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Abstract: Loop-level scattering amplitudes for massless particles have singularities in

regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering

process has a singularity in which each incoming gluon splits into a pair of gluons, followed

by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton

scattering because it occurs when the transverse momentum of a pair of outgoing gluons

vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit

the duality between scattering amplitudes and polygonal Wilson loops to study six-point

amplitudes in this limit to high loop order in planar N = 4 super-Yang-Mills theory. The

singular configuration corresponds to the limit in which a hexagonal Wilson loop develops

a self-crossing. The singular terms are governed by an evolution equation, in which the

hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large Nc)

limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual)

conformal invariance, the complete kinematic dependence of the singular terms for the

self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The

complete logarithmic dependence on the singular variable can be obtained through nine

loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a

byproduct, we obtain a simple formula for the leading logs to all loop orders. We also show

that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental

functions entering the non-MHV amplitude are finite in the same limit, at least through

four loops.
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E Seven-point self-crossing kinematics 55

1 Introduction

At high-energy hadron colliders such as the Tevatron and the Large Hadron Collider, double

parton scattering can take place, in which two partons from each incoming hadron collide

with each other. The kinematic signature of such an event is that the final state can be

split into two subsets of constituents, which are the products of the two separate partonic

collisions. The transverse momentum of each subset should add up to zero, whereas for a

single parton scattering with the same final state this is not generically true. Single-parton

tree amplitudes are smooth as one approaches the kinematics of double-parton scattering.

However, at loop level the single-parton scattering amplitude can have a logarithmic singu-

larity in the subset transverse momentum, which can be identified with a Landau or pinch

singularity in the Feynman parameter integration [1–9]. This singularity arises because,

at the loop level, each incoming parton can split into two collinear partons, each of which

then participates in a scattering.

Figure 1(a) shows such a configuration for massless 2 → 4 scattering, where particles

3 and 6 are incoming, and particles 1, 2, 4 and 5 are outgoing. This configuration is

generically singular as the vector sum of the transverse momenta of particles 1 and 2

vanishes, because of the existence of the 2 → 2 subprocesses (1−x)k3+(1−y)k6 → k1+k2
and xk3+yk6 → k4+k5. The lines marked x, (1−x) (y, (1−y)) in the figure can go on-shell

in this limit; they are approximately collinear to the initial-state particle 3 (particle 6), and

they contain the indicated fraction of its longitudinal momentum. Similar configurations

arise for 2 → (n− 2) processes for any n ≥ 6, although in this paper we will mostly study

the six-point amplitude.

Although of less direct phenomenological relevance, there are similar singularities for

scattering processes with more than two initial particles. For the case of the six-point ampli-

tude, figure 1(b) shows such a singularity in 3 → 3 scattering. An initial parton splits into

two collinear partons, each of which collides with another incoming parton; two of the prod-

ucts of those collisions then fuse into a single parton. Interestingly, at least for the theory we

will be considering in this paper, the 3 → 3 process has a somewhat simpler structure in the

singular limit, and the 2 → 4 case can then be obtained from it by an analytic continuation.

In the experimental effort to isolate hard multiple parton interactions, the background

from single-parton contributions in the same region of phase space must be subtracted,

usually by extrapolation from data with finite values of the subset transverse momentum.

In the case of jet final states, the jet energy resolution typically smears the double-parton

events over a range of finite subset transverse momenta, and the expected “bump” at

zero may become a broad shoulder. Hence it is of some interest to understand any non-

smooth behavior of the single-parton background. Because the matrix element singularity

is merely logarithmic, the phase-space integration over the subset transverse momentum is

convergent. However, the detailed shape as one approaches zero may still be important. It
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Figure 1. (a) A 2 → 4 scattering configuration mimicking double-parton scattering. Incoming glu-

ons 3 and 6 split into collinear pairs with very small transverse momentum, and longitudinal momen-

tum fractions x and 1−x, and y and 1−y, respectively. These pairs then undergo 2 → 2 scatterings

into final state gluons 1, 2, 4 and 5. (b) The analogous configuration for 3 → 3 scattering. Gluons 1,

3 and 5 are incoming. Gluon 3 splits collinearly, and its daughters collide with gluons 1 and 5. These

2 → 2 collisions produce gluons 2 and 4, and two more gluons which fuse collinearly into gluon 6.

is not our purpose in this paper to perform any phenomenological discussion of the single-

parton contributions to double parton scattering or how to separate them theoretically (see

e.g. refs. [8, 10–16]). Rather, we would like to use a toy model to study the behavior of

scattering amplitudes in this region to very high perturbative order.

The toy model we have in mind is N = 4 super-Yang-Mills theory (SYM) [17] in

the limit of a large number of colors Nc. In this limit, the theory is integrable [18] and

possesses a dual superconformal symmetry [19–23]. Perhaps most interestingly for the

present problem, scattering amplitudes in planar N = 4 SYM are dual to polygonal Wilson

loops with light-like edges [22, 24–27]. Each edge of the Wilson loop corresponds to an

external momentum of the scattering amplitude, and the closure of the polygon is the

geometrical statement of overall momentum conservation.

The Wilson loop configuration that mimics double-parton scattering is one in which

the loop crosses itself, as shown in figure 2. Comparing this figure with figure 1, we see

that the splitting of particle 3 into two collinear intermediate particles with momentum

fractions x and 1 − x is reflected in the division of line 3 in figure 2 into two segments

labelled by x and 1− x, and similarly for particle 6 with momentum fractions y and 1− y.

The reason lines 3 and 6 touch (in the singular limit) is to ensure momentum conservation

of the subprocesses (1 − x)k3 + (1 − y)k6 → k1 + k2 and xk3 + yk6 → k4 + k5 (or their

analytic continuation in the case of 3 → 3 scattering). For convenience, we will refer to

this kinematics as “self-crossing”, even when we discuss theories other than planar N = 4

SYM for which there is no polygonal Wilson loop correspondence, and where the term

“double-parton-scattering-like” might be more appropriate.

The behavior of the self-crossing hexagonal Wilson loop in planar N = 4 SYM has

been studied by Georgiou [28] at two loops, and by Dorn and Wuttke [29, 30] at two and
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Figure 2. Self-crossing configuration of a hexagonal Wilson loop, regulated by a small space-like

vector ~z.

three loops. This “bosonic” Wilson loop corresponds to the six-gluon maximally helicity

violating (MHV) scattering amplitude, in which the gluons have the (all-outgoing) helicity

configuration (−−++++), or any any permutation thereof. The self-crossing configuration

depends on one singular parameter, δ ≪ 1. This parameter is invariant under the dual

conformal symmetry possessed by Wilson loops in planar N = 4 SYM. It serves as a proxy

for the vanishing subset transverse momentum. In figure 2, we regulate the self-crossing

singularity by a small space-like separation vector ~z [31, 32]. We will see that the magnitude

of the separation, ~z2, is proportional to δ.

The self-crossing configuration depends as well on one generic, nonsingular parameter

we call v. In this paper we will determine how the singular (ln δ containing) terms in

this Wilson loop (amplitude) depend on v to all loop orders. We will present the full

logarithmic dependence on δ through seven loops, and at eight and nine loops up to a

couple of constants. We’ll also give the full v dependence of the nonsingular terms through

five loops, neglecting terms suppressed by powers of δ.

We will show that the transcendental functions entering the other six-point helicity

configuration in N = 4 SYM, called non-MHV (NMHV), are actually nonsingular through

four loops! This result is related to an argument of Gaunt and Stirling for one-loop QED

amplitudes [7].

In order to provide explicit MHV results to such a high loop order, we will make use

of the factorized singularity structure of Wilson loops that are close to crossing [33, 34],

in particular the analysis and evolution equation studied by Korchemskaya and Korchem-

sky [31, 32]. As one approaches the singularity, the hexagonal Wilson loop mixes with

another configuration, which features two disconnected squares corresponding to the two

2 → 2 subprocesses. At large Nc, the mixing of the two-square configuration back into the

hexagon is suppressed, and the expectation value of the two-square Wilson loop is dictated

by dual conformal invariance. This leads to an exact prediction for how the singular terms

in the hexagonal Wilson loop depend on the unique nonsingular kinematic variable, v.

Knowing the full dependence on v for the singular terms, we can evaluate them by

choosing v to be anything we like. We make use of the fact that as v → 0, the self-crossing
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limit overlaps with the limit of multi-Regge kinematics (MRK), which has been studied

extensively in planar N = 4 SYM [35–52]. In particular, an all-orders formula for the

behavior of the Wilson loop in this limit was proposed by Basso, Caron-Huot and Sever

(BCS) [49], based on integrability and an analytic continuation from the Euclidean operator

product expansion region studied by Basso, Sever and Vieira [53–56]. We will analyze this

formula to high loop orders in the region of overlap with the self-crossing configuration, and

make use of recent high order results by Drummond and Papathanasiou [50] and especially

by Broedel and Sprenger [51]. The exact v dependence provides cross checks on the MRK

predictions of BCS.

Finally, we have used a very recent determination of the full MHV amplitude at five

loops [57], as well as lower-loop results [41, 47, 58, 59], to obtain the full v dependence of

the nonsingular terms through this order. We also present the nonsingular limits of the

transcendental functions entering the NMHV amplitude through four loops, using results

from refs. [60–62].

Similar methods for controlling the singular terms should be applicable as well to

higher-point amplitudes, but we leave that for future work.

This paper is organized as follows: section 2 reviews properties of amplitudes and

Wilson loops in planar N = 4 SYM. It describes the self-crossing limit and explains why

the transcendental functions in NMHV six-gluon amplitudes are expected to be nonsingular

there, while MHV amplitudes diverge. Finally, it discusses how to frame Wilson loops

to remove their cusp divergences, and how different framings behave in the self crossing

limit. Section 3 provides explicit results for the MHV amplitude through five loops, after

discussing how to analytically continue into these regions. It also looks at a few special

limits (v → ∞ and v → 1) where the results simplify.

Section 4 discusses how the singular terms as δ → 0 obey an evolution equation,

one that is particularly simple due to the large Nc limit. This equation explains several

properties of the explicit results, and allows one to go to higher loop order using the

v → 0 limit. Section 5 shows how the v → 0 limit of self-crossing overlaps with the

w → −1 limit of multi-Regge-kinematics. It also develops techniques for evaluating the

Fourier-Mellin transform in this limit, and discusses a comparison with information from

ref. [51]. Section 6 presents the final expression for the self-crossing limit, and organizes

the dependence on δ into a suggestive form, so that no pure even ζ values appear explicitly,

and particular terms with single odd ζ values are confined to a specific dependence on ln |δ|.
Finally, in section 7 we conclude.

We also provide multiple appendices. In appendix A we give a detailed description of

both 2 → 4 and 3 → 3 self-crossing kinematics in terms of the kinematics of the 2 → 2

subprocesses. Appendix B gives the expansion of the light-like cusp anomalous dimension

through 10 loops. Appendix C gives the full four- and five-loop results for the MHV

amplitude in the self-crossing limit, while appendix D presents results for the nonsingular

NMHV transcendental functions through four loops. Appendix E gives a brief description

of the self-crossing limit for the seven-point case, which will be explored more thoroughly

in future work.

Accompanying this article is an ancillary file containing computer-readable expressions

for the lengthier formulae in this paper.
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2 Preliminaries

As mentioned in the introduction, scattering amplitudes in planar N = 4 SYM are dual to

polygonal Wilson loops. For the MHV n-gluon amplitude, where two gluon helicities are

negative and the rest positive, the correspondence is via

AMHV
n = AMHV, tree

n Wn = ABDS
n (si,j ; ǫ) exp[Rn(uijkl)] , (2.1)

where AMHV
n is the partial amplitude associated with the color factor Tr(T a1T a2 . . . T an),

AMHV, tree
n is the corresponding tree-level amplitude, Wn is the Wilson n-gon expectation

value, ABDS
n is the BDS ansatz [63], and Rn is the remainder function which corrects

this ansatz for n ≥ 6. The tree amplitude AMHV, tree
n is given by the Parke-Taylor for-

mula [64, 65],

AMHV, tree
n = i

〈j k〉4
〈1 2〉〈2 3〉 · · · 〈n 1〉 , (2.2)

where j and k label the two negative-helicity gluons, in the all-outgoing helicity convention.

It is important to note that all of the dependence on j and k is carried by the simple pref-

actor 〈j k〉4. The more complicated quantity, the bosonic Wilson loop, carries no helicity

information at all.

The BDS ansatz depends on the Mandelstam variables sij and is given by

ABDS
n = AMHV, tree

n exp

[ ∞
∑

L=1

aL
(

f (L)(ǫ)
1

2
M1−loop

n (Lǫ) + C(L)

)]

, (2.3)

where M1−loop
n (Lǫ) is the one-loop amplitude, normalized by the tree amplitude, and eval-

uated in dimensional regularization with D = 4 − 2ǫ, but letting ǫ → Lǫ. The remaining

quantities in eq. (2.3) are constants:

f (L)(ǫ) ≡ f
(L)
0 + ǫ f

(L)
1 + ǫ2 f

(L)
2 , (2.4)

where two of the constants,

f
(L)
0 =

1

4
γ
(L)
K , f

(L)
1 =

L

2
G(L)
0 , (2.5)

are given in terms of the (light-like) cusp anomalous dimension γK and the “collinear”

anomalous dimension G0, and f
(L)
2 and C(L) are other constants, known analytically to three

loops. The BDS ansatz captures all the infrared singularities of the scattering amplitude,

or equivalently the ultraviolet cusp singularities of the Wilson loop. However, there is a

simpler, “BDS-like” ansatz that also does this, which we will introduce in section 2.2.

We should note that eq. (2.1) is formal due to infrared divergences. In fact the 1/ǫ

pole in the logarithm of the Wilson loop is controlled by Geik, a quantity that differs from

G0 by a term proportional to the virtual part of the DGLAP kernel [66–68]. This difference

will not matter below, once we pass to finite quantities on both sides of the duality.

– 6 –



J
H
E
P
0
7
(
2
0
1
6
)
1
1
6

2.1 Helicity selection rules

Because the MHV tree amplitude (2.2) carries all the helicity dependence of the full MHV

amplitude, we can immediately make some all-order statements about how the self-crossing

result in N = 4 SYM depends on the helicity configuration. The spinor products 〈i j〉
entering eq. (2.2) are all nonsingular and finite in the generic self-crossing configuration.

Hence there are at most simple finite factors between the different helicity configurations,

and all will have the same singularities in the self-crossing limit. We can contrast this

behavior with that of the one-loop QED six-photon amplitude with an electron in the

loop, as analyzed in ref. [7]. In that case, non-singular self-crossing limits of certain helicity

configurations appear for two reasons:

1. If two of the outgoing photons from a 2 → 2 subprocess have the same helicity, then

the tree amplitude for e+e− → γ+γ+ vanishes for massless electrons, causing the

one-loop amplitude to be nonsingular.

2. If the two incoming photons have opposite helicities, then the Jz of the initial state

is nonzero; however, by helicity conservation for massless electrons, the four-electron

intermediate state has Jz = 0.

As a result of these selection rules, the only possible singular MHV configurations for six

photons at one loop are ++ → (−+)(−+), where we use all-outgoing helicity labelings, and

separate the pairs of final-state photons for the two 2 → 2 subprocesses using parentheses.

In addition, there are no singular NMHV configurations.

The difference between one-loop QCD or planar N = 4 SYM amplitudes with gluons

circulating in the loop, and one-loop QED amplitudes, is that gluons can have a helicity

flip while circulating around the loop, and therefore the outgoing gluons from a 2 → 2

subprocess can have the same helicity, in contrast to selection rule 1. Massless quarks,

gluinos and scalars in the loop obey rule 1, just like massless electrons. However, rule 2, or

more generally Jz conservation between the initial state and the four-parton intermediate

state, is an important constraint that still needs to be applied.

Figure 3 shows four different configurations that satisfy both rules 1 and 2 for gluons

circulating in the loop. Only the first one, (a), for ++ → (−+)(−+), appears in QED.

Configurations (b), (c) and (d) are forbidden by rule 1 in QED, but permitted in QCD

or planar N = 4 SYM amplitudes. Correspondingly, the MHV configurations ++ →
(−−)(++), −+ → (−+)(++) and −− → (++)(++), although non-singular in QED, are

singular in QCD or N = 4 SYM, because they obey the Jz conservation rule. Because only

gluons contribute to the singularity, the singular behavior of the one-loop QCD amplitude

for these three helicity configurations is identical to that for N = 4 SYM studied in this

paper, and therefore all three cases are simply related by the helicity dependence of the

MHV tree amplitude.

On the other hand, for ++ → (−+)(−+), the QCD and N = 4 SYM results are

different, because massless quarks, gluinos and scalars can contribute. While the N = 4

supersymmetric sum will reconstruct a result for N = 4 SYM that is simply related to the

other MHV configurations, the QCD result will have a different form.
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Figure 3. Allowed helicity configurations for a singular self-crossing limit for the MHV six-gluon

amplitude. The cut internal lines are collinear with the incoming particles, as in figure 1. Only (a)

is allowed for massless matter circulating in the loop; (b), (c) and (d) require gluons to circulate.
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Figure 4. NMHV six-gluon helicity configurations. All are forbidden to have self-crossing singular-

ities by the Jz conservation rule (hence the red lines through them). One (QED-like) configuration

for −+ → (−+)(−+) is not shown; it also violates Jz conservation.

What about NMHV helicity configurations? Ref. [7] shows that there are no NMHV

helicity configurations in QED (or for any massless matter contribution) that obey rules

1 and 2. Remarkably, even with gluons in the loop, so that rule 1 can be relaxed, rule

2 (Jz conservation) still forbids any singular configurations. Figure 4 shows four different

helicity configurations that would appear to factorize properly into nonvanishing 1 → 2

splittings and 2 → 2 subprocesses. However, all four of them are non-singular because

they violate Jz conservation between the initial and the intermediate state. For example,

in case (a), for ++ → (−−)(−+), the initial Jz is zero, but the final Jz is ±2. In case

(b), for −+ → (−−)(++), the initial Jz is ±2, while the final Jz is zero. (There is a fifth

configuration, not shown, for −+ → (−+)(−+), which is of the same type allowed by rule

1; but it violates Jz conservation just as it does in QED.)

Thus, as a consequence of Jz conservation, the NMHV six-gluon amplitude is nonsin-

gular in all self-crossing limits, to one-loop in QCD, and in N = 1 or N = 4 SYM. Naively,

the result should hold to all orders in supersymmetric gauge theories because supersym-

metry forbids the “non-tree-like” 2 → 2 helicity amplitudes (++++) and (−+++). That

four-point selection rule dictates the configurations shown in figure 4, plus the fifth, QED-

like one, all of which violate Jz conservation. At two loops in QCD, the NMHV six-gluon

amplitude will presumably become singular; it is easy to write down helicity configurations

that satisfy Jz conservation once one of the 2 → 2 amplitudes for (−+++) or its parity

conjugate (+−−−) is nonzero.
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The NMHV six-gluon amplitude has been computed in planar N = 4 SYM through

four loops [60–62]. In appendix D we provide the self-crossing limits of the transcendental

functions entering these results. We find that these functions are indeed completely non-

singular in the self-crossing limit through four loops. However, the full NMHV amplitude

contains rational function prefactors which blow up like 1/
√
δ in the self-crossing limit.

Therefore the full amplitude can be singular even if the transcendental functions are fi-

nite. To analyze the behavior of the full amplitude requires expanding the transcendental

functions to higher order around the self-crossing limit. In appendix D we carry out this

expansion, not in the full self-crossing limit, but in the part that overlaps with multi-Regge-

kinematics. We find logarithmic singularities in δ starting at two loops. Thus there must

be a loophole in the naive argument for all-loop order NMHV finiteness in the self-crossing

limit, perhaps from contributions where more than one particle crosses a cut, which can

happen starting at two loops. We leave further investigation of this issue to future work.

2.2 The BDS-like normalized amplitude

The BDS ansatz also accounts for an anomaly in dual conformal invariance due to the

infrared (ultraviolet) divergences of the scattering amplitude (Wilson loop). The remainder

function Rn is then invariant under dual conformal transformations. Hence Rn can only

be a function of the dual conformally invariant cross ratios,

uijkl =
x2ijx

2
kl

x2ikx
2
jl

, (2.6)

where x2ij = (xi−xj)
2, the dual coordinates xµi describe the locations of the vertices of the

n-gon, and the scattering amplitude momenta kµi are related to them by kµi = xµi − xµi+1.

Non-trivial cross ratios require non-adjacent vertices, since x2i,i+1 = k2i = 0. There are no

such invariants for n = 4 or 5, and the remainder function first becomes nonvanishing for

n = 6 [35, 69, 70].

For n = 6, the main subject of this paper, there are three independent cross ratios,

u = u1 =
s12 s45
s123 s345

=
x213 x

2
46

x214 x
2
36

,

v = u2 =
s23 s56
s234 s123

=
x224 x

2
51

x225 x
2
41

,

w = u3 =
s34 s61
s345 s234

=
x235 x

2
62

x236 x
2
52

, (2.7)

where si,i+1 = (ki + ki+1)
2, si,i+1,i+2 = (ki + ki+1 + ki+2)

2, and x2ij ≡ (xi − xj)
2.

The remainder function, R6(u, v, w), has a Euclidean branch for which u, v and w are

all positive and the function is real. The 2 → 4 and 3 → 3 scattering configurations are

physical, Minkowski configurations, which can be obtained from the Euclidean region by a

suitable analytic continuation [28, 30, 35, 39]. For 2 → 4 scattering, we are interested in the

configuration with particles 3 and 6 incoming — see figure 1(a) and eqs. (A.1)–(A.3). This

is achieved by letting u → ue−2πi and leaving v and w positive. For 3 → 3 scattering, we

– 9 –
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wish to take particles 1, 3 and 5 to be incoming — see figure 1(b) and eqs. (A.30)–(A.32).

To do this (for the case v, w < 0), we let u → ue+2πi v → veπi, w → weπi. (See also

sections 3.1 and 3.2 below.)

Instead of considering the remainder function, which is the (log of) the amplitude nor-

malized by the BDS ansatz, for our present problem it is better to normalize the amplitude

by a “BDS-like” ansatz [71]. The reason is that the BDS ansatz contains the one-loop

N = 4 SYM amplitude, which is also singular in the self-crossing limit. The BDS-like

ansatz has a simpler functional form, depending only on two-particle invariants, and it is

nonsingular in the limit.

More specifically, the BDS-like ansatz for six-gluon scattering is

ABDS−like
6 = AMHV, tree

6 exp

[ ∞
∑

L=1

aL
(

f (L)(ǫ)
1

2
M̂6(Lǫ) + C(L)

)]

, (2.8)

where

M̂6(ǫ) = M1−loop
6 + Y (u, v, w)

=
6

∑

i=1

[

− 1

ǫ2

(

1−ǫ ln(−si,i+1)
)

−ln(−si,i+1) ln(−si+1,i+2)+
1

2
ln(−si,i+1) ln(−si+3,i+4)

]

+ 6 ζ2 , (2.9)

with

Y (u, v, w) = Li2(1− u) + Li2(1− v) + Li2(1− w) +
1

2

(

ln2 u+ ln2 v + ln2w
)

. (2.10)

Our perturbative expansion parameter for planar SYM is a = g2YMNc/(8π
2), where Nc is

the (large) number of colors and gYM is the Yang-Mills coupling. Note that M̂6(ǫ) contains

only two-particle invariants si,i+1, which are just the squares of the spinor products 〈i, i+
1〉 entering the MHV tree amplitude (2.2). Therefore the BDS-like ansatz is completely

smooth as one approaches self-crossing kinematics, yet it still removes infrared divergences

in a way that respects dual conformal invariance, since it only differs from the BDS ansatz

by the dual conformally invariant function Y (u, v, w).

Comparing eqs. (2.3) and (2.8), we see that

ABDS−like
6 = ABDS

6 exp

[

γK
8
Y (u, v, w)

]

. (2.11)

We define the function E(u, v, w) by

AMHV
6 = ABDS−like

6 (si,i+1, ǫ)× E(u, v, w) . (2.12)

Eq. (2.11) shows that it is related to the remainder function by

E(u, v, w) = exp

[

R6(u, v, w)−
γK
8
Y (u, v, w)

]

. (2.13)

Using integrability, the cusp anomalous dimension γK(a) can be computed to arbitrary

loop orders [72]. Its expansion through 10 loops in terms of a is given in appendix B.
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Although our main focus will be on the singularities of the MHV six-gluon amplitude,

we will also present the nonsingular limits (see section 2.1) of the transcendental functions

entering the NMHV amplitude. As described in more detail in ref. [62], the NMHV super-

amplitude can be written in a BDS-like form as

ANMHV
6

ABDS−like
6

=
1

2

[

[(1)+(4)]E(u, v, w)+[(2)+(5)]E(v, w, u)+[(3)+(6)]E(w, u, v) (2.14)

+[(1)− (4)]Ẽ(yu, yv, yw)− [(2)− (5)]Ẽ(yv, yw, yu) + [(3)− (6)]Ẽ(yw, yu, yv)
]

,

where ANMHV
6 and ABDS−like

6 are super-amplitudes and (1), (2), . . . , (6) are shorthand no-

tation for six Grassmann-variable-containing dual-superconformal “R” invariants. The

coefficient functions E and Ẽ are related to the more conventional components of the ratio

function, V and Ṽ , by

E(u, v, w) = V (u, v, w) exp

[

R6(u, v, w)−
γK
8
Y (u, v, w)

]

, (2.15)

Ẽ(u, v, w) = Ṽ (u, v, w) exp

[

R6(u, v, w)−
γK
8
Y (u, v, w)

]

. (2.16)

Using the quantities E and Ẽ also simplifies the global structure of the NMHV ampli-

tude [61, 62]. Similarly, the MHV amplitude’s global structure is most simply expressed in

terms of E [57].

The functions Ẽ and Ṽ are odd under parity and, like all parity-odd functions, they

vanish like a power of δ as one approaches the self-crossing limit. However, it is very

nontrivial that the parity-even function E(u, v, w) remains finite in the limit through four

loops, for all different orientations. These finite limits are presented in appendix D.

2.3 Self-crossing kinematics

After the analytic continuation to either 2 → 4 or 3 → 3 kinematics, the self-crossing

limit constrains two of the cross ratios. The precise relations between the subprocess

scattering angles and the kinematic invariants are worked out in appendix A, strictly in

the self-crossing limit. From momentum conservation for the 2 → 2 subprocesses, we obtain

eqs. (A.5)–(A.10). Inserting these into the definitions of the cross ratios, we have

u =
s12s45
s123s345

=
(1− x)(1− y)s36 xys36
x(1− y)s36 y(1− x)s36

= 1, (2.17)

v

w
=

s23s56 s345
s123 s34s61

=
(1− y)x y(1− x)

x(1− y) y(1− x)
= 1. (2.18)

Thus there is only one nonsingular variable, v, characterizing the self-crossing limit.

We regulate the self-crossing singularity by moving u slightly away from 1. We rewrite

momentum conservation near the self-crossing limit as

k1 + k2 + (1− x)k3 + (1− y)k6 = z (2.19)

k4 + k5 + xk3 + yk6 = −z, (2.20)
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where zµ is a small, space-like vector z = (0, ~z) orthogonal to k3 and k6 (see figure 2). Then

eqs. (A.5)–(A.8) all acquire an additional term of −~z2 on the right-hand side. Correcting

eq. (2.17) for this and expanding to first order in ~z2, we see that1

u = 1− δ, w = v, (2.21)

where

δ =
~z2

s36xy(1− x)(1− y)
. (2.22)

Note that for 2 → 4 kinematics, s36 is positive, so δ > 0; whereas for 3 → 3 kinematics,

s36 is negative, so δ < 0, and in this case we will let δ = −|δ|.
Appendix A also indicates the values of v that correspond to 2 → 4 versus 3 → 3

kinematics:

2 → 4 kinematics : (u, v, w) = (1− δ, v, v), δ > 0, 0 < v < 1, (2.23)

3 → 3 kinematics : (u, v, w) = (1 + |δ|, v, v), v < 0 and 1 < v. (2.24)

The range in v for 3 → 3 kinematics splits into two segments because, as explained in

appendix A, v = w = ∞ corresponds to s234 = 0. The 3-particle invariant s234 can vanish

in the interior of phase-space only for 3 → 3 kinematics. It corresponds to the potential

factorization pole when a six-point amplitude separates into two four-point amplitudes.

(Such a pole is absent in supersymmetric theories in the MHV case, due to helicity selection

rules, although it can be there in the NMHV case, where it has been studied at three and

four loops [61, 62].)

The point v = 1 is not special from the point of view of the amplitude, and we will see

that E has no additional singularities there. The Wilson loop framing (see the next section)

can induce logarithmic singularities of the form ln |1− v| at this point. The point v = 0 is

special because, as shown in section 5, it overlaps with the multi-Regge limit. We will use

this correspondence to determing the self-crossing behavior there to high loop orders.

2.4 Framed Wilson loops

Before we can discuss the singular behavior of a Wilson loop in the self-crossing limit,

starting in section 4, we need to regularize the singularities that it has for any configuration,

namely its cusp divergences. A convenient way to do this is to “frame” the Wilson loop [53,

73], as illustrated in figure 5. Instead of considering just the hexagonal Wilson loop, we

divide it by two pentagonal Wilson loops and then multiply back by the Wilson loop for a

quadrilateral (or box, for short). Each pentagon has three cusps that coincide with three of

the six cusps of the hexagon, plus two new ones. Thus dividing by the pentagons removes

the cusp singularities of the hexagon, while simultaneously introducing four additional

cusps. These cusps are then removed by multiplying by a box which shares two edges and

two cusps with each pentagon.

1The relation between w and v is corrected at O(~z). However, we can ignore the correction for the MHV

case because the amplitudes have no extra singularities as w → v, so it only leads to power-suppressed terms.
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x

x

Figure 5. The framing of a hexagonal Wilson loop, by dividing it by two pentagons and multiplying

it by a quadrilateral.

1

2

3

4

5

6 5’

2’’

Figure 6. Hexagonal Wilson loop with edges k1, . . . , k6 framed by blue and red dashed pentagons.

This framing remains nonsingular in the self-crossing limit.

The first pentagon is defined by selecting one of the corners of the hexagon and creating

a new edge connecting it to a light-like separated point on a side furthest away from it,

as shown in figure 6. The second pentagon has the same construction, with all the labels

cycled halfway around, by 3 units modulo 6. It might seem that there are 6 ways to do the

framing: 3 pairs of opposite corners to choose, and a twofold ambiguity as to which of the

two sides is connected to the first corner. However, taking into account the symmetries of

the self-crossing configuration, there are really only three distinct framings. Two of these

framings are nonsingular in the self-crossing limit, and we will use one of these. A third

framing is singular in the limit, but will still prove useful.

First we describe one of the framings that remains nonsingular in the self-crossing limit.

Its Wilson loop will be denoted by Wns. We use the notation in section 5.4 of ref. [59].

The first pentagon is obtained by removing momenta k4, k5, k6 and replacing them with

two new momenta k′4, k
′
5 having the same sum. The vector k′4 is parallel to k4, so we have:

k4 + k5 + k6 = k′4 + k′5, k′4 = ξk4. (2.25)
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Demanding k′5 be light-like fixes ξ = s123/(s123 − s56). The second pentagon is obtained

by replacing

k1 + k2 + k3 = k′′1 + k′′2 , k′′1 = ξ′′k1, (2.26)

and ξ′′ = s123/(s123 − s23). The box then has sides k′′1 , k
′′
2 , k

′
4, k

′
5. This nonsingular framing

is illustrated in figure 6.

Generically, the relation between the framedWilson loopW and the remainder function

is given by [59]

W(u, v, w) = exp

[

R6(u, v, w) +
γK
8
X(u, v, w)

]

, (2.27)

where

X(u, v, w) = −Li2(1− u)− Li2(1− v)− Li2(1− w)

− ln

(

uv

w(1− v)

)

ln(1− v)− lnu lnw + 2ζ2 . (2.28)

We can rewrite this relation in terms of E using eq. (2.13),

W(u, v, w) = E(u, v, w) exp
[

γK
8
(X(u, v, w) + Y (u, v, w))

]

. (2.29)

In ref. [59] the function X(u, v, w), although correct, was assigned to the framing specified

by eqs. (2.25) and (2.26), whereas it should have been to a flipped framing. To say it

another way, eqs. (2.25) and (2.26) really correspond to X(w, v, u).

The singular framing is identical to the nonsingular framing, except that the labels of

the momenta ki or the dual coordinates xi are lowered cyclically by one unit, ki → ki−1,

xi → xi−1. This framing is illustrated in figure 7. Its Wilson loop will be denoted by

W s. It corresponds to letting u → w → v → u in the function X(w, v, u), resulting in

the function X(v, u, w). Note that there is a ln2(1 − v) in X(u, v, w) in eq. (2.28), which

becomes a ln2(1−u) in X(v, u, w), and is the mathematical origin of additional ln2 δ terms

that we will find in the self-crossing limit of X(v, u, w) below.

To see physically why this framing is singular, note that in the blue dashed pentagon,

leg 6 is adjacent to a light-like leg (call it 4′) which runs from the corner between legs 5 and

6 to the middle of leg 3. But in the self-crossing limit, the point on leg 3 which is light-like

separated from the corner between legs 5 and 6 is none other than the self-crossing point,

since that lies on both legs 3 and 6. Therefore the blue pentagon becomes degenerate

in this limit; legs 4′ and 6 become collinear. See figure 8. Similarly, the red pentagon

degenerates in the self-crossing limit as legs 1′′ and 3 become collinear. The box is even

more degenerate; it simply runs from the crossing point out and back along leg 3, and then

out and back along leg 6. For this reason, we will find that the singularly-framed Wilson

loop has extra powers of ln δ in its perturbative expansion.

In order to convert back and forth between R6, E , Wns and W s, we also need to

record the limiting behavior of Xns, Xs and Y in the self-crossing limit for both 2 → 4

and 3 → 3 kinematics. For the 2 → 4 self-crossing limit, we first let u → ue−2πi, so that
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1

2

3

4

5

6
4’

1’’

Figure 7. A framing for the hexagonal Wilson loop in which the pentagons and box used to frame

the hexagon become singular for self-crossing kinematics.

4’

1’ =1

2’=2

6’=6

4"=4

5"=5

3’’=3

1’’

Figure 8. The singular framing in figure 7 near the self-crossing limit. The dashed, gray vector is

the regulator z. Note that the edges of the framing Wilson loops go straight through the crossing

point in this limit. For z = 0, the edges k′6 and k′4 become parallel in the first (blue) framing

pentagon, while the edges k′′1 and k′′3 become parallel in the second (red) pentagon. Each framing

pentagon degenerates into a box with a parallel segment emerging from it as z → 0. This behavior

induces additional, unwanted dependence on δ. However, it will simplify the v dependence of the

singular terms.

lnu → lnu − 2πi and Li2(1 − u) → Li2(1 − u) + 2πi ln(1 − u). Then we let u → 1 − δ,

w = v. We obtain from X(w, v, u), X(v, u, w) and Y (u, v, w) respectively,

Xns
2→4 = −2πi

[

ln δ+ln

(

1−v

v

)]

−2
(

Li2(1−v)−ζ2

)

+ln(1−v)
(

ln(1−v)−2 ln v
)

, (2.30)

Xs
2→4 = ln2 δ − 2

(

Li2(1− v)− ζ2

)

− ln2 v , (2.31)

Y2→4 = 2πi ln δ + 2Li2(1− v) + ln2 v − 2π2

= −Xns
2→4 + 2πi ln

(

v

1− v

)

+ ln2
(

v

1− v

)

− 10 ζ2 . (2.32)

Here we see the ln2 δ terms in Xs
2→4 whose origin was mentioned earlier.
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To get to 3 → 3 kinematics with v < 0, following ref. [39] we let ln δ → ln |δ| − iπ,

ln v → ln |v| − iπ, and then complex conjugate the result. We find,

Xns
3→3 = 2πi

[

ln |δ|+ L
]

+ 2Li2(v) + ln2(1− v) , (2.33)

Xs
3→3 = Xns

3→3 + ln2 |δ| − L2 , (2.34)

Y3→3 = −Xns
3→3 + L2 − 4ζ2 , (2.35)

where

L ≡ ln

(

1− 1

v

)

. (2.36)

Considering eq. (2.35) as well as eq. (2.29), we see that the 3 → 3 self-crossing limit of

E is very closely related to that of the nonsingularly-framed Wilson loop W:

E3→3 = Wns
3→3 × exp

[

−γK
8

(

L2 − 4 ζ2

)

]

(2.37)

= W s
3→3 × exp

[

−γK
8

(

ln2 |δ| − 4 ζ2

)

]

. (2.38)

3 Explicit results through five loops

In this section we describe how to extract the 2 → 4 or 3 → 3 self-crossing limit of the MHV

amplitude function E , or equivalently the framed hexagonal Wilson loops, from the full

remainder function R
(L)
6 (u, v, w), which has been computed for L = 2, 3, 4 [41, 47, 58, 59]

and recently for L = 5 [57]. These results include also the nonsingular terms, those having

no powers of ln δ. We will also describe similar results for the NMHV amplitude function

E, which is entirely nonsingular. Later we will examine the singular terms in the MHV

case to even higher loop order by making use of an evolution equation for Wilson loops.

To extract the self-crossing limits, we used properties of hexagon functions [59]. A

basis for hexagon functions has been constructed through weight eight [62]. A formula for

R
(2)
6 in terms of hexagon functions was presented already in ref. [60], and for R

(3)
6 and R

(4)
6

in ref. [62]. In practice we first found the 2 → 4 limit, and then the 3 → 3 limit by analytic

continuation from the 2 → 4 limit. So we will describe that procedure. However, we will

only present the 3 → 3 results explicitly, because they are simpler. The 2 → 4 results can

be found by reversing the analytic continuation.

3.1 Analytic continuation from Euclidean to 2 → 4 kinematics

The analytic continuation for 2 → 4 scattering was described in early studies of the MRK

limit [35]. For the 2 → 4 scattering shown in figure 1(a), and given in eq. (A.1), the relevant

invariants have the following signs,

s12, s45, s36 > 0, s23, s34, s56, s61, s123, s234, s345 < 0. (3.1)

We see that u, v, w > 0. Note that v and w are composed entirely of space-like (negative)

invariants. Therefore they do not need to be analytically continued from the Euclidean
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region. In contrast, u is the product of two time-like invariants, divided by two space-

like ones. The iε prescription requires s → se−iπ for each continuation from space-like to

time-like, hence to reach the 2 → 4 branch we take

2 → 4 : u → u e−2πi, v → v, w → w. (3.2)

Next we approach the self-crossing configuration. Like the MRK limit, this requires

u → 1 from below, so we let u = 1 − δ with δ ≪ 1. In the MRK limit, v and w both

approach zero, proportional to δ, but they do not have to be equal. In the self-crossing

limit, v and w become equal [28–30]. Thus we need to know how to analytically continue

functions under eq. (3.2), followed by the limit (u, v, w) → (1−δ, v, v). Many simplifications

occur in this limit. First of all, the quantity ∆(u, v, w) = (1− u− v−w)2 − 4uvw vanishes

in this limit, ∆(1−δ, v, v) = −4 δ v(1−v) + δ2. Hexagon functions can be characterized by

their “parity”, or how they transform under ∆ → −∆. Parity-odd functions are odd under

this transformation, and so they vanish like a power of δ as we approach the line (1, v, v).

Hence we can restrict our attention to hexagon functions F that are even under par-

ity. The coproduct bootstrap for hexagon functions [59] says that we can construct their

behavior on the line (1− δ, v, v) iteratively in the weight, by using the differential equation

d

dv
F (1− δ, v, v) =

F v + Fw

v
− F 1−v + F 1−w

1− v
, (3.3)

where F x denotes the x component of the weight {n − 1, 1} coproduct of the weight n

function F , evaluated on the same line. In eq. (3.3), we dropped terms involving parity-odd

functions, which would arise from coproducts of the form F yi , because such contributions

vanish on the self-crossing line.

Eq. (3.3) has the same structure as it does on the Euclidean branch, although on that

branch it is possible to set δ → 0, as there is no singularity as u → 1 in this case. This limit

of the remainder function was given through four loops in refs. [47, 59], and at five loops in

ref. [57], as the value on the line (u, u, 1). Since the remainder function is totally symmetric

under exchange of its three arguments, this line is equivalent to (1, v, v) up to a relabeling.

Just as was found earlier in the Euclidean case, the iterative solution to eq. (3.3) lies in the

space of harmonic polylogarithms (HPLs) [74] H~w(v) with argument v and weight vector

~w = (w1, w2, . . . , wn) with all wi ∈ {0, 1}. The only difference is that on the 2 → 4 and 3 →
3 self-crossing branches there may be imaginary parts (iπ factors) as well as factors of ln δ.

For example, for the two-loop remainder function R
(2)
6 , we can use its {3, 1} coproducts

to write its derivative (3.3) as

v(1− v)
dR

(2)
6 (1− δ, v, v)

dv
= Hv

2,1 −Hv
3 − 1

2

[

Hu
2 ln v + lnu ln2 v

]
∣

∣

∣

u→ue−2πi→1−δ

= Hv
2,1 −Hv

3 − iπ
[

ln δ ln v − ln2 v
]

, (3.4)

where we let lnu → ln(1−δ)−2πi = −2πi in the second step. Since dHu
2 /du = (lnu)/(1−

u) → −2πi/(1 − u), we also have that Hu
2 → 2πi ln(1 − u) = 2πi ln δ under this analytic
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continuation. The first two terms of eq. (3.4) match the result found in eq. (7.18) of ref. [59]

for the behavior on the Euclidean branch,

v(1− v)
dR

(2)
6 (1, v, v)

dv

∣

∣

∣

∣

Eucl.

= Hv
2,1 −Hv

3 . (3.5)

The fact that the v derivative of the remainder function is 1/[v(1 − v)] times a tran-

scendental function is just a reflection of the final-entry condition [75]. For general (u, v, w)

only six final entries appear:

{

u

1− u
,

v

1− v
,

w

1− w
, yu, yv, yw

}

. (3.6)

On the line (1, v, v) (on any branch), u, yu, yv and yw are all trivial, and w = v, so the

set (3.6) collapses to the single final entry v/(1− v), and d ln[v/(1− v)]/dv = 1/[v(1− v)].

So the v derivative of the remainder function must have this prefactor. However, the v

derivatives of generic hexagon functions, which are needed in intermediate steps of the

iterative construction, will not have this property.

We also need to fix a boundary condition for the integration of eq. (3.3). We do so

at the point v = 1. To obtain the values of the hexagon functions on the 2 → 4 branch

at (1 − δ, 1, 1), we first obtain them along the Euclidean branch of the line (u, 1, 1). On

this line, the hexagon functions are also HPLs, with argument u, although the parity-odd

functions are non-vanishing here. The remainder function is given on this line through four

loops in refs. [47, 59], and at five loops in ref. [57]. (See also the ancillary files associated

with ref. [62].) For example, the two-loop remainder function is

R
(2)
6 (u, 1, 1) =

1

2

[

Hu
4 −Hu

3,1 + 3Hu
2,1,1 −

1

4
(Hu

2 )
2 +Hu

1 (H
u
3 − 2Hu

2,1)

+
1

2
(Hu

2 − ζ2)(H
u
1 )

2 − 5ζ4

]

, (3.7)

whereHu
3,1 = H0,0,1,1(1−u), etc. This “standard” Lyndon-basis form of the result has argu-

ment (1−u) for all HPLs with trailing 1’s in their weight vectors. If there had been a trailing

0, we could use a shuffle identity to remove it, at the price of extracting a factor of H0(1−
u) = ln(1 − u). HPLs with trailing 1’s are regular when their argument vanishes. Thus

eq. (3.7) is adapted to the point u = 1, in the sense that it makes manifest that R
(2)
6 (u, 1, 1)

has no branch cut at u = 1 (in the Euclidean region), because there is no ln(1− u).

For the analytic continuation of u around the origin, we need to use HPL identities to

rewrite the result in terms of a Lyndon basis for H~w(u), rather than H~w(1−u). We obtain,

R
(2)
6 (u, 1, 1) =

1

4

{

lnu

[

1

3
[H1(u)]

3 +H1(u)
[

H2(u) + ζ2

]

+ 2H3(u) + 2 ζ3

]

− 6H4(u) + 2H3,1(u)− 2H2,1,1(u)−
1

2
[H2(u)]

2 − 2H1(u)
[

H3(u)−H2,1(u)
]

− [H1(u)]
2
[

H2(u)− ζ2

]

+ ζ2H2(u)−
15

4
ζ4

}

. (3.8)
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To get to the 2 → 4 branch we just set lnu → lnu − 2πi in eq. (3.8), because the H~w(u)

are all regular at u = 0. Next we let u = 1− δ and take δ → 0, to get

R
(2)
6 (1− δ, 1, 1) = 2πi

[

1

12
ln3 δ +

ζ2
2

ln δ − ζ3

]

− 5

2
ζ4 . (3.9)

Next we need to integrate up eq. (3.3) for the generic hexagon functions, imposing a

boundary condition at (1 − δ, 1, 1). For the case of R
(2)
6 , we integrate eq. (3.4) with the

boundary condition (3.9), obtaining

R
(2)
6 (1− δ, v, v) = 2πi

[

1

12
ln3 δ +

(

−1

2
Hv

2 − 1

4
ln2 v +

ζ2
2

)

ln δ −Hv
2,1 +

1

6
ln3 v − ζ3

]

+Hv
4 −Hv

3,1 + 3Hv
2,1,1 − ln v(Hv

3 −Hv
2,1)−

1

2
(Hv

2 )
2 − 5

2
ζ4 . (3.10)

The leading ln3 δ term in this formula agrees with the result of ref. [28].

We have repeated this exercise for the higher-loop remainder functions R
(3)
6 , R

(4)
6 , and

R
(5)
6 (as well as for the NMHV coefficient functions E(1), E(2), E(3) and E(4)). Once we

have obtained the remainder function in the self-crossing configuration, we can find Wns
2→4,

W s
2→4 and E2→4 with the help of eqs. (2.30), (2.31) and (2.32).

3.2 From 2 → 4 to 3 → 3 kinematics with v < 0

To get to 3 → 3 kinematics with v < 0, following ref. [39] we let ln δ → ln |δ| − iπ,

ln v → ln |v| − iπ, and then complex conjugate the result. To do the analytic continuation

around v = 0, we first rewrite the expressions in terms of a Lyndon basis for H~w(v).

We apply this procedure to the remainder function, and then apply eqs. (2.33), (2.34)

and (2.35) to construct the results for the framed Wilson loops and for E . In view of

the simple relations (2.37) and (2.38) between them, it’s sufficient to give one of these

quantities, and E has the simplest finite parts.

In order to represent the results for 3 → 3 kinematics compactly, we define some

compressed notation [47]. We first expand all products of HPLs using the shuffle algebra,

in order to linearize the expression in terms of HPLs. The HPL weight vectors ~w consist

entirely of 0’s and 1’s; we encode them as binary numbers, but written as a subscript in dec-

imal. We use a superscript to record the length of the original weight vector. For example,

H2(z)H2,1(z) = H0,1(z)H0,1,1(z) = 6H0,0,1,1,1(z) + 3H0,1,0,1,1(z) +H0,1,1,0,1(z)

→ 6h
[5]
7 + 3h

[5]
11 + h

[5]
13 . (3.11)

Here the suppressed argument of h is z = 1/(1− v). Note also that

h
[1]
1 = − ln

(

1− 1

1− v

)

= ln

(

1− 1

v

)

= L . (3.12)

In this notation, Xns
3→3 and Y3→3 become

Xns
3→3 = 2πi(ln |δ|+ L)− 2h

[2]
2 − 2ζ2 , (3.13)
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Y3→3 = −2πi(ln |δ|+ L) + 2(h
[2]
2 + h

[2]
3 )− 2ζ2 , (3.14)

and the two-loop remainder function evaluates to

R
(2)
6 |3→3 = 2πi

[

− 1

12
ln3 |δ|+ 1

2
(h

[2]
2 + h

[2]
3 + ζ2) ln |δ|+

1

2
h
[3]
5 + h

[3]
6 + h

[3]
7 +

1

2
ζ2 L+ 2 ζ3

]

+ 3 ζ2 ln2 |δ| + 6 ζ2 L ln |δ| + 2h
[4]
8 + 2h

[4]
9 + h

[4]
10 + h

[4]
11

+ ζ2 (h
[2]
2 + 6h

[2]
3 )− ζ3 L+

33

4
ζ4 . (3.15)

The results for E in the 3 → 3 self-crossing configuration with v < 0 through five loops

are:

E
(0)
3→3 = 1 , (3.16)

E
(1)
3→3 = −

1

2
Y3→3 = πi

[

ln |δ| + L
]

− h
[2]
2 − h

[2]
3 + ζ2 , (3.17)

E
(2)
3→3 = 2πi

[

−
1

12
ln3 |δ| +

1

2
ζ2 ln |δ| −

1

12
L

3 +
1

2
ζ2L+ 2ζ3

]

+ 2
(

h
[4]
8 + h

[4]
9 + h

[4]
10 + h

[4]
11 + h

[4]
12 + h

[4]
13

)

+ 3
(

h
[4]
14 + h

[4]
15

)

+ ζ2h
[2]
2 − ζ3L+ 7ζ4 , (3.18)

E
(3)
3→3 = 2πi

[

1

80
ln5 |δ| −

1

4
ζ3 ln

2 |δ| +
1

4
ζ4 ln |δ| −

1

4

(

4h
[5]
17 + 2h

[5]
19 + h

[5]
21 + 2h

[5]
25 + h

[5]
27 − 6h

[5]
31

− ζ2h
[3]
5 + ζ3h

[2]
3 +

7

4
ζ4L+ 42ζ5 − 18ζ2ζ3

)]

−
1

2

[

24(h
[6]
32 + h

[6]
33) + 20(h

[6]
34 + h

[6]
35 + h

[6]
36 + h

[6]
37) + 18(h

[6]
38 + h

[6]
39) + 20(h

[6]
40 + h

[6]
41)

+ 19(h
[6]
42 + h

[6]
43) + 18(h

[6]
44 + h

[6]
45 + h

[6]
46 + h

[6]
47) + 24(h

[6]
48 + h

[6]
49)

+ 22(h
[6]
50 + h

[6]
51 + h

[6]
52 + h

[6]
53) + 21(h

[6]
54 + h

[6]
55)

+ 24(h
[6]
56 + h

[6]
57 + h

[6]
58 + h

[6]
59 + h

[6]
60 + h

[6]
61) + 30(h

[6]
62 + h

[6]
63)

+ ζ2(16h
[4]
8 + 2h

[4]
9 + 11h

[4]
10 + 4h

[4]
11 + 14h

[4]
12 + 7h

[4]
13 + 12h

[4]
14 + 6h

[4]
15)

+ ζ3(2h
[3]
4 − h

[3]
5 + h

[3]
6 − 6h

[3]
7 ) +

1

4
ζ4(81h

[2]
2 + 83h

[2]
3 )− 4ζ5L

+
3787

48
ζ6 −

5

2
(ζ3)

2

]

, (3.19)

E
(4)
3→3 = 2πi

[

−
1

672
ln7 |δ| −

1

80
ζ2 ln

5 |δ| −
1

48
ζ3 ln

4 |δ| −
7

24
ζ4 ln

3 |δ|

+
1

4

(

4ζ5 − 3ζ2ζ3
)

ln2 |δ| −
1

48

(

13ζ6 + 48(ζ3)
2
)

ln |δ|

]

+ finite , (3.20)

E
(5)
3→3 = 2πi

[

1

6912
ln9 |δ| +

1

336
ζ2 ln

7 |δ|+
5

288
ζ3 ln

6 |δ| +
9

80
ζ4 ln

5 |δ| +
1

24

(

6ζ5 + 7ζ2ζ3
)

ln4 |δ|

+
1

72

(

115ζ6 + 48(ζ3)
2
)

ln3 |δ| +
1

16

(

−55ζ7 + 68ζ2ζ5 + 44ζ3ζ4
)

ln2 |δ|

+
1

72

(

257ζ8 + 810ζ3ζ5 + 18ζ2(ζ3)
2
)

ln |δ|

]

+ finite , (3.21)

where the suppressed argument of the h
[w]
i (z) is z = 1/(1− v). We also have results for the

finite parts of E at four and five loops, i.e. those terms lacking a power of ln |δ|. However,
these terms are rather lengthy, so we will present them later, for the v > 0 branch of 3 → 3

kinematics instead (for which they are somewhat more compact); the values for v < 0 can
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be recovered by analytic continuation. (We give the four- and five-loop finite parts of E for

v < 0 in the ancillary file accompanying this paper.)

3.3 A few observations

Inspection of eqs. (3.16) through (3.21) reveals a number of remarkable features:

1. The ln |δ| singularities in E3→3 are only in the imaginary part. This is not true for the

remainder function (see eq. (3.15)), and it is not true for E in 2 → 4 kinematics. Note

that the same statements will be true for both Wilson loopsWns
3→3 andW s

3→3, because

according to eqs. (2.37) and (2.38), they are related to E3→3 by real prefactors.

2. The singularities are totally independent of v. This statement is also true for the

singularly-framed Wilson loop W s
3→3, but not for Wns

3→3, since it differs from E3→3

by a finite, but v-dependent exponential factor.

3. In the finite (non-ln |δ|) parts, only a limited range of the subscripts i on the functions

h
[w]
i appear, starting at i = 2w−1. In the imaginary part, only odd values of i appear.

In the real part, both even and odd i can appear, but in the non-ζ terms i = 2k and

i = 2k + 1 always appear with the same coefficients.

The first two properties have their origin in the factorization structure of self-crossed Wilson

loops, to be discussed below.

The property that h
[w]
i never appears for i < 2w−1 ensures that the binary weight vector

for h
[w]
i always starts with a “1”. Then the v derivative of h

[w]
i (z), with z = 1/(1 − v),

has a rational prefactor of dz/dv × 1/(1 − z) = −1/[v(1 − v)]. As mentioned earlier, this

feature is just the manifestation of the final-entry condition [75] on the remainder function.

Inspection of eqs. (3.13) and (3.14) shows that it also holds for Xns
3→3 and Y3→3, so the

conversion to E and the Wilson loop framings do not spoil this property.

Another feature of the explicit results for W(L)
3→3 is that the h

[w]
i that appear in the

imaginary part only have odd values of i, while in the real part there is no such restriction.

An odd value of i, or a final value of “1” in the binary representation, corresponds to a

statement that the branch cuts in W(L)
3→3 are only in 1 − z = −v/(1 − v). This property

allows for a branch cut at v = 0 (which definitely occurs) but forbids it at v = ∞. Recall

that v = ∞ is the position of the multi-particle pole as s234 → 0 inside 3 → 3 kinematics,

and that helicity selection rules forbid such a pole in the MHV case. Although there is no

pole, there certainly can be a branch cut in this channel. It is interesting that the branch

cut behavior in v is only found in the real part, not the imaginary part.

The leading ln5 |δ| term in the remainder function R
(3)
6 , was predicted in ref. [30] to be

R
(3)
6 ∼ ∓(7πi/240) ln5 |δ|. At this leading order in ln |δ|, the behavior of R

(3)
6 , E(3) and the

nonsingularly-framed Wilson loop Wns
3→3 are identical; for example, the cross-terms from

exponentiation can produce at most a term of the form π2 ln4 |δ|. Eq. (3.19) disagrees with
the prediction of ref. [30] by a factor of ±6/7. What could cause the discrepancy? In

ref. [30], the same dimensional regulator ǫ was used to regulate the self-crossing singularity

as the cusp singularity. This may have led to difficulties in extracting the dependence
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on the self-crossing separation alone. Here we have separated the self-crossing and cusp

singularities cleanly; the nonsingular framing removes the cusp singularities completely, at

least at this order in ln |δ|. Also, we use a dual conformal measure δ of the self-crossing

separation throughout the calculation.

3.4 From v < 0 to v > 1

Formulas (3.16) to (3.19) describe the MHV amplitude in 3 → 3 kinematics with v < 0,

or s234 > 0. In this subsection we describe how to analytically continue them to the other

branch of 3 → 3 kinematics, where s234 < 0 and v > 1. From eq. (2.22) we see that the sign

of δ does not change in passing between the two branches, because s36 remains negative.

We just need to analytically continue v around v = ∞. Letting s234 → s234+iε in eq. (2.7),

we find the sign of the iπ term in the continuation:

ln

(

1

1− v

)

→ ln

(

1

v − 1

)

+ iπ . (3.22)

In order to carry out this analytic continuation of eqs. (3.16)–(3.19), it is simplest to

return to the Lyndon basis for HPLs H~w(z) with argument z = 1/(1− v). That’s because

the point v = ∞ around which we are continuing is at z = 0, and all HPLs with trailing

1’s in their weight vectors are regular at this point. In the Lyndon basis, the only function

that is not regular is

H0(z) = ln

(

1

1− v

)

, (3.23)

which is to be replaced using eq. (3.22). Then we rewrite the result in a linearized basis,

for compactness, but using a different argument for the h functions, ẑ = 1/v.

The results for the 3 → 3 self-crossing configuration with v > 1 through three loops are:

E(0)
3→3(v > 1) = 1 , (3.24)

E(1)
3→3(v > 1) = πi ln |δ| + h

[2]
2 + ζ2 , (3.25)

E(2)
3→3(v > 1) = 2πi

[

− 1

12
ln3 |δ| + 1

2
ζ2 ln |δ| − h

[3]
4 + 2ζ3

]

− 2h
[4]
8 − h

[4]
14 + ζ2

(

5h
[2]
2 − h

[2]
3

)

+ ζ3h
[1]
1 + 7ζ4 , (3.26)

E(3)
3→3(v > 1) = 2πi

{

1

80
ln5 |δ| − 1

4
ζ3 ln

2 |δ| + 1

4
ζ4 ln |δ| +

1

2

[

12h
[5]
16 + 2h

[5]
18 + 2h

[5]
20 + h

[5]
22

+ h
[5]
26 + 2h

[5]
28 + ζ2

(

−4h
[3]
4 + h

[3]
5 + h

[3]
6

)

+ ζ3h
[2]
2 − 21ζ5 + 9ζ2ζ3

]

}

+
1

2

[

24h
[6]
32 + 4h

[6]
34 + 4h

[6]
36 + 2h

[6]
38 + 4h

[6]
40 + 3h

[6]
42 + 2h

[6]
44 + h

[6]
46 + 2h

[6]
50

+ 2h
[6]
52 + h

[6]
54 + 4h

[6]
56 + h

[6]
58 + 6h

[6]
62

+ ζ2

(

−56h
[4]
8 + 2h

[4]
9 − 7h

[4]
10 + h

[4]
11 + 2h

[4]
12 + h

[4]
13 − 9h

[4]
14 + 6h

[4]
15

)

+ ζ3

(

2h
[3]
4 + 3h

[3]
5 + h

[3]
6 − 4h

[3]
7

)

− 1

4
ζ4

(

39h
[2]
2 + 62h

[2]
3

)
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−
(

4ζ5 + 6ζ2ζ3

)

h
[1]
1 − 3787

48
ζ6 +

5

2
(ζ3)

2

]

, (3.27)

where the suppressed argument of the h
[w]
i (ẑ) is now ẑ = 1/v. The corresponding results

for four and five loops are given in eqs. (C.1) and (C.2) in appendix C.

The singular terms for v > 1 in eqs. (3.24) through (3.27), and in eqs. (C.1) and (C.2),

are identical to those for the v < 0 branch. The finite terms are even simpler, thanks

to the choice of ẑ argument. The binary vectors for i in h
[w]
i still start with a “1” as a

consequence of the final entry condition, because dẑ/dv×1/(1− ẑ) = 1/[v(1−v)]. However,

now there are only even values of i for the non-ζ parts of both the imaginary and the real

parts of E3→3(v > 1). An odd value of i would correspond to a branch cut at v = 1;

however, appendix A shows that this is an unremarkable scattering configuration, and the

amplitude is totally smooth there.

3.5 v → ∞ and v → 1 limits

From the formulas (3.24) to (3.27), (C.1) and (C.2), it is straightforward to take the

limit v → ∞, which just amounts to setting all the h
[w]
i to zero, since they all vanish at

ẑ = 1/v = 0. Equivalently, one can set all the h
[w]
i to zero in the previous formulas for

v < 0, since z = 1/(1 − v) = 0 in this limit too. Through five loops, one gets the same

result as one approaches v = ∞ from either the positive or the negative side, and the

results contain no ln v divergences:

E(0)
3→3(v = ∞) = 1 , (3.28)

E(1)
3→3(v = ∞) = πi ln |δ| + ζ2 , (3.29)

E(2)
3→3(v = ∞) = 2πi

[

− 1

12
ln3 |δ| + 1

2
ζ2 ln |δ| + 2ζ3

]

+ 7ζ4 , (3.30)

E(3)
3→3(v = ∞) = 2πi

[

1

80
ln5 |δ| − 1

4
ζ3 ln

2 |δ| + 1

4
ζ4 ln |δ| −

21

2
ζ5 +

9

2
ζ2ζ3

]

− 3787

96
ζ6 +

5

4
(ζ3)

2 , (3.31)

E(4)
3→3(v = ∞) = 2πi

[

− 1

672
ln7 |δ| − 1

80
ζ2 ln

5 |δ| − 1

48
ζ3 ln

4 |δ| − 7

24
ζ4 ln

3 |δ|

+
1

4
(4ζ5 − 3ζ2ζ3) ln

2 |δ| − 1

48

(

13ζ6 + 48(ζ3)
2
)

ln |δ|

+
1141

16
ζ7 −

119

4
ζ2ζ5 −

17

4
ζ3ζ4

]

+
5

4
ζ5,3 +

56911

144
ζ8 + 18ζ2(ζ3)

2 − 63

4
ζ3ζ5 , (3.32)

E(5)
3→3(v = ∞) = 2πi

[

1

6912
ln9 |δ| + 1

336
ζ2 ln

7 |δ| + 5

288
ζ3 ln

6 |δ| + 9

80
ζ4 ln

5 |δ|

+
1

24
(6ζ5 + 7ζ2ζ3) ln

4 |δ| + 1

72

(

115ζ6 + 48(ζ3)
2
)

ln3 |δ|

+
1

16

(

−55ζ7 + 68ζ2ζ5 + 44ζ3ζ4

)

ln2 |δ|
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+
1

72

(

257ζ8 + 18ζ2(ζ3)
2 + 810ζ3ζ5

)

ln |δ|

− 40369

64
ζ9 +

7645

32
ζ2ζ7 +

3119

64
ζ3ζ6 +

2295

32
ζ4ζ5 −

15

4
(ζ3)

3

]

− 177

28
ζ7,3 +

1217

40
ζ2ζ5,3 −

2668732849

537600
ζ10 −

2659

32
ζ4(ζ3)

2

− 3091

8
ζ2ζ3ζ5 +

9179

64
ζ3ζ7 +

20553

224
(ζ5)

2 . (3.33)

Multiple zeta values (MZV’s) begin to appear at four loops:

ζ5,3 =
∑

n1>n2>0

1

n5
1n

3
2

= 0.0377076729848 . . . , ζ7,3 =
∑

n1>n2>0

1

n7
1n

3
2

= 0.0084196685030 . . . .

(3.34)

Even though there is a branch cut at v = ∞, the residue vanishes there, and we get the

same limiting behavior as v becomes large for either sign of v. The nonsingularly framed

Wilson loop Wns has a very similar behavior to E in this limit, because L2 → 0 as v → ∞,

so the exponential factor in eq. (2.37) simply approaches exp[12ζ2γK ].

The limit of E3→3(v) as v → 1 from above is also smooth in v. In this case the h
[w]
i

have to be evaluated at ẑ = 1/v = 1, where they are given by multiple zeta values. Since

the ln |δ| terms are exactly the same as for other 3 → 3 values of v, here we just present

the finite (non-ln |δ|) terms:

E(0),fin
3→3 (v→1+) = 1 , (3.35)

E(1),fin
3→3 (v→1+) = 0 , (3.36)

E(2),fin
3→3 (v→1+) = 2πiζ3 −

5

2
ζ4 , (3.37)

E(3),fin
3→3 (v→1+) = 2πi

[

−4ζ5 + 2ζ2ζ3

]

+
35

24
ζ6 + (ζ3)

2 , (3.38)

E(4),fin
3→3 (v→1+) = 2πi

[

39

2
ζ7−

19

2
ζ2ζ5+

5

4
ζ3ζ4

]

+
3

2
ζ5,3−

77

48
ζ8−

5

2
ζ3ζ5+

15

2
ζ2(ζ3)

2 , (3.39)

E(5),fin
3→3 (v→1+) = 2πi

[

−857

8
ζ9 +

205

4
ζ2ζ7 −

299

48
ζ3ζ6 −

45

4
ζ4ζ5 −

1

2
(ζ3)

3

]

− 6ζ7,3 +
15

2
ζ2ζ5,3 −

3961

96
ζ10 +

29

2
ζ4(ζ3)

2 − 60ζ2ζ3ζ5

− 63

2
ζ3ζ7 −

111

8
(ζ5)

2 . (3.40)

For what it’s worth, the rational numbers multiplying the ζ values in these equations seem

to be quite a bit simpler than in most other limits of these functions.

One can also obtain the results in the limit of 2 → 4 kinematics as v → 1− by analytic

continuation. In general, one should let ln |δ| → ln δ−iπ and ln(v−1) → ln(1−v)+iπ, and

then complex conjugate the resulting expression. For E the step ln(v− 1) → ln(1− v) + iπ

can be omitted since there is no ln(v − 1) singularity. These results obtained in this way

agree with those obtained by taking the limit v → 1− directly from expressions (not shown)

for E2→4(v).
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In contrast to the smooth behavior of E as v → 1, the limit of the nonsingularly-framed

Wilson loop Wns
3→3(v) is divergent as v → 1+; the divergence is simply due to the factor

in eq. (2.37) of exp[−γKL2/8] ≈ exp[−γK ln2(v − 1)/8]. If one approaches v = 1 from the

2 → 4 side, i.e. v → 1−, then there are additional phases in the divergence due to the

analytic continuation ln(v − 1) → ln(1− v) + iπ.

4 Evolving framed self-crossing Wilson loops

4.1 A simple evolution equation

Framing the hexagon Wilson loop removes its cusp singularities and makes Wns an ultra-

violet (UV) finite, dual conformal invariant function Wns(u, v, w). Denote the non-framed

hexagonal Wilson loop by Whex ≡ W6, and denote the combination of two pentagon and

one box Wilson loops used to do the non-singular framing by Wf (the subscript “f” refers

to the framing), so that

Wns = Whex ×Wf . (4.1)

Note that because of UV divergences, neither Whex nor Wf are purely functions of the cross

ratios u, v, w, but their product in eq. (4.1) is.

Consider the self-crossing limit, in which edges k3 and k6 cross (see figure 2). In terms

of dual conformal variables the limit is (u, v, w) → (1, v, v). We approach the limit in the

following way: first move onto the plane w = v. Wns does not acquire any divergences in

this step. Then approach the line u = 1 by taking u = 1− δ:

Wns(u, v, w) → Wns(u, v, v) → Wns(1− δ, v, v). (4.2)

We choose the non-singular framing Wf because the new light-like lines in the pentagons

and the box do not go near the self-crossing point. Thus the framing Wilson loops do

not acquire any additional singular behavior in the self-crossing limit (in contrast to the

singular framing defining Ws).

Moreover, since the job of Wf is to remove cusp divergences, any divergences in δ for

Wns are purely due to Whex. We expect these divergences to be governed by an evolution

equation of the form
d

d ln δ
Wns(1− δ, v, v) = F(δ, v), (4.3)

for some function F .

To find an equation of the form (4.3) we follow the approach of Korchemskaya and

Korchemsky [32], who studied the crossing of two infinite Wilson lines, not necessarily

light-like. Consider two auxiliary Wilson loops W1 and W2, depicted in figure 9. The

only difference between W1 and Whex is that W1 is evaluated strictly in the self-crossing

kinematics; hence W1 is formally infinite and must be renormalized. Whex is finite for ~z 6= 0

and is equal to W1 for ~z = 0. The second Wilson loop in figure 9, W2, is the same as W1,

except that the routing of the lines at the self-crossing point is exchanged so that the contour

forms two boxes instead of a hexagon. It is also evaluated with the two vertices on top

of each other, after renormalization. The renormalized quantities W r
1 and W r

2 are finite,
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1W 2W

Figure 9. Wilson loops W1 and W2 mix under renormalization.

non-trivial functions of the renormalization scale µ. Under a change of renormalization

scale, they mix with each other [33, 34]. The functional dependence of W r
1 on µ2 should

be the same as the functional dependence of Whex on the inverse separation 1/~z2. We will

find a renormalization group (RG) equation for W r
1 (µ

2) and then set µ2 = 1/~z2 in order

to obtain an RG equation for Whex. This will be used, in turn, to obtain a differential

equation for Wns. Rewriting ~z2 in terms of δ will give an equation of the form (4.3).

The RG equations mixing the renormalized Wilson loops W r
1 and W r

2 for a general

theory are [32–34]

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

W r
i = −Γij(γ, g)W r

j −
∑

m

Γcusp(γm, g)W r
i . (4.4)

Here γ is the crossing angle, m labels the cusps of W r
1 , and γm are the corresponding cusp

angles. The cusp anomalous dimension for finite cusp angle γm is denoted by Γcusp(γm, g),

and Γij(γ, g) is the cross anomalous dimension matrix.

Eq. (4.4) holds for massive Wilson lines, for which all cusp angles and the angle at

the self-crossing point are finite. Below we give a modified relation for the massless case.

In the subsequent equations we imagine keeping the Wilson lines massive and taking the

massless limit at the end. Finally, in N = 4 SYM, the beta function vanishes and eq. (4.4)

simplifies to

µ
∂

∂µ
W r

i = −Γij(γ, g)W r
j −

∑

m

Γcusp(γm, g)W r
i . (4.5)

Let Wr
i ≡ W r

i ×Wf . As discussed above, the (renormalized) framing function Wf removes

all six cusp divergences in the massive case where γ is finite. This is true even for Wr
2 , even

though Wf is the framing function for the hexagon and W r
2 is the renormalized Wilson

loops for two boxes, because the six cusp angles match. (In our terminology, we do not

count the two cusps in Wr
2 at the self-crossing point as cusps; we handle them separately.)

In the massless limit, where γm and γ go to infinity, things are more subtle.
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Taking into account the removal of the cusp divergences when passing from W r
i to Wr

i ,

we obtain

µ
∂

∂µ
Wr

i = −Γij(γ, g)Wr
j . (4.6)

The components Γij(γ, g) in the large Nc limit of QCD and in the limit of large γ can be

found in ref. [32]. An important point is that, after inserting an appropriate factor of Nc

into the normalization of Wr
2 , they take an upper triangular form in the large Nc limit [28].

The reason is that for a gluon to contribute to the evolution of Wr
1 it should be exchanged

between the two self-crossing lines, which produces an extra factor of Nc, allowing Wr
1 to

mix into Wr
2 ; whereas for a gluon to cause evolution of Wr

2 into Wr
1 , its exchange between

the two boxes in figure 9 is color suppressed, by a factor of 1/Nc. Since Γ11 = Γ21 = 0

at large Nc, the evolution of both Wr
1 and Wr

2 is governed by Wr
2 , through the matrix

elements Γ12 and Γ22. Furthermore, Γ22 is proportional to the cusp anomalous dimension.

4.2 The large γ limit

In the limit of large γ, ref. [32] finds that Γ12 behaves like a constant times iπ in QCD,

while the leading behavior of the cusp anomalous dimension is proportional to γ × γK ,

where γK is the light-like cusp anomalous dimension. We assume a similar form for the

matrix elements holds here (see also the discussion in ref. [28]),

Γ12 → −iπ Γ1(a), (4.7)

Γ22 → γ
γK(a)

2
, (4.8)

as γ → ∞, where we converted to our normalization of the cusp anomalous dimension and

perturbative expansion parameter a = g2YMNc/(8π
2). Inserting these values into eq. (4.6),

we find

µ
∂

∂µ
Wr

1 = iπΓ1(a)Wr
2 , (4.9)

µ
∂

∂µ
Wr

2 = −γ
γK(a)

2
Wr

2 . (4.10)

In the massless limit γ → ∞, eq. (4.10) is not defined. We can attempt to get into this

limit using the method of refs. [28, 76]. Taking legs 3 and 6 to be massive initially, with

masses k23 and k26, we write eq. (4.10) as

µ
∂

∂µ
lnWr

2
?
= −γ

γK(a)

2
, (4.11)

where

γ = ln

(

s36
√

k23
√

k26

)

. (4.12)

Now differentiate eq. (4.11) with respect to s36, and integrate back up to obtain

µ
∂

∂µ
Wr

2
?
=

(

−γK(a)

2
log(µ2s36)− Γ̄(a)

)

Wr
2 , (4.13)
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where Γ̄(a) is an integration constant. Notice the appearance of the non-dual-conformal

quantity s36. This signals a problem with the large γ limit for eq. (4.10). If we ignore this

problem, we can trade µ2 for 1/~z2 → [δs36xy(1−x)(1−y)]−1 by the prescription described

in eq. (2.22). Dropping the non-dual-conformal factor xy(1−x)(1−y), eq. (4.13) becomes,

in 3 → 3 kinematics,
d

d ln |δ| lnW2
?
= −γK(a)

4
ln |δ| + Γ̄

2
, (4.14)

which integrates to

W2(δ, v)
?
= f(v) exp

[

−γK(a)

8
ln2 |δ| + Γ̄(a)

2
ln |δ|

]

, (4.15)

for some function f(v) of v alone. However, we will see below that such a solution is

inconsistent with explicit results.

More important for our purposes is eq. (4.9), because it contains no explicit γ, so we

expect its large γ limit to be reliable. Again trading µ2 for 1/δ, eq. (4.9) becomes

1

2πi

d

d ln δ
Wns(1− δ, v, v) = −1

4
Γ1(a)W2(δ, v) . (4.16)

We have changed notation Wr
2 → W2, Wr

1 → Wns, to emphasize that, here and below,

the renormalization scale µ has been exchanged for δ using eq. (2.22), so that we now deal

with finite functions (for non-zero δ) of the dual conformal variable v.

4.3 The framed double box

In order to separate the various functional dependences of Wns, it will be useful to rewrite

W2 as W2 = W2 × Wf = W2 × W s
f × (Wf/W

s
f ), where W s

f is a new framing function,

corresponding to the singular framing in figure 7, for which we defined W s = Whex ×W s
f

back in section 2.4. (The superscript “s” reminds us that this framing function is singular

in the self-crossing kinematics.)

The reason for rewriting things in this way is that the framing function Wf involves

pentagons that straddle both sides of the self-crossing geometry. Thus they have sensitivity

to the global geometry of the hexagon, and can carry non-trivial v dependence (although

Wf is not dual conformally invariant separately fromWhex). On the other hand, the framing

corresponding to W s
f is so degenerate in the self-crossing limit, consisting essentially only

of boxes on one side of the crossing point or the other, that it cannot depend on v (see

figure 8). For 3 → 3 kinematics, using the exact results in [66, 67] for four- and five-sided

Wilson loops, or equivalently by comparing eqs. (2.37) and (2.38) for the different hexagon

framings, we can relate the two framing functions:

Wf

W s
f

=
W2

W s
2

= exp

[

−γK(a)

8

(

ln2 |δ| − L2
)

]

, (4.17)

where L = ln(1− 1/v).

The evolution equation (4.16) becomes, in 3 → 3 kinematics,

1

2πi

d

d ln δ
Wns

3→3(1− δ, v, v) = −1

4
Γ1(a) exp

[

−γK(a)

8

(

ln2 |δ| − L2
)

]

W s
2 (δ) , (4.18)
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Figure 10. The two box Wilson loops that the hexagon mixes into in 3 → 3 kinematics both have

Euclidean kinematics.

where W s
2 ≡ W2 ×W s

f is dual conformally invariant, but too singular to depend on v, so

we write it as a function only of δ. Thus all non-trivial kinematic dependence has been

factored out in the exponential pre-factor of eq. (4.18).

We can also use eq. (2.37) to convert eq. (4.18) to one for E in 3 → 3 kinematics, since

the relative factor between them is independent of δ,

1

2πi

d

d ln δ
E3→3(1− δ, v, v) = −1

4
Γ1(a) exp

[

−γK(a)

8

(

ln2 |δ| − 4ζ2

)

]

W s
2 (δ) . (4.19)

This equation explains the v independence of the singular terms in E3→3 from 1 to 5

loops. It also explains why the singularities are purely in the imaginary part: the hexagon

3 → 3 kinematics we studied alternate between incoming and outgoing momenta, as one

goes cyclically around the loop, as shown in figure 1(b) and also in figure 10. The two

boxes that this hexagon factorizes into have Euclidean kinematics, in the sense that the

invariants connecting adjacent legs (the so-called s and t channels for a scattering process)

are both space-like. The only time-like invariant is in the u channel involving diagonally

opposite legs, but this invariant cannot produce cuts in the large Nc limit, and so the box

Wilson loops must be real. In other words, a factor of πi comes from the cross anomalous

dimension, and the remaining factors in eq. (4.19) are real.

Suppose we took eq. (4.15) for the δ-dependence of W2(δ, v) seriously. Then we could

combine it with eq. (4.17) and the observation that W s
2 is independent of v to fix f(v) and

conclude that

W s
2 (δ) = C(a) exp

[

Γ̄(a)

2
ln |δ|

]

(4.20)

in 3 → 3 kinematics, where C(a) is independent of both v and δ. Then we would find that

eq. (4.18) becomes

1

2πi

d

d ln δ
Wns

3→3(1− δ, v, v)
?
= −1

4
C(a)Γ1(a) exp

[

−γK(a)

8

(

ln2 |δ| − L2
)

+
Γ̄(a)

2
ln |δ|

]

.

(4.21)
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In section 6 we will find that this expression is incompatible with explicit results, begin-

ning at order a4 and ln3 |δ|. The leading-logarithmic terms in eq. (4.21) (terms of order

aL ln2L−2 |δ|) do have the correct form, but that is a tiny part of the available data.

It might be possible to compute the singularly-framed Wilson loop W s
2 (δ) directly, but

we will not attempt to do so here. Instead, in the next section, we will use a matching

between the self-crossing limit at small v and a corner of the multi-Regge limit, in order

to compute the left-hand side of eq. (4.18). We leave it to future work to evaluate W s
2 (δ)

directly.

5 Matching the self-crossing and multi-Regge limits

We now understand the v-dependence of the singular terms in the MHV amplitude and

associated Wilson loops in the self-crossing limit. We wish to use this information to

evaluate the ln δ terms to high loop orders for all values of v, using eq. (4.18) and an

evaluation of Wns
3→3(v) at some value of v to high orders. A convenient place to do this is

for v near zero, where it overlaps the multi-Regge limit.

The multi-Regge limit of six-gluon scattering in planar N = 4 SYM depends on a

singular parameter δ and on a complex parameter, conventionally called w. (In order to

minimize confusion between this w and the cross ratio w for generic kinematics, in this

section we call the three cross ratios (u1, u2, u3).) The purpose of this section is first to

identify the w → −1 limit within multi-Regge kinematics with the v → 0 limit within the

self-crossing configuration. Then we evaluate the all-orders MRK formulae [49] in this limit,

in order to provide an expression for the self-crossing configuration to high loop orders.

The MRK limit is defined in 2 → 4 kinematics by the analytic continuation u1 →
u1e

−2πi from the Euclidean region, followed by letting

u1 = 1− δ , u2 =
δ

|1 + w|2 , u3 =
δ |w|2

|1 + w|2 , (5.1)

and taking δ → 0 with δ positive. In 3 → 3 kinematics, we first continue u1 → u1e
+2πi,

u2 → u2e
πi, u3 → u3e

πi from the Euclidean region, and then take the same limit (5.1) but

with δ negative, δ = −|δ|.
The self-crossing limit, in either 2 → 4 or 3 → 3 kinematics, is defined by the same

analytic continuation as in the MRK case, followed by

u1 = 1− δ , u2 = v , u3 = v . (5.2)

By comparing eqs. (5.1) and (5.2), we see that the overlap region is the limit w → −1 of

MRK, and the limit v → 0 of self-crossing kinematics. The key relation for passing between

the two limits is

v =
δ

|1 + w|2 , ln v = ln δ − ln |1 + w|2 (5.3)

for 2 → 4 kinematics, and

|v| =
|δ|

|1 + w|2 , ln |v| = ln |δ| − ln |1 + w|2 (5.4)

for 3 → 3 kinematics.
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5.1 Self-crossing-MRK limit of the Wilson loop in 3 → 3 kinematics

The behavior of the remainder function R6 in the 2 → 4 MRK limit is [42, 46]:

exp
[

R6 + iπδMRK

]∣

∣

∣

MRK, 2→4
= cosπωab + i

a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)
n

2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

×
(

− 1

1− u1

|1 + w|2
|w|

)ω(ν,n)

, (5.5)

where

ωab =
1

8
γK(a) ln |w|2 , (5.6)

δMRK =
1

8
γK(a) ln

|w|2
|1 + w|4 , (5.7)

and γK(a) is the cusp anomalous dimension.

The behavior in the 3 → 3 kinematic region is obtained by letting ln(1 − u1) →
ln(u1 − 1)− iπ = ln |δ| − iπ and performing a complex conjugation [39]:

exp
[

R6 − iπδMRK

]∣

∣

∣

MRK, 3→3
= cosπωab − i

a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)
n

2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

×
( |1 + w|2

|δ| |w|

)ω(ν,n)

. (5.8)

In particular, there is no longer a phase in the last factor, so the real part in 3 → 3

kinematics is trivial,

Re exp
[

R6 − iπδMRK

]∣

∣

∣

MRK, 3→3
= cosπωab . (5.9)

According to eq. (2.27), the nonsingularly-framed Wilson loop is related to exp[R6] by

multiplying by exp[γK8 X]. We can use eq. (2.33) to evaluate X in the self-crossing limit as

v → 0 (from the negative side):

Xns
3→3|v→0 = 2πi ln

( |δ|
|v|

)

= 2πi ln |1 + w|2 . (5.10)

Notice that as w → −1, ωab → 0, while the phase δMRK becomes −γK/4 × ln |1 + w|2, so
that

exp[−iπδMRK] → exp

[

γK
8
Xns

3→3|v→0

]

. (5.11)

Because these phases coincide, the v → 0 limit of the 3 → 3 self-crossing configuration of

the non-singularly-framed Wilson loop is purely imaginary — apart from the trivial term

‘1’ arising from the limit of cosπωab. It is given by the (w,w∗) → −1 limit of eq. (5.8):

Wns
3→3(v → 0) = 1 − i

a

2

∞
∑

n=−∞

( w

w∗

)
n
2
(−1)n

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n) |v|−ω(ν,n) .

(5.12)

Where w and w∗ still appear in eq. (5.12), they are needed to regularize the sum and

integral.
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5.2 Evaluation of the Fourier-Mellin transform for w → −1

In this subsection we describe how to evaluate (most of) the terms in eq. (5.12) directly

to high loop orders, in the limit w → −1. While this paper was being written, ref. [51]

appeared, which provides an efficient evaluation of the MRK limit to high loop orders for

generic values of (w,w∗) in terms of SVHPLs [77]. The two methods are complementary,

in the sense that SVHPLs are not required for the limit w → −1, so a fair amount of

computational machinery can be bypassed. On the other hand, we will see that our method

misses a few terms, for which we can use the results of ref. [51].

In ref. [49], the BFKL eigenvalue ω and impact factor ΦReg were computed to all orders

using integrability. It is straightforward to obtain the perturbative expansions of ω and

ΦReg to high orders, and insert them into eq. (5.12). Actually, it is better to trade the

integral over ν for an integral over the rapidity u which appears in ref. [49]. This saves one

step because the functions ω and ΦReg are initially defined in terms of u rather than ν.

At any fixed loop order, ω and ΦReg (or alternatively the BFKL measure) are polynomi-

als in the function ψ(x) = d ln Γ(x)/dx and its derivatives, where x = 1±iu+n/2, together

with rational functions of u and n and Riemann zeta values. To evaluate the integral over

the real rapidity u, we deform it into the complex plane, where it has an infinite sequence

of poles, at iu = n/2+m for non-negative m. We calculate the residues and then examine

the behavior of the double sum in n and m. We wish to pick up terms that contain at

least one power each of ln(1+w) and ln(1+w∗). This divergent behavior as (w,w∗) → −1

comes from the leading behavior of the summand as m,n → ∞. We let n = n̂ − m, so

that n̂ ≥ m. The residues are all functions involving ψ(p)(m) or ψ(p)(1+ n̂), combined with

rational terms. However, the ψ(p) terms for p > 0 always give power-suppressed terms as

m,n → ∞. Among the ψ functions, we only need to keep ψ(m) ≈ lnm and ψ(1+n̂) ≈ ln n̂.

After dropping all power-suppressed terms, we find that the double sum can be ex-

pressed solely in terms of

Sk(w,w
∗) =

∞
∑

n̂=1

(−w)n̂

n̂

n̂−1
∑

m=1

(−w∗)m

m
(ln n̂+ lnm+ 2γE)

k , (5.13)

for non-negative integers k, where γE is the Euler-Mascheroni constant, plus a similar term

with the roles of n̂ and m exchanged. When we add the term with n̂ ↔ m, we obtain an

unrestricted sum over n̂ andm, up to diagonal terms with n̂ = m, which can be dropped be-

cause they are not divergent. We then use the binomial theorem to decouple the two sums:

Sk(w,w
∗) =

k
∑

p=0

(

k

p

)

Ŝp(w)Ŝk−p(w
∗) , (5.14)

where

Ŝp(w) =
∞
∑

n=1

(−w)n

n
(lnn+ γE)

p . (5.15)

Next we extract the terms in eq. (5.15) containing positive powers of ln(1 + w), for

generic values of p,

Ŝp(w) =

p+1
∑

ℓ=1

dp,ℓ ln
ℓ(1 + w) + O(ln0(1 + w)), (5.16)
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where dp,ℓ are some constants. We do this by taking the Mellin transform of both sides of

eq. (5.16). Let w = −z, and consider

Ip =

∫ 1

0
dz zN−1Ŝp(−z) =

∞
∑

n=1

(lnn+ γE)
p

n

∫ 1

0
dz zN+n−1

=
∞
∑

n=1

(lnn+ γE)
p

n(n+N)
. (5.17)

The large N limit of the Mellin transform is sensitive only to the z → 1 limit of the function

being transformed. It is straightforward to approximate the sum over n in eq. (5.17) by

an integral, which can be evaluated in terms of classical polylogarithms. Then the desired

limit as N → ∞ can be taken, keeping only terms with positive powers of ln N̂ ≡ lnN+γE
multiplying 1/N . The first few values are

I0 =
1

N
ln N̂ ,

I1 =
1

N

[

1

2
ln2 N̂

]

,

I2 =
1

N

[

1

3
ln3 N̂ + 2ζ2 ln N̂

]

,

I3 =
1

N

[

1

4
ln4 N̂ + 3ζ2 ln

2 N̂

]

,

I4 =
1

N

[

1

5
ln5 N̂ + 4ζ2 ln

3 N̂ + 42ζ4 ln N̂

]

. (5.18)

Notice that the Ip obey

d

dN
[NIp(N)] = p Ip−1(N) + O

(

1

N

)

. (5.19)

This result can established by integration by parts in n. Hence the structure of the integrals

Ip(N) at large N is dictated by this recursion relation, up to an integration constant, or

equivalently the rational number rm multiplying ζ2m/N × ln N̂ in I2m. This sequence of

numbers,

rm = 2, 42, 1395, 80010, 7243425, 957535425,
348670597275

2
, 41844302750250, . . . , (5.20)

whose mth term always contains a factor of 22m−1−1, is given in turn by another recursion

relation,
rm

22m−1 − 1
=

m(2m− 1)

2
× rm−1

22(m−1)−1 − 1
, (5.21)

which is valid for at least the first 35 terms.

We also need to perform the Mellin transform of lnℓ(1 + w) = lnℓ(1− z),

Mℓ ≡
∫ 1

0
dz zN−1 lnℓ(1− z) , (5.22)
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by using the formula,

∫ 1

0
dz zN−1(1− z)α =

Γ(N)Γ(α+ 1)

Γ(N + α+ 1)
, (5.23)

differentiating ℓ times, then setting α = 0 and taking N → ∞. The first few values are,

M1 = − 1

N
ln N̂ ,

M2 =
1

N
ln2 N̂ ,

M3 =
1

N

[

− ln3 N̂ − 3ζ2 ln N̂

]

,

M4 =
1

N

[

ln4 N̂ + 6ζ2 ln
2 N̂ + 8ζ3 ln N̂

]

,

M5 =
1

N

[

− ln5 N̂ − 10ζ2 ln
3 N̂ − 20ζ3 ln

2 N̂ − 135

2
ζ4 ln N̂

]

, (5.24)

again omitting the 1/N terms without logarithms. Notice that Mℓ obeys a very similar

recursion relation to Ii:

d

dN
[NMℓ(N)] = −ℓMℓ−1(N) + O

(

1

N

)

. (5.25)

This result can established by integration by parts in z. It implies that

d

dN
(NM [f ]) = M [−df/dLw] + O

(

1

N

)

, (5.26)

for the Mellin transform M [f ] of any function f that is a polynomial in Lw ≡ ln(1 + w).

Using these results, we can rewrite Ip, the Mellin transform of Ŝp, as a linear combi-

nation of Mℓ, the Mellin transforms of lnℓ(1 + w), with ζ valued coefficients. Then Ŝp is

given by the same linear combination of powers of Lw. The first few orders are given by:

Ŝ0 = −Lw ,

Ŝ1 =
1

2
L2
w ,

Ŝ2 = −1

3
L3
w − ζ2Lw ,

Ŝ3 =
1

4
L4
w +

3

2
ζ2L

2
w + 2ζ3Lw ,

Ŝ4 = −1

5
L5
w − 2ζ2L

3
w − 4ζ3L

2
w − 27

2
ζ4Lw . (5.27)

We observe that the Ŝp also obey a recursion relation,

d

dLw
Ŝp(Lw) = −p Ŝp−1(Lw) + O(1) , (5.28)

which follows from eqs. (5.19) and (5.26). Hence the Ŝp are completely dictated by the

coefficient of just the first power of Lw at each order p.
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Inserting eq. (5.27) into eq. (5.13), we get similar formulas for Sk(w,w
∗), which we can

rewrite as polynomials in ln |1+w|2 = Lw +Lw∗ ≡ L|w|2 . For the first few orders, we find:

S0 =
1

2
(L|w|2)

2 ,

S1 = −1

6
(L|w|2)

3 ,

S2 =
1

12
(L|w|2)

4 + ζ2(L|w|2)
2 ,

S3 = − 1

20
(L|w|2)

5 − ζ2(L|w|2)
3 − 2ζ3(L|w|2)

2 ,

S4 =
1

30
(L|w|2)

6 + ζ2(L|w|2)
4 +

8

3
ζ3(L|w|2)

3 + 21ζ4(L|w|2)
2 . (5.29)

Again there is a recursion relation,

d

dL|w|2
Sk(L|w|2) = −k Sk−1(L|w|2) + O(L|w|2) , (5.30)

and the Sk are determined by the coefficient of (L|w|2)
2 at each k.

After determining the Sk to high orders, we insert them into the expression for the

large (n̂,m) limit of the double sum for the MRK limit at each loop order. A divergence in

both w → −1 and w∗ → −1 is required in order to be able to neglect contributions to the

double sum (5.13) from finite n̂ and m. Therefore this method, although computationally

very efficient, only determines the coefficients in front of lnk |1 + w|2 for k ≥ 2. It misses

the coefficients in front of ln |1 + w|2 and the constant term. On the other hand, using a

complete basis of SVHPLs through weight 10, we were able to determine the complete MRK

limits through five loops, in agreement with ref. [50]. We also obtained g
(L)
r (w,w∗), the

coefficient of lnr δ in the MRK limit of the L-loop remainder function R
(L)
6 , for r ≥ 2L−11

for 6 ≤ L ≤ 10. Using this information, we could also determine the coefficients in front of

ln |1 + w|2 and the constant term for all terms with weight 10 or fewer.

After generating such results through nine loops, as a polynomial in ln |v| and ln |1+w|2,
we used eq. (5.4) to rewrite it as a polynomial in ln |v| and ln |δ|. Then we imposed

the further constraint that the result was consistent with the small v limit of eq. (4.18),

i.e. that the v-dependence was precisely proportional to exp[γK8 ln2 |v|]. This constraint

fixes additional terms. Finally we compared with the results of Broedel and Sprenger [51],

which are complete through weight 13. Their results were completely consistent with ours,

and fixed all constants through weight 13.

6 Final result for singular terms

In this section we present the final result for the singular terms in the expansion of the

nonsingular framing of the hexagonal Wilson loop in the limit of 3 → 3 self-crossing

kinematics, as |δ| → 0. The result can be written as,

1

2πi

dWns
3→3

d ln |δ| = exp

[

−γK
8
(ln2 |δ| − L2)

]

g(ln |δ|, γK) , (6.1)
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where g depends only on ln |δ| and the ’t Hooft coupling. We choose to write the final result

as an expansion in the cusp anomalous dimension γK(a) instead of the coupling parameter

a. We give the expansion of γK(a) through 10 loops in appendix B.

The leading-ln |δ| terms in eq. (6.1) all come from the factor exp[−γK ln2 |δ| /8], mul-

tiplied by a factor of γK/8, and keeping only the leading term in γK(a) = 4a:

a

2

∫ ln |δ|

0
dx exp

[

−a

2
x2

]

=
a

2
ln |δ| − a2

12
ln3 |δ| + a3

80
ln5 |δ| − a4

672
ln7 |δ| + . . . . (6.2)

Furthermore, we find that all of the purely even ζ terms in g, and many of the terms with

single odd ζ values, can be captured by the following expression:

g0(ln |δ|, γK) ≡ γK
8

exp

[

γK
2
γE ln |δ|

]Γ

(

1 + γK
4 ln |δ|

)

Γ

(

1− γK
4 ln |δ|

) (6.3)

×
{

1+

∞
∑

k=1

1

k!

(

−γK
8

)k[

ψ(2k−1)

(

1+
γK
4

ln |δ|
)

− ψ(2k−1)

(

1− γK
4

ln |δ|
)]}

,

where ψ(k)(x) denotes the kth derivative of ψ(x) = d ln Γ(x)/dx, and γE is the Euler-

Mascheroni constant.

Writing the full function g as g0 plus a residual term g1,

g(ln |δ|, γK) = g0(ln |δ|, γK) + g1(ln |δ|, γK), (6.4)

we give the expansion of g1, which starts at three loops:

g1(ln |δ|, γK) =
1

4

∞
∑

L=3

c(L)
(

γK
4

)L

, (6.5)

where

c(3) = −6ζ3 ln |δ| , (6.6)

c(4) = (20ζ5 − 8ζ2ζ3) ln |δ| − 2(ζ3)
2 , (6.7)

c(5) = 5(ζ3)
2 ln2 |δ| −

(

175

2
ζ7 − 50ζ2ζ5

)

ln |δ| + 25ζ3ζ5 + ζ2(ζ3)
2 , (6.8)

c(6) = − (96ζ3ζ5 + 8ζ2(ζ3)
2) ln2 |δ| + (441ζ9 − 315ζ2ζ7 + 72ζ4ζ5 − 24(ζ3)

3) ln |δ|
− 194ζ3ζ7 − 99(ζ5)

2 − 12ζ4(ζ3)
2 − 16ζ2ζ3ζ5 , (6.9)

c(7) =

(

164

3
ζ3ζ5 +

16

3
ζ2(ζ3)

2

)

ln4 |δ| + 103

3
(ζ3)

3 ln3 |δ|

+

(

1985

2
ζ3ζ7 + 496(ζ5)

2 + 40ζ4(ζ3)
2 + 114ζ2ζ3ζ5

)

ln2 |δ|

+

(

−4851

2
ζ11 + 2058ζ2ζ9 − 882ζ4ζ7 + 697(ζ3)

2ζ5 + 11ζ2(ζ3)
3

)

ln |δ|

+ 135ζ2ζ3ζ7 + 108ζ4ζ3ζ5 + 48ζ2(ζ5)
2 + 1818ζ5ζ7 + 1869ζ3ζ9 + 27(ζ3)

4 , (6.10)

c(8) = −
[

28

5
ζ3ζ5 ln

6 |δ| + 46

3
(ζ3)

3 ln5 |δ| +
(

2225

3
ζ3ζ7 + 384(ζ5)

2 +
244

3
ζ2ζ3ζ5

)

ln4 |δ|
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+

(

3806

3
(ζ3)

2ζ5 +
206

3
ζ2(ζ3)

3

)

ln3 |δ|

+
(

239(ζ3)
4 + 925ζ2ζ3ζ7 + 400ζ2(ζ5)

2 + 428ζ3ζ4ζ5 + 11739ζ3ζ9 + 11156ζ5ζ7

)

ln2 |δ|

+

(

−14157ζ13 + 13860ζ2ζ11 − 8484ζ4ζ9 + 540ζ6ζ7 + 474ζ2(ζ3)
2ζ5 +

15537

2
(ζ3)

2ζ7

+ 7625ζ3(ζ5)
2 + 238ζ4(ζ3)

3

)

ln |δ| + c
(8)
0

]

, (6.11)

and

c(9) =
4

3
(ζ3)

3 ln7 |δ|+
(

88(ζ5)
2 +

16

5
ζ2ζ3ζ5 + 152ζ3ζ7

)

ln6 |δ|+
(

3244

5
(ζ3)

2ζ5 +
64

3
ζ2(ζ3)

3

)

ln5 |δ|

+

(

1043

4
(ζ3)

4 + 690ζ2ζ3ζ7 − 48ζ4ζ3ζ5 + 10626ζ3ζ9 + 10155ζ5ζ7 + 300ζ2(ζ5)
2

)

ln4 |δ|

+

(

5639

3
ζ2(ζ3)

2ζ5 +
203707

12
(ζ3)

2ζ7 + 16598ζ3(ζ5)
2 + 128ζ4(ζ3)

3

)

ln3 |δ|

+ c
(9)
2 ln2 |δ|

+

(

−2760615

32
ζ15 +

382239

4
ζ2ζ13 −

601425

8
ζ4ζ11 +

20547

2
ζ6ζ9 + 84ζ6(ζ3)

3

+
10301

2
ζ4(ζ3)

2ζ5 +
24569

4
ζ2(ζ3)

2ζ7 + 5585ζ2ζ3(ζ5)
2 + 30885(ζ5)

3

+ 101668(ζ3)
2ζ9 +

757873

4
ζ3ζ5ζ7 + 917(ζ3)

5

)

ln |δ|

+ c
(9)
0 , (6.12)

where c
(8)
0 , c

(9)
2 and c

(9)
0 are linear combinations of multiple zeta values of weight 14, 14 and

16, respectively. We have some partial information about their rational-number coefficients;

in particular,

2 c
(9)
2 −c

(8)
0 = 339327ζ3ζ11 + 307248ζ5ζ9 +

1174875

8
(ζ7)

2 + 18648ζ2ζ3ζ9 + 13431ζ2ζ5ζ7

+1102ζ2(ζ3)
4+5058ζ4ζ3ζ7+2271ζ4(ζ5)

2−1080ζ6ζ3ζ5+26914(ζ3)
3ζ5 . (6.13)

No terms in g1 have only even ζ values in them (i.e. pure powers of π). Furthermore, the

only terms in g1 that have a single odd ζ value are those with a single power of ln |δ|. All
the terms with a single odd ζ value and multiple powers of ln |δ| have been absorbed into g0.

We also attempted to fit the explicit results for the function g to the consequences of

eq. (4.21):

g(ln |δ|, γK)
?
= Ĉ(γK) exp

[

Γ̄(γK)

2
ln |δ|

]

, (6.14)

where Ĉ(γK) = −C(a)Γ1(a)/4 and Γ̄(γK) are taken to be arbitrary functions of the cusp

anomalous dimension (i.e. of the coupling a). Expanding around γK = 0, we find that

Ĉ(γK) ∝ γK + O(γ2K), Γ̄(γK) ∝ γ2K + O(γ3K), and then it becomes impossible to fit the

true g(ln |δ|, γK) with eq. (6.14), beginning with the γ4K term. At this order, g contains

ln3 |δ| with a nonzero coefficient proportional to ζ3, while the ln3 |δ| coefficient vanishes in

the ansatz (6.14).

– 37 –



J
H
E
P
0
7
(
2
0
1
6
)
1
1
6

Despite this difficulty, the relative simplicity of the terms in g1 with more than one

power of ln |δ| suggests that these terms might be on a different footing from the linear

terms in ln |δ|, and might have a relatively simple kinematical origin. It will be interesting

to investigate the structure of g(ln |δ|, γK) further in the future, and to see what role the

cross anomalous dimension in planar N = 4 SYM might play.

7 Conclusions and outlook

In this paper we observed that the duality between scattering amplitudes and Wilson loops

in planar N = 4 SYM maps a configuration that mimics double-parton-scattering into a

self-crossing limit of the relevant Wilson loop. We observed that helicity selection rules,

especially Jz conservation, are related to the finiteness of the NMHV six-gluon amplitude

in 2 → 4 kinematics in QCD, N = 1 or N = 4 SYM at one loop. Beyond one loop, there

are logarithmic divergences, although the transcendental function E is nonsingular at the

leading power of δ. The transcendental function entering the MHV amplitude, in contrast,

can be and is singular. We presented explicit results through five loops, including the non-

singular terms. Then we studied the structure of the singular terms, and determined their

kinematic dependence exactly, using an evolution equation for self-crossing Wilson loops in

the large Nc limit. In particular, we explained the surprising v-independence of the singular

terms in E3→3 in eq. (4.19). Finally, we exploited the overlap between the self-crossing limit

and the multi-Regge limit as v → 0, to determine the answer in that limit to nine loops, up

to a couple of zeta-valued constants. The leading-logarithmic part of this formula, eq. (6.2),

gives a simple representation for the leading logs studied earlier [28–30] to all loop orders.

We can use similar methods to study self-crossing limits of the n-point amplitude for

n > 6. For example, in appendix E we identify the self-crossing configuration for the

seven-point case, in which the Wilson loop factorizes into the product of a box and a

pentagon. This configuration is a four-parameter subspace of the general six-parameter

space of dual conformal invariants. (Naively, there are seven dual conformal invariants in

the seven-point case, related by the seven-fold cyclic symmetry; however in four dimensional

spacetime they obey a single Gram determinantal constraint.) The same arguments given

above suggest that the dependence on the four surviving nonsingular parameters in this

case can be determined exactly in terms of the cusp anomalous dimension and a suitable

one-loop function. The dependence on the singular parameter should be essentially the

same as in the six-point case. This information will be useful in constructing or checking

the full seven-point MHV amplitude at higher loop orders; it is currently known at the

function level through two loops [78], and at symbol level through three loops [79].

Beginning with the eight-point amplitude, multiple types of single self-crossings are

possible, corresponding to different partitions of the final momenta into two sets of mo-

menta, and there can also be more than one self-crossing. For the single self-crossing,

one always loses two degrees of freedom, because two separate transverse coordinates are

constrained. For n = 6, the three cross ratios (u, v, w) reduce to one, v. For n = 7, the six

independent ui reduce to the four u1, u2, u5 u6 given in appendix E. For larger n there will

be (3n − 15) − 2 = 3n − 17 cross ratios left for a single self-crossing, and correspondingly
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fewer for multiple self-crossings. Even when the subprocesses have their own dual confor-

mal cross ratios, there will still be additional parameters, and the functional dependence on

those parameters should be calculable using factorization arguments of the kind used here.

Similarly, studies of non-MHV amplitudes for n > 6 in these limits should be possible,

using the correspondence with super-Wilson-loops [80, 81]. The finiteness of the one-loop

NMHV six-gluon amplitude is clearly special to n = 6: it is easy to add an additional

final-state gluon with negative helicity to the configurations in figure 3 to convert them to

valid NMHV seven-point configurations. It would be quite interesting to combine some of

the ideas and results of this paper with the recent general analysis of Landau singularities

for N = 4 SYM amplitudes in ref. [9].

In summary, the self-crossing limit and its relation to kinematical configurations that

mimic double-parton scattering should provide a rich playground for further investigations

of the analytic behavior of multi-loop amplitudes, in both planar N = 4 SYM and more

general theories such as QCD.
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A Self-crossing kinematics

In this appendix we describe the kinematics of 2 → 4 scattering in the self-crossing or

double-parton-scattering-like limit. Then we do the same for the analogous 3 → 3 scattering

configuration.

A.1 2 → 4 kinematics

For the 2 → 4 scattering configuration shown in figure 1(a) we consider

k3 + k6 → k1 + k2 + k4 + k5, (A.1)

(1− x)k3 + (1− y)k6 → k1 + k2, (A.2)

xk3 + yk6 → k4 + k5. (A.3)
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Incoming gluons 3 and 6 split into collinear pairs with momentum fractions x and 1 − x,

and y and 1− y, respectively. These pairs then undergo 2 → 2 scatterings into final state

gluons 1, 2, 4 and 5.

We work in the center-of-mass (CM) frame, and take the spatial components of k3 to

be in the positive z direction, while those of k6 are in the negative z direction. Momenta

k1 and k2 are in the xz-plane, while k4 and k5 are rotated out of this plane by an azimuthal

angle φ. Incoming momenta are labeled by the negative of the true momentum, so that
∑6

i=1 ki = 0. Writing kµi = (kti , k
x
i , k

y
i , k

z
i ), we have:

k1 = (E1, E1 sin θ1, 0,−E1 cos θ1),

k2 = (E2,−E2 sin θ2, 0,−E2 cos θ2),

k3 =

(

−1

2

√
s36, 0, 0,−

1

2

√
s36

)

,

k4 = (E4, E4 sin θ4 cosφ,E4 sin θ4 sinφ,−E4 cos θ4),

k5 = (E5,−E5 sin θ5 cosφ,−E5 sin θ5 sinφ,−E5 cos θ5),

k6 =

(

−1

2

√
s36, 0, 0,

1

2

√
s36

)

. (A.4)

Momentum conservation for the 2 → 2 subprocesses in eqs. (A.31) and (A.32) implies

that

s12 = (1− x)(1− y)s36 , (A.5)

s45 = xys36 , (A.6)

s123 = −x(1− y)s36 , (A.7)

s345 = −y(1− x)s36 , (A.8)

xs34 = ys56 , (A.9)

(1− x)s23 = (1− y)s61 . (A.10)

Inserting eq. (A.4) into these relations, we can express the energies Ei and two of the angles

in eq. (A.4) in terms of the momentum fractions x and y, and the other two polar angles:

E1 =
√
s36

(1− x)(1− y)

(1 + cos θ1)(1− x) + (1− cos θ1)(1− y)
, (A.11)

E2 =

√
s36
2

(1 + cos θ1)(1− x)2 + (1− cos θ1)(1− y)2

(1 + cos θ1)(1− x) + (1− cos θ1)(1− y)
, (A.12)

cos θ2 =
(1− cos θ1)(1− y)2 − (1 + cos θ1)(1− x)2

(1 + cos θ1)(1− x)2 + (1− cos θ1)(1− y)2
, (A.13)

sin θ2 =
2(1− x)(1− y) sin θ1

(1 + cos θ1)(1− x)2 + (1− cos θ1)(1− y)2
, (A.14)

E4 =

√
s36
2

(1 + cos θ5)x
2 + (1− cos θ5)y

2

(1 + cos θ5)x+ (1− cos θ5)y
, (A.15)

E5 =
√
s36

xy

(1 + cos θ5)x+ (1− cos θ5)y
, (A.16)
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cos θ4 =
(1− cos θ5)y

2 − (1 + cos θ5)x
2

(1 + cos θ5)x2 + (1− cos θ5)y2
, (A.17)

sin θ4 =
2xy sin θ5

(1 + cos θ5)x2 + (1− cos θ5)y2
. (A.18)

It’s convenient to trade the angles θ1 and θ5 in the overall CM frame for the polar

angles in the CM frames for the respective 2 → 2 subprocesses (A.2) and (A.3), which we

call θA and θB, respectively:

−(1− x)s23
s12

=
1− cos θA

2
=

(1− y)(1− cos θ1)

(1 + cos θ1)(1− x) + (1− cos θ1)(1− y)
, (A.19)

−xs34
s45

=
1− cos θB

2
=

y(1− cos θ5)

(1 + cos θ5)x+ (1− cos θ5)y
. (A.20)

Solving for θ1 and θ5, we have,

cos θ1 = 1− 2(1− x)(1− cA)

(1− cA)(1− x) + (1 + cA)(1− y)
, (A.21)

sin θ1 =
2sA

√

(1− x)(1− y)

(1− cA)(1− x) + (1 + cA)(1− y)
, (A.22)

cos θ5 = 1− 2x(1− cB)

(1− cB)x+ (1 + cB)y
, (A.23)

sin θ5 =
2sB

√
xy

(1− cB)x+ (1 + cB)y
, (A.24)

where cA,B = cos θA,B and sA,B = sin θA,B.

Of the four invariants appearing in the cross ratio v = s23s56/(s234s123), three are

simply related to the invariants for the individual 2 → 2 subprocesses. For example,

(1−x)s23 = (1−y)s16 is the t-channel invariant for subprocess A, so it is simple to relate it to

the u-channel invariant (1−x)s13, the s-channel invariant s12 and the CM scattering angle

θA. The only invariant that straddles two subprocesses is s234 = s23+s34+s24, and it does so

only through s24. Thus the dependence of v on the azimuthal angle enters only through s24.

It is convenient to normalize all invariants by s36. Computing s24/s36 from eq. (A.4)

and using eqs. (A.18) and (A.24) to express the result in terms of x, y, θA, θB and φ, we

find that

s24
s36

=
1

4

[

x(1−y)(1−cA)(1+cB)+y(1−x)(1+cA)(1−cB)+2
√

xy(1− x)(1− y)sAsB cosφ
]

.

(A.25)

The cross ratio v can be written in terms of s24/s36 as,

v = − (1− cA)(1− cB)

4
[

s24/s36 − 1
2(1− cA)(1− y)− 1

2(1− cB)y
] . (A.26)

After inserting eq. (A.25), we find that

1

v
−1 =

(1+cA)(1−cB)xy+(1−cA)(1+cB)(1−x)(1−y)−2
√

xy(1−x)(1−y)sAsB cosφ

(1− cA)(1− cB)
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=
1

(1− cA)(1− cB)

{

[

√

(1 + cA)(1− cB)xy −
√

(1− cA)(1 + cB)(1− x)(1− y)
]2

+ 2
√

xy(1− x)(1− y)sAsB(1− cosφ)

}

. (A.27)

The second form (A.27) makes manifest that for 2 → 4 scattering,

1

v
− 1 ≥ 0, or 0 ≤ v ≤ 1. (A.28)

The v = 0 limit is only achieved when the denominator of eq. (A.27) vanishes. This

happens when one of the two 2 → 2 subprocesses becomes collinear, either θA or θB → 0.

The v = 1 limit requires the numerator of eq. (A.27) to vanish, which implies that the

event is planar,

v = 1 ⇔ φ = 0, y =
(1− cA)(1 + cB)(1− x)

(1 + cA)(1− cB)x+ (1− cA)(1 + cB)(1− x)
. (A.29)

A.2 3 → 3 kinematics

For the 3 → 3 scattering configuration shown in figure 1(b) we consider

k1 + k3 + k5 → k2 + k4 + k6, (A.30)

k1 + (1− x)k3 → k2 + (1− y)k6, (A.31)

k5 + xk3 → k4 + yk6. (A.32)

Gluon 3 splits into two partons, one of which collides with gluon 1 and the other with

gluon 5. The products of those two collisions are gluons 2 and 4, and two more gluons.

The latter two gluons then merge into gluon 6.

Because k3 is incoming and k6 is outgoing, s36 is negative. We can choose a “brick-wall

frame” for these two momenta, in which k3 is in the positive z direction, while k6 is in the

negative z direction, with kz6 = −kz3. As in the 2 → 4 case, we take momenta k1 and k2 to

lie in the xz-plane, while k4 and k5 are rotated out of this plane by an azimuthal angle φ.

We parametrize the momenta as:

k1 = (−E1, E1 sin θ1, 0, E1 cos θ1),

k2 = (E2,−E2 sin θ2, 0,−E2 cos θ2),

k3 =

(

−1

2

√−s36, 0, 0,−
1

2

√−s36

)

,

k4 = (E4, E4 sin θ4 cosφ,E4 sin θ4 sinφ,−E4 cos θ4),

k5 = (−E5,−E5 sin θ5 cosφ,−E5 sin θ5 sinφ,E5 cos θ5),

k6 =

(

1

2

√−s36, 0, 0,−
1

2

√−s36

)

. (A.33)

Momentum conservation for the 2 → 2 subprocesses in eqs. (A.31) and (A.32) implies

that kinematic relations in eqs. (A.5)–(A.10) still hold. Inserting eq. (A.33) into these
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relations, we again express the energies Ei and two of the angles in eq. (A.33) in terms of

the momentum fractions x and y, and the other two polar angles:

E1 =
√−s36

(1− x)(1− y)

(1 + cos θ1)(1− x)− (1− cos θ1)(1− y)
, (A.34)

E2 =

√−s36
2

(1 + cos θ1)(1− x)2 + (1− cos θ1)(1− y)2

(1 + cos θ1)(1− x)− (1− cos θ1)(1− y)
, (A.35)

cos θ2 =
(1− cos θ1)(1− y)2 − (1 + cos θ1)(1− x)2

(1 + cos θ1)(1− x)2 + (1− cos θ1)(1− y)2
, (A.36)

sin θ2 =
2(1− x)(1− y) sin θ1

(1 + cos θ1)(1− x)2 + (1− cos θ1)(1− y)2
, (A.37)

E4 =

√−s36
2

(1 + cos θ5)x
2 + (1− cos θ5)y

2

(1 + cos θ5)x− (1− cos θ5)y
, (A.38)

E5 =
√−s36

xy

(1 + cos θ5)x− (1− cos θ5)y
, (A.39)

cos θ4 =
(1− cos θ5)y

2 − (1 + cos θ5)x
2

(1 + cos θ5)x2 + (1− cos θ5)y2
, (A.40)

sin θ4 =
2xy sin θ5

(1 + cos θ5)x2 + (1− cos θ5)y2
. (A.41)

Again we trade the angles θ1 and θ5 in the brick-wall frame for the polar angles θA
and θB in the CM frames for the respective 2 → 2 subprocesses (A.31) and (A.32). In this

case, the relations are:

−s23
s13

= − (1− y)s16
(1− x)s13

=
1− cA

2
=

1− y

1− x

1− cos θ1
1 + cos θ1

, (A.42)

−s34
s35

= −ys65
xs35

=
1− cB

2
=

y

x

1− cos θ5
1 + cos θ5

. (A.43)

Solving for θ1 and θ5, we have,

cos θ1 =
1− y − 1

2(1− x)(1− cA)

1− y + 1
2(1− x)(1− cA)

, (A.44)

sin θ1 =

√

2(1− x)(1− y)(1− cA)

1− y + 1
2(1− x)(1− cA)

, (A.45)

cos θ5 =
y − 1

2x(1− cB)

y + 1
2x(1− cB)

, (A.46)

sin θ5 =

√

2xy(1− cB)

y + 1
2x(1− cB)

. (A.47)

As in the 2 → 4 case, the dependence of v on the azimuthal angle enters only through

s24, which appears in v = s23s56/(s234s123) through s234 = s23 + s34 + s24. We compute

s24/s36 from eq. (A.33) and use eqs. (A.41) and (A.47) to express the result in terms of x,

y, θA, θB and φ:

s24
s36

= − 2

(1 + cA)(1 + cB)

[

x(1− y)(1− cA) + y(1− x)(1− cB)
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+ 2
√

xy(1−x)(1−y)(1−cA)(1−cB) cosφ
]

. (A.48)

The expression for v in terms of s24/s36 for 3 → 3 scattering is,

v = −1− cA
1 + cA

1− cB
1 + cB

[

s24
s36

+
1− cA
1 + cA

(1− y) +
1− cB
1 + cB

y

]−1

. (A.49)

We insert eq. (A.48) for s24/s36, and find that

1− 1

v
= 2

(1−cA)(1−x)(1−y)+(1−cB)xy−2
√

xy(1−x)(1−y)(1−cA)(1−cB) cosφ

(1− cA)(1− cB)

=
2

(1− cA)(1− cB)

{

[

√

(1− cA)(1− x)(1− y)−
√

(1− cB)xy
]2

+ 2
√

xy(1−x)(1−y)(1−cA)(1−cB)(1−cosφ)

}

. (A.50)

From eq. (A.50) we can see that for 3 → 3 scattering,

1− 1

v
≥ 0, (A.51)

which is the complement of the region (A.28) for 2 → 4 scattering. The numerator of

eq. (A.50) is minimized, as a function of φ, at cosφ = 1, or φ = 0, that is, for a planar

scattering configuration. At this minimum, the numerator becomes a perfect square, which

can only equal zero, i.e. v = 1, for

v = 1 ⇔ φ = 0, y =
(1− x)(1− cA)

(1− x)(1− cA) + x(1− cB)
. (A.52)

There are two branches that solve the inequality (A.51): v < 0 and v ≥ 1. The fact

that there are two branches is related to the fact that the v → ∞ limit corresponds to mul-

tiparticle factorization. More generally, as discussed in ref. [61], multi-particle factorization

involves taking two cross ratios large at the same rate, with the third cross ratio held fixed.

For 2 → 4 scattering, multi-particle factorization can only occur at the boundary of

phase space, where there is a triple-collinear (1 → 3) splitting, either in the final state,

as shown in figure 11(a), or in the initial state, as depicted in figure 11(b). On the other

hand, a multi-particle factorization configuration appears in the middle of the phase space

for 3 → 3 scattering, as illustrated in figure 11(c).

This configuration, with v = ∞, has

cosφ = −(1− cA)(1− cB)− 2(1− cA)(1− x)(1− y)− 2(1− cB)xy

4
√

xy(1− x)(1− y)(1− cA)(1− cB)
. (A.53)

For the MHV configuration studied in this paper, there is no pole in the multi-particle

factorization limit, because one cannot factorize an MHV six-point amplitude into two

MHV four-point amplitudes. So we should not expect any additional singularity as v → ∞.

Indeed, eqs. (3.28)–(3.33) show that E has no ln v singularity in this limit. The Wilson

loop Wns is also smooth there, since it becomes equal to E exp[−1
2ζ2γK ] as v → ∞.
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(a) (c)(b)

Figure 11. In 2 → 4 scattering, multi-particle factorization only occurs at the boundary of phase

space, where a triple collinear splitting takes place, either in the final state (a), or in the initial

state (b). In 3 → 3 scattering, in contrast, multi-particle factorization can appear in the middle of

the phase space; both amplitudes in (c) are generic 2 → 2 scattering amplitudes.

B Perturbative expansion of cusp anomalous dimension

The cusp anomalous dimension is known to all loop orders [72]. Here we give the expansion

in the coupling parameter a through 10 loops:

γK(a) = 4a− 4ζ2a
2 + 22ζ4a

3 −
(

219

2
ζ6 + 4(ζ3)

2

)

a4 +

(

1774

3
ζ8 + 8ζ2(ζ3)

2 + 40ζ3ζ5

)

a5

−
(

136883

40
ζ10 + 48ζ4(ζ3)

2 + 80ζ2ζ3ζ5 + 102(ζ5)
2 + 210ζ3ζ7

)

a6

+

(

115201335

5528
ζ12 + 235ζ6(ζ3)

2 + 4(ζ3)
4 + 492ζ4ζ3ζ5 + 204ζ2(ζ5)

2 + 420ζ2ζ3ζ7

+ 1092ζ5ζ7 + 1176ζ3ζ9

)

a7

−
(

295221817

2240
ζ14 + 1287ζ4(ζ5)

2 + 12ζ2(ζ3)
4 + 2352ζ2ζ3ζ9 +

5955

2
(ζ7)

2

+ 2184ζ2ζ5ζ7 + 2472ζ6ζ3ζ5 + 2625ζ4ζ3ζ7 + 6930ζ3ζ11 + 6216ζ5ζ9 +
2453

2
ζ8(ζ3)

2

+ 80(ζ3)
3ζ5

)

a8

+

(

74468151565

86808
ζ16 + 5955(ζ7)

2ζ2 + 84(ζ3)
4ζ4 + 13860ζ11ζ2ζ3 + 6633ζ6(ζ5)

2

+ 37125ζ5ζ11 + 420ζ7(ζ3)
3 +

27537

4
ζ10(ζ3)

2 + 14022ζ4ζ5ζ7 + 240(ζ3)
3ζ2ζ5

+ 34425ζ7ζ9 +
39527

3
ζ8ζ3ζ5 + 616(ζ5)

2(ζ3)
2 + 14868ζ4ζ3ζ9 + 12432ζ5ζ2ζ9

+ 13395ζ6ζ3ζ7 + 42471ζ13ζ3

)

a9

−
(

40084328285043

7018720
ζ18 +

311805

8
(ζ7)

2ζ4 +
1665675

8
ζ7ζ11 +

920205

4
ζ13ζ5

+ 36062ζ8(ζ5)
2 +

28328314

691
ζ12(ζ3)

2 + 434(ζ3)
4ζ6 +

2147145

8
ζ15ζ3 + 2352ζ9(ζ3)

3
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+ 2160(ζ5)
3ζ3 +

375564

5
ζ10ζ3ζ5 + 1704ζ4(ζ3)

3ζ5 + 1260(ζ3)
3ζ7ζ2

+ 1836(ζ3)
2(ζ5)

2ζ2 + 6594ζ5(ζ3)
2ζ7 + 74250ζ11ζ2ζ5 +

176715

2
ζ11ζ4ζ3

+ 84942ζ13ζ2ζ3 + 68850ζ7ζ2ζ9 + 80829ζ9ζ4ζ5 + 76671ζ6ζ3ζ9 +
146901

2
ζ6ζ5ζ7

+ 72230ζ8ζ3ζ7 +
403165

4
(ζ9)

2 + 4(ζ3)
6

)

a10

+O(a11) . (B.1)

C Four- and five-loop results for the MHV amplitude in the 3 → 3

self-crossing limit for v > 0

In this appendix we give the full four- and five-loop results for the MHV amplitude, nor-

malized by the BDS-like ansatz, E ≡ AMHV
6 /ABDS−like

6 , in the 3 → 3 self-crossing limit

for v > 0. We use the same notation used at lower loops in eqs. (3.24), (3.25), (3.26)

and (3.27); the argument of the h
[w]
i (z) is now z = 1/v. The four-loop result is

E(4)
3→3(v > 0) = 2πi

{

− 1

672
ln7 |δ| − 1

80
ζ2 ln

5 |δ| − 1

48
ζ3 ln

4 |δ| − 7

24
ζ4 ln

3 |δ|

+
1

4
(4ζ5 − 3ζ2ζ3) ln

2 |δ| − 1

48

(

13ζ6 + 48(ζ3)
2
)

ln |δ|

− 1

2

[

120h
[7]
64 + 24h

[7]
66 + 24h

[7]
68 + 3h

[7]
70 + 24h

[7]
72 + 8h

[7]
74 + 4h

[7]
76 + h

[7]
78

+ 24h
[7]
80 + 9h

[7]
82 + 9h

[7]
84 + h

[7]
86 + 6h

[7]
88 + 2h

[7]
90 + h

[7]
92 + 2h

[7]
94 + 6h

[7]
98

+ 6h
[7]
100 + h

[7]
102 + 6h

[7]
104 + 2h

[7]
106 + h

[7]
108 + 2h

[7]
110 + 12h

[7]
112 + 3h

[7]
114

+ 3h
[7]
116 + 2h

[7]
118 + 2h

[7]
122 + 4h

[7]
124

+ ζ2

(

−36h
[5]
16 + 3h

[5]
17 − 4h

[5]
18 + h

[5]
19 − 3h

[5]
20 + h

[5]
21 − h

[5]
22 + 2h

[5]
23

+ 6h
[5]
24 + h

[5]
25 − h

[5]
26 + 2h

[5]
27 − 3h

[5]
28 + 2h

[5]
29 + 2h

[5]
30

)

+ ζ3

(

22h
[4]
8 + 11h

[4]
9 + 8h

[4]
10 + h

[4]
11 + 5h

[4]
12 + h

[4]
13 + h

[4]
14

)

− 1

4
ζ4

(

39h
[3]
4 − 4h

[3]
5 − 4h

[3]
6

)

+
(

14ζ5 − 5ζ2ζ3

)

h
[2]
2

− 1141

8
ζ7 +

119

2
ζ2ζ5 +

17

2
ζ3ζ4

]}

− 1

2

{

240h
[8]
128 + 48h

[8]
130 + 48h

[8]
132 + 4h

[8]
134 + 48h

[8]
136 + 16h

[8]
138 + 6h

[8]
140 + 3h

[8]
142

+ 48h
[8]
144 + 16h

[8]
146 + 16h

[8]
148 + h

[8]
150 + 8h

[8]
152 + 3h

[8]
154 + 2h

[8]
156 + 5h

[8]
158

+ 48h
[8]
160 + 18h

[8]
162 + 18h

[8]
164 + 2h

[8]
166 + 18h

[8]
168 + 5h

[8]
170 + 2h

[8]
172 + 5h

[8]
174

+ 12h
[8]
176 + 4h

[8]
178 + 4h

[8]
180 + 4h

[8]
182 + 2h

[8]
184 + 4h

[8]
186 + 4h

[8]
188 + 6h

[8]
190

+ 12h
[8]
194 + 12h

[8]
196 + 2h

[8]
198 + 12h

[8]
200 + 4h

[8]
202 + 2h

[8]
204 + 4h

[8]
206

+ 12h
[8]
208 + 4h

[8]
210 + 4h

[8]
212 + 4h

[8]
214 + 2h

[8]
216 + 4h

[8]
218 + 4h

[8]
220 + 6h

[8]
222

+ 24h
[8]
224 + 6h

[8]
226 + 6h

[8]
228 + 4h

[8]
230 + 6h

[8]
232 + 5h

[8]
234 + 5h

[8]
238 + 4h

[8]
236

+ 4h
[8]
242 + 4h

[8]
244 + 5h

[8]
246 + 8h

[8]
248 + 5h

[8]
250 + 30h

[8]
254
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+ ζ2

(

−552h
[6]
32 + 4h

[6]
33 − 104h

[6]
34 + 3h

[6]
35 − 104h

[6]
36 + h

[6]
37 − 17h

[6]
38 + 5h

[6]
39

− 102h
[6]
40 + 2h

[6]
41 − 40h

[6]
42 + 5h

[6]
43 − 26h

[6]
44 + 4h

[6]
45 − h

[6]
46 + 6h

[6]
47

+ 12h
[6]
48 + 2h

[6]
49 − 26h

[6]
50 + 4h

[6]
51 − 26h

[6]
52 + 4h

[6]
53 − h

[6]
54 + 6h

[6]
55

− 54h
[6]
56 + 4h

[6]
57 − 10h

[6]
58 + 5h

[6]
59 + 4h

[6]
60 + 5h

[6]
61 − 15h

[6]
62 + 30h

[6]
63

)

+ ζ3

(

44h
[5]
16 + 23h

[5]
17 + 15h

[5]
18 − h

[5]
19 + 16h

[5]
20 + 3h

[5]
21 − 2h

[5]
23

+ 10h
[5]
24 + 2h

[5]
25 − 2h

[5]
27 + 2h

[5]
28 + h

[5]
29 − h

[5]
30 − 20h

[5]
31

)

− 1

4
ζ4

(

558h
[4]
8 + 142h

[4]
9 + 267h

[4]
10 + 22h

[4]
11 + 232h

[4]
12 + 22h

[4]
13 + 67h

[4]
14 + 58h

[4]
15

)

+ ζ5

(

28h
[3]
4 + 21h

[3]
5 + 8h

[3]
6 − 16h

[3]
7

)

− ζ2ζ3

(

98h
[3]
4 + 54h

[3]
5 + 25h

[3]
6 + 10h

[3]
7

)

− 1

48
ζ6

(

8477h
[2]
2 + 3687h

[2]
3

)

+
3

2
(ζ3)

2
(

4h
[2]
2 + h

[2]
3

)

+
1

2

(

26ζ7−228ζ2ζ5−175ζ3ζ4

)

h
[1]
1 − 5

2
ζ5,3−

56911

72
ζ8+

63

2
ζ3ζ5−36ζ2(ζ3)

2

}

, (C.1)

and the five-loop one is

E
(5)
3→3(v > 0) = 2πi

{

1

6912
ln9 |δ| +

1

336
ζ2 ln

7 |δ| +
5

288
ζ3 ln

6 |δ| +
9

80
ζ4 ln

5 |δ|

+
1

24
(6ζ5 + 7ζ2ζ3) ln

4 |δ| +
1

72

(

115ζ6 + 48(ζ3)
2
)

ln3 |δ|

+
1

16
(−55ζ7 + 68ζ2ζ5 + 44ζ3ζ4) ln

2 |δ|

+
1

72

(

257ζ8 + 810ζ3ζ5 + 18ζ2(ζ3)
2
)

ln |δ|

+
1

4

[

3360h
[9]
256 + 720h

[9]
258 + 720h

[9]
260 + 20h

[9]
262

+ 720h
[9]
264 + 192h

[9]
266 + 32h

[9]
268 + 20h

[9]
270 + 720h

[9]
272 + 196h

[9]
274

+ 196h
[9]
276 + 9h

[9]
278 + 48h

[9]
280 + 21h

[9]
282 + 16h

[9]
284 + 11h

[9]
286 + 720h

[9]
288

+ 204h
[9]
290 + 204h

[9]
292 + 10h

[9]
294 + 204h

[9]
296 + 56h

[9]
298 + 10h

[9]
300 + 15h

[9]
302

+ 72h
[9]
304 + 26h

[9]
306 + 26h

[9]
308 + 11h

[9]
310 + 12h

[9]
312 + 11h

[9]
314 + 14h

[9]
316

+ 6h
[9]
318 + 720h

[9]
320 + 228h

[9]
322 + 228h

[9]
324 + 16h

[9]
326 + 228h

[9]
328 + 66h

[9]
330

+ 16h
[9]
332 + 18h

[9]
334 + 228h

[9]
336 + 66h

[9]
338 + 66h

[9]
340 + 17h

[9]
342 + 16h

[9]
344

+ 18h
[9]
346 + 18h

[9]
348 + 10h

[9]
350 + 120h

[9]
352 + 40h

[9]
354 + 40h

[9]
356 + 16h

[9]
358

+ 40h
[9]
360 + 22h

[9]
362 + 14h

[9]
364 + 11h

[9]
366 + 12h

[9]
368 + 14h

[9]
370 + 14h

[9]
372

+ 11h
[9]
374 + 20h

[9]
376 + 13h

[9]
378 + 6h

[9]
380 + 18h

[9]
382 + 120h

[9]
386 + 120h

[9]
388

+ 19h
[9]
390 + 120h

[9]
392 + 43h

[9]
394 + 18h

[9]
396 + 20h

[9]
398 + 120h

[9]
400 + 42h

[9]
402

+ 42h
[9]
404 + 18h

[9]
406 + 16h

[9]
408 + 19h

[9]
410 + 20h

[9]
412 + 10h

[9]
414 + 120h

[9]
416 + 40h

[9]
418 + 40h

[9]
420

+ 16h
[9]
422 + 40h

[9]
424 + 22h

[9]
426 + 14h

[9]
428 + 11h

[9]
430 + 12h

[9]
432 + 14h

[9]
434 + 14h

[9]
436 + 11h

[9]
438

+ 20h
[9]
440 + 13h

[9]
442 + 6h

[9]
444 + 18h

[9]
446 + 240h

[9]
448 + 60h

[9]
450 + 60h

[9]
452 + 14h

[9]
454 + 60h

[9]
456

+ 24h
[9]
458 + 16h

[9]
460 + 8h

[9]
462 + 60h

[9]
464 + 26h

[9]
466 + 26h

[9]
468 + 12h

[9]
470 + 20h

[9]
472 + 14h

[9]
474

+ 8h
[9]
476 + 18h

[9]
478 + 20h

[9]
482 + 20h

[9]
484 + 12h

[9]
486 + 20h

[9]
488 + 14h

[9]
490 + 8h

[9]
492 + 18h

[9]
494

+ 24h
[9]
496 + 8h

[9]
498 + 8h

[9]
500 + 18h

[9]
502 + 16h
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. (C.2)

D NMHV results in the 3 → 3 self-crossing limit for v > 0 through four

loops

In this appendix we give the results for the function E entering the NMHV amplitude

decomposition (2.14), in the 3 → 3 self-crossing limit for v > 0. As predicted by the

arguments in section 2.1, they are all nonsingular in this limit. We use the same notation as

in the MHV case; the argument of the h
[w]
i (z) is z = 1/v. Because E(u, v, w) = E(w, v, u),

there are two independent orientations of E to quote at each loop order. We let E refer to

the limit E(1 + |δ|, v, v), and E′ to the limit E(v, 1 + |δ|, v).
The results through three loops are

E
(0)
3→3(v > 0) = 1 , (D.1)

E
′ (0)
3→3(v > 0) = 1 , (D.2)

E
(1)
3→3(v > 0) = 5ζ2 , (D.3)

E
′ (1)
3→3(v > 0) = −2h

[2]
0 + 5ζ2 − 2πih

[1]
0 , (D.4)

E
(2)
3→3(v > 0) =

1

2

[

4h
[4]
8 + h

[4]
10 − 9ζ2h

[2]
2 + 2ζ3h

[1]
1 − 29

4
ζ4 + 2πi(2h

[3]
4 − 3ζ3)

]

, (D.5)

E
′ (2)
3→3(v > 0) =

1

2

[

24h
[4]
0 + 4h

[4]
2 + 4h

[4]
4 + 2h

[4]
6 + 4h

[4]
8 + h

[4]
10

− ζ2(56h
[2]
0 − 2h

[2]
1 + 9h

[2]
2 ) + 2ζ3(h

[1]
0 + h

[1]
1 )− 39

4
ζ4

+ 2πi(12h
[3]
0 + 2h

[3]
2 + 2h

[3]
4 − 4ζ2h

[1]
0 + ζ3)

]

, (D.6)
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E
(3)
3→3(v > 0) = −24h

[6]
32 − 5(h

[6]
34 + h

[6]
36 + h

[6]
40)− h

[6]
42 +

1

2
ζ2(110h

[4]
8 + 23h

[4]
10)

− ζ3(5h
[3]
4 + 2h

[3]
5 ) + 15ζ4h

[2]
2 − (8ζ5 − 23ζ2ζ3)h

[1]
1 +

8729

96
ζ6 −

3

2
(ζ3)

2

− πi
[

24h
[5]
16 + 5(h

[5]
18 + h

[5]
20)− 7ζ2h

[3]
4 + 5ζ3h

[2]
2 − 25ζ5 + 8ζ2ζ3

]

, (D.7)

E
′ (3)
3→3(v > 0) = −120h

[6]
0 − 24(h

[6]
2 + h

[6]
4 )− 2h

[6]
6 − 24h

[6]
8 − 7h

[6]
10 − 2h

[6]
12 − h

[6]
14 − 24h

[6]
16 − 7h

[6]
18

− 7h
[6]
20 − h

[6]
22 − 2h

[6]
24 − h

[6]
26 − h

[6]
28 − 3h

[6]
30 − 24h

[6]
32 − 5h

[6]
34 − 5h

[6]
36 − 5h

[6]
40 − h

[6]
42

+ ζ2

(

276h
[4]
0 − 2h

[4]
1 + 53h

[4]
2 − h

[4]
3 + 53h

[4]
4 − h

[4]
5 + 4h

[4]
6 − 3h

[4]
7 + 55h

[4]
8

+
23

2
h
[4]
10

)

− ζ3(22h
[3]
0 + 11h

[3]
1 + 6h

[3]
2 − 2h

[3]
3 + 5h

[3]
4 + 2h

[3]
5 )

+
1

4
ζ4(279h

[2]
0 + 31h

[2]
1 + 60h

[2]
2 )− 2ζ5(7h

[1]
0 + 4h

[1]
1 ) + ζ2ζ3(49h

[1]
0 + 23h

[1]
1 )

+
8477

96
ζ6 − 3(ζ3)

2 − πi

[

120h
[5]
0 + 24(h

[5]
2 + h

[5]
4 ) + 2h

[5]
6 + 24h

[5]
8 + 7h

[5]
10 + 2h

[5]
12

+ h
[5]
14 + 24h

[5]
16 + 5h

[5]
18 + 5h

[5]
20 − ζ2(36h

[3]
0 − 2h

[3]
1 + 5h

[3]
2 − h

[3]
3 + 7h

[3]
4 )

+ ζ3(22h
[2]
0 + 11h

[2]
1 + 5h

[2]
2 )− 39

4
ζ4h

[1]
0 + 14ζ5 − 5ζ2ζ3

]

. (D.8)

The four-loop results are

E
(4)
3→3(v > 0) =

1

8

{

2880h
[8]
128 + 624(h

[8]
130 + h

[8]
132)− 48h

[8]
134 + 624h

[8]
136 + 152h

[8]
138 + 28h

[8]
142

+ 624h
[8]
144 + 152(h

[8]
146 + h

[8]
148)− 4h

[8]
150 + 8h

[8]
154 + 16h

[8]
156 + 6h

[8]
158

+ 624h
[8]
160 + 152h

[8]
162 + 152h

[8]
164 − 4h

[8]
166 + 152h

[8]
168 + 42h

[8]
170 + 8h

[8]
172

+ 3h
[8]
174 + 8h

[8]
178 + 8h

[8]
180 + 16h

[8]
184 − 18h

[8]
190

− ζ2

(

6576h
[6]
32 + 48h

[6]
33 + 1408h

[6]
34 − 28h

[6]
35 + 1408h

[6]
36 + 4h

[6]
37 − 8h

[6]
38 − 6h

[6]
39

+ 1408h
[6]
40 + 4h

[6]
41 + 338h

[6]
42 − 3h

[6]
43 − 8h

[6]
44 + 40h

[6]
46 + 18h

[6]
47

)

+ ζ3

(

672h
[5]
16 + 276h

[5]
17 + 156h

[5]
18 − 6h

[5]
19 + 156h

[5]
20 + 73h

[5]
21 + 8h

[5]
22 + 18h

[5]
23

)

− ζ4

(

1986h
[4]
8 − 21h

[4]
9 +

1053

2
h
[4]
10 + 102h

[4]
11

)

+ ζ5

(

496h
[3]
4 + 225h

[3]
5

)

− ζ2ζ3

(

1524h
[3]
4 + 627h

[3]
5

)

−
(

16151

8
ζ6 − 86(ζ3)

2

)

h
[2]
2

+

(

12135

16
ζ7 −

4483

2
ζ2ζ5 − 957ζ3ζ4

)

h
[1]
1

− 9

5
ζ5,3 −

12574711

1440
ζ8 + 374ζ3ζ5 − 566ζ2(ζ3)

2

+ 2πi

[

1440h
[7]
64 + 312(h

[7]
66 + h

[7]
68 + h

[7]
72) + 76h

[7]
74 + 8h

[7]
78 + 312h

[7]
80

+ 76(h
[7]
82 + h

[7]
84) + 4(h

[7]
86 + h

[7]
90) + 8h

[7]
92

− ζ2(408h
[5]
16 + 80h

[5]
18 − 8h

[5]
19 + 80h

[5]
20 − 4h

[5]
21 − 4h

[5]
22)

+ ζ3(336h
[4]
8 + 144h

[4]
9 + 78h

[4]
10)− 153ζ4h

[3]
4 + (248ζ5 − 90ζ2ζ3)h

[2]
2

+ 12(ζ3)
2h

[1]
1 − 4041

4
ζ7 + 330ζ2ζ5 +

275

2
ζ3ζ4

]}

, (D.9)
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and

E
′ (4)
3→3(v > 0) =

1

8

{

13440h
[8]
0 + 2880(h

[8]
2 + h

[8]
4 )− 160h

[8]
6 + 2880h

[8]
8 + 744h

[8]
10 + 56h

[8]
12

+ 140h
[8]
14 + 2880h

[8]
16 + 744(h

[8]
18 + h

[8]
20)− 12h

[8]
22 + 80h

[8]
24 + 60h

[8]
26 + 80h

[8]
28

+ 60h
[8]
30 + 2880h

[8]
32 + 736(h

[8]
34 + h

[8]
36)− 16h

[8]
38 + 736h

[8]
40 + 196h

[8]
42 + 32h

[8]
44

+ 56h
[8]
46 + 96h

[8]
48 + 56(h

[8]
50 + h

[8]
52) + 32h

[8]
54 + 64h

[8]
56 + 32(h

[8]
58 + h

[8]
60)

− 12h
[8]
62 + 2880h

[8]
64 + 720(h

[8]
66 + h

[8]
68)− 16h

[8]
70 + 720h

[8]
72 + 192h

[8]
74 + 32h

[8]
76

+ 60h
[8]
78 + 720h

[8]
80 + 192(h

[8]
82 + h

[8]
84) + 28h

[8]
86 + 32h

[8]
88 + 40h

[8]
90 + 48h

[8]
92

+ 42h
[8]
94 + 96h

[8]
96 + 48(h

[8]
98 + h

[8]
100) + 32h

[8]
102 + 48h

[8]
104 + 36h

[8]
106

+ 32(h
[8]
108 + h

[8]
110) + 48h

[8]
112 + 32(h

[8]
114 + h

[8]
116 + h

[8]
118 + h

[8]
120 + h

[8]
122)

+ 24h
[8]
124 + 120h

[8]
126 + 2880h

[8]
128 + 624(h

[8]
130 + h

[8]
132)− 48h

[8]
134 + 624h

[8]
136

+ 152h
[8]
138 + 28h

[8]
142 + 624h

[8]
144 + 152(h

[8]
146 + h

[8]
148)− 4h

[8]
150 + 8h

[8]
154

+ 16h
[8]
156 + 6h

[8]
158 + 624h

[8]
160 + 152(h

[8]
162 + h

[8]
164)− 4h

[8]
166 + 152h

[8]
168

+ 42h
[8]
170 + 8h

[8]
172 + 3h

[8]
174 + 8h

[8]
178 + 8h

[8]
180 + 16h

[8]
184 − 18h

[8]
190

+ ζ2

(

−30720h
[6]
0 − 160h

[6]
1 − 6456h

[6]
2 + 140h

[6]
3 − 6456h

[6]
4 − 12h

[6]
5 − 140h

[6]
6 + 60h

[6]
7

− 6464h
[6]
8 − 16h

[6]
9 − 1644h

[6]
10 + 56h

[6]
11 − 184h

[6]
12 + 32h

[6]
13 − 128h

[6]
14 − 12h

[6]
15

− 6480h
[6]
16 − 16h

[6]
17 − 1608h

[6]
18 + 60h

[6]
19 − 1608h

[6]
20 + 28h

[6]
21 − 40h

[6]
22 + 42h

[6]
23

− 192h
[6]
24 + 32h

[6]
25 − 84h

[6]
26 + 32h

[6]
27 − 88h

[6]
28 + 32h

[6]
29 − 48h

[6]
30 + 120h

[6]
31

− 6576h
[6]
32 − 48h

[6]
33 − 1408h

[6]
34 + 28h

[6]
35 − 1408h

[6]
36 − 4h

[6]
37 + 8h

[6]
38 + 6h

[6]
39

− 1408h
[6]
40 − 4h

[6]
41 − 338h

[6]
42 + 3h

[6]
43 + 8h

[6]
44 − 40h

[6]
46 − 18h

[6]
47

)

+ ζ3

(

3040h
[5]
0 + 1292h

[5]
1 + 756h

[5]
2 − 20h

[5]
3 + 752h

[5]
4 + 304h

[5]
5 + 24h

[5]
6 + 44h

[5]
7

+ 736h
[5]
8 + 292h

[5]
9 + 164h

[5]
10 − 10h

[5]
11 + 16h

[5]
12 + 8h

[5]
13 − 80h

[5]
15 + 672h

[5]
16 + 276h

[5]
17

+ 156h
[5]
18 − 6h

[5]
19 + 156h

[5]
20 + 73h

[5]
21 + 8h

[5]
22 + 18h

[5]
23

)

− ζ4

(

9060h
[4]
0 + 280h

[4]
1 + 2545h

[4]
2 + 356h

[4]
3 + 2460h

[4]
4 + 119h

[4]
5 + 185h

[4]
6 + 58h

[4]
7

+ 1986h
[4]
8 − 21h

[4]
9 +

1053

2
h
[4]
10 + 102h

[4]
11

)

+ ζ5

(

2208h
[3]
0 + 1068h

[3]
1 + 548h

[3]
2 − 64h

[3]
3 + 496h

[3]
4 + 225h

[3]
5

)

− ζ2ζ3

(

6880h
[3]
0 + 2920h

[3]
1 + 1676h

[3]
2 + 40h

[3]
3 + 1524h

[3]
4 + 627h

[3]
5

)

− ζ6

(

28465

3
h
[2]
0 +

1023

4
h
[2]
1 +

16151

8
h
[2]
2

)

+ (ζ3)
2
(

392h
[2]
0 + 39h

[2]
1 + 86h

[2]
2

)

+
1

16
ζ7

(

25120h
[1]
0 + 12135h

[1]
1

)

−
1

2
ζ2ζ5

(

9968h
[1]
0 + 4483h

[1]
1

)

− ζ3ζ4

(

2435h
[1]
0 + 957h

[1]
1

)

−
2461055

288
ζ8 + 578ζ3ζ5 − 886ζ2(ζ3)

2

+ 2πi

[

6720h
[7]
0 + 1440h

[7]
2 + 1440h

[7]
4 + 28h

[7]
6 + 1440h

[7]
8 + 372h

[7]
10 + 40h

[7]
12 + 40h

[7]
14

+ 1440h
[7]
16 + 368h

[7]
18 + 368h

[7]
20 + 16h

[7]
22 + 48h

[7]
24 + 28h

[7]
26 + 32h

[7]
28 + 16h

[7]
30

+ 1440h
[7]
32 + 360h

[7]
34 + 360h

[7]
36 + 16h

[7]
38 + 360h

[7]
40 + 96h

[7]
42 + 16h

[7]
44 + 24h

[7]
46

+ 48h
[7]
48 + 24h

[7]
50 + 24h

[7]
52 + 16h

[7]
54 + 24h

[7]
56 + 16h

[7]
58 + 16h

[7]
60 + 12h

[7]
62

+ 1440h
[7]
64 + 312h

[7]
66 + 312h

[7]
68 + 312h

[7]
72 + 76h

[7]
74 + 8h

[7]
78 + 312h

[7]
80 + 76h

[7]
82

+ 76h
[7]
84 + 4h

[7]
86 + 4h

[7]
90 + 8h

[7]
92

+ ζ2

(

−1920h
[5]
0 + 28h

[5]
1 − 348h

[5]
2 + 40h

[5]
3 − 352h

[5]
4 + 16h

[5]
5 + 4h

[5]
6 + 16h

[5]
7
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− 360h
[5]
8 + 16h

[5]
9 − 84h

[5]
10 + 24h

[5]
11 + 16h

[5]
13 + 4h

[5]
14 + 12h

[5]
15 − 408h

[5]
16 − 80h

[5]
18

+ 8h
[5]
19 − 80h

[5]
20 + 4h

[5]
21 + 4h

[5]
22

)

+ ζ3

(

1520h
[4]
0 + 664h

[4]
1 + 376h

[4]
2 + 8h

[4]
3 + 368h

[4]
4 + 152h

[4]
5 + 8h

[4]
6 + 4h

[4]
7 + 336h

[4]
8

+ 144h
[4]
9 + 78h

[4]
10

)

− ζ4

(

690h
[3]
0 − 13h

[3]
1 + 150h

[3]
2 − 2h

[3]
3 + 153h

[3]
4

)

+ ζ5

(

1104h
[2]
0 + 516h

[2]
1 + 248h

[2]
2

)

− ζ2ζ3

(

400h
[2]
0 + 172h

[2]
1 + 90h

[2]
2

)

−
2635

6
ζ6h

[1]
0 + (ζ3)

2
(

196h
[1]
0 + 12h

[1]
1

)

+ 785ζ7 − 284ζ2ζ5 −
355

2
ζ3ζ4

]}

. (D.10)

The results for E′ = E(v, 1 + |δ|, v) are more complicated than those for E = E(1 +

|δ|, v, v), because only the latter orientation obeys a final entry condition that is compatible

with the self-crossing line. Both sets of functions are smooth as v → 1+. While E(1 +

|δ|, v, v) is also smooth as v → ∞, E(v, 1+ |δ|, v) has logarithmic divergences there. These

are precisely the logarithms associated with the NMHV multi-particle factorization pole

discussed in refs. [61, 62], where the function U(u, v, w) = lnE(u, v, w) was studied in the

limit u,w → ∞ with v fixed.

In the remainder of this appendix we discuss the behavior of the full NMHV amplitude

in the overlap region between the 2 → 4 multi-Regge limit and the self-crossing limit,

w → −1, where we can work to higher order in the expansion around the self-crossing

limit. This is necessary because the rational prefactors, or R-invariants, “(i)” in eq. (2.14),

blow up in the self-crossing limit. The denominators of some of the R-invariants contain

spinor strings such as 〈3−|(1 + 2)|6−〉 = 〈3|(1 + 2)|6]. The square of this factor is

〈3−|(1 + 2)|6−〉〈6−|(1 + 2)|3−〉 =
1

2
tr[(1− γ5)3(1 + 2)6(1 + 2)]

= s123s345 − s12s45 = (1− u)s123s345

= δs123s345 . (D.11)

This behavior leads some of the R-invariants to blow up like 1/〈3|(1 + 2)|6] ∝ 1/
√
δ.

On the other hand, in the Euclidean region this “spurious pole” power-law singularity

is completely cancelled by a relation between the transcendental functions E and Ẽ [60–62].

Here we will see that in Minkowski kinematics a logarithmic singularity survives. Actually

we will not do so for generic self-crossing kinematics, but only for v → 0, making use of

the overlap with the w → −1 multi-Regge limit. For the generic multi-Regge limit, for the

helicity configuration

3+6+ → 2+4−5+1+ , (D.12)

an analysis of the behavior of the R-invariants [61] leads to the following formula for the

BDS-like normalized amplitude:

ρ≡ ANMHV
6

ABDS−like
6

=
1

1+w

[

E(u, v, w) + Ẽ(u, v, w) + E(w, u, v)− Ẽ(w, u, v)
]

+
w

1+w

[

E(v, w, u)+Ẽ(v, w, u)+E(w, u, v)−Ẽ(w, u, v)
]

. (D.13)
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The 2 → 4 MRK behavior of the ratio function was provided through four loops in refs. [61,

62] in terms of SVHPLs [77]. Converting to the BDS-like normalized functions E and Ẽ,

and taking the limit w → −1, we find through four loops:

ρ(1) = − ln2 v − 2ζ2 + 2πi

[

− ln v − 1− 1 + w∗

1 + w

]

+ (2πi)2
[

−1

2

]

, (D.14)

ρ(2) =
1

4
ln4 v + 2ζ2 ln

2 v +
15

2
ζ4

+ (2πi)

[

1

2
ln2 δ − ln δ +

1

2
ln3 v − 4ζ2 ln v + ζ3 − 4ζ2 + 1

+
1 + w∗

1 + w

(

1

2
ln2 v + ln v − 4ζ2 + 1

)]

+ (2πi)2
[

1

2
ln δ +

1

2
ln2 v − 1

2
ζ2 −

1

2
+

1 + w∗

1 + w

1

2
(ln v + 1)

]

, (D.15)

ρ(3) = − 1

24
ln6 v − 3

4
ζ2 ln

4 v − 47

4
ζ4 ln

2 v − 707

24
ζ6

+ (2πi)

[

−1

8
ln4 δ +

1

2
ln3 δ +

(

9

2
ζ2 −

3

2

)

ln2 δ +
(

ζ3 − 9ζ2 + 3
)

ln δ

− 1

8
ln5 v +

5

2
ζ2 ln

3 v +
1

2
ζ3 ln

2 v − 47

4
ζ4 ln v − 7ζ5 −

47

4
ζ4 − ζ3 + 9ζ2 − 3

+
1 + w∗

1 + w

(

−1

8
ln4 v − 1

2
ln3 v +

(

9

2
ζ2 −

3

2

)

ln2 v −
(

ζ3 − 9ζ2 + 3
)

ln v

− 47

4
ζ4 − ζ3 + 9ζ2 − 3

)]

+ (2πi)2
[

−1

4
ln3 δ +

3

4
ln2 δ +

3

2
(ζ2 − 1) ln δ − 3

16
ln4 v +

3

4
ζ2 ln

2 v +
1

2
ζ3 ln v

− 17

8
ζ4 +

1

2
ζ3 −

3

2
ζ2 +

3

2

+
1 + w∗

1 + w

(

−1

4
ln3 v − 3

4
ln2 v +

3

2
(ζ2 − 1) ln v − 1

2
ζ3 +

3

2
ζ2 −

3

2

)]

, (D.16)

ρ(4) =
1

192
ln8 v +

1

6
ζ2 ln

6 v +
89

16
ζ4 ln

4 v +

(

1399

24
ζ6 + (ζ3)

2

)

ln2 v +
39895

288
ζ8 + 2ζ2(ζ3)

2

+ (2πi)

[

1

48
ln6 δ − 1

8
ln5 δ +

(

−7

4
ζ2 +

5

8

)

ln4 δ +

(

1

6
ζ3 + 7ζ2 −

5

2

)

ln3 δ

+

(

149

8
ζ4 −

1

2
ζ3 − 21ζ2 +

15

2

)

ln2 δ +

(

−4ζ5 −
149

4
ζ4 + ζ3 + 42ζ2 − 15

)

ln δ

+
1

48
ln7 v − 3

4
ζ2 ln

5 v − 3

8
ζ3 ln

4 v +
69

8
ζ4 ln

3 v +

(

−25

8
ζ5 +

23

2
ζ2ζ3

)

ln2 v

+

(

−107

6
ζ6 +

5

2
(ζ3)

2

)

ln v +
1381

32
ζ7 −

31

4
ζ3ζ4 −

11

4
ζ2ζ5 −

107

6
ζ6 + 2(ζ3)

2

+ 4ζ5 +
149

4
ζ4 − ζ3 − 42ζ2 + 15

+
1 + w∗

1 + w

(

1

48
ln6 v +

1

8
ln5 v +

(

−7

4
ζ2 +

5

8

)

ln4 v +

(

− 1

12
ζ3 − 7ζ2 +

5

2

)

ln3 v

+

(

149

8
ζ4 −

1

4
ζ3 − 21ζ2 +

15

2

)

ln2 v

+

(

5ζ5 +
1

2
ζ2ζ3 +

149

4
ζ4 −

1

2
ζ3 − 42ζ2 + 15

)

ln v − 107

6
ζ6 +

5

2
(ζ3)

2
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+ 5ζ5 +
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2
ζ2ζ3 +

149

4
ζ4 −

1

2
ζ3 − 42ζ2 + 15

)]

+ (2πi)2
[

1

16
ln5 δ − 5

16
ln4 δ +

(

−ζ2 +
5

4

)

ln3 δ +

(

1

4
ζ3 + 3ζ2 −

15

4

)

ln2 δ

+

(

29

8
ζ4 −

1

2
ζ3 − 6ζ2 +

15

2

)

ln δ +
1

24
ln6 v − 5

16
ζ2 ln

4 v − 3

4
ζ3 ln

3 v

+
29

8
ζ4 ln

2 v +

(

−25

8
ζ5 +

5

2
ζ2ζ3

)

ln v +
341

96
ζ6 +

5

4
(ζ3)

2 − 2ζ5 + ζ2ζ3

− 29

8
ζ4 +

1

2
ζ3 + 6ζ2 −

15

2

+
1 + w∗

1 + w

(

1

16
ln5 v +

5

16
ln4 v +

(

−ζ2 +
5

4

)

ln3 v +

(

−1

8
ζ3 − 3ζ2 +

15

4

)

ln2 v

+

(

29

8
ζ4 −

1

4
ζ3 − 6ζ2 +

15

2

)

ln v +
5

2
ζ5 −

1

4
ζ2ζ3

+
29

8
ζ4 −

1

4
ζ3 − 6ζ2 +

15

2

)]

. (D.17)

In these expressions we let (1+w) → ξ(1+w), (1+w∗) → ξ(1+w∗), take ξ → 0, and

drop terms that vanish in this limit. The only two rational prefactors that can survive are

then 1 and (1 + w∗)/(1 + w). The results do not have uniform transcendentality because

the transcendental functions have been expanded to higher order around the w → −1 limit

to cancel the 1/(1 + w) factor in eq. (D.13). We rewrite the logarithmic terms using the

self-crossing variables, i.e. we let ln |1 + w|2 → ln δ − ln v. We see that there are indeed

logarithmically singular ln δ terms in the imaginary part and in the double discontinuity

(2πi)2 term, beginning at two loops. However, there are no ln δ terms in the part with the

(1 + w∗)/(1 + w) prefactor; that is, the terms depending on the azimuthal component of

the vector ~z in eq. (2.22) are finite. Furthermore, the ln δ terms contain no v dependence

(which could only appear through powers of ln v in the approximation in which we are

working). This behavior is reminiscent of what we found for the MHV configuration. It

would be very interesting to try to understand these NMHV properties better, both in the

MRK limit and more generally along the full self-crossing line.

E Seven-point self-crossing kinematics

In this section we briefly describe the self-crossing configuration for the seven-point ampli-

tude, or heptagonal Wilson loop shown in figure 12. We consider

k3 + k7 → k1 + k2 + k4 + k5 + k6, (E.1)

(1− x)k3 + (1− y)k7 → k1 + k2, (E.2)

xk3 + yk7 → k4 + k5 + k6. (E.3)

Incoming gluons 3 and 7 split into collinear pairs with momentum fractions x and 1 − x,

and y and 1− y, respectively. These pairs then undergo a 2 → 2 scattering into final state

gluons 1, 2, and a 2 → 3 scattering into final state gluons 4, 5 and 6.
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Figure 12. The self-crossing configuration for 2 → 5 scattering, where particles 3 and 7 are

incoming, and 1, 2, 4, 5 and 6 are outgoing.

It is straightforward to derive the following relations among the Mandelstam variables:

s12 = (1− x)(1− y)s37 , (E.4)

(1− x)s23 = (1− y)s71 , (E.5)

s456 = xys37 , (E.6)

s123 = −x(1− y)s37 , (E.7)

s712 = −(1− x)ys37 , (E.8)

xs34 = (1− y)s56 + ys567 , (E.9)

ys67 = (1− x)s45 + xs345 . (E.10)

We would like to rewrite these constraints in terms of the seven dual conformal cross ratios

defined in ref. [85],

ui ≡ ui,i+3 =
x2i,i+4x

2
i+1,i+3

x2i,i+3x
2
i+1,i+4

(E.11)

or

u1 =
x215x

2
24

x214x
2
25

=
s23s567
s123s234

(E.12)

and cyclic permutations thereof (mod 7).

It is easy to see that

u7 =
s12s456
s712s123

= 1, (E.13)

which is the analog of the u = 1 constraint in the six-point case.

To find the second constraint on the cross ratios, analogous to v = w in the six-point

case, we first look for combinations of cross ratios from which the invariants s234 and s671
are absent:

u1
u2u6

=
s23
s71

s712
s123

s567
s34

=
y

x

s567
s34

, (E.14)
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u6
u1u5

=
s71
s23

s123
s712

s345
s67

=
x

y

s345
s67

, (E.15)

u3u4
u2u5

=
s45s56s712s123
s34s67s2456

=
(1− y)s56

xs34
· (1− x)s45

ys67
. (E.16)

Using eqs. (E.9) and (E.10), we can rewrite eq. (E.16) as

u3u4
u2u5

=

[

1− ys567
xs34

][

1− xs345
ys67

]

=

[

1− u1
u2u6

][

1− u6
u1u5

]

, (E.17)

or

(u1u5 − u6)(u2u6 − u1) = u1u3u4u6 . (E.18)

We solve eq. (E.18) for u4, and insert that solution and u7 = 1 into the Gram determinant

constraint that is obeyed by the seven cross ratios to have four-dimensional kinematics.

We find that the Gram determinant vanishing condition then contains a simple factor,

u6 − u1u5 − u3u6. Setting this factor to zero, we solve for u3 and plug the solution back

into eq. (E.18). We obtain

u7 = 1 , u3 = 1− u1u5
u6

, u4 = 1− u2u6
u1

. (E.19)

The self-crossing solution is then parametrized by the four remaining cross ratios, u1, u2,

u5 and u6.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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