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1 Introduction

The kernel of the BFKL (Balitsky-Fadin-Kuraev-Lipatov) [2–6] equation contains real

and virtual gluon emissions. The virtual gluon emissions are included in the infrared

divergent gluon Regge trajectory. At present, the BFKL kernel is known to the next-to-

leading (NLO) [5–20] order for arbitrary color group representation in both QCD and its

supersymmetric extensions. The infrared (IR) divergences cancel between the real and the

virtual part of the kernel than projected on the singlet color state. This cancellation does

not happen for the BFKL kernel in the adjoint representation, but despite being infrared

divergent it can be useful in some applications, which also determine the way one treats the

IR terms. For example, in the Bartels-Kwiecinski-Praszalowicz (BKP) [21, 22] approach

of interacting reggeized gluons one can remove “halves” of two gluon trajectories, while

in calculations of the corrections to the Bern-Dixon-Smirnov (BDS) [23] amplitude one

removes trajectory of single reggeized gluon in order to obtain the IR finite expression for

the remainder function. The eigenvalue of reduced IR finite BFKL kernel obtained in the

“BDS-like” way is commonly known as the adjoint BFKL eigenvalue. The adjoint BFKL

eigenvalue at the leading order was calculated by Bartels, Lipatov and Sabio Vera [24] and

its NLO expression was found by Fadin and Lipatov [25]. Then its higher loop corrections

were calculated order by order [26] and in all orders from near-collinear limit using integra-

bility techniques as well as a non-trivial analytic continuation from the collinear to Regge

kinematics [27, 28].

The BFKL approach to the helicity amplitudes in the Regge kinematics was extensively

studied over the last years [29–50] and was very useful in understanding higher order
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corrections of the BFKL eigenvalue and the impact factor. However, already at the next-

to-next-to-leading level the adjoint BFKL eigenvalue was shown to have an alerting feature

of having a non-vanishing limit as ν → 0 after setting the conformal spin n = 0 [34], which

in not compatible with existence of a constant BFKL eigenfunction. It was shown [36]

that one way to solve this problem is to account for corrections to the cusp anomalous

dimension in the impact factor. In the previous paper the authors [1] suggested that a more

natural way would be to redefine the notion of the adjoint BFKL eigenvalue exploiting some

ambiguity in its definition. This ambiguity is related to the way one removes IR terms as

well as how one redistributes the NLO corrections between the eigenvalue and the impact

factor. Moreover, the energy scale in the leading logarithm approximation is not fixed at

the leading order and becomes to be important at the NLO level. The authors claimed

that there is enough freedom to modify the adjoint BFKL eigenvalue in such a way that

the corresponding BDS remainder function is left intact with the next-to-leading logarithm

accuracy. In the present paper we show in details how the freedom of redistributing NLO

corrections between the BFKL eigenvalue and eigenfunctions is realized in the remainder

function as interchanging the corresponding corrections between the eigenvalue and the

impact factor. The paper is organized as follows. In the next section we discuss the

origin of the freedom of redistributing the NLO corrections between the eigenvalue and

eigenfunctions of the reduced BFKL kernel. Then we show how this freedom is realized in

the BDS remainder function modifying the eigenvalue and the impact factors, and explain

why this procedure does not affect the final expression of the remainder function to the

NLA accuracy.

2 Residual freedom of BFKL eigenvalue and eigenfunctions

In the multi-Regge kinematics (MRK) the effective summation parameter is a ln s
s0

, where

s is the center of mass energy squared and s0 is some energy scale. The leading contribu-

tion is of the order of (a ln s/s0)
L−1, where L is a loop order in the perturbative expansion,

while the next-to-leading contribution is suppressed by one power of log of s, namely

a (a ln s/s0)
L−2 and commonly is referred to as the next-to-leading logarithm approxima-

tion (NLA). In the present paper we consider only two and three loop BDS remainder

function R6|MRK,2→4 to the NLA accuracy in MRK for the 2 → 4 gluon scattering. To

this accuracy the remainder function is fully determined by the energy scale s0, the leading-

order (LO) and the next-to-leading order (NLO)1 impact factor as well as the LO and the

NLO adjoint BFKL eigenvalue in the planar limit. However, there is a residual freedom

related to redistribution of the NLO correction between the BFKL eigenvalue, the impact

factor and the energy scale. This freedom is equivalent to a freedom of redistributing the

NLO corrections between the BFKL eigenvalue and the eigenfunction in such a way that

the BFKL kernel is not affected. To illustrate this statement we schematically write the

1For some historical reasons one says that the scattering amplitude is calculated in the next-to-leading

logarithm approximation (NLA), but the corresponding BFKL eigenvalue is the next-to-leading order (NLO)

eigenvalue. Same for impact factors.
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reduced infrared finite BFKL kernel K in the following form

ω ⊗ φ⊗ φ∗ = K, (2.1)

where ω and φ are the eigenvalue and the eigenfunction of the BFKL equation. The reduced

infrared finite BFKL kernel is obtained by removing the Regge gluon trajectory from the

full infrared divergent BFKL kernel in the adjoint representation of the color gauge group.

One uses the reduced adjoint BFKL kernel in calculations of the BDS remainder function

because the gluon Regge trajectory is built in the BDS amplitude by construction.

The eigenfunctions of the LO kernel are also eigenfunctions of the NLO kernel (cf. [51])

for the singlet case. In the color adjoint BFKL for the reduced kernel the situation is the

same, which allowed Fadin and Lipatov to calculate the NLO eigenvalue [25]. We denote

it as follows

ω = ωLO + a ωNLO (2.2)

and thus according to ref. [25] it reads

(ωLO + a ωNLO)⊗ φLO ⊗ φ∗LO = KLO + a KNLO (2.3)

for the coupling constant a = g2Nc/(8π
2). In their previous paper [1] the authors argued

that the NLO eigenvalue ωNLO can be modified

ωNLO → ω̃NLO = ωNLO + ∆ωNLO (2.4)

to comply with the Hermitian separability properties without affecting the remainder func-

tion to this order. This can be done by pushing some of the NLO corrections to the

eigenfunction as follows2

(ωLO + aωNLO + a∆ωNLO)⊗(φLO + aφNLO)⊗(φLO + aφNLO)∗ = KLO + aKNLO, (2.5)

which leaves the kernel KLO +a KNLO unchanged. The possibility of the suggested modifi-

cation of the NLO eigenvalue ωNLO → ωNLO+∆ωNLO was criticised by Fadin and Fiore [52]

based on their calculations using only the LO eigenfunction that is naturally inconsistent

with BFKL kernel because

(ωLO + a ωNLO + a ∆ωNLO)⊗ φLO ⊗ φ∗LO 6= KLO + a KNLO. (2.6)

The authors absolutely agree with the conclusion made by Fadin and Fiore that the ex-

pression

∆ωNLO ⊗ φLO ⊗ φ∗LO (2.7)

on its own does not make much sense, but our statement is equivalent to compensating

this term with the NLO corrections to the eigenfunction in such a way that the kernel

is left unchanged. In calculus this corresponds to passing to another expansion basis for

some function, which does not affect the function itself rather modifies the coefficients of its

expansion, the BFKL eigenvalue in our case. To the best of our knowledge, the uniqueness

2A similar procedure for NLO eigenfunctions of the singlet BFKL kernel was considered in refs. [53, 54].
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of the eigenfunction of the NLO BFKL kernel was never discussed before. We leave the

analysis of the uniqueness and possible forms of the NLO BFKL eigenfunction for our

further publications and only want to show how this residual freedom is realized for the

BDS remainder function.

3 BDS remainder function in multi-Regge kinematics

The planar BDS amplitude in N = 4 SYM possesses correction starting at two loop

order of the perturbative expansion. One of the reasons for this is the fact that the

analytic properties of the BDS amplitude are not compatible with cut singularities in the

complex angular momentum plane, called Mandelstam or Regge cuts. The Mandelstam

cut contributions cannot be obtained exponentiating the one loop result in momentum

space, in the way the BDS amplitude is constructed. For the 2 → 4 amplitude with two

produced particles k1 and k2 the correction to the BDS amplitude, the so-called remainder

function is a function of three conformal cross ratios ui(i = 1, 2, 3) in dual momentum

space expressed in terms of the Mandelstam invariants as follows

u1 =
ss2

s012s123
, u2 =

s1t3
s012t2

, u3 =
s3t1
s123t2

, (3.1)

where s, si and sij are related to the center of mass energies, while ti stand for the momen-

tum transfer. In the multi-Regge kinematics (MRK) s� s012, s123 � s1, s2, s3 � t1, t2, t3
the cross ratios greatly simplify

1− u1 → 0, ũ2 =
u2

1− u1
∝ 1, ũ3 =

u3
1− u1

∝ 1 (3.2)

and u1 possesses a phase in the Mandelstam region u1 = |u1|e−i2π. The analytic form

of the correction to the BDS amplitude in the multi-Regge kinematics was introduced by

Bartels, Lipatov and Sabio Vera [24] and its more general form [25, 45] reads

exp [R6 + iπδMRK] |MRK,2→4 = cosπωab (3.3)

+ i
a

2

+∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

(
− 1

1− u1
|1 + w|2

|w|

)ωadj(ν,n)

.

Here ωab and δMRK are given by

ωab =
1

8
γK(a) ln |w|2, δMRK =

1

8
γK(a) ln

|w|2

|1 + w|4
(3.4)

and γK(a) ' 4a− 4a2ζ2 + . . . is the cusp anomalous dimension known to any order in the

perturbative expansion [55]. The complex variable w is related to the transverse momenta

of the produced particles k1, k2 and the momentum transfers q1, q2 and q3 as follows

w =
q3k1
k2q1

= |w|eiφ23 , |w|2 =
u2
u3
, cosφ23 =

1− u1 − u2 − u3
2
√
u2u3

. (3.5)
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The energy dependence in (3.3) is encoded in (3.3) by

1

1− u1
|1 + w|2

|w|
=

s

s0
(3.6)

as well as the function ωadj(ν, n), which is the eigenvalue of the reduced infrared finite color

adjoint BFKL kernel in the planar N = 4 SYM. The propagation of the BFKL state is

then convolved with a product of two impact factors given by

(−1)n

ν2 + n2

4

ΦReg(ν, n). (3.7)

To keep the connection with previous publications we refer to ΦReg(ν, n) as the impact

factor in the (ν, n) space.

We are interested only in the NLO corrections and write

ΦReg(ν, n) = 1 + a Φ(1)
ν,n + . . . (3.8)

as well as

ωadj = −a
(
E(0)
ν,n + aE(1)

ν,n + . . .
)
, (3.9)

where E
(0)
ν,n and E

(1)
ν,n are the LO and NLO adjoint BFKL eigenvalues and Φ

(1)
ν,n is the NLO

impact factor.

The leading order adjoint BFKL eigenvalue [24] reads

E(0)
ν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(
1 + iν +

|n|
2

)
+ ψ

(
1− iν +

|n|
2

)
− 2ψ(1) (3.10)

and also can be written as follows (see eq. (85) of ref. [24])

E(0)
ν,n =

1

2

(
ψ
(
iν+

n

2

)
+ ψ

(
−iν +

n

2

)
+ ψ

(
+iν − n

2

)
+ ψ

(
−iν − n

2

))
− 2ψ(1). (3.11)

At first sight those two representation of the LO eigenvalue are not the same numerically

and even have different analytic structure, for example setting ν = 0 and then taking limit

n→ 0. However, one should remember that they are always considered under the integral

over ν and the sum over integer n, and thus they are equivalent, which can be shown using

the reflection identity of the digamma function.

The adjoint NLO BFKL eigenvalue E
(1)
ν,n was calculated by Fadin and Lipatov [25]

using LO eigenfunctions from the reduced infrared safe BFKL kernel in the color adjoint

representation in planar N = 4 SYM. In the most compact form it can be written as

follows (cf. [45])

E(1)
ν,n = −1

4
D2
νEν,n +

1

2
V DνEν,n − ζ2Eν,n − 3ζ3 (3.12)

in terms of

V ≡ −1

2

[
1

iν + |n|
2

− 1

−iν + |n|
2

]
=

iν

ν2 + n2

4

(3.13)

as well as derivative defined by Dν = −i∂ν .
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The NLO impact factor

Φ(1)
ν,n = −1

2

(
E(0)
ν,n

)2
− 3

8
N2 − ζ2, (3.14)

where

N ≡ sgn(n)

[
1

iν + |n|
2

+
1

−iν + |n|
2

]
=

n

ν2 + n2

4

, (3.15)

was calculated by Lipatov and one of the authors [31] analytically continuing the exact

two loop remainder function found by Goncharov, Spradlin, Volovich and Vergu [56] to the

Mandelstam region, and then was redefined by Fadin and Lipatov [25] to fit the energy scale

in agreement with the Regge factorization property. In the next section we review proper-

ties of the adjoint NLO BFKL eigenvalue and discuss a residual freedom of redistributing

NLO corrections between the eigenvalue and the corresponding impact factor.

4 Hermitian separability and transition from singlet to adjoint BFKL

eigenvalue

In ref. [1] the authors argued that it is possible to modify the NLO eigenvalue

E(1)
ν,n → E(1)

ν,n + ∆E(1)
ν,n (4.1)

accompanied by a change of the impact factor and the energy scale in such way that the

remainder function in (3.3) remains intact to the next-to-leading logarithm (NLA) accuracy

in MRK. This modification of the NLO eigenvalue of the BFKL kernel in the color adjoint

representation was needed to have the Hermitian separability and to establish a non-trivial

connection with the corresponding NLO eigenvalue in the color singlet state. The authors

also suggested the exact form of ∆E
(1)
ν,n, namely

∆E(1)
ν,n =

1

2

[
ψ

(
1 + iν +

|n|
2

)
− ψ

(
1− iν +

|n|
2

)]
(4.2)

×

− iν |n|(
ν2 + n2

4

)2 + ψ′
(

1 + iν +
|n|
2

)
− ψ′

(
1− iν +

|n|
2

) .
Below we review the main results of ref. [1] and discuss the motivation for the modifica-

tion of the adjoint NLO eigenvalue given by (4.1) and (4.2). The BFKL equation describes

a bound state of two reggeized gluons in an arbitrary color state. The BFKL equation is a

Schrödinger type equation, with an eigenvalue being a function of the anomalous dimension

ν,3 and the conformal spin n. By the BFKL eigenvalue one typically means the eigenvalue

of the BFKL equation projected on colorless state, called singlet state. It is well known

that if BFKL is projected on color adjoint state (color state of one gluon) it reduces to one

3The anomalous dimension of the twist-2 operators is usually denoted by γ = 1/2 + iν in the BFKL

approach. In our analysis, we deal with the integration variable ν, which we call for simplicity “the

anomalous dimension”.
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reggeized gluon if both reggeized gluons in the bound state attached to the same object,

e.g. quark line. This does not happen in the six-particle helicity amplitudes, where the

two reggeized gluons in the bound state are attached to different vertices resulting in color

adjoint BFKL equation (for more details see ref. [24]).

Both the singlet and the adjoint leading order BFKL equations are solved exploiting

conformal invariance, in the coordinate space for the singlet BFKL and in the dual mo-

mentum space for the adjoint BFKL. The conformal groups are defined in quite different

spaces, but the LO eigenfunctions and eigenvalues are very similar. Roughly speaking the

LO eigenfunctions of the singlet BFKL equation are ρiν+n/2ρ̄iν+n/2, while for the adjoint

BFKL the eigenfunctions are kiν+n/2k̄iν+n/2, where ρ and k are the complex coordinate

and momentum correspondingly.4

The singlet BFKL eigenvalue χ(ν, n) and adjoint BFKL eigenvalue Eν,n are also very

similar in the leading order. They are both built of digamma function of an argument

shifted by 1/2. Namely, the singlet BFKL leading order reads

χ(n, γ) = −1

2

(
ψ

(
1

2
+iν+

n

2

)
+ψ

(
1

2
− iν+

n

2

)
+ψ

(
1

2
+iν − n

2

)
+ψ

(
1

2
−iν−n

2

))
+2ψ(1)

while the adjoint BFKL eigenvalue is given by

E(0)
ν,n =

1

2

(
ψ
(
iν +

n

2

)
+ ψ

(
−iν +

n

2

)
+ ψ

(
+iν − n

2

)
+ ψ

(
−iν − n

2

))
− 2ψ(1).

The next-to-leading eigenvalues calculated using LO eigenfunctions are quite differ-

ent. The adjoint NLO eigenvalue is constructed solely of polygamma functions and their

derivatives, while the singlet NLO eigenvalue is built of a new type of function, Lerch

transcendent and its generalizations. Another difference between the two is that the NLO

singlet eigenvalue can be written in the form of the Bethe-Salpeter equation separating

holomorphic iν + n/2 and antiholomorphic iν − n/2 coordinates as was shown by Kotikov

and Lipatov [15], while the adjoint eigenvalue in the original form calculated by Fadin and

Lipatov [25] does not possess this property called Hermitian separability as it was shown

in ref. [1]. To make the adjoint NLO eigenvalue to comply with the Hermitian separability

property the authors suggested in ref. [1] to modify the adjoint NLO eigenvalue adding a

term given by (4.2). In the present paper we show that this modification can be introduced

without affecting the resulting remainder function to the NLO accuracy.

The authors also argued in ref. [1] that their proposal of modifying the adjoint NLO

is supported by an observation that the modified adjoint NLO BFKL eigenvalue can be

reproduced by ad hoc procedure of replacing sign alternating sums in the singlet NLO

expression by sums of constant sign accompanied by a shift of 1/2 in the argument. This

transition from singlet to the adjoint BFKL eigenvalue is of yet unknown nature and is still

to be checked for validity at higher orders. However, many higher order corrections to the

adjoint eigenvalue available as well as the recently calculated NNLO singlet eigenvalue for

n = 0 show the same structure, namely singlet eigenvalue is built of sign alternating sums

4The actual form of the eigenfunctions is a bit more involved, it accounts for momentum transfer and

includes a proper normalization.
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Figure 1. The plot of f
(1)
ν,n as a function of ν for different values of the conformal spin n.

with only one negative index, while the adjoint eigenvalue is constructed of polygamma

functions and their derivatives. This hints a possibility that this rather simple prescription

for the transition from the singlet to the adjoint eigenvalue is valid at higher orders as well.

In the next section we show how the suggested modification of the adjoint NLO

eigenvalue can be introduced without changing the remainder functions to the required

NLA accuracy.

5 Rescaling anomalous dimension

Below we show that the required modification of the NLO eigenvalue can be made by

changing the anomalous dimension as follows

ν → ν + a f (1)ν,n (5.1)

where

f (1)ν,n =
1

2i

[
ψ

(
1 + iν +

|n|
2

)
− ψ

(
1− iν +

|n|
2

)]
= Im

[
ψ

(
1 + iν +

|n|
2

)]
. (5.2)

The change of the integration variable ν does not change the integral in (3.3) thus satisfying

the condition that one modifies the NLO eigenvalue E
(1)
ν,n leaving the remainder function

R6 intact to the NLA order in MRK.

One can see from figure 1 that the function f
(1)
ν,n is well behaved in the region of

the integration over ν and is limited by ±π/2, which makes it to be compatible with

the perturbative expansion in a and negligible for large values of ν in change of variable

– 8 –
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ν → ν + af
(1)
ν,n. In particular, for n = 0 its asymptotic behaviour is given by

f (1)ν,n|n=0 '
ν→±∞

±π
2
− 1

2ν
+O

(
1

ν2

)
. (5.3)

Other useful features of f
(1)
ν,n are that it is real and antisymmetric in ν as well as the

fact that

ν + af (1)ν,n|n=0 '
ν→0

ν(1 + a ζ2) +O(ν2). (5.4)

The expansion in (5.4) seems to compensate the NLO correction to the cusp anomalous

dimension
γK
4a

(ν + af (1)ν,n|n=0) '
ν→0

ν +O(ν2), (5.5)

and is likely related to a way one removes the infrared divergent Regge gluon trajectory

from the color adjoint BFKL kernel.

In the appendix we demonstrate how the residual freedom of redistributing NLO cor-

rections is realized for the remainder function in multi-Regge kinematics. We show that

a simple change of the integration variable given by (5.1) can be used to redistribute the

NLO corrections between that eigenvalue and the impact factor in such a way that the

resulting expression naturally incorporates the modified NLO BFKL eigenvalue in (4.2)

while leaving the whole expression for the remainder function at two and three loops intact

to the required NLA accuracy.

As it is shown in the appendix, introducing the change of variable given by (5.1) we

can write the expression for the remainder function in (3.3) in the following form

exp [R6 + iπδMRK] |MRK,2→4 = cosπωab (5.6)

+ i
a

2

+∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ +∞

−∞
dν
|w|2i

(
ν+af

(1)
ν,n

)
(
ν+af

(1)
ν,n

)2
+ n2

4

Φ̃Reg(ν, n)

(
− 1

1−u1
|1+w|2

|w|

)ω̃adj(ν,n)

.

The modified NLO BFKL eigenvalue reads

ω̃adj = −a
(
E(0)
ν,n + aE(1)

ν,n + a∆E(1)
ν,n + . . .

)
, (5.7)

where ∆E
(1)
ν,n is given by (4.2), and the modified NLO impact factor is expressed through

Φ̃Reg(ν, n) = 1 + a Φ(1)
ν,n + a∆ Φ(1)

ν,n . . . (5.8)

where ∆ Φ
(1)
ν,n is defined by

∆ Φ(1)
ν,n = ∂νf

(1)
ν,n =

1

2

[
ψ′
(

1 + iν +
|n|
2

)
+ ψ′

(
1− iν +

|n|
2

)]
= Re

[
ψ′
(

1 + iν +
|n|
2

)]
.

(5.9)

The new integral representation of the MRK remainder function in (5.6), which nat-

urally incorporates the modified NLO BFKL eigenvalue presents the main result of this

manuscript. It is worth emphasizing that the remainder function at two and three loops
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remains the same with the NLA accuracy and not affected by redistribution of the NLO

corrections between the eigenvalue and the impact factor.

It is clear that the modification of the eigenvalue given in (5.7) does not change the

whole expression for the remainder function to the required NLA accuracy, because it

merely follows from the change of the integration variable. On the other hand the meaning

of the variable ν has been changed and it is related to the original ν through ν → ν+af
(1)
ν,n.

Those two coincide at the leading order and slightly differ at the next-to-leading order. The

function f
(1)
ν,n is limited by ±π

2 for any value of the original ν and n and thus is significant

only in a small region of the integration over ν even for reasonably large values of the

coupling constant in the perturbative expansion. The original meaning of n as a conformal

spin remains the same and is not affected by the change of ν. The dependence of the

anomalous dimension on the conformal spin through f
(1)
ν,n can be interpreted as a breaking

of the axial symmetry in the complex (w,w∗) plane by causing the dilation to depend

on the angle.

6 Conclusions and outlook

In this paper we discuss a residual freedom of redistributing next-to-leading order correc-

tions between the eigenvalue and impact factors for color adjoint BFKL in planar N = 4

SYM. This freedom originates from an arbitrariness in solving the BFKL equation by

either the eigenfunctions of the LO BFKL kernel or some other eigenfunctions, that can

possess NLO corrections. The full solution is then expanded in the basis of the new eigen-

functions and therefore the eigenvalue, being a coefficient of this expansion, is modified

under a change of the expansion basis.

We showed that this residual freedom can be exploited to rewrite the two and three

loop expression for the remainder function at the NLA accuracy in MRK in such a way that

it naturally incorporates the modified NLO BFKL eigenvalue suggested by the authors in

ref. [1] and is given by (4.1) together with (3.12) and (4.2). This modification requires

some redefinition of the NLO impact factor in the (ν, n) space. The impact factor in the

(ν, n) space is a convolution of the impact factor in the momentum space and the BFKL

eigenfunction and it is natural to expect that a change of the eigenfunction is translated into

a change of this convolution even for same the impact factor in the momentum space. The

modifications to the eigenvalue and the impact factor are of the same origin and therefore

they cancel each other leaving the expression for the remainder function unchanged.

The main motivation for modifying the NLO BFKL eigenvalue in the color adjoint

state was to restore the Hermitian separability property present in the singlet case. It

also helped to establish a non-trivial connection between the adjoint and the singlet NLO

eigenvalues effectively replacing the alternating sums in singlet eigenvalue by sums of the

constant sign. This connects between the cylindrical topology of the singlet BFKL and the

plane topology of the adjoint BFKL.

The empirical recipe of the transition from the singlet to the adjoint eigenvalue may

serve a powerful tool for higher loop calculations provided it holds beyond NLO order. It

is very encouraging that the known corrections to the adjoint BFKL eigenvalue can be

– 10 –



J
H
E
P
0
7
(
2
0
1
6
)
0
8
1

expressed in terms of the constant sign sums while the only known singlet NNLO BFKL

eigenvalue (for zero value of the conformal spin) calculated by N. Gromov, F. Levkovich-

Maslyuk and G. Sizov [57]5 is written in terms of alternating harmonic sums with only one

negative index.

The residual freedom of redistributing higher order corrections is also present beyond

NLA accuracy and is not fixed by the choice of the NLO eigenvalue and the impact factors

presented in this paper. This freedom can be exploited to establish a connection between

the eigenvalues of the BFKL kernel in color singlet and adjoint states to all orders in the

perturbative expansion.
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A Modifying next-to-leading eigenvalue and impact factor

In this section we demonstrate how the residual freedom of redistributing NLO corrections

is realized for the remainder function in multi-Regge kinematics. In the following we show

that a simple change of the integration variable given by (5.1) can be used to redistribute

the NLO corrections between that eigenvalue and the impact factor in such a way that the

resulting expression naturally incorporates the modified NLO BFKL eigenvalue in (4.2)

while leaving the whole expression for the remainder function at two and three loops intact

to the required NLA accuracy.

We write the relevant integral in (3.3) as follows

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

(
− 1

1− u1
|1 + w|2

|w|

)ωadj(ν,n)

(A.1)

=

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n) exp
[
−ωadj(ν, n) (ln(1− u1) + iπ + F (w))

]
,

where

Fw =
1

2
ln
|w|2

|1 + w|4
. (A.2)

Expanding the integrand of (A.1) to the NLA order we get

a ΦReg(ν, n) exp [−ωa(ln(1− u1) + Fw + iπ)] ' a+ a2 ln(1− u1)E(0)
ν,n

+ a2
(
E(0)
ν,nFw + Φ(1)

ν,n + iπE(0)
ν,n

)
+
a3

2

(
ln(1− u1)E(0)

ν,n

)2
(A.3)

+ a3 ln(1− u1)
(
E(1)
ν,n + iπ

(
E(0)
ν,n

)2
+ E(0)

ν,n

(
E(0)
ν,nFw + Φ(1)

ν,n

))
,

5See also a parallel calculation by Velizhanin [58].
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where Fw = 1
2 ln |w|2

|1+w|4 is a function of transverse momentum, while E
(0)
ν,n, E

(1)
ν,n and Φ

(1)
ν,n

are functions of ν and n.

Next we substitute the integration variable in (A.1) as follows

ν → ν + af (1)ν,n. (A.4)

It is convenient to consider the effect of this substitution term by term. First we

note that

E(0)
ν,n

∣∣∣
ν→ν+af (1)ν,n

' E(0)
ν,n + iaf (1)ν,nDνE

(0)
ν,n, (A.5)

where we define Dν = −i∂ν . Plugging this into (A.3) we get

a ΦReg(ν, n) exp [−ωa(ln(1− u1) + Fw + iπ)] |
ν→ν+af (1)ν,n

' a+ a2 ln(1− u1)E(0)
ν,n

+ a2
(
E(0)
ν,nFw + Φ(1)

ν,n + iπE(0)
ν,n

)
+
a3

2

(
ln(1− u1)E(0)

ν,n

)2
(A.6)

+ a3 ln(1− u1)
(
E(1)
ν,n + ∆E(1)

ν,n + iπ
(
E(0)
ν,n

)2
+ E(0)

ν,n

(
E(0)
ν,nFw + Φ(1)

ν,n

))
,

where

∆E(1)
ν,n = if (1)ν,nDνE

(0)
ν,n =

1

2

[
ψ

(
1 + iν +

|n|
2

)
− ψ

(
1− iν +

|n|
2

)]
DνE

(0)
ν,n (A.7)

=
1

2

[
ψ

(
1 + iν +

|n|
2

)
− ψ

(
1− iν +

|n|
2

)]

×

− iν |n|(
ν2 + n2

4

)2 + ψ′
(

1 + iν +
|n|
2

)
− ψ′

(
1− iν +

|n|
2

) ,
which gives exactly the modification of the NLO eigenvalue suggested by the authors

(cf. [1]), namely

E(1)
ν,n → E(1)

ν,n + ∆E(1)
ν,n. (A.8)

Other terms in the integrand of (A.1) are also affected by the substitution (A.4). In

particular, we write

|w|i2ν

ν2 + n2

4

∣∣∣∣∣
ν→ν+af (1)ν,n

=
|w|i2

(
ν+af

(1)
ν,n

)
(
ν + af

(1)
ν,n

)2
+ n2

4

. (A.9)

For clarity of presentation we choose not to expand the expression in (A.9).

The Jacobian gives

dν →
(

1 + a∂νf
(1)
ν,n

)
dν (A.10)

and its easy to see that we can absorb the second term in the brackets of (A.10) in the

redefinition of the NLO impact factor6 as follows

Φ̃Reg(ν, n) = 1 + a Φ(1)
ν,n + a∆ Φ(1)

ν,n . . . (A.11)

6In fact, what we call the NLO impact factor in the (ν, n) space is a product of Φ
(1)
ν,n and the expression

in (A.9) times (−1)n.
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where

∆Φ(1)
ν,n = ∂νf

(1)
ν,n =

1

2

[
ψ′
(

1 + iν +
|n|
2

)
+ ψ′

(
1− iν +

|n|
2

)]
= Re

[
ψ′
(

1 + iν +
|n|
2

)]
.

(A.12)

Finally, combining the expanded terms we write the expression for the remainder

function

exp [R6 + iπδMRK] |MRK,2→4 = cosπωab (A.13)

+ i
a

2

+∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ +∞

−∞
dν

|w|2i
(
ν+af

(1)
ν,n

)
(
ν + af

(1)
ν,n

)2
+ n2

4

Φ̃Reg(ν, n)

(
− 1

1−u1
|1 + w|2

|w|

)ω̃adj(ν,n)

for modified NLO BFKL eigenvalue

ω̃adj = −a
(
E(0)
ν,n + aE(1)

ν,n + a∆E(1)
ν,n + . . .

)
, (A.14)

where ∆E
(1)
ν,n is given by (A.7), and for the modified NLO impact factor

Φ̃Reg(ν, n) = 1 + a Φ(1)
ν,n + a∆ Φ(1)

ν,n . . . (A.15)

where ∆ Φ
(1)
ν,n is defined in (A.12).

Strictly speaking, expanding the integral in (A.1) in powers of the coupling constant a

after the substitution ν → ν + af
(1)
ν,n we have also to expand the upper and lower limits of

the integral, which are now some functions of the coupling constant a. However, as it was

already mentioned, both the function f
(1)
ν,n and its derivative are limited as ν → ±∞ and

thus the terms coming from the expansion of the upper and lower limits vanishes for any

finite value of a. Another fine point is the case of n = 0, which has to be considered with a

special care because of the infrared divergence and should be understood as the principal

value of the integral over ν as it was shown for one loop in the appendix of ref. [24].

The new integral representation of the MRK remainder function in (A.13), which

naturally incorporates the modified NLO BFKL eigenvalue presents the main result of this

manuscript. It is worth emphasizing that the remainder function at two and three loops

remains the same with the NLA accuracy and not affected by redistribution of the NLO

corrections between the eigenvalue and the impact factor.

One can consider other ways of writing (A.13), for example expanding some terms

in (A.9). This would redefine the energy scale function Fw and further change the impact

factor, but bring no new insight into the problem under discussion making the result less

transparent.
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