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1 Introduction

One missing ingredient for the conformal bootstrap program [1–34] for correlation functions

with operators with spin in d dimensions is the explicit knowledge of seed conformal blocks

exchanging mixed-symmetry tensors. Seed conformal blocks are the conformal blocks ex-

changing a given irreducible representation (irrep) of SO(d), while having a minimal amount

of spin in the external operators, such that the conformal block is unique. They are seeds

in the sense that conformal blocks for the exchange of the same representation, but for

external operators with higher spin, can be derived from them by acting with differential

operators that generate the required extra tensor structures, as described in [26, 35, 36].

Much of the structure of a seed conformal block is encoded by the projector to the

SO(d) irrep which labels the exchanged operator. This can be seen by considering the

integral expressions of the conformal blocks in the shadow formalism [37–39]. Indeed, the

lack of explicit expressions for the projectors is the main reason why the seed conformal

blocks are still unknown. So far, the projectors and seed conformal blocks in d dimensions

are only known for the exchanged operators in the irreps (l1) = ... [38, 40, 41] and

(l1, 1) = ... [42]. Expressions for the projectors to the irreps (l1, 1, 1) and (l1, 2) were

given in [43, 44]. Table 1 shows all irreps that appear in a correlator of four stress-tensors,

and for each irrep the correlator where it appears in a seed conformal block.

In section 2 the projectors for all irreps appearing in table 1 will be derived in a

compact form. The length of the first row of the Young diagram l1 is left unspecified

and only appears in the final results as a parameter of Gegenbauer polynomials and in

the overall normalization. A consequence of this are universal recursion relations in l1
for the seed conformal blocks. These recursion relations are shown to hold for the seed

conformal blocks of all the correlators in table 1 and conjectured to hold for any seed

conformal block of bosonic operators. These relations are derived in section 3, making use

of the integral representations of the conformal blocks in the shadow formalism, where the

projector appears explicitly. Section 4 presents final remarks.

The appendices contain several other general results related to projectors and seed

conformal blocks. In appendix A we derive a differential operator that generates projec-

tors to traceless mixed-symmetry tensors for Young diagrams of two rows. This operator

is a generalization of a well known operator for traceless symmetric tensors. Appendix B

deals with a relation between projectors of different irreps that arise from certain index

contractions. In appendix C we state some of the longer explicit results for projectors. Ap-

pendix D computes the normalization constant that arises when a shadow transformation

is performed on an operator in any three-point function that can appear in a seed confor-

mal block. In appendix E the OPE limit of general seed conformal blocks in the shadow

formalism is computed to facilitate comparisons to other results. Finally, in appendix F

we explain the relation between projectors to traceless mixed-symmetry tensors and tensor

harmonics on the sphere. Included with this work is a Mathematica notebook containing

the derived projectors.
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Correlator Exchanged SO(d) irreps as seed conformal blocks

〈φ1φ2φ3φ4〉 ...

〈φ1J
µ
2 φ3J

ν
4 〉

...

〈φ1T
µν
2 φ3T

ρσ
4 〉

...

〈Jµ1 Jν2 J
ρ
3J

σ
4 〉

...

,
...

〈Jµ1 T
νρ
2 Jσ3 T

λκ
4 〉

...

,
...

〈Tµν1 T ρσ2 Tλκ3 T τω4 〉
...

,
...

,
...

Table 1. Exchanged irreps in correlators of currents and stress-tensors. Each line shows only the

irreps exchanged as a seed block. For a correlator in a given line, the irreps in the lines above can

also be exchanged, but those conformal blocks can be constructed by acting with derivatives.

2 Projectors to traceless mixed-symmetry tensors

2.1 Review of projectors to traceless symmetric tensors

As an inspiration for the ideas ahead let us briefly review how to quickly derive the projector

to traceless symmetric tensors encoded in a simple polynomial, following [38]. The projector

is defined by its symmetry

πa1...al,b1...bl
(l) = π

(a1...al),(b1...bl)
(l) , (2.1)

tracelessness

δa1a2π
a1...al,b1...bl
(l) = πa1...al,b1...bl

(l) δb1b2 = 0 , (2.2)

and idempotence

πa1...al,b1...bl
(l) π c1...cl

(l) b1...bl
= πa1...al,c1...cl

(l) . (2.3)

Due to the first property the projector can be implemented as a function of a single variable

by contracting with two auxiliary vectors za, z̄b ∈ Rd,

π(l)(z, z̄) = za1 . . . zalπ(l)a1...al,b1...bl z̄
b1 . . . z̄bl = (z2z̄2)

l
2 fl(t) , t =

z · z̄
(z2z̄2)

1
2

. (2.4)

The tracelessness can be imposed using the differential operator

∂

∂z
· ∂
∂z

πλ(z, z̄) = 0 , (2.5)

which results in a Gegenbauer differential equation for fl(t),

(t2 − 1)f ′′l (t) + (d− 1)tf ′l (t) = l(l + d− 2)fl(t) , (2.6)
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constraining fl(t) to be proportional to the Gegenbauer polynomial C
( d2−1)
l (t). The result

including normalization is [38]

π(l)(z, z̄) = c(l)(z
2z̄2)

l
2C

( d2−1)
l (t) , with c(l) =

l!

2l
(
d
2 − 1

)
l

, (2.7)

where (x)n = Γ(x+n)
Γ(x) is the Pochhammer symbol.

2.2 Projectors for Young diagrams with two rows

Next let us consider the irreps which are labeled by Young diagrams with two rows λ =

(l1, l2). The total number of boxes in the Young diagram λ will be denoted by |λ|, so

in the case at hand we have |λ| = l1 + l2. Again we want to construct these projectors

as polynomials and then impose differential equations. In this case the projector can be

encoded in a polynomial depending on four vectors

πλ(z1, z2, z̄1, z̄2) = za1
1 . . . z

al1
1 z

al1+1

2 . . . z
a|λ|
2 πλa1...a|λ|,b1...b|λ| z̄

b1
1 . . . z̄

bl1
1 z̄

bl1+1

2 . . . z̄
b|λ|
2 . (2.8)

Our strategy is now to first implement the mixed-symmetry property and then the trace-

lessness. Along the way we will always make sure to keep the construction symmetric under

exchange of zi and z̄i,

πλ(z1, z2, z̄1, z̄2) = πλ(z̄1, z̄2, z1, z2) . (2.9)

This means it is enough to impose conditions on one side of the projector.

The mixed symmetry or Young symmetrization of a tensor f in the symmetric repre-

sentation of the irrep (l1, l2) amounts to the following two conditions1

fa1...al1b1...bl2
=f(a1...al1 )(b1...bl2 ) , (2.10)

−f(a1...al1 )(b1...bl2 ) =f(b1a2...al1 )(a1b2...bl2 )+f(a1b1a3...al1 )(a2b2...bl2 )+ . . .+f(a1...al1−1b1)(al1b2...bl2 ) .

The first condition is automatically satisfied after the contraction with polarizations. The

second one can be rephrased as

za1
1 . . . z

al1
1 zb11 z

b2
2 . . . z

bl2
2 f(a1...al1 )(b1...bl2 ) = 0 . (2.11)

One can see the equivalence by acting on the latter expression with

∂za1
1
. . . ∂

z
al1
1

∂
z
b1
1

∂
z
b2
2

. . . ∂
z
bl2
2

. (2.12)

Hence, the mixed-symmetry property just means that the polynomial must vanish whenever

one of the vectors z2 is replaced by z1, or(
z1 ·

∂

∂z2

)
πλ(z1, z2, z̄1, z̄2) = 0 . (2.13)

1This is explained in section 2.3 of [45].
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This can be easily implemented by constructing πλ(z1, z2, z̄1, z̄2) out of structures Qs that

have this property

πλ(z1, z2, z̄1, z̄2) = cλ(z2
1 z̄

2
1)

l1
2

∑
s

fs(t)Qs(z1, z2, z̄1, z̄2) , t =
z1 · z̄1

(z2
1 z̄

2
1)

1
2

. (2.14)

The structures Qs have weight l2 in z2 and z̄2, and zero weight in z1 and z̄1. We are already

familiar with such transverse structures from the construction of conformally invariant

correlators in embedding space. These structures can be built out of transverse building

blocks. In this case one can use

H(z2, z̄2) = za2Habz̄
b
2 = za2

(
δab −

z̄1az1b

z1 · z̄1

)
z̄b2 ,

V (z2) = za2Va = za2

(
δab −

z1az1b

z2
1

)
z̄b1√
tz̄2

1

,

V̄ (z̄2) = V̄bz̄
b
2 =

za1√
tz2

1

(
δab −

z̄1az̄1b

z̄2
1

)
z̄b2 ,

T (z2, z2) = za1
2 za2

2 Ta1a2 = za1
2 za2

2

(
δa1a2 −

z1a1z1a2

z2
1

)
,

T̄ (z̄2, z̄2) = T̄b1b2 z̄
b1
2 z̄

b2
2 =

(
δb1b2 −

z̄1b1 z̄1b2

z̄2
1

)
z̄b12 z̄

b2
2 .

(2.15)

This construction ensures that the number of undetermined functions fs(t) is as small as

possible. Note that the dependence of the building blocks on t is

H(z2, z̄2) = O(1) +O(t−1) ,

V (z2), V̄ (z̄2) = O
(
t−

1
2
)

+O
(
t

1
2
)
,

T (z2, z2), T̄ (z̄2, z̄2) = O(1) .

(2.16)

The individual terms in the sum of (2.14) can have negative powers of t, however any

such terms must cancel in the sum. The building blocks were chosen such that the fs(t)

are polynomials of minimal degree, i.e. they do not have overall factors of t. This can be

demonstrated by considering the example λ = (l1, 1), and using that πλ(z1, z2, z̄1, z̄2) must

be a polynomial in products of z1, z2, z̄1, z̄2, that is

π(l1,1)(z1, z2, z̄1, z̄2)

∝ (z2
1 z̄

2
1)

l1
2
(
f1(t)H(z2, z̄2) + f2(t)V (z2)V̄ (z̄2)

)
= (z2

1 z̄
2
1)

l1
2 (z2 · z̄2)f1(t) (2.17)

− (z2
1 z̄

2
1)

l1−1
2 (z1 · z̄2)(z2 · z̄1)

(
f1(t)− f2(t)

t

)
+ (z2

1 z̄
2
1)

l1−2
2
(
(z1 · z2)(z̄1 · z̄2)(z1 · z̄1)−(z1 · z2)(z1 · z̄2)z̄2

1−(z̄1 · z2)(z̄1 · z̄2)z2
1

)
f2(t) .

From the second, third and fourth line of this equation we conclude that

f1(t) =

l1∑
i=0

ait
i ,

f1(t)− f2(t)

t
=

l1−1∑
i=0

bit
i, f2(t) =

l1−2∑
i=0

cit
i, (2.18)
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respectively. Combining these three conditions yields for this case

f1(t) =

l1∑
i=0

ait
i, f2(t) =

l1−2∑
i=0

cit
i, a0 = c0 . (2.19)

Furthermore, both functions have to be even to avoid a square root in z2
1 z̄

2
1 .

These polynomials are determined by solving a coupled system of second order differ-

ential equations arising from the tracelessness conditions

∂

∂z1
· ∂
∂z1

πλ(z1, z2, z̄1, z̄2) =
∂

∂z1
· ∂
∂z2

πλ(z1, z2, z̄1, z̄2) =
∂

∂z2
· ∂
∂z2

πλ(z1, z2, z̄1, z̄2) = 0 .

(2.20)

After discussing a first example, we will describe the algorithm that is used to solve these

equations in section 2.2.3. Then the structures of the individual families of projectors will

be presented. Finally, the overall normalization constants cλ appearing in (2.14) will be

computed in section 2.4.

2.2.1 Birdtrack notation

To construct Young symmetrized structures Qi it is convenient to use birdtrack notation,

with lines denoting index contractions. Using multiple copies of the same vector results in

a group of symmetric indices, which is denoted by a white bar

z
a1
a2

= za1za2 , (2.21)

while a black bar denotes antisymmetrization

b1
b2

a1
a2

=
1

2
(δa1b1δa2b2 − δa1b2δa2b1) . (2.22)

The building blocks transverse to za1 and to z̄b1 that were defined in (2.15) will be denoted

by the following symbols

Hab = a b , δab =a b ,

Va = a , V̄b = b ,

Ta1a2 =a1
a2

, T̄b1b2 = b1
b2
.

(2.23)

The δab was defined to indicate that short lines connecting and do not stand for Hab.

The notation should be clear after the first examples which are given both in birdtrack and

explicit notation.

2.2.2 Projectors to the irreps (l1, 1)

The projectors to SO(d) irreps with Young diagrams of shape ... were already derived

in [42]. We include them here for completeness. The structures are

Q1 = z2 z̄2 = H(z2, z̄2) ,

Q2 = z2 z̄2 = V (z2)V̄ (z̄2) .
(2.24)

– 6 –
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Imposing the tracelessness conditions (2.20) results in many differential equations for the

functions f1(t) and f2(t). For example the term proportional to (z1 · z2)(z1 · z̄2) in the

condition ∂
∂z1
· ∂
∂z1

πλ(z1, z2, z̄1, z̄2) = 0 is

− (l1 − 2)(l1 + d)f2(t) + (d+ 3)tf ′2(t) + (t2 − 1)f ′′2 (t) = 0 . (2.25)

This is the Gegenbauer differential equation, solved by f2(t) = −∂2
tC

( d2−1)
l1

(t) ∝ C( d2 +1)
l1−2 (t).

The full solution is

f1(t) = (d− 2)t∂tC
( d2−1)
l1

(t) + (t2 − 1)∂2
tC

( d2−1)
l1

(t) ,

f2(t) = −∂2
tC

( d2−1)
l1

(t) .

(2.26)

In the next section we describe the algorithm that was used to automatize the process of

solving the differential equations in all other cases.

2.2.3 Algorithm for solving the differential equations

The algorithm for solving the systems of differential equations we encounter is based on

the assumption that all polynomials fs(t) can be written as a finite sum of derivatives of

the Gegenbauer polynomial C
( d2−1)
l1

(t), which will be denoted by

C(n)
l1

(t) ≡ ∂nt C
( d2−1)
l1

(t) = 2n
(
d

2
− 1

)
n

C
( d2−1+n)
l1−n (t) , (2.27)

with l1-independent coefficients ws,n(d, t). That is, we write

fs(t) =
∑
n

ws,n(d, t)C(n)
l1

(t) . (2.28)

This assumption turns out to be true for all computed projectors, with the sum ranging

from n = l2 up to n = 2l2. The overall normalization of all functions fs(t) in a projector

will be chosen such that2

w1,2l2(d, t) = t2l2 +O(t2l2−2) . (2.29)

The independence on l1 of the coefficients is relevant for the derivation of recursion relations

for conformal blocks.

We will use the following relation, which is a version of the Gegenbauer differential

equation for the Gegenbauer polynomial appearing explicitly in (2.27),

(l1 − n)(l1 + n+ d− 2)C(n)
l1

(t) = (d+ 2n− 1)tC(n+1)
l1

(t) + (t2 − 1)C(n+2)
l1

(t) . (2.30)

Using this relation repeatedly on a polynomial of the form (2.28) of order l1 or lower, one

can remove all but the two highest derivatives and write it in the following way

fs(t) =

N∑
i=0

us,i(d, l1)tiC(N)
l1

(t) +

N−1∑
j=0

vs,j(d, l1)tjC(N−1)
l1

(t) , (2.31)

2The functions f1(t) are special in that the corresponding Q1 are chosen to contain only H building

blocks.
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where N is the highest n appearing in the sum in (2.28). Plugging this ansatz into the

differential equations that arise from demanding tracelessness results in a system of linear

equations. In all cases discussed below, these linear systems have a unique nontrivial

solution for us,i(d, l1) and vs,j(d, l1), as long as one chooses N large enough. After finding

the solution, (2.30) can again be used to bring the solution into a form with l1-independent

coefficients.

2.2.4 Projectors to the irreps (l1, 2)

One can easily convince oneself that for Young diagrams of shape ... the possible

combinations of the proposed building blocks are

Q1 = z2 z̄2
= H(z2, z̄2)2,

Q2 = z2 z̄2
= H(z2, z̄2)V (z2)V̄ (z̄2) ,

Q3 = z2 z̄2
= V (z2)2V̄ (z̄2)2,

Q4 = z2 z̄2
= T (z2, z2)T̄ (z̄2, z̄2) ,

Q5 = z2 z̄2
+ z2 z̄2

= T (z2, z2)V̄ (z̄2)2 + V (z2)2T̄ (z̄2, z̄2) .

(2.32)

Using the algorithm for solving the tracelessness conditions one finds that the functions

fi(t) can be expressed as3

fi(t) = − f̂i(t)
d− 2

, ∀ i = 1, . . . , 5 , (2.33)

with

f̂1(t) = (d− 1)d
(
1− (d− 2)t2

)
C(2)
l1

(t)− 2(d− 2)dt(t2 − 1)C(3)
l1

(t)− (d− 2)(t2 − 1)2C(4)
l1

(t) ,

f̂2(t) = 2(d− 1)dC(2)
l1

(t) + 2(d− 1)dtC(3)
l1

(t) + 2(d− 2)(t2 − 1)C(4)
l1

(t) ,

f̂3(t) = (d− 1)dC(2)
l1

(t) + 2dtC(3)
l1

(t) + (2− d+ t2)C(4)
l1

(t) , (2.34)

f̂4(t) = d
(
− 2 + (d− 1)t2

)
C(2)
l1

(t) + 2dt(t2 − 1)C(3)
l1

(t) + (t2 − 1)2C(4)
l1

(t) ,

f̂5(t) = (d− 1)dtC(2)
l1

(t) + 2dt2C(3)
l1

(t) + t(t2 − 1)C(4)
l1

(t) .

The projectors to the families of irreps (l1, 3) and (l1, 4) are given in appendix C.

2.3 Projectors for Young diagrams with three rows

Next projectors to tensors corresponding to Young diagrams with three rows will be dis-

cussed. Such tensors can be encoded with three auxiliary vectors zi (i = 1, 2, 3), hence for

the projector we will consider

πλ({zi, z̄i}) (2.35)

≡ πλ(z1, z2, z3, z̄1, z̄2, z̄3)

= za1
1 . . . z

al1
1 z

al1+1

2 . . . z
al1+l2
2 z

al1+l2+1

3 . . . z
a|λ|
3 πλ a1...a|λ|,b1...b|λ| z̄

b1
1 . . . z̄

bl1
1 z̄

bl1+1

2 . . . z̄
bl1+l2
2 z̄

al1+l2+1

3 . . . z̄
a|λ|
3 .

3Note that the overall denominator introduced in the first line is required for our normalization (2.29).
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The mixed-symmetry property amounts to relations such as (2.10), but now such relations

hold between any two of the three sets of symmetrized indices. With the same argument

as in the case of two-row Young diagrams, this property can be imposed on πλ by requiring(
z1 ·

∂

∂z2

)
πλ({zi, z̄i}) =

(
z1 ·

∂

∂z3

)
πλ({zi, z̄i}) =

(
z2 ·

∂

∂z3

)
πλ({zi, z̄i}) = 0 . (2.36)

The first two conditions can again be implemented by using the building blocks defined

in (2.15), now also allowing z3, z̄3 in the place of z2, z̄2. The third condition can be im-

plemented by Young symmetrizing in z2 and z3 (and z̄2, z̄3). As before, this leads to the

following ansatz separating structures depending on z2, z3, z̄2, z̄3 and functions of t

πλ({zi, z̄i}) = cλ(z2
1 z̄

2
1)

l1
2

∑
s

fs(t)Qs(z1, z2, z3, z̄1, z̄2, z̄3) . (2.37)

Tracelessness now amounts to the old equations (2.20) and to the three new ones

∂

∂z1
· ∂
∂z3

πλ({zi, z̄i}) =
∂

∂z2
· ∂
∂z3

πλ({zi, z̄i}) =
∂

∂z3
· ∂
∂z3

πλ({zi, z̄i}) = 0 . (2.38)

2.3.1 Projectors to the irreps (l1, 1, 1)

For Young diagrams of shape
...

there are only two possible structures, due to the

antisymmetry between z2, z3 and z̄2, z̄3,

Q1 = z2
z3 z̄3

z̄2 =
1

2

(
H(z2, z̄2)H(z3, z̄3)−H(z2, z̄3)H(z3, z̄2)

)
,

Q2 = z2
z3 z̄3

z̄2 =
1

4

(
H(z2, z̄2)V (z3)V̄ (z̄3)−H(z2, z̄3)V (z3)V̄ (z̄2) (2.39)

−H(z3, z̄2)V (z2)V̄ (z̄3) +H(z3, z̄3)V (z2)V̄ (z̄2)
)
.

The resulting functions fi(t) are similar as in the case of irreps ... in (2.26),

f1(t) = (d− 3)tC(1)
l1

(t) + (t2 − 1)C(2)
l1

(t) ,

f2(t) = −2C(2)
l1

(t) .
(2.40)

2.3.2 Projectors to the irreps (l1, 2, 1)

Starting with this example, whose Young diagrams have shape
...

, it becomes help-

ful to consider some tensor products to make sure that one finds the correct number of

structures. As explained above, the allowed structures are constructed from the building

blocks in (2.15), including also the dependence on z3, z̄3 in the place of z2, z̄2. In order

to satisfy the condition
(
z2 · ∂

∂z3

)
Qi = 0 of (2.36) it is enough to Young symmetrize in z2

and z3 according to the Young diagram (l2, l3) = (2, 1). In the case at hand that means to

consider

z2

z3

a1
a2
a3

= za1
2 zb12 z

b2
3

1

2
(δb1a2δb2a3 − δb1a3δb2a2) . (2.41)

Although this expression is a mixed-symmetry tensor, it is not traceless, hence it is in the

reducible representation

⊕ . (2.42)
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The only way to contract the building block Ta1a2 to expression (2.41) is

z2

z3

. (2.43)

This term contains a contraction with the primitive SO(d) invariant δa1a2 . Thus, the

number of possible contractions with Ta1a2 is the same as with δa1a2 . We conclude that

the number of independent contractions of (2.41) to the corresponding expression with z̄2,

z̄3, with H and T building blocks in the middle, is given by the multiplicity of the scalar

representation • in the SO(d) tensor product4(
⊕

)
⊗
(

⊕
)
. (2.44)

Since one can also use multiple copies of the building blocks V and V̄ , which form a

symmetric representation, one can then take a further tensor product with a one-row Young

diagram of any length. Thus, the total number of birdtracks that one has to consider is

the multiplicity of the scalar representation in the tensor product(
⊕

)
⊗
(

⊕
)
⊗
∞∑
q=0

...1 q = 8 • ⊕ . . . . (2.45)

Two of these eight birdtracks are combined into a single structure (Q7 below), when re-

quiring the building blocks to respect the left-right symmetry zi ↔ z̄i. The resulting

structures are

Q1 = z̄2z2

z3 z̄3

, Q2 = z̄2z2

z3 z̄3

, Q3 = z̄2z2

z3 z̄3

,

Q4 = z̄2z2

z3 z̄3

, Q5 = z̄2z2

z3 z̄3

, Q6 = z̄2z2

z3 z̄3

,

Q7 = z̄2z2

z3 z̄3

+ z̄2z2

z3 z̄3

. (2.46)

It can be helpful to make a correspondence between the irreps in the tensor product (2.45)

and the expressions (2.41) and (2.43)

→ z2

z3

, → z2

z3

, ... → · · · . (2.47)

This is not a precise matching, for instance (2.41) is not traceless, however it can be helpful

to find a set of independent structures such as (2.46). Using this correspondence one can

map the structures to individual contributions in the tensor product (2.45) as follows

⊗ = • ⊕ 2 ⊕ ⊕ . . . → Q1, Q2, Q3, Q4 ,

⊗ = • ⊕ ⊕ . . . → Q5, Q6 ,

⊗ = ⊕ . . . → Q7 .

(2.48)

4All SO(d) tensor products in this work are done assuming that d is sufficiently large to make the tensor

product d independent, see [45].
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The dots here indicate Young diagrams with more than one row, which cannot contribute

to the multiplicity of the scalar representation in (2.45). The solution of the tracelessness

conditions can then be written as

fi(t) = − f̂i(t)
d− 3

, ∀ i = 1, . . . , 7 , (2.49)

with

f̂1(t) = −(d− 2)d
(
− 1 + (d− 3)t2

)
C(2)
l1

(t)− (d− 3)(2d− 1)t(t2 − 1)C(3)
l1

(t)

− (d− 3)(t2 − 1)2C(4)
l1

(t) ,

f̂2(t) = 2(d− 2)dC(2)
l1

(t) + 2
(
− 5 + (d− 1)d

)
tC(3)
l1

(t) + 2(d− 3)(t2 − 1)C(4)
l1

(t) ,

f̂3(t) = (d− 2)dC(2)
l1

(t) +
(
7 + (d− 4)d

)
tC(3)
l1

(t) + (d− 3)(t2 − 1)C(4)
l1

(t) ,

f̂4(t) = 2(d− 2)dC(2)
l1

(t) + 2(2d− 1)tC(3)
l1

(t) + 2(3− d+ t2)C(4)
l1

(t) ,

f̂5(t) = 2d
(
− 2 + (d− 2)t2

)
C(2)
l1

(t) + 2(2d− 1)t(t2 − 1)C(3)
l1

(t) + 2(t2 − 1)2C(4)
l1

(t) ,

f̂6(t) = −4dC(2)
l1

(t)− 2(3 + d)tC(3)
l1

(t) + (2− 2t2)C(4)
l1

(t) ,

f̂7(t) = 2(d− 2)dtC(2)
l1

(t) + 2(2d− 1)t2C(3)
l1

(t) + 2t(t2 − 1)C(4)
l1

(t) .

(2.50)

2.3.3 Projectors to the irreps (l1, 2, 2)

The tensor structures for projectors to irreps
...

are constructed with the reducible

representation for the shape , given by

⊕ ⊕ • . (2.51)

Possible contractions with Ta1a2 are

z3

z2
,

z3

z2
,

z3

z2
. (2.52)

Hence the number of birdtracks to consider is given by(
⊕ ⊕ •

)
⊗
(

⊕ ⊕ •
)
⊗
∞∑
q=0

...1 q = 11 • ⊕ . . . . (2.53)

The individual contributions are

⊗ = • ⊕ ⊕ ⊕ . . . → Q1, Q2, Q3 ,

⊗ = • ⊕ ⊕ ⊕ . . . → Q4, Q5, Q6 ,

• ⊗ • = • → Q7 ,

⊗ = ⊕ . . . → Q8 ,

⊗ • = → Q9 ,

(2.54)
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with

Q1 =
z̄2

z̄3z3

z2
, Q2 =

z̄2

z̄3z3

z2
, Q3 =

z̄2

z̄3z3

z2
,

Q4 =
z̄2

z̄3z3

z2
, Q5 =

z̄2

z̄3z3

z2
, Q6 =

z̄2

z̄3z3

z2
,

Q7 =
z3

z2 z̄2

z̄3

, Q8 =
z̄2

z̄3z3

z2
+

z̄2

z̄3z3

z2
,

Q9 =
z3

z2 z̄2

z̄3

+
z3

z2 z̄2

z̄3

. (2.55)

In this case the functions fi(t) can be written as

fi(t) = − f̂i(t)

(d− 4)(d− 3)
, ∀ i = 1, . . . , 9 , (2.56)

with

f̂1(t) = −(d− 3)3

(
− 1 + (d− 4)t2

)
C(2)
l1

(t)− 2(d− 4)2(d− 1)t(t2 − 1)C(3)
l1

(t)

− (d− 4)2(t2 − 1)2C(4)
l1

(t) ,

f̂2(t) = 4(d− 3)3C(2)
l1

(t) + 4(d− 3)2(d− 1)tC(3)
l1

(t) + 4(d− 4)2(t2 − 1)C(4)
l1

(t) ,

f̂3(t) = 4(d− 3)3C(2)
l1

(t) + 8(d− 3)(d− 1)tC(3)
l1

(t) + 4(d− 3)(4− d+ t2)C(4)
l1

(t) ,

f̂4(t) = 4(d− 2)(d− 1)
(
− 2 + (d− 3)t2

)
C(2)
l1

(t) + 8(d− 3)(d− 1)t(t2 − 1)C(3)
l1

(t)

+ 4(d− 3)(t2 − 1)2C(4)
l1

(t) , (2.57)

f̂5(t) = −16(d− 2)(d− 1)C(2)
l1

(t)− 8(d− 1)2tC(3)
l1

(t)− 8(d− 3)(t2 − 1)C(4)
l1

(t) ,

f̂6(t) = −8(d− 2)(d− 1)C(2)
l1

(t)− 16(d− 1)tC(3)
l1

(t) + 4(−3 + d− 2t2)C(4)
l1

(t) ,

f̂7(t) = −2(d− 1)
(
− 3 + (d− 2)t2

)
C(2)
l1

(t)− 4(d− 1)t(t2 − 1)C(3)
l1

(t)− 2(t2 − 1)2C(4)
l1

(t) ,

f̂8(t) = 4(d− 3)3tC(2)
l1

(t) + 8(d− 3)(d− 1)t2C(3)
l1

(t) + 4(d− 3)t(t2 − 1)C(4)
l1

(t) ,

f̂9(t) = −4(d− 2)(d− 1)tC(2)
l1

(t)− 8(d− 1)t2C(3)
l1

(t)− 4t(t2 − 1)C(4)
l1

(t) .

The projector to the family of irreps (l1, 3, 1) is given in appendix C.

2.4 Normalization of the projectors

The normalizations can be computed by using that the projectors have a term with a known

normalization, namely the term projecting to generic mixed-symmetry tensors, from which

the traces are subtracted by further terms. This is the only term in πλ(z1, z2, z3, z̄1, z̄2, z̄3)

containing a factor (z1 · z̄1)l1(z2 · z̄2)l2(z3 · z̄3)l3 . For concreteness let us consider the Young

– 12 –



J
H
E
P
0
7
(
2
0
1
6
)
0
1
8

diagram λ =
...

. In this section all lines in birdtracks denote just simple contractions,

without any of the definitions of (2.23)

πλ(z1, z2, z3, z̄1, z̄2, z̄3) = nλ

z2

z3 z̄3

z̄2

z1 z̄1

+ trace subtractions . (2.58)

The antisymmetrizations appearing here are defined as

n

=
1

n!

{
n

−
n

+
n

− . . .

}
, (2.59)

and the normalization of the first term is [46]

nλ =

l1∏
i=1

hi!
h1∏
j=1

lj !

H(λ)
, H(λ) =

l1∏
i=1

hi∏
j=1

(lj − i+ hi − j + 1) , (2.60)

where hi is the height of the ith column of the Young diagram λ. Using the identity

n

=
1

n

{
− (n− 1)

}
, (2.61)

on both antisymmetrizations in (2.58), one can isolate the terms containing (z1 · z̄1)l1 ,

z2

z3 z̄3

z̄2

z1 z̄1

=
1

3 · 2
z2

z3 z̄3

z̄2

z1 z̄1

+O
(
(z1 · z̄1)l1−1

)

=
1

3 · 2
(z1 · z̄1)l1Q1(z2, z3, z̄2, z̄3) +O

(
(z1 · z̄1)l1−1

)
.

(2.62)

In general this factor 3 · 2 will be
l1∏
i=1

hi and the part of the birdtrack with z2, z3, z̄2, z̄3

always matches the z1 and z̄1 independent part of Q1(z2, z3, z̄2, z̄3). Comparing to (2.37)

this means that the normalization constant appearing in the projectors is

cλ =

l1∏
i=1

(hi − 1)!
h1∏
j=1

lj !

bλH(λ)
, (2.63)

where bλ is the coefficient of tl1 in f1(t),

f1(t) = bλt
l1 +O(tl1−2) , (2.64)
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and can be easily computed in each case using

C(ε)
n (t) =

(ε)n
n!

(2t)n +O(tn−2) . (2.65)

Doing this for each family of projectors one finds

bλ =

2l1
(
d
2 − 1

)
l1

l2∏
i=1

(l1 + d− hi + i− 2)

(l1 − l2)!
. (2.66)

3 Recursion relations for seed conformal blocks

In this section recursion relations in l1 will be read off from the integral representation of

conformal blocks in the shadow formalism. The recursion relations are based on the obser-

vation that the projectors πλ, as computed in the previous section, are linear combinations

of just a few (at most l2 + 1) different Gegenbauer polynomials,

πλ(z1, z2, z3, z̄1, z̄2, z̄3) = cλ(z2
1 z̄

2
1)

l1
2

min(l1,2l2)∑
n=l2

Kλ
n(z1, z2, z3, z̄1, z̄2, z̄3)C(n)

l1
(t) , (3.1)

where Kλ
n(z1, z2, z3, z̄1, z̄2, z̄3) does not depend on l1, and the sum stops at min(l1, 2l2) since

C(n)
l1

(t) = 0 for n > l1. We showed this for the projectors to the irreps that can appear in

conformal blocks of four stress-tensors by explicit computation. This fact can be used to

turn the recursion relation for the Gegenbauer polynomials

(l1 − n)C(n)
l1

(t) = (2l1 + d− 4)tC(n)
l1−1(t)− (l1 + n+ d− 4)C(n)

l1−2(t) , (3.2)

into recursion relations for the conformal blocks.

3.1 Classification of seed conformal blocks

We will focus on conformal blocks that are unique given the irreps of the external and

exchanged operators. These will be called seed conformal blocks. The origin of this termi-

nology is the fact that conformal blocks involving three-point functions with multiple tensor

structures can be derived from these seed blocks by acting with differential operators, using

the method of [35].

Uniqueness of a conformal block exchanging the irrep λ = (l1, l2, . . .) in the channel

λ1λ2 → λ3λ4, means that the three-point functions
〈
λ1λ2λ

〉
and

〈
λλ3λ4

〉
both have a

single OPE coefficient. For such combinations of irreps the tensor product contains only

one symmetric tensor (or as special cases one scalar or vector), with multiplicity one

λ1 ⊗ λ2 ⊗ λ = ... ⊕ diagrams with h1 > 1 , (3.3)

and similar for λ3, λ4. The most trivial case is when λ1 and λ2 are scalars, and λ is a

symmetric tensor. We will consider the case when λ1 and λ2 are symmetric tensors, and

λ is a mixed-symmetry tensor. In this case the lower rows of λ, which will be denoted by

the Young diagram λ− = (l2, l3, . . .), must be removed by contraction to λ1 and λ2. To

understand this better let us consider three cases.
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1. |λ1|+ |λ2| < |λ−|. λ1 and λ2 do not have enough indices to remove all lower rows of

λ. There is no solution to (3.3).

2. |λ1|+ |λ2| = |λ−|. If λ− appears in the tensor product of λ1 and λ2 with multiplicity

one, then (3.3) is satisfied and the symmetric tensor on the right hand side is of

rank l1.

3. |λ1| + |λ2| > |λ−|. If there are symmetric tensors in the tensor product (3.3), then

there are more than one. Consider for example |λ1|+ |λ2| = |λ−|+ 1. After removing

the lower rows of λ, there is still a tensor product of and the remaining first row of

λ, hence there will be symmetric tensors of rank l1 − 1 and l1 + 1.

Hence the second case is the only relevant one, leading to the necessary condition for seed

conformal blocks (for λ1, λ2, λ3, λ4 being symmetric tensors)

l1 = |λ| − |λ1| − |λ2| = |λ| − |λ3| − |λ4| . (3.4)

To see this condition in action one can consider the OPE. For example, the OPE of two

vector operators has only a single term in the irreps λ = (l1, 2) or λ = (l1, 1, 1), both of

the form

Ob∆1, (x1)Oc∆2, (x2) ∼
x12→0

(x12)a1 . . . (x12)al1 δ
b
al1+1

δcal1+2

|x12|∆1+∆2−∆+l1
Oa1...a|λ|

∆,λ (x1) + . . . . (3.5)

3.2 Three-point functions

We will use the embedding formalism and the methods to construct correlators of [45, 47].

The embedding space is d + 2 dimensional Minkowski space Rd+1,1, where the confor-

mal group SO(d + 1, 1) acts linearly. Capital letters will denote vectors in this space

Pi, Zij ∈ Rd+1,1. The second label on Zij labels the different vectors required to encode

mixed-symmetry tensors, e.g. (z1, z2, z3) from the previous section could be replaced by

(Z01, Z02, Z03) in embedding space. Contractions of tensors can be written using deriva-

tives acting on vectors

δ
(A1

B1
. . . δ

Al1 )

Bl1
=

1

l1!
∂A1
Zi1

. . . ∂
Al1
Zi1

Zi1B1 . . . Zi1Bl1 . (3.6)

Furthermore, boldface letters indicate a set of vectors that are used to encode a mixed-

symmetry tensor and the corresponding sets of derivatives, normalized to include the fac-

torial appearing in (3.6),

Zi = (Zi1, Zi2, . . .) ,

∂Zi =
(
(l1!)−1/l1∂Zi1 , (l2!)−1/l2∂Zi2 , . . .

)
.

(3.7)

It is convenient to consider polynomials that encode the correlators without fully imple-

menting the symmetry and tracelessness of the operators. The full correlators can then be

obtained by projecting〈
O1(P1,Z1)O2(P2,Z2)O(P0,Z0)

〉
full

= πλ1(Z1,∂Z̄1
)πλ2(Z2,∂Z̄2

)πλ(Z0,∂Z̄0
)〈

O1(P1, Z̄1)O2(P2, Z̄2)O(P0, Z̄0)
〉

enc
.

(3.8)
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Throughout the paper, the external operators will mostly be symmetric traceless tensors,

which we will encode by a single null vector instead of projecting to a traceless tensor.

Instead of (3.8) we will thus use

〈
O1(P1, Z1)O2(P2, Z2)O(P0,Z0)

〉
= πλ(Z0,∂Z̄0

)
〈
O1(P1, Z1)O2(P2, Z2)O(P0, Z̄0)

〉
enc

,

(3.9)

where Z2
1 = Z2

2 = 0 will always be implied. When considering conformal blocks for external

operators that are either scalars, currents or stress-tensors, the three-point functions with

a single tensor structure are encoded by

〈
O1(P1, Z1)O2(P2, Z2)O(P0,Z0)

〉
enc

=

(
V

(Z01)
0,12

)l1Nλ1λ2λ
120 (Z02, Z03)

(P12)
∆1+∆2−∆

2 (P20)
∆2+∆−∆1

2 (P01)
∆+∆1−∆2

2

,

(3.10)

where Pij = −2Pi · Pj and

N••
...

120 = 1 ,

N
• ...

120 (Z02) = H
(Z1,Z02)
10 ,

N
• ...

120 (Z02) =
(
H

(Z1,Z02)
10

)2
,

N
...

120 (Z02) = H
(Z1,Z02)
10 H

(Z2,Z02)
20 ,

N

...

120 (Z02, Z03) = H
(Z1,Z02)
10 H

(Z2,Z03)
20 ,

N
...

120 (Z02) =
(
H

(Z1,Z02)
10

)2
H

(Z2,Z02)
20 ,

N

...

120 (Z02, Z03) =
(
H

(Z1,Z02)
10

)2
H

(Z2,Z03)
20 ,

N
...

120 (Z02) =
(
H

(Z1,Z02)
10

)2(
H

(Z2,Z02)
20

)2
,

N

...

120 (Z02, Z03) =
(
H

(Z1,Z02)
10

)2
H

(Z2,Z02)
20 H

(Z2,Z03)
20 ,

N

...

120 (Z02, Z03) =
(
H

(Z1,Z02)
10

)2(
H

(Z2,Z03)
20

)2
,

(3.11)

with

H
(Zi,Zj)
ij =

(Zi · Zj)(Pi · Pj)− (Pj · Zi)(Pi · Zj)
Pi · Pj

,

V
(Z)
i,jk =

(Pj · Z)(Pi · Pk)− (Pj · Pi)(Z · Pk)√
−2(Pi · Pj)(Pi · Pk)(Pj · Pk)

.

(3.12)

3.3 Recursion relations from the shadow formalism

Next we recall the formula for the conformal partial wave in the shadow formalism (an

overview of the formalism in the case of mixed-symmetry tensors can be found in section 5

of [45]). When using the three-point functions defined above, the exchanged representation

– 16 –



J
H
E
P
0
7
(
2
0
1
6
)
0
1
8

must be projected to an irreducible representation

W λ1λ2λ3λ4
∆,λ =

1

Sλ
∆̃∆34

∫
DdP0

〈
O1(P1, Z1)O2(P2, Z2)O(P0,∂Z0)

〉
enc

(3.13)

πλ(Z0,∂Z̄0
)
〈
O3(P3;Z3)O4(P4;Z4)O(P0, Z̄0)

〉
enc

∣∣∣
∆→∆̃

.

Here ∆̃ = d − ∆ is the conformal dimension of the shadow operator Õ and Sλ
∆̃∆34

=

Sλ∆∆34
|∆→∆̃ is the constant that occurs when an operator in a three-point function is

replaced by its shadow

Sλ∆∆34
=

〈
O3(P3; Z3)O4(P4; Z4)Õ(P0; Z0)

〉〈
O3(P3; Z3)O4(P4; Z4)O(P0; Z0)

〉∣∣
∆→∆̃

. (3.14)

It is computed in appendix D for any three-point function that can appear in a seed

conformal block, with the result

Sλ
∆̃∆34

= πd/2
l1∏
i=1

(∆̃− hi + i− 1)
Γ
(
∆̃− d

2

)
Γ
(

1
2(∆ + ∆34 + l1)

)
Γ
(

1
2(∆−∆34 + l1)

)
Γ(∆ + l1)Γ

(
1
2(∆̃ + ∆34 + l1)

)
Γ
(

1
2(∆̃−∆34 + l1)

) .
(3.15)

We start by inserting the expressions for the three-point functions (3.10) into (3.13),

to find

Wλ1λ2λ3λ4

∆,λ =
1

Sλ
∆̃∆34

(l2!l3!)2
(3.16)

∫
DdP0

Nλ1λ2λ
120 (∂Z02

, ∂Z03
)πλ

(
∂Z01

V
(Z01)
0,12 , Z02, Z03, ∂Z̄01

V
(Z̄01)
0,34 , ∂Z̄02

, ∂Z̄03

)
Nλ3λ4λ

340 (Z̄02, Z̄03)

(P01)
∆+∆12

2 (P20)
∆−∆12

2 (P03)
∆̃+∆34

2 (P40)
∆̃−∆34

2

.

Next we wish to insert the expression (3.1) for the projector πλ. The factor
(
z2

1 z̄
2
1

) l1
2 in (3.1)

is equal to 1 due to
(
∂Z01V

(Z01)
0,12

)2
=
(
∂Z̄01

V
(Z̄01)

0,34

)2
= 1. Since the factors Sλ

∆̃∆34
appearing

in (3.16) and cλ in (3.1) depend on l1, it is convenient to use the following normalization

for the conformal blocks5

Gλ1λ2λ3λ4
∆,λ =

Sλ
∆̃∆34

cλ
(P12)

∆
2 (P34)

∆̃
2

(
P14

P24

)∆12
2
(
P13

P14

)∆34
2

W λ1λ2λ3λ4
∆,λ . (3.17)

By inserting (3.1) into (3.16) we can now write the conformal block as a sum of functions

that only depend on a single Gegenbauer polynomial each,

Gλ1λ2λ3λ4
∆,λ =

min(l1,2l2)∑
n=l2

F λ1λ2λ3λ4
∆,λ,n (∆12,∆34) , (3.18)

5As explained in [39], to obtain the conformal block one needs to perform a monodromy projection of

the integral (3.13). This is assumed but not written explicitly because it is not important for the present

discussion.
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which are defined as

Fλ1λ2λ3λ4

∆,λ,n (∆12,∆34) = (3.19)

1

(l2!l3!)2
(P12)

∆
2 (P34)

∆̃
2

(
P14

P24

)∆12
2
(
P13

P14

)∆34
2
∫
DdP0

Nλ1λ2λ
120 (∂Z02

, ∂Z03
)Kλ

n

(
∂Z01

V
(Z01)
0,12 , Z02, Z03, ∂Z̄01

V
(Z̄01)
0,34 , ∂Z̄02

, ∂Z̄03

)
Nλ3λ4λ

340 (Z̄02, Z̄03)C(n)
l1

(t)

(P01)
∆+∆12

2 (P20)
∆−∆12

2 (P03)
∆̃+∆34

2 (P40)
∆̃−∆34

2

,

where

t =
1

2
√
P12P34

(√
P02P03

P01P04
P14 −

√
P02P04

P01P03
P13 −

√
P01P03

P02P04
P24 +

√
P01P04

P02P03
P23

)
. (3.20)

The Gegenbauer recursion relation (3.2) implies the following recursion relations for each

of these functions

(l1 − n)Fλ1λ2λ3λ4

∆,(l1,l2,l3),n(∆12,∆34) =(
l1 +

d

2
− 2

)
u−

1
2

(
Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 + 1,∆34 − 1)− Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 + 1,∆34 + 1)

− Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 − 1,∆34 − 1) + vFλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 − 1,∆34 + 1)
)

− (l1 + n+ d− 4)Fλ1λ2λ3λ4

∆,(l1−2,l2,l3),n(∆12,∆34) , (3.21)

where u = P12P34
P13P24

, v = P14P23
P13P24

are the conformal cross-ratios. To use the recursion relations,

it is only necessary to know the conformal blocks for l1 = l2 up to l1 = 2l2 as seeds.

Once these are known, one can forget about the conformal integrals that were used for the

derivation of the recursion relations and even the precise form of the functions Kλ
n . Any

family of conformal blocks can be mapped to the functions F λ1λ2λ3λ4
∆,λ,i using that

Gλ1λ2λ3λ4

∆,(l2,l2,l3) = F λ1λ2λ3λ4

∆,(l2,l2,l3),l2
,

Gλ1λ2λ3λ4

∆,(l2+1,l2,l3) = F λ1λ2λ3λ4

∆,(l2+1,l2,l3),l2
+ F λ1λ2λ3λ4

∆,(l2+1,l2,l3),l2+1 ,

Gλ1λ2λ3λ4

∆,(l2+2,l2,l3) = F λ1λ2λ3λ4

∆,(l2+2,l2,l3),l2
+ F λ1λ2λ3λ4

∆,(l2+2,l2,l3),l2+1 + F λ1λ2λ3λ4

∆,(l2+2,l2,l3),l2+2 ,

...

(3.22)

Hence the conformal blocks for l1 = l2, . . . , 2l2 can be used in conjunction with the recursion

relation to compute the seeds

F∆,(n,l2,l3),n , n = l2, . . . , 2l2 . (3.23)

For example, the conformal blocks for exchange of and act as seeds for the family
... in the following way

G • •
∆,(1,1) = F • •

∆,(1,1),1

↓
G • •

∆,(2,1) = F • •
∆,(2,1),1 + F • •

∆,(2,1),2

↓ ↓
G • •

∆,(3,1) = F • •
∆,(3,1),1 + F • •

∆,(3,1),2

...
...

(3.24)

– 18 –



J
H
E
P
0
7
(
2
0
1
6
)
0
1
8

The recursion relation (3.21) allows us to move down along the arrows. Note that in order

for the conformal blocks to satisfy the stated recursion relations, it is crucial that their

normalization depends on l1, ∆12 and ∆34 as defined in (3.17). A good method to compare

normalizations for conformal blocks obtained via different methods is to consider the OPE

limit, which is done for the partial wave (3.13) in appendix E.

3.4 Solution of the recursion relation in terms of scalar conformal blocks

For n = 0 the recursion relation (3.21) is equivalent to the one for scalar conformal blocks

that was solved for d = 2, 4 in [40]. The new parameter n can be removed from the

prefactors by using the variables l′1 = l1 − n and d′ = d+ 2n,

l′1F
λ1λ2λ3λ4

∆,(l1,l2,l3),n(∆12,∆34) =(
l′1 +

d′

2
− 2

)
u−

1
2

(
Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 + 1,∆34 − 1)− Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 + 1,∆34 + 1)

− Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 − 1,∆34 − 1) + vFλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 − 1,∆34 + 1)
)

−
(
l′1 + d′ − 4

)
Fλ1λ2λ3λ4

∆,(l1−2,l2,l3),n(∆12,∆34) . (3.25)

This implies that the scalar conformal block in d′ dimensions

G∆12,∆34

∆,l′1,d
′ (u, v) ≡ G••••∆,(l′1) in d′ dimensions , (3.26)

is a solution of the recurrence relation for seed conformal blocks. Maybe this can be used

to solve the recursion relations in terms of known functions. While we do not know if this

is actually possible, assume for a moment that the seeds for the recursion relation can be

written in terms of scalar conformal blocks as

F∆,(n,l2,l3),n =
∑
i,j,k

fi,j,kG
∆12+i,∆34+j
∆+k,0,d+2n (u, v) , n = l2, . . . , 2l2 . (3.27)

We allowed for arbitrary shifts i, j, k in the three parameters ∆12, ∆34 and ∆ and functions

fi,j,k that do not influence the recursion relation, i.e. fi,j,k can depend on ∆, u, v and

the polarizations of external operators, but not on l1, d, ∆12 or ∆34. Then the result

for arbitrary l1 would be the same linear combination of scalar conformal blocks with

appropriately increased spin l1,

F∆,(l1,l2,l3),n =
∑
i,j,k

fi,j,kG
∆12+i,∆34+j
∆+k,l1−n,d+2n(u, v) . (3.28)

In [39, 45] the two initial blocks of the family (l1, 1) were computed explicitly in terms of

conformal blocks with l1 = 0 in higher dimensions, however the block G • •
∆,(1,1) = F∆,(1,1),1

was given in terms of scalar blocks in 8 dimensions instead of the d′ = 6 required by (3.27).

While the simple relation to scalar conformal blocks assumed in (3.27) might not be true,

it is likely that the recursion relations should be solvable in terms of functions similar to

scalar conformal blocks in higher dimensions. This correspondence was also observed in

the recent paper [48], where the mixed-symmetry seed conformal blocks in four dimensions

were computed using a twistor formalism.
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3.5 Recursion relation for radial coordinates

Here we will discuss how to use these recursion relations for expansions of conformal blocks

in the radial coordinates (r, η) of [49–51]. These coordinates are related to the cross-ratios

(u, v) by

u =
16r2

(r2 + 2ηr + 1)2
, v =

(r2 − 2ηr + 1)2

(r2 + 2ηr + 1)2
, (3.29)

and one typically considers expansions of the conformal blocks up to some order m in r

Gλ1λ2λ3λ4
∆,λ (r) =

m∑
m′=0

r∆+m′Hm′ +O(r∆+m+1)

≡ Gλ1λ2λ3λ4
∆,λ (r,m) +O(r∆+m+1) .

(3.30)

For such expansions the recursion relations can be used by splitting them into contributions

which satisfy the different recursion relations, as in (3.18)

Gλ1λ2λ3λ4
∆,λ (r,m) =

2l2∑
n=l2

F λ1λ2λ3λ4
∆,λ,n (∆12,∆34; r,m) . (3.31)

The identification of the different parts of the conformal blocks can be performed as illus-

trated in the diagram (3.24), by starting at the lowest allowed l1 and using the recursion

to find the term that has to be subtracted from the next conformal block to get the seed

for the next recursion relation. To derive the recursion relations in (r, η) one has to expand

u−
1
2 and v in r

u−
1
2 =

1

4r
+
η

2
+
r

4
, v = 1 +O(r) . (3.32)

Unfortunately the appearance of the term of order r−1 means that the recursion relations

decrease the order of the expansion in r. They read

(l1 − n)Fλ1λ2λ3λ4

∆,(l1,l2,l3),n(∆12,∆34; r,m) =(
l1 +

d

2
− 2

)(
1

4r
+
η

2
+
r

4

)(
Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12 + 1,∆34 − 1; r,m+ 1) (3.33)

−Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12+1,∆34+1; r,m+1)−Fλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12−1,∆34−1; r,m+1)

+vFλ1λ2λ3λ4

∆,(l1−1,l2,l3),n(∆12−1,∆34+1; r,m+1)
)
−(l1+n+d−4)Fλ1λ2λ3λ4

∆,(l1−2,l2,l3),n(∆12,∆34; r,m) .

These relations were checked with the r expansions from [51] for the case of two external

vectors and exchange of the irrep ... , which is depicted in the diagram (3.24). To this

end the normalizations were matched in the OPE limit.

4 Concluding remarks

In this paper the projectors to traceless mixed-symmetry tensors that appear in the corre-

lator of four stress tensors were derived in terms of Gegenbauer polynomials. Knowledge

of the explicit form of the projectors led us to a single universal recursion relation in l1
for seed conformal blocks, given by (3.21). Interestingly, the existence of the recursion
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relation does not rely on the complete expressions for the projectors, but only requires

that their dependence on l1 is according to (3.1). Of course this implies that, to show that

the recursion relation is truly universal (i.e. holds for any seed conformal block of bosonic

operators), it is enough to prove that all projectors to traceless mixed-symmetry tensors

can be written as in (3.1).

In order for the conformal blocks to obey the recursion relation, it is required that

they are normalized in a particular way. In particular, the normalization constant of the

projector as well as the normalization of the shadow operator need to be canceled from

the integral expression of the conformal partial wave. To this end the normalization of the

shadow was computed. Furthermore, the OPE limit of the shadow integral was analyzed

to allow for comparisons to other results.

Another remark concerns the solution of the recursion relations. The new recursion

relations (3.21) are generalizations of the recursion relation for scalar conformal blocks

of [38] with a new parameter n. This new parameter can be absorbed into l1 and d by

using shifted parameters

l′1 = l1 − n , d′ = d+ 2n . (4.1)

As a result the recursion relations for general seed conformal blocks are solved by scalar

conformal blocks in higher dimensions, suggesting that seed conformal blocks can generally

be expressed in terms of such scalar blocks. A similar correspondence was also observed in

the recent paper [48] for the case d = 4.

Beside this application, we want to stress that the projectors actually play a very

important role in CFTs. The most basic example in which they appear is the two point

functions of mixed-symmetry operators,

〈
Oa1...a|λ|

∆,λ (x)Ob1...b|λ|∆,λ (0)
〉

= |x|−2∆ π
c1...c|λ|,b1...b|λ|
λ

|λ|∏
i=1

(
δaici − 2

xaixci
x2

)
. (4.2)

Moreover, the projector πλ is a necessary ingredient to compute a conformal block for

the exchange of an irrep λ. For example, the OPE limit of any seed conformal block

with external operators Oi of spins `i is always written (here without being precise on the

placement of the indices on the π`i) in terms of the two-point function of the exchanged

operator as

x12 a1
. . . x12 al1

(π`1π`2)
c1...c`1e1...e`2
al1+1...a|λ| x34 b1 . . . x34 bl1

(π`3π`4)
f1...f`3g1...g`4
bl1+1...b|λ|

〈
Oa1...a|λ|

∆,λ (x2)Ob1...b|λ|∆,λ (x4)
〉

|x12|∆1+∆2−∆+l1 |x34|∆3+∆4−∆+l1

therefore it involves the projector πλ (see appendix E). Of course, also the leading OPE of

any other conformal block is written in terms of the projectors since it can be generated

by acting with some derivatives on the seed block. From this remark it is clear that

the knowledge of πλ is needed to compute conformal blocks from their radial coordinate

expansion [49–51], since the leading term of the expansion is the leading OPE.

To compute conformal blocks with the shadow formalism it is crucial to know the

form of πλ as well, since it appears explicitly in the shadow integral. In this paper we

expressed πλ in terms of derivatives of the Gegenbauer polynomial, which encodes the
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projector to traceless symmetric irreps. Therefore, it should be possible to compute any

family of seed conformal blocks (for generic l1) in terms of scalar conformal blocks by a

direct computation. To achieve this, it is enough to rewrite the integrand of the shadow

integral of the seed conformal block (3.16) in terms of derivatives of integrands of scalar

conformal blocks. The general result for seed conformal blocks of the family λ = (l1, 1)

was obtained in this way in [42].

Acknowledgments

This research received funding from the [European Union] 7th Framework Programme

(Marie Curie Actions) under grant agreements No 269217 and 317089 (GATIS), and from

the research grant CERN/FIS-NUC/0045/2015. T.H. was supported by the German Sci-

ence Foundation (DFG) within the Collaborative Research Center 676 “Particles, Strings

and the Early Universe”. The work of E.T. has been supported by the Portuguese Fun-

dacão para a Ciência e a Tecnologia (FCT) through the fellowship SFRH/BD/51984/2012.

His research was partially supported by Perimeter Institute for Theoretical Physics. Re-

search at Perimeter Institute is supported by the Government of Canada through Industry

Canada and by the Province of Ontario though the Ministry of Economic Development &

innovation.

A A mixed-symmetry differential operator

In this section we find an alternative way to generate the projectors into traceless mixed-

symmetry tensors for Young diagrams with two rows. The main idea is to generalize the

result of [52], where the differential operator

Da
z =

(
d

2
− 1 + z · ∂

∂z

)
∂

∂za
− 1

2
za

∂2

∂z · ∂z
, (A.1)

was defined in order to generate projectors to traceless symmetric tensor representations

πa1...al,b1...bl
(l) =

1

l!
(
d
2 − 1

)
l

Da1
z . . . Dal

z z
b1 . . . zbl . (A.2)

One can construct this operator by looking for an operator of weight −1 in z that preserves

the space defined by z2 = 0, i.e.

Da
z

(
z2f(z)

)
= O(z2) . (A.3)

This ensures tracelessness of the expression (A.2), since contracting with δb1b2 and acting

with all the operators yields something that is O(z2) and of degree zero in z, hence 0.

A generalized differential operator for Young diagrams with two rows should gener-

ate the projectors into traceless mixed-symmetry tensors in a similar way by acting on a

combination of two different vectors

π
[a1a2]...[a2l2−1a2l2

]a2l2+1...al1+l2
,[b1b2]...[b2l2−1b2l2 ]b2l2+1...bl1+l2

λ = (A.4)

Nl1,l2D
[a1

1 D
a2]
2 . . . D

[a2l2−1

1 D
a2l2

]

2 D
a2l2+1

1 . . . D
al1+l2
1 z

[b1
1 z

b2]
2 . . . z

[b2l2−1

1 z
b2l2 ]

2 z
b2l2+1

1 . . . z
bl1+l2
1 .
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Clearly this expression is Young symmetrized (in the antisymmetric representation) and

traceless, provided the differential operators D1 and D2 preserve the space defined by

z2
1 = 0, z2

2 = 0 and z1 · z2 = 0, namely

Da
1,2

(
z2

1f(z1, z2)
)

= O(z2
1 , z1 · z2, z

2
2) ,

Da
1,2

(
z2

2f(z1, z2)
)

= O(z2
1 , z1 · z2, z

2
2) ,

Da
1,2

(
z1 · z2f(z1, z2)

)
= O(z2

1 , z1 · z2, z
2
2) .

(A.5)

Furthermore, D1 must have weight −1 in z1 and 0 in z2, and D2 must have weight 0 in z1

and −1 in z2. These requirements fix the operators completely as6

Da
1 ≡ Da

z1,z2 ≡ d00∂
a
z1 + d−11∂

a
z2 + za1d−20 + za2d−1−1 ,

Da
2 ≡ Da

z2,z1 .
(A.6)

where dmn are differential operators with weight m in the variable z1 and n in the variable

z2, defined by

d00 ≡
(

1− d

2

)[
(d− 3) + 3(z1 · ∂z1) + (z2 · ∂z2)

]
− (z1 · ∂z1)(z2 · ∂z2)− za1(z1 · ∂z1)∂z1 a ,

d−20 ≡
1

2

[
2

(
d

2
− 1

)
+ (z2 · ∂z2) + (z1 · ∂z1)

]
(∂z1 · ∂z1) ,

d−11 ≡ −(d− 2)(z2 · ∂z1)− (z2 · ∂z1)(z2 · ∂z2)− (z1 · ∂z1)(z2 · ∂z1) , (A.7)

d−1−1 ≡
[(
d

2
− 1

)
+ (z1 · ∂z1)

]
(∂z1 · ∂z2) +

1

2

[
(z2 · ∂z1)(∂z2 · ∂z2)− (z1 · ∂z2)(∂z1 · ∂z1)

]
.

Moreover, these operators automatically satisfy

δabD
a
iD

b
i = 0 , [Da

i , D
b
i ] = 0 , [Da

1 , D
b
2] = 0 , (A.8)

for i ∈ {1, 2}. The general normalization factor appearing in (A.4) is fixed asking for the

idempotence of the projector,

Nl1,l2 =
(−1)l2−l12l2(l1 − l2 + 1)

Γ(l1 + 2)Γ(l2 + 1)
(
d
2 − 1

)
l1

(
d
2 − 2

)
l2

(d− 3)l1+l2

. (A.9)

As an example we construct the projector into the representations ... ,

π
[a1a2]a3...al1+1,[b1b2]b3...bl1+1

(l1,1) = Nl1,1 D
[a1

1 D
a2]
2 Da3

1 · · ·D
al1+1

1 z
[b1
1 z

b2]
2 zb31 · · · z

bl1+1

1 . (A.10)

The projector that is generated in this way is in the antisymmetric representation. It

is related to the other expressions derived in the main text by the contraction

πλ(z1, z2, z̄1, z̄2) = nλz
a1
1 za2

2 . . . z
a2l2−1

1 z
a2l2
2 z

a2l2+1

1 . . . z
al1+l2
1

π
[a1a2]...[a2l2−1a2l2

]a2l2+1...al1+l2
,[b1b2]...[b2l2−1b2l2 ]b2l2+1...bl1+l2

λ

z̄b11 z̄
b2
2 . . . z̄

b2l2−1

1 z̄
b2l2
2 z̄

b2l2+1

1 . . . z̄
bl1+l2
1 ,

(A.11)

6There exist higher order differential operators that satisfy the same requirements. The ones that we

found are the lowest order ones.
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where the factor nλ appears due to the change from the antisymmetric to the symmetric

representation and is defined in (2.60).

It is in principle possible to generalize this method in order to study Young diagrams

with more than two rows. However this requires to find a new set of differential operators,

which we expect to be lengthy and therefore not very efficient.

B Relating different projectors

This section introduces a useful relation between similar projectors. The main observation

is that a contraction between corresponding indices on the left and right of a projector

leads to an object that is still traceless and has mixed-symmetry. Hence it should be

proportional to another projector, e.g.

δa1b1π
(a1...al1 )...(...al1+l2+l3

),(b1...bl1 )...(...bl1+l2+l3
)

(l1,l2,l3) ∝ π(a2...al1 )...(...al1+l2+l3
),(b2...bl1 )...(...bl1+l2+l3

)

(l1−1,l2,l3) .

(B.1)

Using auxiliary vectors {zi, z̄i} (i = 1, 2, 3), this equation can be written as

1

(l1)2

(
∂

∂z1
· ∂
∂z̄1

)
π(l1,l2,l3)({zi, z̄i}) ∝ π(l1−1,l2,l3)({zi, z̄i}) . (B.2)

The proportionality factor can be found by using that the full trace of a projector is given

by the dimension dλ of the SO(d) irrep,

1

(l1!l2!l3!)2

(
∂

∂z1
· ∂
∂z̄1

)l1( ∂

∂z2
· ∂
∂z̄2

)l2( ∂

∂z3
· ∂
∂z̄3

)l3
π(l1,l2,l3)({zi, z̄i}) = d(l1,l2,l3) , (B.3)

which is given by [53]

dλ =
1

H(λ)

h1∏
i=1

min(i,li)∏
j=1

(d+ li + lj − i− j)
l1∏
j=2

min(j−1,hj)∏
i=1

(d− hi − hj + i+ j − 2) , (B.4)

where H(λ) was defined in (2.60). Since both sides in (B.2) can be reduced to the corre-

sponding dimensions by doing full contractions, the missing constant is given by the ratios

of dimensions

1

(l1)2

(
∂

∂z1
· ∂
∂z̄1

)
π(l1,l2,l3)({zi, z̄i}) =

d(l1,l2,l3)

d(l1−1,l2,l3)
π(l1−1,l2,l3)({zi, z̄i}) . (B.5)

Of course the same relation holds also for the other rows in the Young diagram, e.g.

1

(l2)2

(
∂

∂z2
· ∂
∂z̄2

)
π(l1,l2,l3)({zi, z̄i}) =

d(l1,l2,l3)

d(l1,l2−1,l3)
π(l1,l2−1,l3)({zi, z̄i}) . (B.6)

C More projectors

In this appendix we state the remaining projectors to irreducible representations of SO(d)

that can appear in a three-point function with two stress-tensors.
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C.1 Projectors to the irreps (l1, 3)

For Young diagrams of shape ... the possible combinations of the proposed building

blocks are

Q1 = H(z2, z̄2)3,

Q2 = H(z2, z̄2)2V (z2)V̄ (z̄2) ,

Q3 = H(z2, z̄2)V (z2)2V̄ (z̄2)2,

Q4 = V (z2)3V̄ (z̄2)3,

Q5 = H(z2, z̄2)T (z2, z2)T̄ (z̄2, z̄2) ,

Q6 = V (z2)V̄ (z̄2)T (z2, z2)T̄ (z̄2, z̄2) ,

Q7 = H(z2, z̄2)
(
T (z2, z2)V̄ (z̄2)2 + V (z2)2T̄ (z̄2, z̄2)

)
,

Q8 = V (z2)V̄ (z̄2)
(
T (z2, z2)V̄ (z̄2)2 + V (z2)2T̄ (z̄2, z̄2)

)
.

(C.1)

Imposing the tracelessness conditions (2.20) one finds that the functions fi(t) that appear

in the projector (2.14) can then be written as

fi(t) = − f̂i(t)
d

, ∀ i = 1, . . . , 8 , (C.2)

with

f̂1(t) = −d(1 + d)(2 + d)t(−3 + dt2)C(3)
l1

(t)− 3(1 + d)(2 + d)(t2 − 1)(dt2 − 1)C(4)
l1

(t)

− 3d(2 + d)t(t2 − 1)2C(5)
l1

(t)− d(t2 − 1)3C(6)
l1

(t) ,

f̂2(t) = 6d(1 + d)(2 + d)tC(3)
l1

(t) + 3(1 + d)(2 + d)
(
− 3 + (4 + d)t2

)
C(4)
l1

(t)

+ 6(1 + d)(2 + d)t(t2 − 1)C(5)
l1

(t) + 3d(t2 − 1)2C(6)
l1

(t) ,

f̂3(t) = 3d(1 + d)(2 + d)tC(3)
l1

(t) + 9(1 + d)(2 + d)(t2 − 1)C(4)
l1

(t)

− 3(2 + d)t(4 + d− 3t2)C(5)
l1

(t)− 3(d− t2)(t2 − 1)C(6)
l1

(t) ,

f̂4(t) = −3(1 + d)(2 + d)C(4)
l1

(t)− 6(2 + d)tC(5)
l1

(t) + (d− 3t2)C(6)
l1

(t) , (C.3)

f̂5(t) = 3d(2 + d)t
(
− 4 + (1 + d)t2

)
C(3)
l1

(t) + 3(2 + d)(t2 − 1)
(
− 4 + 3(1 + d)t2

)
C(4)
l1

(t)

+ 9(2 + d)t(t2 − 1)2C(5)
l1

(t) + 3(t2 − 1)3C(6)
l1

(t) ,

f̂6(t) = −3(2 + d)
(
− 4 + (1 + d)t2

)
C(4)
l1

(t)− 6(2 + d)t(t2 − 1)C(5)
l1

(t)− 3(t2 − 1)2C(6)
l1

(t) ,

f̂7(t) = 3d(1 + d)(2 + d)t2C(3)
l1

(t) + 3(1 + d)(2 + d)t(−1 + 3t2)C(4)
l1

(t)

+ 9(2 + d)t2(t2 − 1)C(5)
l1

(t) + 3t(t2 − 1)2C(6)
l1

(t) ,

f̂8(t) = −3(1 + d)(2 + d)tC(4)
l1

(t)− 6(2 + d)t2C(5)
l1

(t)− 3t(t2 − 1)C(6)
l1

(t) .
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C.2 Projectors to the irreps (l1, 4)

For Young diagrams of shape ... the required building blocks are

Q1 = H(z2, z̄2)4,

Q2 = H(z2, z̄2)3V (z2)V̄ (z̄2) ,

Q3 = H(z2, z̄2)2V (z2)2V̄ (z̄2)2,

Q4 = H(z2, z̄2)V (z2)3V̄ (z̄2)3,

Q5 = V (z2)4V̄ (z̄2)4,

Q6 = H(z2, z̄2)2T (z2, z2)T̄ (z̄2, z̄2) ,

Q7 = H(z2, z̄2)V (z2)V̄ (z̄2)T (z2, z2)T̄ (z̄2, z̄2) ,

Q8 = V (z2)2V̄ (z̄2)2T (z2, z2)T̄ (z̄2, z̄2) ,

Q9 = T (z2, z2)2T̄ (z̄2, z̄2)2,

Q10 = H(z2, z̄2)2
(
T (z2, z2)V̄ (z̄2)2 + V (z2)2T̄ (z̄2, z̄2)

)
,

Q11 = H(z2, z̄2)V (z2)V̄ (z̄2)
(
T (z2, z2)V̄ (z̄2)2 + V (z2)2T̄ (z̄2, z̄2)

)
,

Q12 = V (z2)2V̄ (z̄2)2
(
T (z2, z2)V̄ (z̄2)2 + V (z2)2T̄ (z̄2, z̄2)

)
,

Q13 = T (z2, z2)2V̄ (z̄2)4 + V (z2)4T̄ (z̄2, z̄2)2,

Q14 = T (z2, z2)T̄ (z̄2, z̄2)
(
T (z2, z2)V̄ (z̄2)2 + V (z2)2T̄ (z̄2, z̄2)

)
.

(C.4)

In this case the functions fi(t) that appear in the projector (2.14) can then be written as

fi(t) = − f̂i(t)

d(d+ 2)
, ∀ i = 1, . . . , 14 , (C.5)

with

f̂1(t) = (d+ 1)4

(
6dt2 − 3− d(2 + d)t4

)
C(4)
l1

(t)− 4d(d+ 2)3t(t
2 − 1)

(
(2 + d)t2 − 3

)
C(5)
l1

(t)

− 6d(d+ 3)2(t2 − 1)2
(
− 1 + (2 + d)t2

)
C(6)
l1

(t)− 4d(2 + d)(4 + d)t(t2 − 1)3C(7)
l1

(t)

− d(2 + d)(t2 − 1)4C(8)
l1

(t) ,

f̂2(t) = 12(d+ 1)4(dt2 − 1)C(4)
l1

(t) + 4(d+ 2)3t
(
− 3− 9d+ d(11 + d)t2

)
C(5)
l1

(t)

+ 12d(d+ 3)2(t2 − 1)
(
− 2 + (5 + d)t2

)
C(6)
l1

(t) + 12d(d+ 3)2t(t
2 − 1)2C(7)

l1
(t)

+ 4d(2 + d)(t2 − 1)3C(8)
l1

(t) ,

f̂3(t) = 6(d+ 1)4(−3 + dt2)C(4)
l1

(t) + 12(d+ 2)3t
(
− 3 + d(−3 + 2t2)

)
C(5)
l1

(t)

− 6(d+ 3)2

(
− 6d+

(
3 + d(16 + d)

)
t2 − 6dt4

)
C(6)
l1

(t)

− 12d(4 + d)t(5 + d− 2t2)(t2 − 1)C(7)
l1

(t)− 6d(2 + d− t2)(t2 − 1)2C(8)
l1

(t) ,

f̂4(t) = −12(d+ 1)4C(4)
l1

(t)− 12(2 + d)(3 + d)2(4 + d)tC(5)
l1

(t)

− 12(d+ 3)2

(
− 2d+ 3(1 + d)t2

)
C(6)
l1

(t) + 4(4 + d)t
(
d(11 + d)− 3(1 + 3d)t2

)
C(7)
l1

(t)

+ 4d(2 + d− 3t2)(t2 − 1)C(8)
l1

(t) ,
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f̂5(t) = −3(d+ 1)4C(4)
l1

(t)− 12(d+ 2)3tC(5)
l1

(t) + 6(d+ 3)2(d− 3t2)C(6)
l1

(t)

+ 12(4 + d)t(d− t2)C(7)
l1

(t) +
(
− d(2 + d) + 6dt2 − 3t4

)
C(8)
l1

(t) ,

f̂6(t) = 6(1 + d)(2 + d)(4 + d)
(
4− (1 + 7d)t2 + d(3 + d)t4

)
C(4)
l1

(t)

+ 12(2 + d)(4 + d)t(t2 − 1)
(
− 1− 7d+ 2d(3 + d)t2

)
C(5)
l1

(t)

+ 6(4 + d)(t2 − 1)2
(
− 1− 7d+ 6d(3 + d)t2

)
C(6)
l1

(t) + 24d(4 + d)t(t2 − 1)3C(7)
l1

(t)

+ 6d(t2 − 1)4C(8)
l1

(t) ,

f̂7(t) = −12(1 + d)(2 + d)(4 + d)
(
− 4 + (3 + d)t2

)
C(4)
l1

(t)

− 12(2 + d)(4 + d)t
(
− 8(1 + d) + (3 + d)2t2

)
C(5)
l1

(t)

− 12(4 + d)(t2 − 1)
(
− 1− 7d+ 3(1 + d)(3 + d)t2

)
C(6)
l1

(t)

− 12(4 + d)(1 + 3d)t(t2 − 1)2C(7)
l1

(t)− 12d(t2 − 1)3C(8)
l1

(t) , (C.6)

f̂8(t) = −12(1 + d)(2 + d)(4 + d)
(
− 2 + (3 + d)t2

)
C(4)
l1

(t)

− 12(2 + d)(4 + d)t
(
− 7− d+ 4(3 + d)t2

)
C(5)
l1

(t)

+ 6(4 + d)
(
− 1− 7d+ (4 + d)(7 + d)t2 − 12(3 + d)t4

)
C(6)
l1

(t)

+ 12(4 + d)t(1 + d− 4t2)(t2 − 1)C(7)
l1

(t) + 6(d− 2t2)(t2 − 1)2C(8)
l1

(t) ,

f̂9(t) = −3(2 + d)(4 + d)
(

8 + (1 + d)t2
(
− 8 + (3 + d)t2

))
C(4)
l1

(t)

− 12(2 + d)(4 + d)t(t2 − 1)
(
− 4 + (3 + d)t2

)
C(5)
l1

(t)

− 6(4 + d)(t2 − 1)2
(
− 4 + 3(3 + d)t2

)
C(6)
l1

(t)− 12(4 + d)t(t2 − 1)3C(7)
l1

(t)

− 3(t2 − 1)4C(8)
l1

(t) ,

f̂10(t) = 6(d+ 1)4t(dt
2 − 1)C(4)

l1
(t) + 12(d+ 2)3t

2
(
− 1 + d(−1 + 2t2)

)
C(5)
l1

(t)

+ 6(d+ 3)2t(t
2 − 1)

(
− 1 + d(−1 + 6t2)

)
C(6)
l1

(t) + 24d(4 + d)t2(t2 − 1)2C(7)
l1

(t)

+ 6dt(t2 − 1)3C(8)
l1

(t) ,

f̂11(t) = −12(d+ 1)4tC(4)
l1

(t)− 12(2 + d)(3 + d)2(4 + d)t2C(5)
l1

(t)

− 12(1 + d)(d+ 3)2t(−1 + 3t2)C(6)
l1

(t)− 12(4 + d)(1 + 3d)t2(t2 − 1)C(7)
l1

(t)

− 12dt(t2 − 1)2C(8)
l1

(t) ,

f̂12(t) = −6(d+ 1)4tC(4)
l1

(t)− 24(d+ 2)3t
2C(5)
l1

(t) + 6(d+ 3)2t(1 + d− 6t2)C(6)
l1

(t)

+ 12(4 + d)t2(1 + d− 2t2)C(7)
l1

(t) + 6t(d− t2)(t2 − 1)C(8)
l1

(t) ,

f̂13(t) = −3(d+ 1)4t
2C(4)
l1

(t)− 12(d+ 2)3t
3C(5)
l1

(t)− 6(d+ 3)2t
2(−1 + 3t2)C(6)

l1
(t)

− 12(4 + d)t3(t2 − 1)C(7)
l1

(t)− 3t2(t2 − 1)2C(8)
l1

(t) ,
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f̂14(t) = −6(1 + d)(2 + d)(4 + d)t
(
− 4 + (3 + d)t2

)
C(4)
l1

(t)

− 12(2 + d)(4 + d)t2
(
− 7− d+ 2(3 + d)t2

)
C(5)
l1

(t)

− 6(4 + d)t(t2 − 1)
(
− 7− d+ 6(3 + d)t2

)
C(6)
l1

(t)

− 24(4 + d)t2(t2 − 1)2C(7)
l1

(t)− 6t(t2 − 1)3C(8)
l1

(t) .

C.3 Projectors to the irreps (l1, 3, 1)

To construct the tensor structures for projectors to irreps
...

we need to consider the

reducible representation for the shape , given by

⊕ ⊕ , (C.7)

with the building blocks

z3

z2 ,

z3

z2 ,

z3

z2 . (C.8)

Note that the second expression here is not symmetric in its indices. However, the third

expression is antisymmetric and the second one has a symmetric part, so this will suffice

as a basis. From the tensor product

(
⊕ ⊕

)
⊗
(

⊕ ⊕
)
⊗

6∑
q=0

...1 q = 21 • ⊕ . . . , (C.9)

we conclude that in this case there will be 21 allowed structures, which can be identified

with different terms in the tensor product

⊗ = • ⊕ 2 ⊕ 2 ⊕ ⊕ . . . → Q1, . . . , Q6 ,

⊗ = • ⊕ ⊕ ⊕ . . . → Q7, Q8, Q9 ,

⊗ = • ⊕ ⊕ . . . → Q10, Q11 ,

⊗ = ⊕ ⊕ . . . → Q12, Q13 ,

⊗ = ⊕ ⊕ . . . → Q14, Q15 ,

⊗ = ⊕ . . . → Q16 .

(C.10)
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Using the birdtrack notation (2.23), each Qi has the form

Q1 =

z3 z̄3

z2 z̄2, Q2 =

z3 z̄3

z2 z̄2, Q3 =

z3 z̄3

z2 z̄2,

Q4 =

z3 z̄3

z2 z̄2, Q5 =

z3 z̄3

z2 z̄2, Q6 =

z3 z̄3

z2 z̄2,

Q7 =

z3 z̄3

z2 z̄2, Q8 =

z3 z̄3

z2 z̄2, Q9 =

z3 z̄3

z2 z̄2,

Q10 =

z3 z̄3

z2 z̄2, Q11 =

z3 z̄3

z2 z̄2,

Q12 =

z3 z̄3

z2 z̄2 +

z3 z̄3

z2 z̄2, (C.11)

Q13 =

z3 z̄3

z2 z̄2 +

z3 z̄3

z2 z̄2,

Q14 =

z3 z̄3

z2 z̄2 +

z3 z̄3

z2 z̄2,

Q15 =

z3 z̄3

z2 z̄2 +

z3 z̄3

z2 z̄2,

Q16 =

z3 z̄3

z2 z̄2 +

z3 z̄3

z2 z̄2.

The functions fi(t) can now be written as

fi(t) = − f̂i(t)

(d− 2)d
, ∀ i = 1, . . . , 16 , (C.12)

with

f̂1(t) = −(d− 1)(1 + d)2t
(
4− 3d+ (d− 2)dt2

)
C(3)
l1

(t)

− (2 + d)(t2 − 1)
(
4− 3(d− 1)d+ (d− 2)d(1 + 3d)t2

)
C(4)
l1

(t)

− (d− 2)d(5 + 3d)t(t2 − 1)2C(5)
l1

(t)− (d− 2)d(t2 − 1)3C(6)
l1

(t) ,

f̂2(t) = 4(d− 1)4tC(3)
l1

(t) + 2(2 + d)
(

4− 3(d− 1)d+ d
(
− 10 + d(5 + d)

)
t2
)
C(4)
l1

(t)

+ 4d
(
− 7 + d(2 + d)

)
t(t2 − 1)C(5)

l1
(t) + 2(d− 2)d(t2 − 1)2C(6)

l1
(t) ,

f̂3(t) = 4(4− 5d2 + d4)tC(3)
l1

(t) + 2(2 + d)
(

4− 4t2 + (d− 1)d
(
− 3 + (2 + d)t2

))
C(4)
l1

(t)

+ 4(−4− d+ d3)t(t2 − 1)C(5)
l1

(t) + 2(d− 2)d(t2 − 1)2C(6)
l1

(t) ,
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f̂4(t) = 4(d− 1)4tC(3)
l1

(t) + 4(2 + d)
(

4 + d
(
3 + t2 + 3d(t2 − 1)

))
C(4)
l1

(t)

+ 4t
(

8 + d
(
6 + 5t2 − d(5 + d− 3t2)

))
C(5)
l1

(t) + 4d(−2 + d+ t2 − dt2 + t4)C(6)
l1

(t) ,

f̂5(t) = (d− 4)(d− 1)(1 + d)2tC(3)
l1

(t) + (2 + d)
(
4 + 3d− 3d2 + (d− 4)(1 + 3d)t2

)
C(4)
l1

(t)

+ t
(
16− d(6 + d+ d2) + (d− 4)(5 + 3d)t2

)
C(5)
l1

(t)

+ (t2 − 1)
(
− (d− 2)d+ (d− 4)t2

)
C(6)
l1

(t) ,

f̂6(t) = 2(2 + d)(4 + 3d− 3d2)C(4)
l1

(t)− 4(3d2 + d− 8)tC(5)
l1

(t)

+
(
2(d− 2)d+ 2(4− 3d)t2

)
C(6)
l1

(t) ,

f̂7(t) = 4(d− 1)(1 + d)2t(−4 + dt2)C(3)
l1

(t) + 4d(2 + d)(t2 − 1)
(
− 4 + (1 + 3d)t2

)
C(4)
l1

(t)

+ 4d(5 + 3d)t(t2 − 1)2C(5)
l1

(t) + 4d(t2 − 1)3C(6)
l1

(t) ,

f̂8(t) = −16(d− 1)(1 + d)2tC(3)
l1

(t) + 8(2 + d)
(

4d−
(
− 2 + d(5 + d)

)
t2
)
C(4)
l1

(t)

− 16d(3 + d)t(t2 − 1)C(5)
l1

(t)− 8d(t2 − 1)2C(6)
l1

(t) , (C.13)

f̂9(t) = 16d(2 + d)C(4)
l1

(t) + 4d(7 + d)tC(5)
l1

(t) + 4d(t2 − 1)C(6)
l1

(t) ,

f̂10(t) = (d− 4)(d2 + d− 2)t
(
(1 + d)t2 − 4

)
C(3)
l1

(t) + (d− 4)(2 + d)
(
(1 + 3d)t2 − 4

)
× (t2 − 1)C(4)

l1
(t) + (d− 4)(5 + 3d)t(t2 − 1)2C(5)

l1
(t) + (d− 4)(t2 − 1)3C(6)

l1
(t) ,

f̂11(t) = −16(d− 1)(1 + d)2tC(3)
l1

(t)− 2(2 + d)
(

16− 12d+
(
− 28 + 3d(7 + d)

)
t2
)
C(4)
l1

(t)

− 4
(
− 16 + 3d(3 + d)

)
t(t2 − 1)C(5)

l1
(t)− 2(3d− 4)(t2 − 1)2C(6)

l1
(t) ,

f̂12(t) = 4(d− 1)4t
2C(3)
l1

(t) + 4(2 + d)t
(
− 4 + d− d2 + d(1 + 3d)t2

)
C(4)
l1

(t)

+ 4d(5 + 3d)t2(t2 − 1)C(5)
l1

(t) + 4dt(t2 − 1)2C(6)
l1

(t) ,

f̂13(t) = −4
(
8 + d(2 + d+ d2)

)
tC(4)
l1

(t)− 8(2 + d+ d2)t2C(5)
l1

(t)− 4dt(t2 − 1)C(6)
l1

(t) ,

f̂14(t) = (d− 4)(d− 1)(1 + d)2t
2C(3)
l1

(t) + (d− 4)(2 + d)t
(
− 3 + t2 + d(−1 + 3t2)

)
C(4)
l1

(t)

+ (d− 4)(5 + 3d)t2(t2 − 1)C(5)
l1

(t) + (d− 4)t(t2 − 1)2C(6)
l1

(t) ,

f̂15(t) = 2(4− d)(2 + d)(3 + d)tC(4)
l1

(t)− 4(d− 4)(3 + d)t2C(5)
l1

(t)− 2(d− 4)t(t2− 1)C(6)
l1

(t) ,

f̂16(t) = 16(d− 1)(1 + d)2tC(3)
l1

(t) + 4(2 + d)
(
− 4d+

(
− 8 + d(11 + d)

)
t2
)
C(4)
l1

(t)

+ 8
(
− 2 + d(5 + d)

)
t(t2 − 1)C(5)

l1
(t) + 4d(t2 − 1)2C(6)

l1
(t) .

D Computation of the constants Sλ
∆∆12

from the shadow formalism

In this section the constant

Sλ∆∆12
=

〈
O1(P1; Z1)O2(P2; Z2)Õ(P3; Z3)

〉〈
O1(P1; Z1)O2(P2; Z2)O(P3; Z3)

〉∣∣
∆→∆̃

, (D.1)
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is computed. Previous known results are the cases
〈
•• ...

〉
[38] and

〈
• ...

〉
[42].

In this appendix, the constant is computed for any three-point function that has a single

tensor structure and obeys |λ1| + |λ2| = |λ| − l1 (as discussed in section 3.1). We start in

subsection D.1 by showing that Sλ∆∆12
does not depend on the SO(d) irreps λ1 and λ2, by

constructing a differential operator that transfers spin between the operators O1 and O2

without violating the condition |λ1|+ |λ2| = |λ| − l1. In the following subsections Sλ∆∆12
is

computed for the case of an arbitrary irrep λ = (l1, l2, l3, . . .) and λ1 = •, λ2 = (l2, l3, . . .).

D.1 Spin transfer operator

The shadow operator is

Õ(P3; Z3) =

∫
DdP0O(P0;∂Z0)πλ(Z0;∂Z̄0

)
〈
O(P0; Z̄0)O(P3; Z3)

〉∣∣
∆→∆̃

, (D.2)

hence the three-point function of the shadow is

〈
O1(P1; Z1)O2(P2; Z2)Õ(P3; Z3)

〉
=

∫
DdP0

〈
O1(P1; Z1)O2(P2; Z2)O(P0;∂Z0)

〉
πλ(Z0;∂Z̄0

)
〈
O(P0; Z̄0)O(P3; Z3)

〉∣∣
∆→∆̃

.

(D.3)

Our strategy will be to find a differential operator which transforms a three-point function

with operators O, O1 and O2 in the representations λ = (l1, l2, . . . , lh1) and λ1 = •,
λ2 = (l2, . . . , lh1)

〈
O1(P1)O2(P2,Z2)O(P3,Z3)

〉
enc

=

(
V

(Z31)
(3,12)

)l1(H(Z21,Z32)
23

)l2 . . . (H(Z2(h1−1),Z3h1
)

23

)lh1

(P13)
∆1+∆−∆2

2 (P23)
∆2+∆−∆1

2 (P12)
∆1+∆2−∆

2

,

(D.4)

into another three-point function with a single tensor structure by transferring spin from

the operator O2 to O1. This operator must decrease the homogeneity of a polynomial in

Z2i and increase it in Z1j by one each, while not changing the homogeneity in P1 and P2.

Furthermore, it must preserve the transverseness of the functions, that is

F (Pi, Zij + cPi) = F (Pi, Zij) . (D.5)

This last requirement means that the operator should transfer terms of order

O(Z2
ij , Zij · Pi, P 2

i ) , i ∈ {1, 2} , (D.6)

into terms of the same kind. Such an operator is given in terms of the differential operator

derived in appendix A in d + 2 dimensions (i.e. each d in its definition must be replaced

by d+ 2),

DZ2i,Z1j ,P2,P1 =
(Z1j · P2)P1A − (P1 · P2)Z1jA

P1 · P2
DA
Z2i,P2

. (D.7)
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The term that is contracted into the operator DA
Z2i,P2

ensures transverseness in Z1j . By

construction, the action on (D.4) must yield a transverse function

DZ2i,Z1j ,P2,P1

(
V

(Z31)
(3,12)

)l1(H(Z21,Z32)
23

)l2 . . . (H(Z2(h1−1),Z3h1
)

23

)lh1

(P13)
1
2

(∆1+∆−∆2)(P23)
1
2

(∆2+∆−∆1)(P12)
1
2

(∆1+∆2−∆)
∝ (D.8)

(
H

(Z1j ,Z3(i+1))

13 +cV
(Z1j)

(1,23)V
(Z3(i+1))

(3,12)

H
(Z2i,Z3(i+1))

23

) (
V

(Z31)
(3,12)

)l1(H(Z21,Z32)
23

)l2 . . . (H(Z2(h1−1),Z3h1
)

23

)lh1

(P13)
1
2

(∆1+∆−∆2)(P23)
1
2

(∆2+∆−∆1)(P12)
1
2

(∆1+∆2−∆)

+O(P 2
3 , P3 · Z3k, Z3k · Z3l) ,

where c is an unspecified constant. The term containing V
(Z3(i+1))

(3,12) vanishes upon Young

symmetrization with
(
V

(Z31)
(3,12)

)l1 . By repeated use of such operators, any three-point func-

tion with a single tensor structure can be generated〈
O1(P1,Z2)O2(P2,Z2)O(P3,Z3)

〉
full
∝

πλ1(Z1,∂Z̄1
)πλ2(Z2,∂Z̄2

)πλ(Z3,∂Z̄3
) (D.9)

DZ̄2i,Z̄1j ,P2,P1
. . .DZ̄2k,Z̄1l,P2,P1

〈
Ô1(P1)Ô2(P2, Z̄2)O(P3, Z̄3)

〉
enc

,

where Ô1(P1) is in the scalar representation λ̂1 = • and Ô2(P2, Z̄2) in an irrep λ̂2 satisfying

|λ̂2| = |λ1|+ |λ2|. In order to compute Sλ∆∆12
one can insert (D.9) into (D.1). The action of

the operator on both three-point functions is obviously the same, and the resulting Sλ∆∆12

is the same that one gets when using the three-point function given in (D.4). In the next

two subsections, Sλ∆∆12
is computed using this three-point function.

D.2 Young diagrams with two rows

The computations here are done using the conventions of [42] to allow reusing some of

their computations. We start with the case of λ = (l1, l2). To compute the constant we

will consider a three-point function of an operator O in this representation with a scalar

O1 and a symmetric tensor O2 of spin l2. This correlator can be written as

〈
O1(x1)O2(x2, z2)O(x3, z3)

〉
=

πλ(z3;∂ z̄3)
(
k(312)(z̄31)

)l1(m(23)(z2, z̄32)
)l2

(x2
13)

∆1−∆2+∆3
2 (x2

23)
−∆1+∆2+∆3

2 (x2
12)

∆1+∆2−∆3
2

, (D.10)

where the building blocks m(ij) and k(ijk) are physical space variants of the building blocks

Hij and Vi,jk defined in (3.12), given by

m
(ij)
ab = δab −

2

x2
ij

(xij)a(xij)b , k(ijk)
a =

x2
ij(xik)a − x2

ik(xij)a

(x2
ijx

2
ikx

2
jk)

1/2
. (D.11)

We will also use the notation

m(ij)(zk, zl) = zakm
(ij)
ab z

b
l , k(ijk)(z) = k(ijk)

a za. (D.12)

To compute the ratio in (D.1) it is not necessary to keep track of terms containing z2
31, z2

32

or z31 · z32. Those will be collectively denoted by O(z3i · z3j). Furthermore, it is enough to

consider the term of order l2 in z2 · z32, so terms of order O
(
(z2 · z32)l2−1

)
can be dropped.
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We need to compute the three-point function of the shadow operator. This is given by

〈
O1(x1)O2(x2, z2)Õ(x3, z3)

〉
=

1

l1!l2!
πλ(z3;∂ z̄3)

∫
ddx0

(x2
03)d−∆(x2

01)
∆1−∆2+∆

2 (x2
02)
−∆1+∆2+∆

2 (x2
12)

∆1+∆2−∆
2

(D.13)

(
m(30)(z̄31, ∂z01)

)l1(m(30)(z̄32, ∂z02)
)l2πλ(z0;∂ z̄0)

(
k(012)(z̄01)

)l1(m(02)(z̄02, z2)
)l2

= πλ(z3;∂ z̄3)

∫
ddx0

(x2
03)d−∆

(
y(z̄31)

)l1(y2(z̄32, z2)
)l2

(x2
01)

∆1−∆2+∆
2 (x2

02)
−∆1+∆2+∆

2 (x2
12)

∆1+∆2−∆
2

,

where we defined

y(z31) = za31m
(30)
ab k(012) b

=

(√
x2

01x
2
23

x2
03x

2
12

− x2
02x

2
13√

x2
01x

2
03x

2
12x

2
23

)
k(302)(z31) +

√
x2

02x
2
13

x2
01x

2
23

k(312)(z31) ,

y2(z32, z2) = za32m
(30)
ab m

(02)
bc zc2

= m(32)(z32, z2)− 2 k(302)(z32)k(203)(z2) . (D.14)

The reason why the trace subtracting terms of the projector πλ(z0;∂ z̄0) in (D.13) do not

contribute is that m
(30)
ac m

(30)
bc = δab, so these terms are annihilated by the other projector.

Not keeping track of terms containing z2
31, z2

32 or z31 · z32 means that the trace subtracting

terms of the other projector can be ignored as well and we can use instead the Young

symmetrizer

Yλ(z1, z2; z̄1, z̄2) = πλ(z1, z2; z̄1, z̄2)
∣∣
z2
i =z1·z2=z̄2

i =z̄1·z̄2=0
, (D.15)

leading to

〈
O1(x1)O2(x2, z2)Õ(x3, z3)

〉
= (D.16)

Yλ(z3;∂ z̄3)

∫
ddx0

(x2
03)d−∆

(
y(z̄31)

)l1(y2(z̄32, z2)
)l2

(x2
01)

∆1−∆2+∆
2 (x2

02)
−∆1+∆2+∆

2 (x2
12)

∆1+∆2−∆
2

+O(z3i · z3j) .

One needs to compute the conformal integral

In,mα,β,γ(x1, x2, x3, z31, z32, z2) =

∫
ddx0

(
k(302)(z31)

)n(
k(302)(z32)k(203)(z2)

)m
(x2

01)α(x2
02)β(x2

03)γ
, (D.17)

which is done in subsection D.4 below. Next we do a trinomial expansion of y(z31) and

a binomial expansion of y2(z32, z2) in (D.16). Note that we consider only the term pro-

portional to (z2 · z32)l2 , for which the action of the Young symmetrizer results only in the
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factor Sl1,k+b,i, which will be explained below〈
O1(x1)O2(x2, z2)Õ(x3, z3)

〉
=

l1∑
k=0

l1−k∑
b=0

l1!

k!b!(l1 − k − b)!
(−1)b

l2∑
i=0

l2!

i!(l2 − i)!
(−2)iSl1,k+b,i

(x2
12)
−∆1−∆2+∆−k−b

2 (x2
13)

l1−k+b
2 (x2

23)k−
l1
2
(
k(312)(z31)

)l1−k−b(z2 · z32)l2−i

Ik+b,i
1
2

(∆12+∆+l1−2k), 1
2

(−∆12+∆−l1+k−b),d−∆+ k+b
2

(x1, x2, x3, z31, z32, z2)

+O(z3i · z3j) +O
(
(z2 · z32)l2−1

)
= πd/2

(
k(312)(z31)

)l1(z2 · z32)l2(x2
12)

∆̃−∆1−∆2
2 (x2

13)
∆2−∆1−∆̃

2 (x2
23)

∆1−∆2−∆̃
2

l2∑
i=0

l1−i∑
k=0

l1−k−i∑
b=0

(l1 − i)!l2!

k!b!(l1 − k − b− i)!(l2 − i)!
(−1)b+i

Γ
(

1
2(d−∆12 −∆− l1) + k + i

)
Γ
(

1
2(d+ ∆12 −∆ + l1) + b

)
Γ
(
∆− d

2

)
Γ
(

1
2(∆12 + ∆ + l1)− k

)
Γ
(

1
2(−∆12 + ∆− l1) + k + i

)
Γ(d−∆ + k + b+ i)

+O(z3i · z3j) +O
(
(z2 · z32)l2−1

)
= πd/2

(
k(312)(z31)

)l1(z2 · z32)l2(x2
12)

∆̃−∆1−∆2
2 (x2

13)
∆2−∆1−∆̃

2 (x2
23)

∆1−∆2−∆̃
2

(∆− 2)l1+1

(∆− 2 + l2)

Γ
(
∆− d

2

)
Γ
(

1
2(d+ ∆12 −∆ + l1)

)
Γ
(

1
2(d−∆12 −∆ + l1)

)
Γ(d−∆ + l1)Γ

(
1
2(∆12 + ∆ + l1)

)
Γ
(

1
2(−∆12 + ∆ + l1)

)
+O(z3i · z3j) +O

(
(z2 · z32)l2−1

)
.

(D.18)

The sums were evaluated by using first that

N∑
b=0

N !

b!(N − b)!
(−1)b

Γ(x+ b)

Γ(y + b)
=

Γ(x)Γ(y − x+N)

Γ(y +N)Γ(y − x)
, (D.19)

then
N∑
k=0

N !

k!(N − k)!

1

Γ(x+ k)Γ(y − k)
=

Γ(x+ y +N − 1)

Γ(x+N)Γ(y)Γ(x+ y − 1)
, (D.20)

and finally
l2∑
i=1

l2!(−1)i

(l2 − i)!
Γ(∆− 1 + l1)

Γ(∆− 1 + i)
=

(∆− 2)l1+1

(∆− 2 + l2)
. (D.21)

The factor Sl1,k+b,i appearing in (D.18) is given by

Sl1,k+b,i =
(l1 − k − b)(i)

(l1)(i)
, (D.22)

where we used the following notation for the falling factorial

(x)(n) ≡ (x− n+ 1)n = (x)(x− 1) . . . (x− n+ 1) . (D.23)

– 34 –



J
H
E
P
0
7
(
2
0
1
6
)
0
1
8

This factor arises from the Young symmetrization of the tensor encoded by (z31, z32).

This can be understood by drawing birdtracks, where the (z31, z32) are antisymmetrized

according to the Young symmetrizer. The following birdtracks represent the term

(
k(312)(z31)

)l1−k−b(k(302)(z31)
)k+b(

k(302)(z32)
)i
, (D.24)

which appears in (D.18) before integration. The contraction with multiple copies of k
(302)
a

results in a symmetrization which cancels all terms in which two antisymmetrized indices

get symmetrized. Consider for example the case with i = 1, where the cancellations lead

to a factor of Sl1,k+b,1 = l1−k−b
l1

,

k(312)

l1 − k − bl1

z31

l1

k(312)

1 k + b + 1

k(302) z2z32

1

=
l1 − k − b

l1

l1 − 1

z31

l1 − k − b

k(312)

l1

k(312)

k + b + 1

k(302)

1

z2

.

Consider also the next case i = 2,

k + b + 2

k(302)

2 2

z32 z2

k(312)

l1 − k − bl1

z31

l1

k(312)

=
(l1 − k − b)(2)

(l1)(2)

k + b + 2

k(302)

2

z2

l1 − 2

z31

l1 − k − b

k(312)

l1

k(312)

.

The constant S is now found by comparing (D.18) with the corresponding term in (D.10)

S(l1,l2)
∆∆12

= πd/2
(∆− 2)l1+1

(∆− 2 + l2)

Γ
(
∆− d

2

)
Γ
(

1
2(∆̃ + ∆12 + l1)

)
Γ
(

1
2(∆̃−∆12 + l1)

)
Γ(∆̃ + l1)Γ

(
1
2(∆ + ∆12 + l1)

)
Γ
(

1
2(∆−∆12 + l1)

) . (D.25)
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D.3 Arbitrary representations

As a next example we will compute the constant for the representations λ = (l1, l2, l3),

λ1 = •, λ2 = (l2, l3). From the derivation it will also be clear what the result is for

arbitrary λ. The three-point function is in this case

〈
O1(x1)O2(x2, z2)O(x3, z3)

〉
full

= πλ(z2;∂ z̄2)πλ(z3;∂ z̄3)

(
k(312)(z̄31)

)l1(m(23)(z̄21, z̄32)
)l2(m(23)(z̄22, z̄33)

)l3
(x2

13)
∆1−∆2+∆3

2 (x2
23)
−∆1+∆2+∆3

2 (x2
12)

∆1+∆2−∆3
2

= πλ(z3;∂ z̄3)

(
k(312)(z̄31)

)l1(m(23)(z21, z̄32)
)l2(m(23)(z22, z̄33)

)l3
(x2

13)
∆1−∆2+∆3

2 (x2
23)
−∆1+∆2+∆3

2 (x2
12)

∆1+∆2−∆3
2

+O(z2i · z2j) +O
(
(z21 · z32)l2−1

)
+O

(
(z22 · z33)l3−1

)
.

(D.26)

The three-point function of the shadow operator is then

〈
O1(x1)O2(x2, z2)Õ(x3, z3)

〉
full

=∫
ddx0

(x2
03)d−∆

Yλ(z3;∂ z̄31)
(
y(z̄31)

)l1(y2(z̄32, z21)
)l2(y2(z̄33, z22)

)l3
(x2

01)
∆1−∆2+∆

2 (x2
02)
−∆1+∆2+∆

2 (x2
12)

∆1+∆2−∆
2

+O(z2i · z2j) +O(z3i · z3j) +O
(
(z21 · z32)l2−1

)
+O

(
(z22 · z33)l3−1

)
.

(D.27)

To compute this expression one needs the following integral, which can be immediately

read off from the result (D.36)

In,m,oα,β,γ (x1, x2, x3, z31, z32, z21, z33, z22)

≡
∫
ddx0

(
k(302)(z31)

)n(
k(302)(z32)k(203)(z21)

)m(
k(302)(z33)k(203)(z22)

)o
(x2

01)α(x2
02)β(x2

03)γ

= πd/2
m!o!

2m+o

Γ
(
d
2 − α+m+ o

)
Γ
(
d
2 − β + n

2

)
Γ
(
d
2 − γ + n

2

)
Γ(α)Γ

(
β + n

2 +m+ o
)
Γ
(
γ + n

2 +m+ o
)

(x2
23)α−

d
2 (x2

13)β−
d
2 (x2

12)γ−
d
2
(
k(312)(z31)

)n
(z21 · z32)m(z22 · z33)o

+O(z3i · z3j) +O
(
(z21 · z32)m−1

)
+O

(
(z22 · z33)o−1

)
.

(D.28)
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Next, the computation of (D.18) is repeated〈
O1(x1)O2(x2, z2)Õ(x3, z3)

〉
full

=

l1∑
k=0

l1−k∑
b=0

l1!

k!b!(l1−k−b)!
(−1)b

l2∑
i=0

l2!

i!(l2−i)!
(−2)i

l3∑
j=0

l3!

j!(l3−j)!
(−2)jSl1,k+b,i+jSl2,i,j

(x2
12)
−∆1−∆2+∆−k−b

2 (x2
13)

l1−k+b
2 (x2

23)k−
l1
2
(
k(312)(z31)

)l1−k−b(z21 · z32)l2−i(z22 · z33)l3−j

Ik+b,i,j
1
2

(∆12+∆+l1−2k), 1
2

(−∆12+∆−l1+k−b),d−∆+ k+b
2

(x1, x2, x3, z31, z32, z21, z33, z22)

+O(z2i · z2j) +O(z3i · z3j) +O
(
(z21 · z32)l2−1

)
+O

(
(z22 · z33)l3−1

)
=
(
k(312)(z31)

)l1(z21 · z32)l2(z22 · z33)l3(x2
12)

∆̃−∆1−∆2
2 (x2

13)
∆2−∆1−∆̃

2 (x2
23)

∆1−∆2−∆̃
2

πd/2
l3∑
j=0

l2−j∑
i=0

l1−i−j∑
k=0

l1−k−i−j∑
b=0

(l1 − i− j)!(l2 − j)!l3!

k!b!(l1 − k − b− i− j)!(l2 − i− j)!(l3 − j)!
(−1)b+i+j

Γ
(

1
2(d−∆12 −∆− l1) + k + i+ j

)
Γ
(

1
2(d+ ∆12 −∆ + l1) + b

)
Γ
(
∆− d

2

)
Γ
(

1
2(∆12 + ∆ + l1)− k

)
Γ
(

1
2(−∆12 + ∆− l1) + k + i+ j

)
Γ(d−∆ + k + b+ i+ j)

+O(z2i · z2j) +O(z3i · z3j) +O
(
(z21 · z32)l2−1

)
+O

(
(z22 · z33)l3−1

)
=
(
k(312)(z31)

)l1(z21 · z32)l2(z22 · z33)l3(x2
12)

∆̃−∆1−∆2
2 (x2

13)
∆2−∆1−∆̃

2 (x2
23)

∆1−∆2−∆̃
2

πd/2
(∆− 3)l1+2

(∆−2+l2)(∆−3+l3)

Γ
(
∆− d

2

)
Γ
(

1
2(d+∆12−∆+l1)

)
Γ
(

1
2(d−∆12−∆+l1)

)
Γ(d−∆+l1)Γ

(
1
2(∆12+∆+l1)

)
Γ
(

1
2(−∆12+∆+l1)

)
+O(z2i · z2j) +O(z3i · z3j) +O

(
(z21 · z32)l2−1

)
+O

(
(z22 · z33)l3−1

)
.

(D.29)

The only non-trivial new ingredient here is the factor Sl2,i,j . Since the vectors z31 are

treated as before (with the factor Sl1,k+b,i+j), consider only the vectors z32 and z33. They

appear in the form of

(z21 · z32)l2−i(z22 · z33)l3−j
(
k(302)(z32)

)i(
k(302)(z33)

)j
. (D.30)

One can now draw a birdtrack containing only the antisymmetrizations of the j copies of

z33 that are contracted to k(302). All of the indices that are antisymmetrized with those

cannot be contracted to k(302) as well. Consider for example the case j = 2,

i + j

k(302)

j

z33

z21

l2 − il2

z32

=
(l2 − i)(j)

(l2)(j)

i + j

k(302)

l2 − j

z32

l2 − i

z21

. (D.31)

Hence the factor Sl2,i,j =
(l2−i)(j)

(l2)(j)
has to be included.
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By now it is clear that the computation for Young diagrams with more rows will work

out analogously, and that the constant relating a three-point functions of an operator and

the one of its shadow for a Young diagram with row lengths (l1, l2, . . .) and column heights

(h1, h2, . . .) is

Sλ∆∆12
= πd/2

(∆− h1)l1+h1−1

h1∏
i=2

(∆− i+ li)

Γ
(
∆− d

2

)
Γ
(

1
2(∆̃ + ∆12 + l1)

)
Γ
(

1
2(∆̃−∆12 + l1)

)
Γ(∆̃ + l1)Γ

(
1
2(∆ + ∆12 + l1)

)
Γ
(

1
2(∆−∆12 + l1)

) (D.32)

= πd/2
l1∏
i=1

(∆− hi + i− 1)
Γ
(
∆− d

2

)
Γ
(

1
2(∆̃ + ∆12 + l1)

)
Γ
(

1
2(∆̃−∆12 + l1)

)
Γ(∆̃ + l1)Γ

(
1
2(∆ + ∆12 + l1)

)
Γ
(

1
2(∆−∆12 + l1)

) .
D.4 Conformal integrals

We will use the following conformal integral (for α+ β + γ = d)

Iα,β,γ(x1, x2, x3) =

∫
ddx0

(x2
01)α(x2

02)β(x2
03)γ

= πd/2
Γ
(
d
2 − α

)
Γ
(
d
2 − β

)
Γ
(
d
2 − γ

)
Γ(α)Γ(β)Γ(γ)

(x2
23)α−

d
2 (x2

13)β−
d
2 (x2

12)γ−
d
2 ,

(D.33)

to compute the following integral (for α+ β + γ = d)

In,mα,β,γ(x1, x2, x3, z31, z32, z2) (D.34)

=

n∑
k=0

n!

k!(n− k)!
(−1)k(x2

23)
n
2
−k+m(x23 · z31)k

∫
ddx0(x03 · z31)n−k(x03 · z32)m(x02 · z2)m

(x2
01)α(x2

02)β+n
2

+m(x2
03)γ+n

2
−k+m

+O
(
(z2 · z32)m−1

)
=

n∑
k=0

n!

k!(n−k)!
(−1)k(x2

23)
n
2
−k+m(x23 · z31)k

Γ
(
γ− n

2

)
2n−k+mΓ

(
γ+ n

2−k+m
) Γ

(
β+ n

2

)
2mΓ

(
β+ n

2 +m
)

(z2 · ∂x2)m(z32 · ∂x3)m(z31 · ∂x3)n−kIα,β+n
2
,γ−n

2
(x1, x2, x3) +O

(
(z2 · z32)m−1

)
.

The computation of the derivative also simplifies significantly when considering only terms

of order O
(
(z2 · z32)m

)
. It is enough to consider the contribution of (z2 · ∂x2)m(z32 · ∂x3)m

acting on (x2
23)α−h−(n−k−b),

(z2 · ∂x2)m(z32 · ∂x3)m(z31 · ∂x3)n−kIα,β+n
2
,γ−n

2
(x1, x2, x3) = (D.35)

πd/2
n−k∑
b=0

(n−k)!m!

b!(n−k−b)!
2n−k+mΓ

(
d
2−α+n−k−b+m

)
Γ
(
d
2−β−

n
2 +b

)
Γ
(
d
2−γ+ n

2

)
Γ(α)Γ

(
β+ n

2

)
Γ
(
γ− n

2

)
(x2

23)α−
d
2
−(n−k−b)−m(x2

13)β−
d
2

+n
2
−b(x2

12)γ−
d
2
−n

2 (x13 · z31)b(x23 · z31)n−k−b(z2 · z32)m

+O(z3i · z3j) +O
(
(z2 · z32)m−1

)
.
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By inserting this in the last expression for In,mα,β,γ in (D.34), one finds

In,mα,β,γ(x1, x2, x3, z31, z32, z2)

= πd/2
n∑
k=0

n−k∑
b=0

n!m!(−1)k

k!b!(n−k−b)!2m
Γ
(
d
2−α+n−k−b+m

)
Γ
(
d
2−β−

n
2 +b

)
Γ
(
d
2−γ+ n

2

)
Γ(α)Γ(β+ n

2 +m)Γ(γ+ n
2−k+m)

(x2
23)α−

d
2
−n

2
+b(x2

13)β−
d
2

+n
2
−b(x2

12)γ−
d
2
−n

2 (x13 · z31)b(x23 · z31)n−b(z2 · z32)m

+O(z3i · z3j) +O
(
(z2 · z32)m−1

)
= πd/2

n∑
b=0

n!m!

b!(n− b)!
(−1)n−b

2m
Γ
(
d
2 − α+m

)
Γ
(
d
2 − β + n

2

)
Γ
(
d
2 − γ + n

2

)
Γ(α)Γ

(
β + n

2 +m
)
Γ
(
γ + n

2 +m
) (D.36)

(x2
23)α−

d
2
−n

2
+b(x2

13)β−
d
2

+n
2
−b(x2

12)γ−
d
2
−n

2 (x13 · z31)b(x23 · z31)n−b(z2 · z32)m

+O(z3i · z3j) +O
(
(z2 · z32)m−1

)
= πd/2

m!

2m
Γ
(
d
2 − α+m

)
Γ
(
d
2 − β + n

2

)
Γ
(
d
2 − γ + n

2

)
Γ(α)Γ

(
β + n

2 +m
)
Γ
(
γ + n

2 +m
)

(x2
23)α−

d
2 (x2

13)β−
d
2 (x2

12)γ−
d
2
(
k(312)(z31)

)n
(z2 · z32)m+O(z3i · z3j)+O

(
(z2 · z32)m−1

)
.

The sum over k was evaluated using

N∑
k=0

N !

k!(N − k)!
(−1)k

Γ(x− k)

Γ(y − k)
= (−1)N

Γ(x−N)Γ(y − x+N)

Γ(y)Γ(y − x)
. (D.37)

E OPE limit of conformal blocks in the shadow formalism

In order for the conformal blocks to satisfy the recursion relation derived above, it is crucial

that they have the correct normalization. To compare to other results it is a good idea

to consider the OPE limit xa12 → 0, xa34 → 0. This can be done in physical space by

generalizing a trick from [38]. To this end let us work again in physical space, as in the

previous appendix. The shadow operator of an operator O in the irrep (∆, λ) is given by

Õ(x0, z0) =
πλ(z0,∂z4)

l1!l2! . . . lh1 !

∫
ddx4

(x2
04)d−∆

(
m(04)(z41, ∂z̄41)

)l1 . . . (m(04)(z4h1 , ∂z̄4h1
)
)lh1O(x4, z̄4) .

(E.1)

For a lighter notation we will choose for the remainder of this appendix to consider Young

diagrams with at most three rows λ = (l1, l2, l3). Furthermore, we will compute the OPE

limit for conformal blocks with λ1 = λ3 = • and λ2 = λ4 = (l2, l3). Other configurations

can be treated analogously by replacing some of the vectors z2i by z1j or z4i by z3j .

We want to compute the OPE limit of the conformal partial wave

W λ1λ2λ3λ4
∆,λ =

1

Sλ∆∆34
Sλ

∆̃∆34

∫
ddx0

〈
O1(x1)O2(x2, z2)O(x0,∂z0)

〉〈
O3(x3)O4(x4, z4)Õ(x0, z0)

〉
,

(E.2)
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where the three-point functions are given by7〈
O1(x1)O2(x2, z2)O(x0, z0)

〉
=

πλ(z0,∂ z̄0)

(
k(012)(z̄01)

)l1(m(20)(z21, z̄02)
)l2(m(20)(z22, z̄03)

)l3
(x2

12)
∆1+∆2−∆

2 (x2
01)

∆+∆1−∆2
2 (x2

02)
∆+∆2−∆1

2

.
(E.3)

To perform the OPE limit one can use

k(012)(z01) ∼
x12→0

1√
x2

12

m(20)(x12, z01) , (E.4)

and hence〈
O1(x1)O2(x2, z2)O(x0, z0)

〉
∼

x12→0

πλ(z0,∂ z̄0)

(
m(20)(x12, z̄01)

)l1(m(20)(z21, z̄02)
)l2(m(20)(z22, z̄03)

)l3
(x2

12)
∆1+∆2−∆+l1

2 (x2
02)∆

.
(E.5)

Inserting this into (E.2), and using the definition of the shadow operator (E.1), one finds

W λ1λ2λ3λ4
∆,λ ∼

x12→0

1

Sλ∆∆34
Sλ

∆̃∆34

(x2
12)

∆−l1−∆1−∆2
2

〈
O3(x3)O4(x4, z4) ˜̃O(x2, x12, z21, z22)

〉
= (x2

12)
∆−l1−∆1−∆2

2
〈
O3(x3)O4(x4, z4)O(x2, x12, z21, z22)

〉
. (E.6)

Doing the limit xa34 → 0 in a similar way leads to

W λ1λ2λ3λ4
∆,λ ∼

x12→0
x34→0

πλ(x12, z21, z22,∂z0)

(
m(24)(z01, x34)

)l1(m(24)(z02, z41)
)l2(m(24)(z03, z42)

)l3
(x2

24)∆(x2
12)

1
2

(∆1+∆2−∆+l1)(x2
34)

1
2

(∆3+∆4−∆+l1)
.

(E.7)

In order to extract the normalization it is convenient to consider only the term which is

of leading order in the building blocks m(24)(x12, x34), m(24)(z21, x41) and m(24)(z22, x42).

This term has a prefactor that can be found by considering the birdtrack diagram in (2.58)

and removing all antisymmetrizations, resulting in a factor of

nλ
l1∏
i=1

hi!

. (E.8)

Finally one can use that

1− v ∼
x12→0
x34→0

2m(24)(x12, x34)

x2
24

, (E.9)

and find

W λ1λ2λ3λ4
∆,λ ∼

x12→0
x34→0

nλ
l1∏
i=1

hi!

2−l1u
1
2

(∆−l1)(1− v)l1
(
m(24)(z21, z41)

)l2(m(24)(z22, z42)
)l3

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

+O

((
1− v√
u

)l1−1

,
(
m(24)(z21, z41)

)l2−1
,
(
m(24)(z22, z42)

)l3−1

)
. (E.10)

7We are omitting the projector πλ2 which has no impact on this computation.
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F Spherical tensor harmonics

In this appendix the relation between projectors to SO(d) irreps and spherical tensor har-

monics on the sphere Sd−1 is explained. In the case of projectors to traceless symmetric

tensors this relation is just the fact that the projectors are encoded by Gegenbauer poly-

nomials (2.7), which are scalar spherical harmonics. In the radial coordinates of [49], the

conformal blocks are naturally written in terms of spherical tensor harmonics [51].

Consider a tensor field on Sd−1 ∈ Rd. We shall work in the embedding space Rd and

impose transversality

xaita1...ak(x) = 0 , (F.1)

for all i = 1, . . . , k and xax
a = 1. As shown in subsection F.1 below, covariant derivatives

on the sphere are just partial derivatives ∂a = ∂
∂xa on Rd projected to the sphere (over all

indices of the resulting tensor). Therefore, the laplacian on the sphere can be written as

∇2ta1...ak = P ab∂a(P
c
bP

c1
b1
. . . P ckbk ∂ctc1...ck)P b1a1

. . . P bkak , (F.2)

where Pab = δab − xaxb is a projector onto the unit sphere. Using (F.1) on the sphere

xax
a = 1, one can simplify this expression to

∇2ta1...ak = P b1a1
. . . P bkak

(
∂a∂

a − xaxb∂a∂b − (d− 1)xa∂a + k
)
tb1...bk . (F.3)

Another interesting differential operator to consider is the quadratic Casimir of the

symmetry group SO(d), generated by

Jab = i(xa∂b − xb∂a) + Σab , (F.4)

where Σab rotates the indices of a tensor. More precisely,

Σabta1...ak =

k∑
i=1

[
Mab

]c
ai
ta1...ai−1cai+1...ak , (F.5)

with
[
Mab

]c
e

= i(δae δ
bc − δbeδac). The quadratic Casimir is then given by

1

2
JabJ

ab = −xa∂b(xa∂b − xb∂a) + 2ixa∂bΣ
ab +

1

2
ΣabΣ

ab. (F.6)

Acting on a tensor obeying (F.1) on the sphere xax
a = 1, it gives

1

2
JabJ

abta1...ak = P b1a1
. . . P bkak

[
−∇2 − k +

1

2
ΣabΣ

ab

]
tb1...bk , (F.7)

where we used expression (F.3) for the laplacian on the sphere.

Now consider a tensor field defined by the following contraction with a traceless mixed-

symmetry tensor

t(b1...bl2 )(c1...cl3 )... = xe1 . . . xel1f(e1...el1 )(b1...bl2 )(c1...cl3 )... . (F.8)
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Notice that tracelessness and property (2.10) of f implies transversality (F.1) and

∇aita1...ak = 0 , (F.9)

where k =
∑

i=2 li and ai can be any of the indices of the tensor. Using formula (F.3) it is

easy to obtain

∇2ta1...ak = −
[
l1(l1 + d− 2)− k

]
ta1...ak . (F.10)

Moreover,

1

2
ΣabΣ

abt(b1...bl2 )(c1...cl3 )... =

[ h1−1∑
i=1

li+1(li+1 + d− 2i)

]
t(b1...bl2 )(c1...cl3 )... , (F.11)

because Σab only rotates the indices, and therefore 1
2ΣabΣ

ab just measures the Casimir of the

irreducible tensor. This statement can also be checked explicitly using the definition (F.5).

One can also check that (F.7) leads to the expected result

1

2
JabJ

abt(b1...bl2 )(c1...cl3 )... =

[ h1∑
i=1

li(li + d− 2i)

]
t(b1...bl2 )(c1...cl3 )... . (F.12)

Using the projectors of the previous sections, we can construct the following function

Ω
b1...,b′1...
λ (x, y) = cλ xa1 . . . xal1π

(a1...al1 )(b1...bl2 )...,(a′1...a
′
l1

)(b′1...b
′
l2

)...

λ ya′1 . . . ya′l1
. (F.13)

The arguments above show that this function is a tensor harmonic at the point x with

indices b1 . . . . It is also a tensor harmonic at point y with indices b′1 . . . . We shall fix the

normalization constant cλ by imposing the following orthogonality relation∫
Sd−1

dyΩa1...,b1...
λ (x, y)δb1b′1 . . .Ω

b′1...,c1...
λ′ (y, z) = δλ,λ′ Ω

a1...,c1...
λ (x, z) . (F.14)

Using the definition (F.13) the only integral that we need to compute is

Ia1...ak =

∫
Sd−1

dy ya1 . . . yak . (F.15)

Rotational and permutation symmetry imply that Ia1...ak = 0 for odd k and

Ia1...a2k = qk δ
(a1a2 . . . δa2k−1a2k), (F.16)

for some constant qk. This constant can be determined by computing the full contraction8

δa1a2 . . . δa2k−1a2k
Ia1...a2k = qk4

kk!

(
d

2

)
k

= Vol(Sd−1) . (F.17)

This is sufficient to verify the orthogonality relation (F.14) and to determine the normal-

ization constant

cλ =
1

l1! ql1
=

4l1
(
d
2

)
l1

Vol(Sd−1)
. (F.18)

8The full contraction of k Kronecker-deltas with the total index symmetrization of another set of k

Kronecker-deltas can be determined recursively.
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Let us now consider again the orthogonality relation (F.14) in the case of scalar har-

monics and let us sum over l,∫
Sd−1

dyΩ(l′)(x, y)

∞∑
l=0

Ω(l)(y, z) = Ω(l′)(x, z) . (F.19)

This suggests the following completeness relation

∞∑
l=0

Ω(l)(y, z) = δ(y, z) , (F.20)

where the delta-function is defined with respect to the sphere metric. This reasoning can

be generalized to the case of tensor harmonics. We illustrate this method in the case of

vector harmonics, corresponding to λ = (l1, 1). Summing the orthogonality relation (F.14)

over l1 we find ∫
Sd−1

dyΩa,b′

(l′1,1)
(x, y)δb′b

∞∑
l1=1

Ωb,c
(l1,1)(y, z) = Ωa,c

(l′1,1)
(x, z) , (F.21)

which leads to
∞∑
l1=1

Ωb,c
(l1,1)(y, z) +∇by∇czQ(y, z) = δbcδ(x, z) , (F.22)

where Q(y, z) can be any function of y · z because its contribution to (F.21) vanishes by

integration by parts. To determine this function we act with δb′b∇b
′
y on the last equation,

∇cz∇2
yQ(y, z) = ∇cyδ(x, z) = −∇czδ(x, z) . (F.23)

Comparing with (F.20) and using the laplacian eigenvalues of the scalar harmonics we

conclude that

Q(y, z) =
∞∑
l=0

1

l(l + d− 2)
Ω(l)(y, z) . (F.24)

The discussion here is very similar to the discussion of harmonic functions in AdS in [54].

F.1 Covariant derivatives

We consider a tensor ta1...ak obeying (F.1). Let us denote by yα a set of (d−1)-coordinates

parametrizing the unit sphere Sd−1. In these coordinates, the tensor is given by

t̃α1...αk =
∂xa1

∂yα1
. . .

∂xak

∂yαk
ta1...ak , (F.25)

and its covariant derivative is

∇β t̃α1...αk =
∂

∂yβ
t̃α1...αk −

k∑
i=1

Γγβαi t̃α1...αi−1γαi+1...αk

=
∂xb

∂yβ
∂xa1

∂yα1
. . .

∂xak

∂yαk
∂

∂xb
ta1...ak (F.26)

+

k∑
i=1

(
∂2xai

∂yβ∂yαi
− Γγβαi

∂xai

∂yγ

)
∂xa1

∂yα1
. . .

∂xai−1

∂yαi−1

∂xai+1

∂yαi+1
. . .

∂xak

∂yαk
ta1...ak .
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We will now show that the last line vanishes and therefore covariant derivatives on the

sphere are equal to partial derivatives on Rd projected to the sphere. It is sufficient to

show that
∂2xa

∂yβ∂yα
− Γγβα

∂xa

∂yγ
∝ xa, (F.27)

because the last line in (F.26) vanishes due to the transversality condition (F.1). Equa-

tion (F.27) is equivalent to

∂2xa

∂yβ∂yα
∂xa
∂yµ
− Γγβα

∂xa

∂yγ
∂xa
∂yµ

= 0 , (F.28)

which can be easily verified using the sphere metric

gαβ =
∂xa

∂yα
∂xa
∂yβ

, (F.29)

and the expression for the Levi-Civita connection

Γγβα =
1

2
gγµ(gµβ,α + gµα,β − gβα,µ) . (F.30)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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