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1 Introduction

Cold and dense matter in the interior of compact stars is strongly interacting, governed by

Quantum Chromodynamics (QCD). Its phases and properties are poorly known because it

is much denser than ordinary nuclei on earth, but not asymptotically dense and thus not

quantitatively accessible with weak-coupling methods. The gauge/string duality [1–3] is a

powerful tool to study strongly interacting matter and has proven to be very useful to get

insight into hot QCD matter at low baryon densities produced in heavy-ion collisions [4].

It is thus natural to ask whether we can use it to learn something about cold and dense

matter too [5–7]. Dense QCD is expected to have a very rich phase structure, including

color-superconducting quark matter [8], and at present there are no holographic approaches

that can be expected to predict reliably any details of this phase structure. Here we are

asking a more modest question, which nevertheless may turn out to be valuable for the

study of compact stars. We are asking whether the Sakai-Sugimoto model [9–11], a certain

realization of the gauge/string duality that comes as close to QCD as currently possible,

can be used to understand at least the gross thermodynamic properties of dense nuclear
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and quark matter and possibly the transition between them, ignoring all complications

such as Cooper pairing of nucleons or quarks. The main point of our current effort, started

in ref. [12], is to first find a feasible approximation that gets the basic properties of dense

matter right, and then, in future studies, to apply this approximation to the physics of

compact stars. In particular, we are interested in the onset of nuclear matter, which

must show a discontinuity in the baryon density due to the finite binding energy, and in

the transition to quark matter, which is expected to happen at high densities and which

is needed to investigate hybrid stars, i.e., compact stars containing quark matter in the

core, surrounded by nuclear matter. Although the Sakai-Sugimoto model is a top-down

approach, our study should not be understood as a first-principle calculation because we

apply various approximations and simplifications. We rather aim at a model description of

dense matter, which has some advantages over many of the field-theoretical models used

in the same context: we employ a genuine strong-coupling formalism, we can account for

nuclear and quark matter in a single model, and the model has very few parameters (3

in the version we consider: the ’t Hooft coupling λ, the Kaluza-Klein mass MKK, and the

asymptotic separation of the D8- and D8-branes L).

Baryons in the Sakai-Sugimoto model are introduced as D4-branes wrapped around

the 4-sphere of the background geometry, following the general concept of baryons in the

gauge/string duality [13, 14]. Here, this is equivalent to gauge field configurations with

nonzero topological charge on the connected flavor branes of the model [10], and various

properties of baryons in the vacuum have been studied within this approach [10, 11, 15–

17]. Baryonic matter at nonzero density and temperature was first considered in a pointlike

approximation of the instantons on the flavor branes [18], and this approach was improved

and complemented by a number of studies [12, 19–31]. (For studies of baryonic matter using

a different holographic approach, based on a D3-D7 setup, see for instance refs. [32, 33].)

The idea of the present paper is to improve the instanton gas approach, introduced in

ref. [26] and further developed in ref. [12]. More specifically, it is known that away from

the λ = ∞ limit the Sakai-Sugimoto instantons are anisotropic in the sense that they

break the SO(4) symmetry of rotations in the space of the holographic coordinate and

the three spatial dimensions [28, 29]. We shall account for this anisotropy by introducing

a “deformation parameter” into the standard flat-space instanton solution. Furthermore,

it has been argued that the repulsion between the instantons makes them spread out in

the holographic direction [19], which is realized for instance in crystalline structures in the

confined phase of the model [24, 31]. We introduce this repulsive effect by allowing for

an arbitrary number of instanton layers in the bulk and determine this number and the

distance between the layers dynamically as a function of the baryon chemical potential.

Unless backreactions of the flavor branes on the background geometry are taken into

account, cold matter in the Sakai-Sugimoto model does not deconfine, which is in accor-

dance with expectations from large-Nc QCD [34]. In order to allow for a transition between

nuclear and quark matter at low temperatures, we work in the “decompactified” limit of the

model: if the separation of the flavor branes L is sufficiently small, the deconfined geometry

of the model has a chirally symmetric and a chirally broken phase. Therefore, we are able

to include the transition from nuclear matter to quark matter without the complications
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of backreacting flavor branes. Varying L from its maximum value, as used in the original

works [10, 11], to very small values is best understood as changing the dual field theory: the

limit of maximal L, i.e., an antipodal separation of the flavor branes in the space of the com-

pactified extra dimension of the model, is related to large-Nc QCD; the limit of very small L,

on the other hand, corresponds to a field theory comparable to a Nambu-Jona Lasinio (NJL)

model [35–37], and its rich phase structure in the deconfined geometry is possibly closer to

real-world QCD than the antipodal limit, at least with respect to the chiral phase transition.

The paper is organized as follows. In section 2 we explain our ansatz and derive the

free energy and its stationarity equations. This is done by first discussing the Dirac-Born-

Infeld action in section 2.1, including a very general form of the non-abelian field strengths

in section 2.1.1, our specific ansatz for the anisotropic instantons in sections 2.1.2, the

approximations for our many-instanton system in section 2.1.3, and the symmetrized trace

prescription in section 2.1.4. Then, in section 2.2, we add the Chern-Simons contribution

to obtain the full Lagrangian, and in section 2.3 we explain how we solve the system,

including the minimization of the free energy. Section 3 is devoted to the numerical results

and is divided into two subsections: in section 3.1 we minimize the free energy with respect

to all parameters of the ansatz, while in section 3.2 we impose certain constraints on the

shape of the single instantons, increasing the number of free parameters of our model to 5.

We give our conclusions in section 4.

2 Setup

The general setup follows numerous other works in the Sakai-Sugimoto model, and for all

details and foundations of the model we refer the reader to the original works [10, 11] or

reviews [38–40]; the notation we are using is consistent with ref. [12]. Our starting point is

the action for the gauge fields on the flavor branes, which consists of a Dirac-Born-Infeld

(DBI) and a Chern-Simons (CS) part,

S = SDBI + SCS . (2.1)

We now discuss these two contributions separately.

2.1 Dirac-Born-Infeld action

The DBI part is given by

SDBI = 2T8V4

∫ 1/T

0
dτ

∫
d3X

∫ ∞
Uc

dU e−Φ str
√

det(g + 2πα′F) . (2.2)

Here, the integral is taken over imaginary time τ with the temperature T , over position

space ~X = (X1, X2, X3), and over the holographic coordinate U ∈ [Uc,∞]. In this section,

we discuss the chirally broken geometry, where the D8- and D8-branes are connected, with

Uc being the location of the tip of the connected branes. The model contains a compactified

direction X4, whose radius is expressed in terms of the inverse Kaluza-Klein mass MKK,

X4 ≡ X4 + 2π/MKK, and the embedding of the flavor branes in the background geometry
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Figure 1. Illustration of the three phases whose free energies are compared in this paper. It shows

the cylinder-shaped subspace of the deconfined geometry, spanned by the compact extra dimension

X4 (with radius M−1KK) and the holographic coordinate U , and the D8- and D8-branes, which can

either be connected (chiral symmetry spontaneously broken, left and middle figure) or disconnected

(chiral symmetry restored, right figure). They are asymptotically separated by a distance L, and in

the chirally broken phases their (density-dependent) embedding, including the location of the tip

Uc, has to be determined dynamically (we assume no backreaction on the background geometry).

Baryon number in the chirally broken phase is introduced through instantons on the flavor branes,

here symbolized by two circles. Our ansatz allows for an arbitrary number of instanton layers

Nz in the bulk (see section 2.1.3), but we shall find that more than two are never energetically

preferred. We assume that L � π/MKK, which is the “decompactified” limit of the model, where

the deconfined geometry extends down to arbitrarily small temperatures (apart from using this

fact, which allows us to set the temperature to zero, UT = 0, we never make any assumptions about

L and MKK in our calculation). For the discussion of the instantons we sometimes switch to an

alternative holographic coordinate Z along the connected branes, as indicated in the middle figure.

is given by X4(U). This function has to be determined dynamically and is subject to

the boundary condition X4(U → ∞) = ±L/2, where L is the asymptotic separation of

the D8- and D8-branes. The chirally broken geometry accommodates the baryonic phase,

discussed in this section, and the mesonic phase, which is well known and whose free energy

we shall later need and simply quote from the literature. In the chirally restored phase

the flavor branes are straight, X4(U) = ±L/2, and disconnected, and again we will quote

the corresponding free energy later and use it in the energy comparison with the baryonic

phase. The geometry of the three different phases is shown schematically in figure 1.

The dilaton field is eΦ = gs(U/R)3/4, where R is the curvature radius and gs the string

coupling. Moreover, α′ = `2s with the string length `s, T8 = 1/[(2π)8`9s] is the D8-brane

tension, V4 = 8π2/3 is the volume of the 4-sphere, and “str” denotes the symmetrized trace

(we shall discuss below the procedure that we follow to evaluate this trace). We work in
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the deconfined geometry, whose induced metric on the flavor branes g is given by

ds2
D8 =

(
U

R

)3/2

[fT (U)dτ2 + δijdX
idXj ]

+

(
R

U

)3/2
{[

1

fT (U)
+

(
U

R

)3

(∂UX4)2

]
dU2 + U2dΩ2

4

}
, (2.3)

where i = 1, 2, 3, dΩ2
4 is the metric of the 4-sphere, and we have abbreviated

fT (U) ≡ 1−
U3
T

U3
, (2.4)

where UT is related to temperature T and curvature radius R via

T =
3

4π

U
1/2
T

R3/2
. (2.5)

In our final results we shall restrict ourselves to T = 0. Strictly speaking, the preferred

geometry at zero temperature is the confined one. However, in the decompactified limit

L� π/MKK, the critical temperature for deconfinement is much smaller than the critical

temperature for chiral restoration (at zero chemical potential). One may think of letting

MKK → 0 while keeping L fixed; this renders the region of the confined geometry in

the phase diagram arbitrarily small and justifies our zero-temperature approximation. In

the decompactified limit, the structure of the phase diagram (without baryonic matter)

is similar to what is obtained in an NJL model, where there is no confinement either.

Two differences to NJL are that our formalism allows for a well-defined way to implement

baryons (which are rarely included in NJL studies, although it is possible [41]) and that

in the NJL model it is easy to include nonzero current quark masses (which is difficult

in the Sakai-Sugimoto model, although it is possible [42–45]). As a consequence, in our

calculation, the chiral phase transition is always a phase transition in the strict sense (in

fact, it turns out to be always a first-order phase transition), while in the NJL model with

quark masses (and in nature) this transition is allowed to be a continuous crossover because

chiral symmetry is not an exact symmetry.

We work with two flavors, Nf = 2, and express the U(2) field strengths in terms of the

gauge fields Aµ, µ = 0, 1, 2, 3, U , in which we separate the abelian from the non-abelian

part,

Aµ = Âµ +Aµ , Aµ = Aaµσa , (2.6)

with the Pauli matrices σa, normalized such that [σa, σb] = 2iεabcσc. Consequently, with

Fµν = ∂µAν − ∂νAµ + i[Aµ,Aν ] we have

Fµν = F̂µν + Fµν , Fµν = F aµνσa , (2.7)

with F̂µν = ∂µÂν − ∂νÂµ, and F aµν = ∂µA
a
ν − ∂νAaµ − 2εabcA

b
µA

c
ν . In our ansatz the only

nonzero abelian field strength is F̂0U , where the quark chemical potential will be included

as the boundary value of Â0, and the baryons are implemented through the non-abelian

field strengths FiU , Fij . All other field strengths are set to zero.
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The trace over the square root in the DBI action is not uniquely defined in the non-

abelian case, and thus we need to follow a certain prescription. Here we follow Tseytlin [22,

46]: we first compute the determinant over space-time indices as if the field strengths were

numbers,

det(g + 2πα′F) = U8

(
R

U

)3/2
{
fT (2πα′)2F 2

iU +

[
1 +

(
U

R

)3

fT (∂UX4)2 + (2πα′)2F̂ 2
0U

]

×

[
1 +

(
R

U

)3 (2πα′)2F 2
ij

2

]
+

(
R

U

)3 fT (2πα′)4(FijFkU εijk)
2

4

}
. (2.8)

This expression factorizes if (FijFkU εijk)
2 = 2F 2

iUF
2
ij (which shall be fulfilled by our ansatz),

det(g + 2πα′F) = U8

(
R

U

)3/2
[

1 + fT (2πα′)2F 2
iU +

(
U

R

)3

fT (∂UX4)2 + (2πα′)2F̂ 2
0U

]

×

[
1 +

(
R

U

)3 (2πα′)2F 2
ij

2

]
. (2.9)

The prescription then requires us to expand the square root over this determinant to all

orders in α′, apply the symmetrized trace for each term separately, and then resum the

resulting infinite series. Within our ansatz, this resummation can be done analytically and

leads to a relatively simple analytic form for the DBI action, see section 2.1.4. Nevertheless,

the numerical evaluation turns out to be more difficult compared to the simpler prescription

that uses the standard (unsymmetrized) trace [12, 19]. Thus, after showing numerically in

section 3.1 that the results of the two prescriptions do not differ much we shall resort to

the unsymmetrized prescription in section 3.2.

2.1.1 General form of non-abelian field strengths

The ansatz for the non-abelian part is best discussed in the new holographic coordinate Z,

defined as1

U = (U3
c + UcZ

2)1/3 ,
∂U

∂Z
=

2U
1/2
c

√
fc(U)

3U1/2
, (2.10)

where

fc(U) = 1− U3
c

U3
, (2.11)

such that Z = 0 corresponds to the tip of the connected flavor branes, and Z = ±∞ to the

holographic boundary on the D8- and D8 branes, see figure 1. The most general ansatz

that is SO(3) symmetric in the spatial directions for an instanton located at ~X = 0 can be

1Later we shall come back to using the coordinate U in many equations. This is partly to connect to

previous literature, and partly because of convenience. Neither of the two coordinates turns out to be overly

superior when it comes to compactness in notation or convenience in the calculation.
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written as [17, 28, 29]

AaZ( ~X,Z) = aZ
Xa

2X
, (2.12a)

Aai (
~X,Z) =

Xφ1δia − (1 + φ2)εijaXj

2X2
+ (XaX − φ1)

XiXa

2X3
, (2.12b)

where X = | ~X|, and aZ , aX , φ1, φ2 are all functions of X and Z. From this ansatz we

compute the non-abelian field strengths needed in eq. (2.8) (summation over a = 1, 2, 3)

F 2
iZ =

|DZφ|2

4X2
σ2
a +

F 2
XZX

2 − |DZφ|2

4X4
X2
aσ

2
a , (2.13a)

F 2
ij =

|DXφ|2

2X2
σ2
a +

(1− |φ|2)2 −X2|DXφ|2

2X6
X2
aσ

2
a , (2.13b)

FijFkZεijk = − Im[DXφ(DZφ)∗]

2X2
σ2
a +

FXZ(1− |φ|2) + Im[DXφ(DZφ)∗]

2X4
X2
aσ

2
a

− iRe[DXφ(DZφ)∗]

X2
~̂X · ~σ , (2.13c)

where ~̂X ≡ ~X/X, and

φ = φ1 + iφ2 , DZ = ∂Z − iaZ , DX = ∂X − iaX , FXZ = ∂XaZ − ∂ZaX . (2.14)

The field strengths squared are obviously linear combinations of the products σaσb. Except

for the non-diagonal structure ~̂X · ~σ in FijFkZεijk, there are only diagonal terms, σ2
a = 3,

X2
aσ

2
a = X2. We have written the Pauli matrices explicitly in the results because this is

needed for the discussion of the symmetrized trace, see section 2.1.4.

2.1.2 Anisotropic instantons

We now specify our ansatz for the gauge fields. To this end, it is convenient to work with

dimensionless coordinates defined as

~x = ~XMKK , z =
Z

R(MKKR)2
. (2.15)

In these coordinates, our ansatz for a single instanton placed at ~x = z = 0 is (x = |~x|)

aZ = − 1

R(MKKR)2

x

γ
f(x, z) , aX = MKK

z

γ
f(x, z) , (2.16a)

φ1 =
xz

γ
f(x, z) , φ2 = x2f(x, z)− 1 , (2.16b)

with

f(x, z) =
2

x2 + (z/γ)2 + (ρ/γ)2
. (2.17)

This corresponds to the Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton [47], where

the z coordinate is rescaled with respect to x by a factor γ. In appendix A we derive

– 7 –
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the single-instanton solution in the deconfined geometry, which does show a nontrivial

(and temperature dependent) γ, see eq. (A.7). Here we will treat γ as a free parameter,

accounting for the “deformation” of the instanton. Such a deformation has also been

observed in the full solution of a single baryon in the vacuum [28, 29]. The instanton

width in the spatial direction is ρ/γ, while the width in the holographic direction is ρ (for

convenience, we shall often simply refer to ρ as the instanton width). For a given ρ, the

deformation parameter thus has the effect of stretching the instanton along the holographic

direction z (large γ) or along the radial spatial direction x (small γ). A single instanton

becomes elongated along x and wider in both x and z for values of the ’t Hooft coupling

λ away from infinity, which was shown in a full numerical evaluation of the equations of

motion, based on the most general ansatz for the gauge fields (2.12), see ref. [28]. (Already

from the SO(4) symmetric case we know that only the finiteness of λ prevents an instanton

in the vacuum from being pointlike [15].) Translated to our parametrization, we thus

expect a smaller γ and a larger ρ for finite λ than for λ = ∞. Our approximation, based

on the ansatz (2.16), and extended to a many-instanton system below, is too simplistic

to allow for a dependence on λ apart from a trivial rescaling (this is in contrast to the

“homogeneous ansatz” [12, 19], which is not based on any instanton solution). Therefore,

besides computing ρ and γ dynamically in section 3.1, we shall impose certain constraints

on ρ and γ in section 3.2, with the idea of capturing some of the λ <∞ physics, which seems

to be crucial to obtain more realistic results, already for baryons in the vacuum [17, 28, 29].

With the ansatz (2.16), the field strengths become particularly simple. The non-

diagonal term and all terms proportional to Xaσa vanish,

Re[DXφ(DZφ)∗] = F 2
XZX

2 − |DZφ|2 = (1− |φ|2)2 −X2|DXφ|2

= FXZ(1− |φ|2) + Im[DXφ(DZφ)∗] = 0 , (2.18)

and the remaining terms become proportional to the same function of x and z,

MKKR
3γIm[DXφ(DZφ)∗] =

|DXφ|2

M2
KK

= M4
KKR

6γ2|DZφ|2 =
x2ρ4f4(x, z)

γ4
. (2.19)

The field strengths now fulfill the relation (FijFkZεijk)
2 = 2F 2

iZF
2
ij , and thus we may use

eq. (2.9). This leads to the DBI action

SDBI = N
∫ 1/T

0
dτ

∫
d3X

∫ ∞
uc

duu5/2str

√(
1 + u3fTx′24 − â′20 +

g1σaσa
3

)(
1 +

g2σaσa
3

)
,

(2.20)

where we have replaced Â0 → iÂ0 since we work in Euclidean space, have introduced the

dimensionless quantities

â0 =
2πα′

R(MKKR)2
Â0 , x4 = MKKX4 , u =

U

R(MKKR)2
, (2.21)
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and have denoted the derivative with respect to u by a prime. Also, we have abbreviated

N ≡ 2T8V4R
5(MKKR)7/gs and

g1 =
16π2

λ2

fT
γ2

(
∂z

∂u

)2 12(ρ/γ)4

[x2 + (z/γ)2 + (ρ/γ)2]4
, (2.22a)

g2 =
16π2

λ2

12(ρ/γ)4

u3[x2 + (z/γ)2 + (ρ/γ)2]4
, (2.22b)

and used the relation λ`2s = 2R3MKK.

2.1.3 Spatial average and instanton layers

Next, we go from a single instanton to a many-instanton system. We do so on the level

of the field strengths squared. We place in many instantons at the points zn in the bulk,

n = 0, . . . , Nz − 1 (Nz ≥ 1), and distribute them at the points ~xin, i = 1, . . . , in, in

position space. The total number of instantons is NI ≡ i0 + . . . + iNz−1. One can think

of an instanton lattice sitting at each point zn in the bulk. In this general notation, the

lattice structure is allowed to be different at different points in the bulk. However, we shall

drastically simplify this general picture in our calculation such that the lattice structure

in position space becomes irrelevant: we shall average the field strengths squared over

position space before solving the equations of motion [12, 26], and as a consequence it does

not matter at which points ~xin the instantons sit. The many-instanton system within our

approximation is thus obtained by replacing

12(ρ/γ)4

[x2 + (z/γ)2 + (ρ/γ)2]4
→ 1

V

Nz−1∑
n=0

in∑
i=1

∫
d3X

12(ρ/γ)4

[(~x− ~xin)2 + (z − zn)2/γ2 + ρ2/γ2]4

=
2π2γ

M3
KK

N~xNz

V

∫
d3xD(x, z) =

2π2γ

M3
KK

N~xNz

V
D(z) , (2.23)

where, in the second step, we have assumed that the same number of instantons sits at

every zn and denoted this number by N~x, such that the total number of instantons is now

NI = NzN~x, and where we have defined the normalized instanton profiles

D(x, z) =
6

π2γNz

Nz−1∑
n=0

(ρ/γ)4

[x2 + (z − zn)2/γ2 + (ρ/γ)2]4
, (2.24a)

D(z) =

∫
d3xD(x, z) =

1

Nz

Nz−1∑
n=0

3ρ4

4[(z − zn)2 + ρ2]5/2
, (2.24b)

with ∫ ∞
−∞

dz D(z) = 1 . (2.25)

It is important that the deformation parameter γ has not dropped out, although we have

averaged over position space. We can thus later compute the deformation of the instantons

– 9 –



J
H
E
P
0
7
(
2
0
1
6
)
0
0
1

D∞(z)
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0.5

z

Figure 2. Instanton distribution along the holographic direction z. The number of layers Nz and

their extension z0 will be determined dynamically. The solid lines are the separate terms in the sum

of eq. (2.24b). For Nz → ∞ at fixed z0, the sum over all instanton layers approaches the function

D∞(z) (2.31), here shown as a dashed line. Each instanton layer in the holographic coordinate

accommodates in instantons in position space, and we assume i0 = . . . = iNz−1 ≡ N~x, the total

instanton number thus being NI = N~xNz.

even though our simplified equations of motion only involve the holographic coordinate z,

and not x.

For the instanton distribution in the bulk we employ the following ansatz. We assume

the layers of N~x instantons to be separated equidistantly by a distance ∆z from each other,

and to be centered at the points

zn =

(
1− 2n

Nz − 1

)
z0 , (2.26)

such that they are spread over a symmetric interval of length 2z0 around the tip of the

connected flavor branes z = 0, and z0 = (Nz − 1)∆z/2. This is illustrated in figure 2. This

ansatz, where the instanton layers all have the same shape and are separated by the same

distance, allows for a continuous transition between Nz = 1 and Nz = 2, but all other

transitions — if they occur — will necessarily be discontinuous.

Inserting eq. (2.23) into eqs. (2.22) yields

g1 '
fTnI
3γ

∂z

∂u
q(u) , (2.27a)

g2 '
γnI
3u3

∂u

∂z
q(u) , (2.27b)

where we have introduced the dimensionless instanton density (per flavor, hence the division

by Nf = 2)

nI =
96π4

λ2M3
KKNf

NI

V
, (2.28)

and defined

q(u) = 2
∂z

∂u
D(z) ,

∫ ∞
uc

du q(u) = 1 . (2.29)
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[Recall that u = (u3
c + ucz

2)1/3, see eq. (2.15).] For Nz = 1 we recover the function q(u)

from ref. [12], where the instanton repulsion was neglected,

Nz = 1 : q(u) =
9u1/2

4
√
fc

(ρ2uc)
2

(u3 − u3
c + ρ2uc)5/2

. (2.30)

We shall treat z0 and Nz as dynamical parameters with respect to which we minimize the

free energy. We include the possibility of infinitely many instanton layers, i.e., a smoothly

smeared instanton distribution. In this limit, letting Nz → ∞ while keeping z0 fixed, we

can approximate the sum in eq. (2.24b) by an integral and we obtain

D∞(z) ≡ 1

8z0

{
(z + z0)[3ρ2 + 2(z + z0)2]

[(z + z0)2 + ρ2]3/2
− (z − z0)[3ρ2 + 2(z − z0)2]

[(z − z0)2 + ρ2]3/2

}
, (2.31)

which is also shown in figure 2.

2.1.4 Symmetrized trace

As explained above, we need to decide on a certain prescription to evaluate the non-

abelian DBI action. We expand the square root and take the symmetrized trace in each

term separately [46]. It is known from string theory that this prescription is accurate up

to O(F 4) [48]. For the structure we have in eq. (2.20), this yields [22]

str
√

(1 + ϕσaσa)(1 + ψσaσa)

= str[1] + (ϕ+ ψ)
str[σaσa]

2
− (ϕ− ψ)2 str[(σaσa)

2]

8
+ (ϕ− ψ)2(ϕ+ ψ)

str[(σaσa)
3]

16
+ . . .

= 2

[
1 +

3

2
(ϕ+ ψ)− 5

8
(ϕ− ψ)2 +

7

16
(ϕ− ψ)2(ϕ+ ψ) + . . .

]

= 2
(1 + 2ϕ)(1 + 2ψ)− ϕψ√

(1 + ϕ)(1 + ψ)
. (2.32)

The equations of motion in this prescription as well as the stationarity equations for the

free energy are worked out appendix B. If we instead take the standard trace in this series,

we obtain

2
√

(1 + 3ϕ)(1 + 3ψ) = 2

[
1 +

3

2
(ϕ+ ψ)− 9

8
(ϕ− ψ)2 +

27

16
(ϕ− ψ)2(ϕ+ ψ) + . . .

]
.

(2.33)

Since ϕ,ψ ∝ F 2, this result differs from eq. (2.32) starting from terms of order F 4. We

thus expect different results for large densities. Below we shall present a comparison of

the two prescriptions, showing that there is indeed a difference. However, this difference

turns out to be small and the results are qualitatively the same, see figure 4. Therefore,

we shall mostly (in the equations in the main text and in all results except for figure 4) use

the unsymmetrized prescription, which leads to significantly simpler equations, resulting

in much faster numerics.
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2.2 Chern-Simons action and full Lagrangian

Within our ansatz, the CS action is

SCS =
Nc

8π2

∫ 1/T

0
dτ

∫
d3X

∫ ∞
−∞

dZ Â0Tr[FijFkZ ]εijk . (2.34)

Having computed the field strengths and having introduced convenient dimension-

less quantities, we can easily compute this contribution. We obtain FijFkZεijk from

eqs. (2.13c) (2.18), and (2.19), then use eq. (2.23) as well as Tr[σaσa] = 6 to obtain

SCS = −N V

T
NfnI

∫ ∞
uc

du â0q(u) . (2.35)

Putting this together with the DBI action in the unsymmetrized prescription, this yields

the action

S = N V

T
Nf

∫ ∞
uc

duL , (2.36)

with the Lagrangian

L = u5/2
√

(1 + u3fTx′24 − â′20 + g1)(1 + g2)− nI â0q(u) , (2.37)

with g1 and g2 from eqs. (2.27). This Lagrangian has exactly the same form as the one

used in ref. [12], see eq. (30) in that reference. The extensions of the present approach are

hidden in the functions g1, g2: we reproduce the functions g1, g2 of eq. (31) in ref. [12]

by considering only one instanton layer, Nz = 1, z0 = 0, and by choosing the instanton

deformation to be γ = 3u
3/2
c /2 (this specific value was chosen by transferring the BPST

result of the confined geometry to the deconfined geometry).2

2.3 Minimizing the free energy

The equations of motion for â0 and x4, obtained from the Lagrangian (2.37), are, in

integrated form,

u5/2â′0
√

1 + g2√
1 + g1 + u3fTx′24 − â′20

= nIQ , (2.38a)

u5/2u3fTx
′
4

√
1 + g2√

1 + g1 + u3fTx′24 − â′20
= k , (2.38b)

where k is an integration constant, and

Q(u) ≡
∫ u

uc

dv q(v) =

∫ z(u)

−z(u)
dy D(y)

2In ref. [12] the flavor trace in the DBI action was performed only over the F 2 terms, in apparent

disagreement with the prescription (2.33). However, this merely leads to a redefinition of nI , which was

defined without including a factor 1/Nf and to the absence of the overall prefactor of the action Nf . Since

nI is a dynamical quantity, determined by minimizing the free energy, this difference does not matter.

– 12 –



J
H
E
P
0
7
(
2
0
1
6
)
0
0
1

=
1

Nz

Nz−1∑
n=0

{
[2(z − zn)2 + 3ρ2](z − zn)

4[(z − zn)2 + ρ2]3/2
+

[2(z + zn)2 + 3ρ2](z + zn)

4[(z + zn)2 + ρ2]3/2

}
. (2.39)

For Nz →∞ we have

Q∞(z) =
1

4z0

[
ρ2 + 2(z + z0)2√
ρ2 + (z + z0)2

− ρ2 + 2(z − z0)2√
ρ2 + (z − z0)2

]
. (2.40)

The equations of motion (2.38) can easily be solved for â′0 and x′4 algebraically. The

resulting expressions can then be inserted into the (dimensionless) free energy density of

the baryonic phase,

Ωbaryon ≡
∫ ∞
uc

duL

=

∫ ∞
uc

duu5/2
√

1 + g1

√
1 + g2 −

k2

u8fT
+

(nIQ)2

u5
+
`

2
k − µnI , (2.41)

where the Lagrangian is given in eq. (2.37) and where, in the second line, we have em-

ployed partial integration in the CS term and used the boundary conditions â0(∞) = µ,

x4(∞) = `/2, with the dimensionless chemical potential µ and the dimensionless asymp-

totic separation of the flavor branes ` = MKKL. (The complete, dimensionful free energy

density is obtained by multiplying Ωbaryon with NNf .) We note that the asymptotic be-

havior of â′0 and x′4 is given by

x′4(u) =
k

u11/2
+ . . . , â′0(u) =

nI
u5/2

+ . . . . (2.42)

This confirms that nI is the (dimensionless) baryon density, which is also given by the

derivative of the free energy with respect to the chemical potential,

nI = −
∂Ωbaryon

∂µ
. (2.43)

This equation seems like an obvious thermodynamic relation, but there are some subtleties

in the Sakai-Sugimoto model if baryon number is (partially) created through a magnetic

field [49, 50]. In that case, a modified Chern-Simons term has been used to ensure the

relation (2.43) [23, 49–52]. Here, no such modification is necessary.

To be precise about the meaning of our dimensionless quantities, we notice that µ

is a dimensionless quark chemical potential, while nI is a dimensionless baryon number

density. The physical quark chemical potential is related to µ by the factor introduced in

the definition of the dimensionless abelian gauge field in eq. (2.21),

quark chemical potential =
λMKK

4π
µ . (2.44)

Inserting this relation into eq. (2.43) and using that the dimensionful free energy density

is NNfΩbaryon, we read off the physical quark number density, i.e.,

quark number density = NcNf
λ2M3

KK

96π4
nI . (2.45)

– 13 –



J
H
E
P
0
7
(
2
0
1
6
)
0
0
1

With eq. (2.28) we conclude that the dimensionful baryon number density (= quark number

density divided by Nc) is exactly the instanton density NI/V .

The free energy (2.41) is a function of the parameters k, nI , uc, ρ, γ, z0, Nz. They are

independent of each other except for the obvious condition that the separation of instanton

layers vanishes, z0 = 0, if and only if there is exactly one instanton layer, Nz = 1. We

shall discuss the following two approaches and present their results in sections 3.1 and 3.2,

respectively.

(i) Minimize Ωbaryon with respect to all seven parameters.

(ii) Impose the following constraints on the parameters that determine the shape of a

single instanton, i.e., the instanton width ρ and instanton deformation γ,

ρ = ρ0uc , γ =
3

2
γ0u

3/2
c , (2.46)

and fix ρ0, γ0. Then minimize Ωbaryon with respect to the remaining five parameters

k, nI , uc, z0, Nz.

Approach (i) requires no further motivation, it yields the ground state that the system

chooses to be in within the given approximation. The idea behind approach (ii) is as

follows. We do not know how our many-instanton ansatz is related to the full solution of

the problem. Therefore, we have to take the result of the straightforward minimization

of scenario (i) with some care: the minimum in our restricted parameter space might be

very different from the minimum in the full functional space. However, as mentioned below

eq. (2.17), we do know some features of the full solution of single instantons in the vacuum,

in particular we know that the width and the deformation change as a function of λ away

from the λ = ∞ limit. In order to consider a many-instanton system, we have given up

some complexity, in particular we do not expect our ansatz to reproduce these important

λ < ∞ features of single instantons. Therefore, we choose to impose external constraints

on width and deformation and scan through the resulting parameter space. We might

simply have “rigidly” fixed ρ and γ. However, we do expect these quantities to change

with density. Therefore, we have chosen a particular scaling with (the density-dependent)

uc. This “natural” scaling is chosen such that uc drops out of all but one minimization

equations, as we shall see below. (The factor 3/2 in the scaling relation for γ is chosen such

that γ0 = 1 corresponds to the calculation done in ref. [12].) The use of the constraints on

ρ and γ is justified a posteriori by the observation that only in approach (ii) we do find

a layered structure of the instantons in the bulk, whose existence is suggested from other,

complementary, approximations in the literature.

In both approaches (i) and (ii), the parameters are determined by setting the various

derivatives of the free energy to zero. The parameter Nz is special because it is an integer

and thus we cannot simply take the derivative of the free energy with respect to Nz. Instead,

we will solve the below equations for various values of Nz, including Nz =∞. It turns out

that there is a clear tendency in the behavior of the free energy as a function of Nz, and thus

this procedure is sufficient to determine the preferred Nz. Since we have written the free
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energy in the same form as in ref. [12], we can skip the details of the derivation of the station-

arity equations and directly quote the results. Anyway, only the derivative with respect to

uc is not completely straightforward, see section III of ref. [12] or appendix B of the present

paper, where we go into some details in the context of the symmetrized trace prescription.

The resulting equations (in the order: minimization with respect to k, nI , ρ, γ, z0, uc) are

`

2
=

∫ ∞
uc

dux′4 , (2.47a)

µ =

∫ ∞
uc

du

[
â′0Q+

u5/2

2

(
∂g1

∂nI
ζ−1 +

∂g2

∂nI
ζ

)]
, (2.47b)

0 =

∫ ∞
uc

du

[
u5/2

2

(
∂g1

∂ρ
ζ−1 +

∂g2

∂ρ
ζ

)
+ nI â

′
0

∂Q

∂ρ

]
, (2.47c)

0 =

∫ ∞
uc

duu5/2(−g1ζ
−1 + g2ζ) , (2.47d)

0 =

∫ ∞
uc

du

[
u5/2

2

(
∂g1

∂z0
ζ−1 +

∂g2

∂z0
ζ

)
+ nI â

′
0

∂Q

∂z0

]
, (2.47e)

0 =

∫ ∞
uc

du

[
u5/2

2
(g1ζ

−1p−+g2ζp+)+nI â
′
0

∂Q

∂uc
−αk(u−uc)−3/2

6u2
cγ0c1

+
3u2

c

u1/2fc

g1

2ζ

]
, (2.47f)

where we have used the abbreviation

ζ ≡
√

1 + g1√
1 + g2 − k2

u8fT
+ (nIQ)2

u5

, (2.48)

and where, in eq. (2.47f), we have defined

p± ≡
1

q
√
fc

∂(q
√
fc)

∂uc
± 2

uc
, c1 ≡

α1/2k

uc
√

3γ0

√
(1 + γ0α)fTu8

c − k2
, (2.49)

with c1 giving the behavior of x′4 close to uc, x
′
4 = c1(u− uc)−1/2 + . . . , and

α ≡ 3nI

4u
3/2
c

1

Nz

Nz−1∑
n=0

ρ4

(ρ2 + z2
n)5/2

=
Nz→∞

nI(3ρ
2 + 2z2

0)

4u
3/2
c (ρ2 + z2

0)3/2
. (2.50)

Notice that the minimization with respect to k (2.47a) is nothing but the condition that

the asymptotic separation of the flavor branes be `.

We thus have to solve 6 coupled equations for k, nI , uc, ρ, γ, z0 in approach (i) and 4

coupled equations for k, nI , uc, z0 in approach (ii) (and do so for various values of Nz). How-

ever, in both cases, two equations decouple. First, we observe that the only explicit appear-

ance of µ is in eq. (2.47b). Therefore, rather than fixing µ we can fix nI and determine the

corresponding µ with the help of eq. (2.47b) after we have solved the other equations. (This
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is also advantageous because µ is always a single-valued function of nI , while nI can become

a multi-valued function of µ.) Second, we can rescale all quantities with appropriate powers

of uc and introduce the new integration variable u/uc. One can show that this eliminates uc
from all equations except for eq. (2.47a). Hence, eq. (2.47a) also decouples, we can solve the

remaining equations for the rescaled quantities, then compute uc from eq. (2.47a) and then

undo the rescaling with the help of the resulting uc. A similar rescaling of all quantities

with the externally given parameter ` eliminates ` from all equations. As a consequence, all

results scale with ` in a simple way; different `’s do not lead to qualitatively different results.

Since the rescaling with uc, in particular together with our two approaches (i) and

(ii), may be somewhat confusing, let us explain this in more detail. In deriving eq. (2.47f)

we have first applied eq. (2.46) and then taken the derivative with respect to uc. For

scenario (i) this is not very crucial because minimizing with respect to uc, ρ, γ is equivalent

to minimizing with respect to uc, ρ0, γ0. [To see this, consider the function Ωbaryon =

Ωbaryon(uc, ρ, γ) and take the derivatives with respect to uc, ρ, γ on the one hand and, via

the chain rule, with respect to uc, ρ0, γ0 on the other hand. The apparent additional terms

created in the latter procedure are all zero because the derivatives with respect to ρ0 and γ0

are required to vanish.] In scenario (ii) it is crucial to correctly capture the dependence on

uc within ρ and γ, because we do not minimize with respect to ρ0 and γ0. In both scenarios,

the eventual rescaling with uc (where ρ0 and γ0 by construction do not scale anymore with

uc) is then merely a convenient trick to simplify the numerical evaluation. As a check, we

have also evaluated the equations without this eventual rescaling and found the same result.

Once the minimum of the free energy is found within our ansatz for baryonic matter, we

need to compare the value of Ωbaryon at that minimum with the free energies of the mesonic

phase (= chirally broken phase without nuclear matter) and the quark matter phase (=

chirally restored phase), see figure 1. We shall restrict ourselves to zero temperature,

although the equations derived above for the baryonic phase provide the full temperature

dependence. At zero temperature, the free energy of all three phases at the stationary

point can be written in the very compact form

Ω =
2

7
Λ7/2 − 2

7
µnI −

1

14
k` , (2.51)

where Λ is an ultraviolet cutoff, replacing the boundary u = ∞, and where nI and k

remain to be determined numerically in the baryonic phase and have simple analytic forms

in the mesonic and quark matter phases, see below. All free energies show the same

constant divergence which becomes irrelevant when we compare them which each other.

In the baryonic phase, the form (2.51) is derived as follows. We start from eq. (2.41),

rescale nI → u
5/2
c nI , k → u4

ck, ρ → ucρ, γ → u
3/2
c γ, and introduce the new integration

variable u/uc. We do not rescale the externally given quantities µ and `. Neither would

we rescale T , but we have already set T = 0 and thus fT = 1. Then, we extremize the

resulting expression with respect to uc, taking into account the uc dependence in the upper

boundary of the integral, which now is Λ/uc. The condition that the derivative of Ωbaryon

with respect to uc vanishes, gives exactly eq. (2.51). As an aside, this procedure also

gives an alternative form of the minimization with respect to uc (2.47f). For the mesonic
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Figure 3. Absence of multiple instanton layers in approach (i): the plotted function is the right-

hand side of eq. (2.47e), divided by z0, evaluated at z0 → 0, and with nI , k, ρ, and γ from the

z0 = 0 solution. [In that limit, Nz still appears in the prefactor, see eqs. (3.1); without loss of

generality, we have set Nz =∞ for this plot.] A zero of this function would give a critical chemical

potential at which a solution with more than one layer, z0 > 0, starts to exist. The numerical result

shows the absence of such a critical chemical potential (and suggests that a layered structure is

approached asymptotically at µ =∞). The plot does not exclude the possibility of a discontinuous

transition to z0 > 0, but we have not found such a transition.

and quark matter phases we use the well-known results (for instance from appendix B of

ref. [12]) and note that at T = 0 they have the form (2.51) with

quark matter: nI = µ5/2

[ √
π

Γ
(

3
10

)
Γ
(

6
5

)]5/2

, k = 0 , (2.52a)

mesonic phase: nI = 0 , k = u4
c , uc =

[
4
√
πΓ
(

9
16

)
`Γ
(

1
16

) ]2

. (2.52b)

In particular, the free energy of the quark matter phase does not depend on `, while the

free energy of the mesonic phase does not depend on µ.

3 Results

3.1 Fully dynamical instanton width and deformation

In this section, we evaluate and discuss approach (i), i.e., we minimize the free energy with

respect to all free parameters, including the instanton width ρ and the deformation γ. For

the minimization with respect to z0 (2.47e) we observe that for small z0

∂q

∂z0
= −5

2

Nz + 1

Nz − 1

∂z

∂u

ρ2 − 6z2

(ρ2 + z2)9/2
z0 +O(z2

0) , (3.1a)

∂Q

∂z0
= −5

2

Nz + 1

Nz − 1

zρ4

(ρ2 + z2)7/2
z0 +O(z2

0) . (3.1b)
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This implies that z0 = 0 always solves eq. (2.47e), and thus one solution of our system is

always found by solving the remaining equations with z0 = 0. In those equations, then, the

number of instanton layers in the bulk Nz only appears implicitly in nI ∝ N~xNz/V , which

is determined dynamically anyway. We thus do not have to compute the free energies for

various values of Nz separately to find the ground state. This has to be done only for the

solutions with z0 > 0. To search for such solutions let us first assume that there is a contin-

uous transition from z0 = 0 to z0 > 0 as a function of µ. The critical chemical potential for

this transition can be found by dividing eq. (2.47e) by z0 to exclude the trivial solution and

inserting nI , ρ, γ and k from the z0 = 0 solution into the z0 → 0 limit of the resulting equa-

tion. [This is just like computing the critical temperature of a second-order phase transition

with (2.47e) playing the role of a gap equation.] The expansions (3.1) show that the critical

chemical potential (if it exists) does not depend on Nz because Nz only enters in the overall

prefactor of the equation (the special case Nz = 1, in which that prefactor diverges, brings

us back to the trivial solution z0 = 0). In other words, the points at which the solutions for

Nz ≥ 2 instanton layers start to exist all fall together to a single point. It turns out that

in approach (i) this point does not exist. This can be shown numerically by computing the

right-hand side of eq. (2.47e), with nI , ρ, γ and k from the z0 = 0 solution inserted. We

have plotted the result as a function of µ in figure 3. A zero of the plotted curve would

correspond to a critical chemical potential for the onset of a second instanton layer. We

see that there is no zero. Interestingly, multiple layers seem to be “postponed” to infinitely

large densities because the plotted function approaches zero asymptotically for µ→∞.

This argument does not exclude that there is a discontinuous transition to a phase

with multiple instanton layers. In a numerical search we have not found any solution

z0 > 0, but a rigorous proof for that absence is difficult. We discuss the only solution

we have found, Nz = 1, z0 = 0, in the following, and come back to solutions that show

instanton repulsion in section 3.2, where we work with approach (ii), in which case we do

find solutions with z0 > 0, both in a continuous and a discontinuous transition, depending

on the values of ρ0 and γ0.

The results for Nz = 1, z0 = 0 are shown in figure 4, which leads to the following

observations.3

• The transition from the mesonic to the baryonic phase is second order, as can be seen

from the continuity of the baryon density in the upper left panel. This implies the ab-

sence of a binding energy, in contradiction to real-world nuclear matter. This result is

qualitatively the same as for the pointlike approximation of baryons (shown as dashed

lines). At the baryon onset, our solution approaches that of the pointlike approxima-

3All quantities in this and all following figures are rescaled with appropriate powers of `, i.e., µ stands for

`2µ, nI for `5nI etc. If we wish to assign physical units to the plot, we have to choose values for the three

parameters of the model, say MKK = 950 MeV, λ = 16, and L = 0.3π/MKK. Then, using the relations (2.44)

and (2.45) for the dimensionful chemical potential and density, the maximum baryon chemical potential in

the two upper panels is 3.3 GeV (about 3.6 times the chemical potential of the real-world baryon onset),

while the baryon density at that point is 5.3 fm−3 (about 35 times real-world nuclear saturation density).

Here we are only interested in the qualitative properties of our approximations — which, in figure 4, are

not in agreement with real-world baryonic matter — and thus these numbers do not mean much.
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Figure 4. Results after minimizing with respect to instanton deformation and instanton width

[approach (i)]. Upper left panel: location of the tip of the connected flavor branes uc and baryon

density nI (solid lines), compared to the corresponding quantities in the pointlike approximation [18]

(dashed lines). The vertical dashed line marks the baryon onset at µ ' 0.175. Upper right panel:

instanton deformation γ and instanton width ρ (solid lines). We have also plotted γ0 and ρ0 (dashed-

dotted lines), related to γ and ρ via eq. (2.46), which are relevant for a comparison to the results of

section 3.2, where we work with fixed γ0 and ρ0 [approach (ii)]. Lower panels: comparison between

the symmetrized trace prescription (blue solid lines), the unsymmetrized one (red solid lines) and

the pointlike approximation (dashed lines). The lower right panel shows that there is no chiral

restoration, Pbaryon/Pquark > 1 for all µ. Note the much larger µ scale in the lower panels compared

to the upper ones. Here and in all other figures, we have set the temperature to zero.

tion. Qualitatively, this is exactly the same observation that had already been made in

ref. [12], where the instanton deformation was not determined dynamically and where

only one instanton layer was taken into account. We thus conclude that allowing for

a dynamical instanton deformation and multiple instanton layers is not sufficient to

turn the unphysical second order baryon onset into a physical first order transition.

• The instanton deformation γ decreases just after the onset and then increases for

large baryon densities, for very large µ we find γ ∝ µ2. Hence at large densities the

instanton becomes elongated along the holographic direction. More specifically, the

instanton width in the holographic direction ρ increases monotonically with density,

with asymptotic behavior ρ ∝ µ3/2, while the instanton width in the spatial direction
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ρ/γ behaves non-monotonically, increasing for small µ and decreasing like µ−1/2 for

very large µ. At the baryon onset, the width of the instanton is zero in all directions.

Since the density just above the onset is infinitesimally small, our approximation

thus predicts a pointlike baryon in the vacuum. We know that holographic baryons

do acquire a width if corrections of finite λ are taken into account. This indicates

that our present approximation is too simplistic to yield realistic isolated baryons.

• There is no chiral restoration at large chemical potentials. This can be seen from the

lower right panel, where the ratio of the baryonic pressure over the pressure of the

chirally restored phase (quark matter) is shown (P = −Ω). Chiral restoration would

occur if that ratio were to decrease below 1. While in the pointlike approximation

this ratio approaches 1 for µ → ∞ (which can be shown analytically [23]), the ratio

appears to saturate at a much larger value, Pbaryon/Pquark ∼ 2.4, for our extended,

and deformed, instantons. Again, it is instructive to compare this result to that of

ref. [12], where the deformation was fixed. In that case, chiral restoration did occur.

Here, we allow the system to settle at a lower free energy by adjusting its instanton

deformation. As a consequence, the transition to quark matter has disappeared.

• In the lower panels we compare the results for the two different prescriptions for the

non-abelian DBI action. We see that they do differ for large chemical potentials,

the free energy from the symmetrized prescription is somewhat larger (smaller

ratio Pbaryon/Pquark), however the difference is small and not relevant for our main

conclusions. Had we plotted both results in the upper panels, the curves would

have been indistinguishable by naked eye. Since the unsymmetrized prescription is

much simpler, we shall in the following section only work with it and discard the

symmetrized prescription.

3.2 Constraints on instanton shape

We now turn to approach (ii), where we impose the constraints (2.46) on ρ and γ. One of

the crucial differences to the previous section is that now we do find solutions for all Nz.

We thus have to compare the free energies of all phases with different numbers of instanton

layers in the regime where their solutions coexist.

Let us start with a specific choice of parameters, ρ0 = 2.5, γ0 = 4. The results for the

free energies and corresponding densities are shown in the left column of figure 5. [The ratio

of the free energy densities of two phases is obviously the same as the ratio of pressures

because the minus signs in the free energies simply cancel. However, since a ratio larger

than 1 (and a larger pressure, but a lower free energy) is favorable, it is somewhat more

natural to label the vertical axis with the ratio of pressures, as in figure 4, although in the

text we continue to speak of the free energy of the phases.] The first important result is

that the solution for Nz = 1 is multi-valued in a certain regime of chemical potentials and

as a consequence there is a first-order baryon onset, in contrast to the result of the previous

section. In the left column, the solutions for all Nz > 1 are single-valued and start to exist

at the same point. As soon as they exist, their free energy is lower (and their density larger)

than that of the Nz = 1 solution. We find that the free energy of the Nz = 2 solution is
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Figure 5. Pressures and corresponding densities for an instanton width ρ0 = 2.5 and two different

instanton deformations, γ0 = 4 (left column) and γ0 = 6.2 (right column). Upper row: comparison

of pressures of baryonic matter PNz
, with Nz = 1, 2, 3, 4, 5,∞ instanton layers in the bulk (solid

lines) and the mesonic phase Pmeson (dashed lines). In both panels, there is a first order phase

transition from the mesonic phase to baryonic matter. In the left panel, this transition is to the

Nz = 1 phase, and the solutions for Nz > 1 only start to exist at a larger chemical potential. In

the right panel, the solutions Nz > 1 start to exist below the baryon onset, and the transition

is to the Nz = 2 phase. There are energetically disfavored branches whose pressure we have not

shown (for Nz = 1 in the left panel and for all Nz in the right panel). Lower row: corresponding

baryon densities for Nz = 1 and Nz = 2, showing all solutions, including the energetically disfavored

branches. The dashed vertical lines indicate the baryon onset. The curves for Nz = 3, 4, 5,∞ are

not shown since they would be difficult to distinguish from the Nz = 2 curve on the given scale.

lowest, and ΩNz=2 < ΩNz=3 < . . . < ΩNz=∞ < ΩNz=1. Therefore, there is a transition from

the baryonic phase with a single instanton layer to a baryonic phase where two instanton

layers separate in the bulk. This transition is smooth. The right column of figure 5 shows

the result for the same ρ0, but a larger deformation parameter, γ0 = 6.2. Now, the solutions

for all Nz are multivalued, and there is a first-order baryon onset directly to the phase

with Nz = 2. In both cases, we have thus, by imposing the constraint (2.46), arrived at a

first-order phase transition to baryonic matter, as expected from real-world nuclear matter.

In figure 6 we show the details of the solution obtained for the parameters from the

left column of figure 5. In the upper row, the instanton profile in the holographic direction

D(z), see eq. (2.24b), is plotted for three different chemical potentials. The chemical po-
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Figure 6. Instanton profiles (first two rows) and corresponding embedding functions of the flavor

branes (third row) for ρ0 = 2.5, γ0 = 4 and three different chemical potentials, µ = 1 (left column),

µ = 3 (middle column), µ = 6 (right column). First row: profiles D(z) in the holographic direction z.

For chemical potentials above a certain critical potential (µ ' 0.43 for the given parameters, see left

column of figure 5) solutions for all Nz exist, but the energetically preferred solution is Nz = 2 [thick

(red) line]. We have also plotted the energetically disfavored solutions Nz = 1, 3,∞ [thin (black)

lines]. Second row: energetically preferred profiles D(x, z) in the holographic and radial directions,

showing that the instanton gets elongated along the z direction for large densities. Note that the

vertical axis in the first row and the color scale in the second row is adjusted for each panel (whereas

the z and x intervals are fixed). Third row: the solid (red) curve is the embedding of the preferred

Nz = 2 solution, with the dots marking the centers of the two instanton layers (this is the calculated

version of the cartoon in figure 1). The dashed (black) curve, which is barely distinguishable from

the solid curve, is the embedding for the (energetically disfavored) Nz =∞ solution.
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tentials chosen here are all above the onset of the Nz = 2 solution, i.e., the (red) thick line

that represents the solution with lowest free energy has always two maxima, symmetrically

placed around z = 0. These maxima move apart with increasing chemical potential. The

spreading of the instantons in the bulk with increasing density was observed previously in

the Sakai-Sugimoto model and related models in various different approximations. Firstly,

it was suggested in the confined phase of the Sakai-Sugimoto model within a simple ap-

proximation unrelated to any single-instanton solution [19]. A similar observation, taking

into account a crystalline structure in both spatial and holographic coordinates, led to the

term “baryonic popcorn” [24, 31], referring to a successively increasing number of instanton

layers in the holographic direction with increasing density — in contrast to our approxi-

mation, where at most two layers are favored. The observation of baryonic popcorn was

confirmed in a full numerical calculation within a simpler, 2+1 dimensional model [29, 53].

These results in the literature suggest that the occurrence of multiple instanton layers, or,

more generally, the spreading of the instantons away from the tip of the connected flavor

branes, at large baryon density is a general feature, and it is intriguing that our simple

approximation for homogeneous baryonic matter, based on the flat-space BPST instanton

solution, shows the same feature, if we enforce the constraints (2.46).

In the second row of figure 6 we show the same instanton profiles, but now in the

two-dimensional space of holographic and spatial directions. We recall that even though

we have averaged over position space before solving the equations of motion, we can still

go back to the instanton profile D(x, z) from eq. (2.24a) and ask how this profile looks

for different chemical potentials. Although we have fixed ρ0 and γ0, the instanton width

ρ and deformation γ remain nontrivial functions of the chemical potential due to their

dependence on uc, which is determined dynamically. The figure shows that the instantons

not only develop a second layer at large µ, but also become elongated in the holographic

direction: with increasing density, the instantons get wider in the holographic direction

because ρ ∝ uc increases (already obvious from the first row of the figure), and narrower

in the spatial direction because ρ/γ ∝ u−1/2
c decreases.

The third row of figure 6 shows the embedding of the flavor branes in the background

geometry for the same chemical potentials as the first two rows. These plots illustrate the

instanton layers in the subspace spanned by u and x4. They show in particular that, due

to the flatness of the brane profile just above uc, a small distance between the instanton

layers in the z (or u) coordinate can result in a large distance along the brane profile, if the

instantons are close to uc. We also see that the shape of the profile does not change qual-

itatively with density (apart from moving up), even though the instantons move from the

flat part of the profile up to the almost vertical segments of the branes. It does not change

much with the number of instanton layers either, which can be seen from the comparison

with the Nz =∞ embedding (we have checked that the embeddings for other values of Nz

are also barely distinguishable from the shown curves). In other words, the flavor branes

do not seem to care much about how many instanton layers they carry and where they sit.

As we have seen in figure 5, different choices of ρ0 and γ0 can lead to qualitatively

different behaviors of the system. In principle, we can now scan the entire two-dimensional
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Figure 7. Phase diagrams with constraints on instanton width and deformation [approach (ii)].

Solid and dashed lines are first and second order phase transition lines, respectively. There are two

different baryonic phases, with one, Nz = 1, or with two, Nz = 2, instanton layers.

parameter space, and determine the phases and phase transitions for all chemical potentials.

Keeping T = 0, this would result in a three-dimensional ρ0-γ0-µ phase diagram. We present

two two-dimensional slices of this phase diagram in figure 7, where we have fixed ρ0 and

computed all phase transition lines in the γ0-µ plane. In the right panel, ρ0 = 2.5, i.e., the

results of figures 5 and 6 are obtained along two vertical lines in that panel. The left panel

has been calculated with a smaller value, ρ0 = 1.5. In appendix C we explain how we have

computed the various phase transition lines and critical points.

Before we come to the observations, let us add a remark regarding the connection of

the phase diagrams to the results of the previous section. The minimization carried out

in section 3.1 determines a trajectory of the system through the three-dimensional space

spanned by µ, ρ0, γ0. This trajectory intersects each of the slices shown in figure 7 in a

point. We find that for both slices this point lies in the region where Nz = 2 (for the

left slice this can be read off of the upper right panel of figure 4). One might thus naively

conclude that we have found a stationary point of the free energy with Nz > 1, even though

we have argued in section 3.1 that such a point does not exist. But this conclusion is not

correct: there may very well be a minimum at Nz = 2 under the constraint of a fixed pair

(ρ0, γ0), but no minimum for the same µ with Nz = 2 if we search for the minimum in the

entire parameter space, including ρ0 and γ0.

The main observations of figure 7 are as follows. We see that the baryon onset can be of

first order, as in figure 5, but also of second order, as in section 3.1. It appears that smaller

values of ρ0 can produce a second order onset. This makes sense because by decreasing ρ0

the instanton width becomes smaller, i.e., we approach the pointlike limit, and we know

that the pointlike approximation predicts a second order onset. Small values of ρ0 (like high

densities and large values of γ0) also seem to prefer instanton spreading. This suggest that,

if we were to extend the pointlike approximation by allowing for instanton repulsion, we

would presumably find the degenerate, delta-peaked instantons move up in the holographic

direction with increasing chemical potential. This calculation might be of some interest

because it would be the simplest system in which the instanton repulsion could be observed,
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possibly allowing for some analytic results, at least in certain limits such as large densities.

On the other hand, our present results show that the pointlike approximation is not a good

approximation for large densities and thus we do not include this calculation here. In the

present scenario, the instanton width ρ = ρ0uc is always nonzero because uc never goes to

zero. Thus, one way of thinking about the results is that in approach (i) of section 3.1, the

system chooses to have pointlike baryons at infinitesimally small densities, resulting in a

second order onset, and here, in approach (ii), we forbid pointlike baryons via the external

constraint ρ0 > 0 and in accordance with expectations from finite-λ corrections, and thus

we are able to see a first order onset.

For sufficiently small values of γ0, i.e., stretching the instanton in the spatial direction

compared to the holographic direction, there is no baryonic phase at all: the vacuum is

directly superseded by quark matter. For slightly larger values of γ0 the baryon onset is

followed by a transition to chirally restored matter (upon increasing µ at fixed ρ0 and γ0).

The numerical results suggest that there is no chiral transition at all for sufficiently large

γ0. However, the numerics become difficult at very large µ, and thus we cannot say this

with certainty. In any case, except for a very narrow regime, the chiral phase transition

occurs — if at all — at much larger values of the chemical potential than the baryon onset

(note the logarithmic µ scale in figure 7).

It is interesting to note that the overall structure of the phase diagrams is very similar

to the one obtained with the “homogeneous ansatz”, with γ0 replaced by the ’t Hooft

coupling λ, see figure 7 of ref. [12] (by comparing the equations it is obvious that the

instanton deformation γ in the present instantonic ansatz plays a very similar role to λ

in the homogeneous ansatz). One difference is that the chiral phase transition line bends

in the other direction: within the homogeneous ansatz the baryon onset is never followed

by a chiral phase transition if λ is held fixed. In both cases, µ-dependent parameters

[here ρ0(µ), γ0(µ), there λ(µ)] would allow for an equation of state that shows a first-order

baryon onset and a transition to quark matter at moderately large densities. From a

purely phenomenological point of view, it might be tempting to search for such a suitable

µ dependence: one might add ρ0 and γ0 to the three free parameters of the model and fit

them to known properties of nuclear matter at the saturation density, or to the (poorly

known) critical chemical potential of the chiral phase transition. However, fitting them

in a density-dependent way would necessarily include some arbitrariness or, at best, some

extrapolation to large densities. And, from a theoretical point of view, there is no reason

for using the phase diagrams of figure 7 and moving through them with externally given

functions ρ0(µ), γ0(µ). We do know how ρ and γ “want” to behave as a function of µ in the

given approximation. This was discussed in section 3.1 and has led to unphysical results, a

second-order baryon onset and no chiral restoration. Therefore, the results of the present

section should be understood as a step towards a better understanding of the instanton

approach to baryonic matter, its relation to the homogeneous ansatz and, in future work,

towards further improvement of the approximation, rather than a straightforward recipe

for constructing a strong-coupling equation of state for dense matter inside compact stars.
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4 Summary and outlook

We have investigated homogeneous baryonic matter at zero temperature in the decom-

pactified limit of the Sakai-Sugimoto model. Our main point was to improve existing

approximations based on flat-space instantons and to ask whether these improvements

bring us closer to real-world nuclear matter, in particular whether they give rise to a first-

order baryon onset and a chiral transition to quark matter at high densities. Motivated by

results of holographic baryons in the vacuum, we have introduced a deformation parameter

into the instanton ansatz that allows for an anisotropy in the space of holographic and spa-

tial directions. While in the spatial direction we have employed an averaging procedure,

accounting for homogeneous matter in a very simple way, we have introduced instanton

repulsion in the bulk: the instantons are allowed to spread out in the holographic direction

in the form of a number of instanton layers, this number and the distance between the

layers being determined dynamically.

We have found that if we minimize the free energy with respect to the width and

the deformation of the instantons (and with respect to the various other parameters of

our ansatz) that (1) there is a (unphysical) second-order baryon onset, and at the onset

the instantons are pointlike, reproducing the approximation of degenerate, delta-peaked

instantons, (2) baryons (unphysically) refuse to go away at large densities, i.e., there is

no chiral restoration, (3) at large densities, the instantons tend to get elongated along the

holographic direction, and (4) the instantons prefer to sit all at the same point in the bulk,

i.e., the number of instanton layers remains 1 for all densities.

Besides this most straightforward approach we have also worked with external con-

straints on the width and the deformation of single instantons — being aware that our

simple approximation cannot capture the shape of the full solution — and studied their

effect on the many-instanton system. More precisely, we have constrained the width ρ to be

proportional to the (density-dependent) location of the tip of the connected flavor branes

uc and the deformation parameter γ to be proportional to u
3/2
c , and treated the proportion-

ality constants ρ0 and γ0 as free parameters. Interestingly, with these constraints, which in

particular result in non-pointlike instantons at all densities, we do find that at sufficiently

large densities the instantons are divided into two layers. With increasing density these lay-

ers move up in the holographic direction, away from the tip of the connected flavor branes.

All higher numbers of layers turn out to be energetically disfavored. In particular, we have

included the possibility of infinitely many layers, corresponding to a smeared distribution

along the holographic direction. Our results regarding the instanton layers is interesting

in view of various other approximations and approaches in the same model, and complete

solutions in simplified models, which show similar effects [19, 24, 29, 31, 53, 54]. We have

also found that in the presence of the constraints on width and deformation, we do see a

first-order baryon onset and chiral restoration at large densities, as expected from QCD:

for sufficiently large ρ0, the baryon onset is first order, and for a small range of values of γ0,

baryonic matter is superseded by chirally restored quark matter, with the critical chemical

potential for chiral restoration being very sensitive on γ0.
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In conclusion, we have shown that the present instanton approximation — if evaluated

at its stationary point — is too simplistic to show multiple instanton layers (which are sug-

gested by other approximations of the model), and it does neither show a first-order baryon

onset nor chiral restoration (which occur in the real world). We have shown that by im-

posing external constraints on the shape of the single instantons, these features do appear.

For a short discussion of future perspectives we first recall that this work has been, to

a large extent, motivated by a phenomenological question: can we come up with a strong-

coupling model description of dense nuclear and quark matter within a single model? In

principle, we could use our results to find such a model description. However, to fulfill

even the most fundamental requirements of real-world matter, this would require a theo-

retically ill-motivated, density-dependent choice of ρ0 and γ0, which renders any resulting

predictions questionable. Therefore, the results should mainly be considered as a further

theoretical step towards such a model. We have embedded our ansatz into a more general

setup, which allows for systematic improvements. For instance, it would be very useful to

extend our ansatz to one that incorporates a nontrivial dependence on the ’t Hooft coupling

λ, even though a systematic treatment of finite-λ effects would require string corrections,

which is very difficult. It would also be interesting to gain a deeper understanding of the re-

lation between our instanton approach and the results of the “homogeneous ansatz” [12, 19]

and of the relation of both to the full solution. For the latter it is useful to retreat to simpler

models or simplifications of the Sakai-Sugimoto model, where the full solution is available

and can be compared to the various approximations [29, 53]. Other promising extensions,

within the present ansatz or one that is further improved, are to include nonzero temper-

atures (all our equations contain the full temperature dependence, but we have restricted

ourselves to zero temperature in the numerical results), to include an isospin chemical

potential, the possibility of a chiral density wave, or to add an external magnetic field.
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A Instantons in the vacuum from the Yang-Mills approximation

In this appendix we discuss the single-instanton solution in the deconfined geometry. The

calculation differs from that in the main part in several aspects: besides considering a

single instanton, and not a many-instanton system, we use the Yang-Mills (YM) action,

and we employ an expansion for large λ, in particular using the leading order result in λ

for the embedding function for the flavor branes. As a consequence, we are able to solve

the equations of motion for all gauge fields analytically, including the dependence on the

position space coordinates. The analogous calculation in the confined geometry can be
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found in the literature, for maximally separated flavor branes [15] and with a general, not

necessarily maximal, separation [16]. The present calculation in the deconfined geometry

in particular yields a nontrivial temperature dependence for the instanton width and the

instanton deformation.

In the main part, we have ignored any dependence of the abelian gauge field Â0 on ~X,

and thus we first have to reinstate F̂0i into eq. (2.8) [or eq. (2.9), which only differs from

eq. (2.8) by terms of order F 4, which shall be neglected in this appendix] and insert the

result into the DBI action (2.2). Then, we derive the YM action by expanding in the field

strengths up to order F 2, which results in the action

S ' S0 + SYM + SCS , (A.1)

where

S0 =
λNcNfM

4
KK

24π3

V

T
λ2

0

∫ ∞
uc

duu5/2
√

1 + u3fTx′24 , (A.2)

with λ0 ≡ λ/(4π), is a purely geometric term, not depending on any gauge fields, and

where

SYM =
λNcMKK

48π3T

∫
d3x

∫ ∞
uc

duu5/2
√

1 + u3fTx′24

×

(
2λ2

0Tr[F̂ 2
0i] + fTTr[F 2

ij ]

2fTu3
+
λ2

0Tr[F̂0u]2 + fTTr[F 2
iu]

1 + u3fTx′24

)
, (A.3a)

SCS =
λNcMKK

32π3T

∫
d3x

∫ ∞
−∞

dz â0Tr[FijFkz]εijk . (A.3b)

Implicitly, we have introduced the dimensionless gauge fields ai = Ai
MKK

, au =

AUR(MKKR)2, and, as in the main text, â0 = Â0
λ0MKK

.

In the absence of instantons, the equation of motion for x′4(u) is given solely by S0.

With the boundary condition x′4(uc) =∞ we find

x′24 =
u8
cfT (uc)

u3fT (u) [u8fT (u)− u8
cfT (uc)]

. (A.4)

This is the leading order result for small instantons. (There are subleading contributions

which we ignore, i.e., we work without backreactions of the instanton on the embedding of

the flavor branes.) For small instanton widths, the integrands in SYM and SCS are nonzero

only in a small vicinity around z = ~x = 0. This renders the abelian terms F̂ 2
0i, F̂

2
0z of higher

order than the non-abelian ones F 2
ij , F

2
iz. Anticipating the eventual solution, one can do this

systematically by rescaling ~x→ ~x/
√
λ, z → z/

√
λ, and the gauge fields accordingly, and ap-

plying a systematic expansion for large λ. To keep the notation simple, we do not introduce

rescaled quantities, but keep this expansion in mind, which yields leading and subleading

contributions to the energy of the instanton that are eventually of first and zeroth order in λ,

SYM = S
(1)
YM + S

(0)
YM + . . . (A.5)
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To compute these contributions, we first insert (A.4) into the YM action and change the

integration variable from u to z. Then, S
(1)
YM is obtained by an expansion around z = 0

and dropping the abelian field strengths and all higher order terms O(z2),

S
(1)
YM =

λNcMKK

96π3T

uc
√
fT (uc)

γ

∫
d3x

∫ ∞
−∞

dz

(
Tr[F 2

ij ]

2
+ γ2Tr[F 2

iz]

)
, (A.6)

with

γ =
√

6u3/2
c

√
1−

5u3
T

8u3
c

. (A.7)

Consequently, to leading order, the equations of motion for the non-abelian gauge fields

yield the flat-space BPST solutions, with field strengths

Fij = εijaσa
2(ρ/γ)2

[x2 + (z/γ)2 + (ρ/γ)2]2
, Fiz = −σi

γ

2(ρ/γ)2

[x2 + (z/γ)2 + (ρ/γ)2]2
, (A.8)

equivalent to the ansatz (2.16) in the main text.

In order to compute the abelian field strengths, we go to subleading order,

S
(0)
YM =

λNcMKK

96π3T

uc
√
fT (uc)

γ

∫
d3x

∫ ∞
−∞

dz

{
λ2

0

Tr[F̂ 2
0i] + γ2Tr[F̂ 2

0z]

fT (uc)
+ 3ucz

2Tr[F 2
iz]

+
4u6

c + 10u3
cu

3
T − 5u6

T

8γ2u5
cfT (uc)

z2

(
Tr[F 2

ij ]

2
+ γ2Tr[F 2

iz]

)}
. (A.9)

The equation of motion for â0 becomes [recall that we work in Euclidean space, where

F̂ 2
0i = −(∂iâ0)2, F̂ 2

0z = −(∂zâ0)2]

∂2
i â0 + γ2∂2

z â0 = −
3γ
√
fT (uc)

4λ2
0uc

Tr[FijFkz]εijk , (A.10)

with the solution

â0(x, z) = −
3
√
fT (uc)

2λ2
0uc

x2 + (z/γ)2 + 2(ρ/γ)2

[x2 + (z/γ)2 + (ρ/γ)2]2
. (A.11)

Inserting the solutions (A.8) and (A.11) back into the action yields the energy

E ' T [S
(1)
YM + S

(0)
YM + SCS] = 18π2κMKKuc

√
fT (uc)

[
1 +

9γ2

5λ2
0u

2
cρ

2
+

ucβρ
2

γ2fT (uc)

]
, (A.12)

where the first term in the square brackets on the right-hand side comes from S
(1)
YM, the

second from the terms containing â0 in S
(0)
YM and SCS, and the third from the non-abelian

contributions to S
(0)
YM, and where we have abbreviated κ = λNc

216π3 and the temperature-

dependent factor

β ≡ 1−
u3
T

8u3
c

−
5u6

T

16u6
c

. (A.13)
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Minimizing E with respect to ρ yields

ρ2 =
12π√

5λ

γ2
√
fT (uc)

u
3/2
c β1/2

. (A.14)

This solution justifies our expansion a posteriori since we now confirm that S
(1)
YM ∼ O(λ)

and S
(0)
YM, SCS ∼ O(1).

B Equations of motion with symmetrized trace prescription

Applying the symmetrized trace prescription (2.32) to the DBI action (2.2) yields the

Lagrangian

L = u5/2 (1 + u3fTx
′2
4 − â′20 + 2ḡ1)(1 + 2ḡ2)− ḡ1ḡ2√

(1 + u3fTx′24 − â′20 + ḡ1)(1 + ḡ2)
− nI â0q(u) . (B.1)

[to be compared to the Lagrangian from the unsymmetrized prescription (2.37)], where,

for the sake of a compact notation in this appendix, we have abbreviated

ḡ1 =
g1

3
, ḡ2 =

g2

3
, (B.2)

with g1, g2 from eqs. (2.27). The equations of motion in integrated form become

u5/2â′0[(1 + 2ḡ2)(1 + u3fTx
′2
4 − â′20 ) + ḡ1ḡ2]√

1 + ḡ2(1 + u3fTx′24 − â′20 + ḡ1)3/2
= nIQ , (B.3a)

u5/2u3fTx
′
4[(1 + 2ḡ2)(1 + u3fTx

′2
4 − â′20 ) + ḡ1ḡ2]√

1 + ḡ2(1 + u3fTx′24 − â′20 + ḡ1)3/2
= k , (B.3b)

with Q as defined in the main part of the paper, eq. (2.39). Dividing the first by the second

equation yields
â′0

u3fTx′4
=
nIQ

k
, (B.4)

which can be used to write

1 + u3fTx
′2
4 − â′20 = 1 + γ1â

′2
0 = 1 + γ2x

′2
4 , (B.5)

with

γ1 ≡
k2

u3fT (nIQ)2
− 1 , γ2 ≡ u3fT

[
1− u3fT (nIQ)2

k2

]
. (B.6)

This allows us to write both equations of motion in the form

X[(1 + 2ḡ2)(1 +X) + ḡ1ḡ2]2 = η(1 + ḡ2)(1 + ḡ1 +X)3 , (B.7)

where X = γ1â
′2
0 for eq. (B.3a) and X = γ2x

′2
4 for eq. (B.3b), and

η ≡ k2 − u3fT (nIQ)2

u8fT
. (B.8)
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The equations of motion (B.7) can again be solved algebraically for â2
0, x′24 , as for the

unsymmetrized prescription. However, now, they are cubic equations for â2
0, x′24 , which

makes the solution much more unwieldy.

Next, we need to evaluate the stationarity equations for the free energy. For the

minimization with respect to nI , we have

∂Ωbaryon

∂nI
=

∫ ∞
uc

du

[
u5/2

2

(
∂ḡ1

∂nI
ζ1 +

∂ḡ2

∂nI
ζ2

)
+ â′0Q

]
− µ , (B.9)

where

ζ1 ≡
(1 + u3fTx

′2
4 − â′20 )(3 + 4ḡ2) + ḡ1(2 + 3ḡ2)

(1 + u3fTx′24 − â′20 + ḡ1)3/2(1 + ḡ2)1/2
, (B.10a)

ζ2 ≡
(1 + u3fTx

′2
4 − â′20 )(3 + 2ḡ2) + ḡ1(4 + 3ḡ2)

(1 + u3fTx′24 − â′20 + ḡ1)1/2(1 + ḡ2)3/2
. (B.10b)

A completely analogous calculation yields the derivatives with respect to ρ, γ, z0, i.e., we

have derived the analogues of eqs. (2.47b)–(2.47e), while the minimization with respect to

k is again given by eq. (2.47a). It remains to compute the derivative with respect to uc,

which is given by [12],

∂Ωbaryon

∂uc
= (kx′4 − L)u=uc +

∫ ∞
uc

du
∂L
∂uc

, (B.11)

where the derivative in the second term is the explicit derivative with respect to uc (not

acting on the uc dependence in â0, â′0, and x′4). For the first term, we need the following

leading-order behaviors at u→ uc,

ḡ1 '
ucfT (uc)ᾱ

3γ0(u− uc)
, ḡ2 ' γ0ᾱ , η ' k2

u8
cfT (uc)

, (B.12)

with γ0 from eq. (2.46), ᾱ ≡ α/3 with α defined in eq. (2.50), and

γ2 ' u3
cfT (uc) , x′4 '

c1√
u− uc

, (B.13)

with c1 given by the following cubic equation for c2
1,

3u10
c γ

3
0fT (uc)c

2
1[3u2

cc
2
1(1 + 2γ0ᾱ) + ᾱ2]2 = k2(1 + γ0ᾱ)(3γ0u

2
cc

2
1 + ᾱ)3 . (B.14)

Using this equation, we compute

(kx′4 − L)u=uc = − ᾱk

3u2
cc1γ0

√
u− uc

3u2
cc

2
1γ0(3 + 4ᾱγ0) + ᾱ(2 + 3γ0ᾱ)

3u2
cc

2
1γ0(1 + 2γ0ᾱ) + ᾱ2γ0

+
3
√

3 â0(uc)u
2
c ᾱ√

u− uc
,

(B.15)

and∫ ∞
uc

du
∂L
∂uc

=

∫ ∞
uc

du

[
u5/2

2

(
∂ḡ1

∂uc
ζ1 +

∂ḡ2

∂uc
ζ2

)
+ nI â

′
0

∂Q

∂uc

]
− 3
√

3 â0(uc)u
2
c ᾱ√

u− uc
. (B.16)
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Consequently, the minimization with respect to uc becomes

0 =

∫ ∞
uc

du

[
u5/2

2
(ḡ1ζ1p− + ḡ2ζ2p+) + nI â

′
0

∂Q

∂uc

− ᾱk(u− uc)−3/2

6u2
cγ0c1

3u2
cc

2
1γ0(3 + 4ᾱγ0) + ᾱ(2 + 3γ0ᾱ)

3u2
cc

2
1γ0(1 + 2γ0ᾱ) + ᾱ2γ0

+
3u2

c

u1/2fc

ḡ1ζ1

2

]
. (B.17)

This completes the set of equations needed to find the ground state for the case of the

symmetrized trace prescription. The equations are very similar to the simpler ones of the

unsymmetrized case. The main difference are the cubic equations whose solutions enter the

integrands of all stationarity equations, making the numerical evaluation more involved.

C Calculation of phase transition lines and critical endpoints

In this appendix we explain our calculation of the various phase transition lines for the

phase diagrams in figure 7. It is obviously very tedious to compute the ground state on a

grid in the ρ0-γ0-µ space and deduce the phase transition lines from this calculation. More

efficiently, after getting an idea of the overall structure of the phase diagram, one may

proceed as follows.

• Chiral phase transition. This is the first-order phase transition between the chirally

symmetric phase and the baryonic phase, i.e., the phase transition line is defined by

Ωbaryon = Ωquark. We solve this equation simultaneously with eqs. (2.47b), (2.47e),

and (2.47f) for the variables k, nI , z0, and µ [all rescaled with appropriate powers

of uc, such that eq. (2.47a) decouples]. The baryonic phase at this transition can

have either z0 = 0 (Nz = 1) or z0 > 0 (Nz = 2). The transition with z0 = 0 can be

computed separately without the minimization with respect to z0 (2.47e), and the

intersection of the two phase transition lines defines a critical point, see upper left

corner of both panels in figure 7.

• Onset of second instanton layer. This is the transition within the baryonic phase

which separates z0 = 0 from z0 > 0 (z0 > 0 only appears for Nz = 2, no higher

number of instanton layers is preferred). This transition can be either second or first

order. The second order transition line is determined as explained in the context of

figure 3: after dividing the minimization with respect to z0 (2.47e) by z0, we take

the limit z0 → 0, i.e., we approach the transition form the z0 > 0 side. The resulting

equation is solved simultaneously with eq. (2.47f) in the limit z0 → 0 for the variables

nI and k, which are then used to compute the critical chemical potential with the

help of eq. (2.47b). The calculation of the first-order onset of the second layer is a

little more complicated because we have to compare the free energies of the phases

with one and two layers. We need to solve the following 7 equations simultaneously:

eqs. (2.47b) and (2.47f) for z0 = 0, eqs. (2.47b), (2.47e), and (2.47f) for z0 > 0, plus

the two conditions that the chemical potentials and the free energies of both phases
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are identical. The corresponding 7 variables are k, nI , µ for both phases and z0 for the

z0 > 0 phase (as always we work with quantities rescaled by uc, so, more precisely,

the two chemical potentials used as variables in our calculation are µ̃1 = µ1/uc,1,

µ̃2 = µ2/uc,2, and at the phase transition µ1 = µ2, while in general µ̃1 6= µ̃2).

The critical point that separates the second-order from the first-order transition line

can be found by asking at which γ0 the curve z0(µ) becomes multivalued, which is

equivalent to asking at which γ0 this curve bends to the left at z0 → 0.

• Baryon onset. This is the phase transition between the mesonic and baryonic phases.

Therefore, it is defined by Ωbaryon = Ωmeson, and this equation has to be solved

simultaneously with eqs. (2.47b), (2.47e), and (2.47f) for the variables k, nI , z0, and

µ. This is completely analogous to the chiral phase transition. Again, we need to

compute the two cases z0 = 0 and z0 > 0. The former transition can be either first

order or second order, and the second order transition can be found by solving the

single equation (2.47f) for k with an infinitesimally small nI → 0.
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