Φ2

II,r=s

(
h
2b ,

µ
b ,

µ
b

)
)
. (3.18)

In analogy to the Mathieu’s exponent one can term the above solutions generalized Mathieu

exponents or Whittaker-Hill exponents.

4 Conclusions

In the present paper we have shown that the Nf = 1 and Nf = 2 classical irregular blocks

solve the Schrödinger eigenvalue problem for the complex (1.4) and Whittaker-Hill (1.3)

potentials, respectively.18 In addition, working entirely within the CFT framework we have

derived for each of the above cases the corresponding two linearly independent solutions.

These eigenfunctions are determined by two different fusion rules imposed on the in- and

18Such observation in the case of the Whittaker-Hill operator has been already made in [24]. The Nf = 1

case has not been discussed in the literature so far.
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out-states conformal weights appearing in the degenerate irregular blocks, in accordance

with the Feigin-Fuchs Theorem.

The conformal field theory setup proved to be especially powerful in the study of

the eigenvalue problem for the complex potential (1.4). For x ∈ R the potential (1.4)

is π-periodic and the corresponding quantum-mechanical hamiltonian is evidently PT-

symmetric. It turned out that such hamiltonian in the weak coupling region (small h ∈ R)

and for the real non-integer values of the Floquet parameter ν /∈ Z has a real spectrum

determined by the Nf = 1 classical irregular block expansion. From the definition of the

Nf = 1 classical irregular block it immediately follows that the spectrum is real for h ∈ R

and ν ∈ R \ Z.19 Therefore, we have found yet another new example of the PT-invariant

hamiltonian with complex periodic potential which has a real spectrum. Such hamiltoni-

ans have interesting applications in the branch of the condensed matter theory known as

“complex crystals” (see e.g. [13, 49]). They also provide models for testing postulates of

the PT-symmetric quantum mechanics (cf. [13] and refs. therein).

As has been already mentioned our solutions to eqs. (3.12) and (3.16) make sense for

small h ∈ R and ν /∈ Z. Hence, two interesting questions arise at this point: (i) How within

2dCFT one can get the solutions in the other regions of the spectrum, in particular, for

large coupling constant(s)? (ii) How is it possible to derive from the irregular blocks the

solutions with integer values of the Floquet parameter? Work is in progress in order to

answer these questions.

As a final remark let us stress that it is possible to extend results of the present paper to

generic situation when Nf = odd/even number of flavors, cf. [24, 25]. The case with an even

number of flavors should lead to the solution of the equation termed in [24] as “generalized

Mathieu equation”, i.e., Schrödinger equation with potential built out of higher cosine

terms. In the same way the NVD equations obeyed by the three-point degenerate irregular

blocks with an odd number of flavors will produce in the classical limit solutions of the

Schrödinger equation with potential being generalization of (1.4). The latter case seems to

be an interesting task for further investigation due its possible application as a laboratory

for study of implications of PT symmetry.

A Floquet’s theorem and band structure of spectrum

In this appendix we recall the most important facts concerning the eq. (1.1). Let yi(x) =

yi(x;λ), i = 1, 2 be the normalized fundamental solutions of (1.1), i.e., such that y1(0) =

19Let us note that an alternate reality proof of the spectrum of PT-symmetric hamiltonian H1 should be

possible to carry out at the gauge theory side of the AGT correspondence. The N = 2, SYM counterpart

of the Nf = 1 classical irregular block is known as the Nf = 1, SU(2) effective twisted superpotential. This

quantity is determined by a solution of certain Bethe-like equation appearing as a saddle point condition

in the process of computation of the Nekrasov-Shatashvili limit of the corresponding Nekrasov instanton

partition function, cf. [22, 47, 48]. Thus, in order to prove the reality (and the positivity) of the spectrum

in eq. (3.12) it seems to be enough to find an answer to the following question: in what circumstances is

the logarithmic derivative of the Nf = 1, SU(2) effective twisted superpotential real valued (and positive),

or perhaps equivalently, in what circumstances the corresponding saddle point/Bethe-like equation has real

(and positive) solution? Finally, let us stress that very similar “Bethe-ansatz-inspired” ideas were employed

to prove the reality and the positivity properties of the spectra of PT-symmetric Schrödinger operators

emerging in the context of ODE/IM correspondence, cf. [29].
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y′2(0) = 1 and y2(0) = y′1(0) = 0. The periodicity of Q(x) implies that y(x + π) is also

a solution of eq. (1.1). The fundamental solutions yi(x), i = 1, 2 satisfy the following

equation

v(x+ π) = v(x)M(λ), v = (y1 y2), M(λ) :=

(
y1(π;λ) y2(π;λ)

y′1(π;λ) y′2(π;λ)

)
, (A.1)

where M(λ) is the monodromy matrix. Wronskian for the normalized fundamental solu-

tions amounts to W (y1, y2) = 1 which entails that M(λ) ∈ SL(2,C). Since y(x) is a linear

combination of fundamental solutions and y(x+ π) also belongs to the set of all solutions

to eq. (1.1) it is possible to pick such one, that y(x + π) = ρy(x). This amounts to the

diagonalisation of monodromy matrix

χ(ρ) := det (M(λ)− ρI) = ρ2 −∆(λ)ρ+ 1,

χ(ρ1) = χ(ρ2) = 0, ρ1 := eiνπ, ρ2 := e−iνπ, ν ∈ C,

where ∆(λ) := trM(λ) is the Hill’s discriminant, ρ1, ρ2 are the Floquet multipliers and ν

is the Floquet’s exponent.

Theorem 2 (Floquet). Let ρ1, ρ2 be the roots of χ(ρ).

1. If ρ1 6= ρ2 then

f1(x) = eiνxp1(x), f2(x) = e−iνxp2(x), pi(x+ π) = pi(x), i = 1, 2

are the two solutions that span the space of solutions to Hill’s equation (1.1).

2. If ρ1 = ρ2 the monodromy matrix M(λ) is similar to upper-triangular matrix, that is

there exists a solution p(x) which is either periodic or anti-periodic (p(x+π) = −p(x))

and the second linearly independent solution q(x) such, that

q(x+ π) = ρ1q(x) + αp(x).

In case α = 0 the monodromy matrix M(λ) ∈ Z2, i.e., y2(π) = y′1(π) = 0 and all

solutions are either periodic or anti-periodic.

Note, that if ν ∈ C with ℑν 6= 0 the solutions are unbounded to which one refers

as to unstable solutions. In order to have stable solutions it is necessary for the Floquet

exponent ν ∈ R. However, it is insufficient condition as follows from the first part of the

second point of the Floquet theorem. A sufficient condition is ν ∈ R and M(λ) ∈ Z2 which

entails that ν = 1, 2. In this case all solutions are stable and periodic with the basic period

π or 2π. An effective criterion for the stability of solutions to Hill’s equation is ∆(λ) ∈ R

and either |∆(λ)| < 2 or |∆(λ)| = 2 and M(λ) ∈ Z2. From eq. (A.1) it follows that

∆(λ) = y1(π;λ) + y′2(π;λ). Therefore, solving ∆(λ) = ±2 for λ we obtain segments on R+

where |∆(λ)| < 2 as well as those, where |∆(λ)| > 2. The former are termed bands whereas

the latter — gaps. Thus, the spectrum of Hill’s equation (1.1) has the band structure. This

fact is a thesis of the following:
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Theorem 3 (Oscillation). Let λ ∈ C and λi, λi ∈ R+ such that ∆(λi) = 2 for i ∈ N0

and ∆(λi) = −2 for i ∈ N. Then solutions to eq. (1.1) are stable if

λ ∈
⋃

i∈N

(λ2i−2, λ2i−1) ∪ (λ2i, λ2i−1),

and in case when λ = λ2i−1 = λ2i or λ = λ2i−1 = λ2i for i ∈ I ⊂ N and unstable otherwise.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[arXiv:1501.05671] [INSPIRE].

[27] P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and

nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].

[28] V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Spectral determinants for

Schrödinger equation and Q operators of conformal field theory,

J. Statist. Phys. 102 (2001) 567 [hep-th/9812247] [INSPIRE].

[29] P. Dorey, C. Dunning and R. Tateo, The ODE/IM Correspondence,

J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].

[30] C. Rim and H. Zhang, Classical Virasoro irregular conformal block II, JHEP 09 (2015) 097

[arXiv:1506.03561] [INSPIRE].

[31] V.G. Kac, Contravariant Form for Infinite Dimensional Lie Algebras and Superalgebras, in

Group Theoretical Methods In Physics, W. Beiglbock, A. Bohm and E. Takasugi eds.,

Springer-Verlag (1978), pp. 441–445.

[32] B.L. Feigin and D.B. Fuks, Invariant skew symmetric differential operators on the line and

Verma modules over the Virasoro algebra, Funct. Anal. Appl. 16 (1982) 114 [INSPIRE].

– 22 –

http://dx.doi.org/10.1088/1126-6708/2009/11/002
http://arxiv.org/abs/0907.2189
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2189
http://dx.doi.org/10.1007/JHEP04(2016)070
http://arxiv.org/abs/1601.05096
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05096
http://dx.doi.org/10.1007/JHEP05(2016)087
http://arxiv.org/abs/1602.04829
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.04829
http://arxiv.org/abs/1602.02772
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.02772
http://dx.doi.org/10.1007/JHEP08(2015)160
http://arxiv.org/abs/1504.08324
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.08324
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.008
http://arxiv.org/abs/1006.4505
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4505
http://dx.doi.org/10.1007/JHEP12(2014)032
http://arxiv.org/abs/1407.0305
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0305
http://dx.doi.org/10.1007/JHEP01(2016)115
http://arxiv.org/abs/1509.08164
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.08164
http://dx.doi.org/10.1007/JHEP07(2015)163
http://arxiv.org/abs/1504.07910
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07910
http://dx.doi.org/10.1007/JHEP02(2012)031
http://arxiv.org/abs/1112.1691
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.1691
http://dx.doi.org/10.1007/JHEP02(2015)160
http://arxiv.org/abs/1501.05671
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05671
http://dx.doi.org/10.1088/0305-4470/32/38/102
http://arxiv.org/abs/hep-th/9812211
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812211
http://dx.doi.org/10.1023/A:1004838616921
http://arxiv.org/abs/hep-th/9812247
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812247
http://dx.doi.org/10.1088/1751-8113/40/32/R01
http://arxiv.org/abs/hep-th/0703066
http://inspirehep.net/search?p=find+EPRINT+hep-th/0703066
http://dx.doi.org/10.1007/JHEP09(2015)097
http://arxiv.org/abs/1506.03561
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03561
http://dx.doi.org/10.1007/BF01081626
http://inspirehep.net/search?p=find+J+%22Funct.Anal.Appl.,16,114%22


J
H
E
P
0
7
(
2
0
1
6
)
1
3
1

[33] B. Feigin and D. Fuchs, Representations of the Virasoro algebra, in Representations of Lie

groups and related topics, Advanced Studies in Contemporary Mathematics, A.M. Vershik

and D.P. Zhelobenko eds., volume 7, Gordon and Breach, London U.K. (1990), pp. 465–554.

[34] C.B. Thorn, Computing the Kac Determinant Using Dual Model Techniques and More About

the No-Ghost Theorem, Nucl. Phys. B 248 (1984) 551 [INSPIRE].

[35] V.G. Kac and A.K. Raina, Bombay Lectures on Highest Weight Representations of Infinite

Dimensionsal Lie Algebras, volume 2, World Scientific (1987).

[36] D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks,

J. Phys. Conf. Ser. 462 (2013) 012014 [arXiv:0908.0307] [INSPIRE].

[37] A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations,

Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [INSPIRE].

[38] E. Felinska, Z. Jaskolski and M. Kosztolowicz, Whittaker pairs for the Virasoro algebra and

the Gaiotto-Bonelli-Maruyoshi-Tanzini states, J. Math. Phys. 53 (2012) 033504 [Erratum

ibid. 53 (2012) 129902] [arXiv:1112.4453] [INSPIRE].

[39] D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas

type gauge theories, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].

[40] V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus

conformal block, JETP Lett. 90 (2009) 708 [arXiv:0911.0363] [INSPIRE].

[41] L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for Nf = 0, 1, 2

antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [INSPIRE].

[42] M.-C. Tan, M-Theoretic Derivations of 4d–2d Dualities: From a Geometric Langlands

Duality for Surfaces, to the AGT Correspondence, to Integrable Systems,

JHEP 07 (2013) 171 [arXiv:1301.1977] [INSPIRE].

[43] D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology,

arXiv:1211.1287 [INSPIRE].

[44] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four

Dimensional Gauge Theories, arXiv:0908.4052 [INSPIRE].

[45] J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153

[hep-th/0104158] [INSPIRE].

[46] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in

Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[47] M.R. Piatek and A.R. Pietrykowski, Irregular blocks, N = 2 gauge theory and Mathieu

system, J. Phys. Conf. Ser. 670 (2016) 012041 [INSPIRE].

[48] F. Ferrari, M.R. Piatek and A.R. Pietrykowski, 2d CFT/Gauge/Bethe correspondence and

solvable quantum-mechanical systems, J. Phys. Conf. Ser. 670 (2016) 012022 [INSPIRE].

[49] C.M. Bender, G.V. Dunne and P.N. Meisinger, Complex periodic potentials with real band

spectra, Phys. Lett. A 252 (1999) 272 [cond-mat/9810369] [INSPIRE].

– 23 –

http://dx.doi.org/10.1016/0550-3213(84)90611-4
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B248,551%22
http://dx.doi.org/10.1088/1742-6596/462/1/012014
http://arxiv.org/abs/0908.0307
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0307
http://dx.doi.org/10.1016/j.physletb.2009.10.077
http://arxiv.org/abs/0909.2052
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2052
http://dx.doi.org/10.1063/1.4771670
http://arxiv.org/abs/1112.4453
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4453
http://dx.doi.org/10.1007/JHEP12(2012)050
http://arxiv.org/abs/1203.1052
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1052
http://dx.doi.org/10.1134/S0021364009230040
http://arxiv.org/abs/0911.0363
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0363
http://dx.doi.org/10.1007/JHEP06(2010)046
http://arxiv.org/abs/1004.1841
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.1841
http://dx.doi.org/10.1007/JHEP07(2013)171
http://arxiv.org/abs/1301.1977
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1977
http://arxiv.org/abs/1211.1287
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1287
http://arxiv.org/abs/0908.4052
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
http://dx.doi.org/10.1088/0264-9381/18/23/201
http://arxiv.org/abs/hep-th/0104158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0104158
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B241,333%22
http://dx.doi.org/10.1088/1742-6596/670/1/012041
http://inspirehep.net/search?p=find+J+%22J.Phys.Conf.Ser.,670,012041%22
http://dx.doi.org/10.1088/1742-6596/670/1/012022
http://inspirehep.net/search?p=find+J+%22J.Phys.Conf.Ser.,670,012022%22
http://dx.doi.org/10.1016/S0375-9601(98)00960-8
http://arxiv.org/abs/cond-mat/9810369
http://inspirehep.net/search?p=find+EPRINT+cond-mat/9810369

	Introduction
	Quantum and classical Nf=1,2 irregular blocks
	Regular and Nf=1,2 irregular blocks
	Null vector decoupling equations

	Classical limit of Nf = 1,2 NVD equations
	Single flavor case: solvable complex potential
	Two flavors case: Whittaker-Hill equation

	Conclusions
	Floquet's theorem and band structure of spectrum

