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Abstract: We find solutions of a gravity-Yang-Mills-Higgs theory in four dimensions that

represent asymptotic anti-de Sitter charged black holes with partial/full gauge symme-

try breaking. We then apply the AdS/CFT correspondence to study the strong coupling

regime of a 2 + 1 quantum field theory at temperature T and finite chemical potential,

which undergoes transitions to phases exhibiting the condensation of a composite charged

vector operator below a critical temperature Tc, presumably describing p + ip/p-wave su-

perconductors. In the case of p + ip-wave superconductors the transitions are always of

second order. But for p-wave superconductors we determine the existence of a critical

value αc of the gravitational coupling (for fixed Higgs v.e.v. parameter m̂W ) beyond which

the transitions become of first order. As a by-product, we show that the p-wave phase is

energetically favored over the p + ip one, for any values of the parameters. We also find

the ground state solutions corresponding to zero temperature. Such states are described

by domain wall geometries that interpolate between AdS4 spaces with different light veloc-

ities, and for a given m̂W , they exist below a critical value of the coupling. The behavior

of the order parameter as function of the gravitational coupling near the critical coupling

suggests the presence of second order quantum phase transitions. We finally study the

dependence of the solution on the Higgs coupling, and find the existence of a critical value

beyond which no condensed solution is present.
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1 Introduction

In recent years the application of AdS/CFT or more generally gauge/gravity correspon-

dence [1–3] to the study of condensed matter physics has attracted a lot of attention, provid-

ing in particular gravitational descriptions of systems exhibiting superconductor/superfluid

phases [4, 5]. Since in condensed matter physics we are typically dealing with systems at

finite charge density and temperature, in the context of the AdS/CFT correspondence the

dual gravity descriptions should be given in terms of gravitational models with a negative

cosmological constant which admit charged black holes as vacuum solutions. In fact, a

charged black hole naturally introduces a charge density/chemical potential and tempera-

ture in the quantum field theory (QFT) defined on the boundary using the gauge/gravity

correspondence. This set-up allows in particular to study phase transitions and construct

phase diagrams in parameter space.

The simplest model is provided by an Einstein-Maxwell theory coupled to a charged

scalar field that, in the framework of the AdS/CFT correspondence, is dual to a scalar

operator which carries the charge of a global U(1) symmetry. It has been shown that a

charged black hole solution, interpreted as the uncondensed phase, becomes unstable and

develops scalar hair at low temperature breaking the U(1) symmetry near the black hole
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horizon [6, 7]. This phenomenon in general may be interpreted as a second order phase

transition between conductor and superconductor phases, interpretation that is supported

by analyzing the behavior of the conductivity in these phases [5]. There were also studied

vortex like solutions that describe type II holographic superconductors [8–10] and more

recently, spatially anisotropic, abelian models of superconductors [11].

Soon after these “s-wave” holographic superconductor models were introduced, holo-

graphic superconductors models with vector hair, known as p-wave holographic supercon-

ductors, were explored numerically first in [12] and [13] (for a recent analytical treatment,

see [14]). The simplest example of p-wave holographic superconductors may be provided

by an Einstein-Yang-Mills theory with SU(2) gauge group and no scalar fields, where the

electromagnetic gauge symmetry is identified with an U(1) subgroup of SU(2). The other

components of the SU(2) gauge field play the role of charged fields dual to some vector

operators whose non-zero expectation values break the U(1) symmetry leading to a phase

transition in the dual field theory.

More recently, solutions to gravity-matter field equations where both scalar and vec-

tor order parameters are present were considered; they describe systems where competi-

tion/coexistence of different phases takes place [15]–[18].

Regular, self-gravitating dyonic solutions of the Einstein-Yang-Mills-Higgs (EYMH)

equations in the BPS limit and asymptotic to global AdS space, were constructed time

ago in [19] and [20]. They were extended to dyonic black hole solutions in [21] and [22],

where they were interpreted as describing a so-called p+ip-wave superconductor (isotropic)

system at finite temperature in the condensed phase. The purpose of the present work is

to generalize previous results by finding more general black hole solutions of EYMH in

asymptotically AdS4 space with finite mass and electric charge density, to interpret them

via the gauge/gravity duality as describing phases of a strongly coupled field theory, and to

construct the corresponding phase diagrams.1 More specifically, in first term we start by

revisiting the analysis of [21, 22], verifying the existence of second order phase transitions

all along the parameter space. It was found (see for example [23]) that some holographic

systems pass from a second order phase transition as a function of the temperature in

the non back-reaction limit to a first order when the gravitational coupling exceeds a cer-

tain value. Such a phenomenon occurs in holographic superfluids when the velocity is

high enough [24, 25], and it was measured in certain types of superconductors [26–28].

We have found this kind of behavior in our system in the anisotropic case, finding con-

densed solutions and constructing the phase diagram. Second, we compute free energies

and find that for any set of values of the free parameters that determines the solutions, the

anisotropic phase is energetically favored over the isotropic phase, as conjectured in other

contexts [29–31]. Third, we analyze the zero temperature limit, case that had not been

addressed before; for low enough gravitational coupling we find solutions which sponta-

neously break the U(1) symmetry and have zero entropy, and so describe the true ground

state of the system. For gravitational couplings higher than a critical value the solution

1We will be considering the usual plane horizon ansatz, relevant to study condensed matter systems

with translational invariance. Under these circumstances, the magnetic charge density of the dyon solutions

in [21, 22] disappears.
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disappears, which is interpreted as a second order quantum phase transition. Lastly, we

study the effect of a non zero Higgs potential on the system.

The paper is organized as follows. In section 2 we present the model and write the

translational invariant ansatz for the fields and the equations of motion that reduces to

a a nonlinear system of coupled ordinary differential equations. In section 3 we present

generalities of the systems to be studied at non-zero temperature, in particular the analysis

of the holographic map to be used. In section 4 we present the numerical results concerning

the “BPS limit”, i.e. null Higgs potential, including computations of free energies. Section 5

is devoted to the study of the zero temperature case and the description of the ground state

of the superconductor, including the presence of quantum phase transitions as function of

the gravitational coupling and variable Higgs vacuum expectation value (vev) m̂W . In

section 6 the effect of a non-zero Higgs potential is considered. A summary and discussion

of the results is given in section 7. Finally two appendices are added, one containing the

boundary expansions of the fields and other containing the equations of motion and free

energy in other parameterization commonly used in the literature.

2 The gravity-Yang-Mills-Higgs system

2.1 The model

We consider a gravity-Yang-Mills-Higgs system in a 1 + 3 dimensional space-time with

Minkowski signature (− + ++). We take SU(2) as the gauge group, with generators

satisfying the algebra,

[Xa, Xb] = εabc Xc ; a, b, c = 0, 1, 2 , ε012 ≡ +1 (2.1)

and the scalar field in the adjoint representation, H = HaXa. The full action to be

considered is,

S = S(bulk) + S(GH) + S(ct) (2.2)

where

S(bulk) =

∫
M
d4x

√
|g|
(

1

2κ2

(
R+

6

L2

)
− 1

4 e2
F aMNF

aMN

− 1

2
DMHa DMH

a − λ

4
(HaHa −H0

2)2

)
S(GH) =

1

2κ2

∫
∂M

d3x
√
|h| 2K (2.3)

where κ, e and λ are the gravitational, gauge and scalar couplings respectively, L is the

AdS scale related to the negative cosmological constant through Λ = −3/L2, and H0 > 0

defines the vacuum expectation value of the Higgs field (and so the boundary condition

at infinity, see below in (2.14)). As it is well-known, the Gibbons-Hawking term S(GH) is

necessary to have a well defined variational principle [32], where K ≡ ∇ana is the trace of

the extrinsic curvature, and h and n the induced metric and normal vector on ∂M. The

counter-term action S(ct) will be discussed in section 4.
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The field strength F aMN and the covariant derivative DM acting on the Higgs triplet

Ha are defined as,

F aMN ≡ ∂MAaN − ∂NAaM + εabc A
b
M AcN ; DMH

a ≡ ∂MHa + εabc A
b
M Hc . (2.4)

Let us consider coordinates (xµ, y) and an ansatz preserving translational invariance

in the coordinates {xµ, µ = 0, 1, 2},

g = −f(y) A(y)2 dx02
+ y2

(
c(y)2 dx12

+ dx22
)

+ L2 dy2

f(y)

A = L−1
(
dx0 J(y) X0 + dx1 K1(y) X1 + dx2 K2(y) X2

)
H = H0 H(y) X0 . (2.5)

In what follows it will be convenient to introduce the dimensionless coupling constants,

α ≡ κ

eL
; m̂W ≡ eH0 L ; λ0 ≡ e2H0

4 L4 λ . (2.6)

The gravity equations of motion (e.o.m.) derived from (2.3) result,

− (y f(y))′ + 3 y2 − y2 f(y)
c′′(y)

c(y)
−
(

3 y f(y) +
y2

2
f ′(y)

)
c′(y)

c(y)

= α2

(
λ0

4
y2 (H(y)2 − 1)2 + f(y) V1 + V2 +

y2

2

J ′(y)2

A(y)2

+
1

2

(
K1(y)2

c(y)2
+K2(y)2

) (
m̂W

2H(y)2 +
J(y)2

f(y)A(y)2

))
y
A′(y)

A(y)
− A(y)

2 c(y)

(
y2 c′(y)

A(y)

)′
= α2

(
V1 +

1

2

(
K1(y)2

c(y)2
+K2(y)2

)
J(y)2

f(y)2A(y)2

)
1

A(y) c(y)

(
y2 f(y)A(y) c′(y)

)′
= α2

((
K1(y)2

c(y)2
−K2(y)2

) (
J(y)2

f(y)A(y)2
− m̂W

2H(y)2

)
− f(y)

(
K ′1(y)2

c(y)2
−K ′2(y)2

))
(2.7)

while that the matter e.o.m. are,

c(y)

A(y)

(
f(y)A(y)

c(y)
K ′1(y)

)′
=

(
K2(y)2

y2
+ m̂W

2 H(y)2 − J(y)2

f(y)A(y)2

)
K1(y)

1

A(y) c(y)

(
f(y)A(y) c(y)K ′2(y)

)′
=

(
K1(y)2

c(y)2 y2
+ m̂W

2 H(y)2 − J(y)2

f(y)A(y)2

)
K2(y)

1

A(y) c(y)

(
y2 f(y)A(y) c(y)H ′(y)

)′
=

(
K1(y)2

c(y)2
+K2(y)2 +

λ0

m̂W
2
y2 (H(y)2 − 1)

)
H(y)

f(y) A(y)

c(y)

(
y2 c(y)

A(y)
J ′(y)

)′
=

(
K1(y)2

c(y)2
+K2(y)2

)
J(y) (2.8)

where we have defined,

V1 =
1

2

(
K ′1(y)2

c(y)2
+K ′2(y)2

)
+
m̂W

2

2
y2 H ′(y)2 ; V2 =

1

2

K1(y)2K2(y)2

y2 c(y)2
. (2.9)

We will start by considering the “BPS limit” λ0 = 0, but conserving the crucial Higgs

vacuum value H0 > 0. The effect of a finite Higgs coupling will be considered in section 6.
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2.2 Boundary conditions

We will search for charged black hole solutions which present a horizon at y = yh where

f(yh) = 0. The associated Bekenstein-Hawking temperature of the black hole is given by,

TBH =
1

4πL
A(yh) f ′(yh) . (2.10)

The ansatz (and e.o.m.) are invariant under the scale transformations,

(x0;A(y), J(y)) −→
(
x0

β
;β A(y), β J(y))

)
(x1; c(y),K1(y)) −→

(
x1

β′
;β′ c(y), β′ K1(y)

)
. (2.11)

They allow to fix some normalization imposing the b.c., A(y), c(y)
y→∞−→ 1, in such a

way that the xµ’s are identified with the minkowskian coordinates of the boundary QFT,

and (2.10) with its temperature. Furthermore there exists another scaling symmetry,

(xµ, y)→
(
xµ

γ
, γ y

)
, f(y)→ γ2 f(y) , Ki(y)→ γ Ki(y) , J(y)→ γ J(y) (2.12)

that if yh 6= 0, allows to fix yh = 1.2 Since now on we will fix the position of the horizon

in this way, having in mind that we have to consider only scale invariants quantities.

In [21] and [22] solutions to (2.7)–(2.8) with a horizon and asymptotically AdS4 were

studied. More specifically, there were found solutions with K1 = K2 = K and the following

boundary conditions; near the horizon y → 1+,

f(y) = f1 (y − 1) +O[(y − 1)2]

A(y) = a0 + a1 (y − 1) +O[(y − 1)2]

c(y) = c0 + c1 (y − 1) +O[(y − 1)2]

H(y) = h0 + h1 (y − 1) +O[(y − 1)2]

K(y) = k0 + k1 (y − 1) +O[(y − 1)2]

J(y) = j1 (y − 1) +O[(y − 1)2] (2.13)

while on the boundary y →∞,

f(y) = y2 +
F1

y
+ · · ·

A(y) = 1 + · · ·
c(y) = 1 + · · ·

H(y) = 1 +
H1

y3
+ · · ·

K(y) =
K1

yκ1
+ · · ·

J(y) = J0 +
J1

y
+ · · · (2.14)

2This is the case except when we consider the zero temperature limit. When back-reaction is not taking

into account yh = 0 corresponds to AdS space; when it is considered, yh = 0 is imposed in order to get a

true ground state description and (2.12) can be used to fix the chemical potential, see section 5.
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where consistency with the e.o.m. and finiteness of K(y) fixes κ1 to be,

κ1 (κ1 − 1) = m̂W
2 −→ κ1 =

1

2
+

√
1

4
+ m̂W

2 . (2.15)

For more about the b.c. at the boundary, we refer the reader to the appendix A. We will

adopt the b.c. (2.13)–(2.14) in this paper except in section 5 where the b.c. on the horizon

will have to be modified.

The bulk theory is invariant under the gauge group SU(2); however the b.c. on the

Higgs field, H(y)
y→∞−→ 1 , breaks this invariance to the U(1) generated by X0. With respect

to this gauge subgroup the electric charge density of a solution is defined as usual by,

ρ ≡ 1

V2

∫
<2

∗F |U(1) =
1

L2

c(y)

A(y)
y2 J ′(y)|y→∞ = − J1

L2
. (2.16)

As we show in section 4, at fixed couplings (α, m̂W ) a general solution to (2.7)–(2.8) with

the b.c. (2.13)–(2.14) is determined by J0, which is related to the U(1) chemical potential by,

µ ≡ A0
0(∞) =

J0

L
. (2.17)

From (2.16) and (2.17) the standard asymptotic expansion follows,

A0
0(y) = µ− Lρ

y
+ . . . (2.18)

Along this paper we will adopt µ as our scale. From (2.12) the dimensionless, scale invariant

temperature is,

T ≡ TBH
µ

=
a0 f1

4π J0
(2.19)

where a0 and f1 are defined in (2.13). A solution is determined by the three free parameters

(α, m̂W , J0), and so the temperature (through the coefficients a0, f1) results a function

of them.3

In the analytic solution to the equations (2.7)–(2.8) that preserves the U(1)X0 symme-

try matter fields take the form,

J(y) = J0 +
J1

y
= J0

(
1− 1

y

)
; Ki(y) = 0 ; H(y) = 1 (2.20)

where we imposed smooth behavior of the gauge field at the horizon which yields the

condition J(1) = 0, see the last line in (2.13), and then fixed J1 = −J0.4 In what the metric

functions concern, they correspond to the AdS Reissner-Nordström (AdS-RN) black hole,

A(y) = c(y) = 1

f(y) = y2 −
(

1 +
α2 J0

2

2

)
1

y
+
α2J0

2

2

1

y2

=
y − 1

y2

(
3− α2J0

2

2
+ (y2 + 2 y + 3) (y − 1)

)
(2.21)

3In EYM systems where the Higgs field is not present the temperature is function of the only free

parameter of the theory, α, see [23].
4When yh = 0, J(y) = J0 is just the chemical potential and the metric solution is AdS space; it describes

the uncondensed phase when the temperature is zero, see section 5.
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with temperature,

T =
1

4π J0

(
3− α2J0

2

2

)
. (2.22)

The extremal, zero temperature AdS-RN black hole is defined by the relation α2J0
2 = 6.

3 Solutions at T > 0: superconducting state

When the “magnetic part” of the gauge field is non-trivial, i.e. Ki(y) 6= 0 for some i = 1, 2,

the solution breaks not only the U(1)X0 invariance, but also the invariance under rotations

in the (x1, x2)-plane. According to the AdS/CFT dictionary this hair is interpreted as

a spontaneous breaking of a global U(1) symmetry present in the boundary QFT, whose

currents take an expectation value,

〈Jai (x)〉 ∼ Ki δ
a
i ; i, a = 1, 2 . (3.1)

Giving that the order parameter is dual to (a component of) the gauge field we are pre-

sumably modeling a p-wave superconductor [13]. The normal state of the superconductor

is described by the AdS-RN solution (2.20)–(2.21); such solution is energetically favored

until a critical temperature Tc is reached; when T < Tc the non symmetric, hairy solution

gives rise to a superconductor phase.

We remark that with the b.c. on the Higgs field we are breaking explicitly the gauge

group from SU(2) to U(1)X0 ; this yields a mass for the “W” gauge bosons,

mW ≡ eH0 . (3.2)

The problem is thus the following: can we find under this condition a solution with Ki(y) 6=
0 that breaks spontaneously the U(1)X0? In the boundary QFT this is then interpreted as

the breaking of a global U(1) symmetry as it happens in superfluids and superconductors

with weakly coupled photons. From here we identify Tc with the critical temperature of

the phase transition in the QFT.

We will consider two cases.

• The isotropic case: K(y) ≡ K1(y) = K2(y).

Although both gauge and rotational symmetries are broken by a hairy solu-

tion, a configuration (2.5) with K1(y) = K2(y) preserves the diagonal subgroup,

(U(1)X0 × SO(2)rot)diag, fact that is manifest in (3.1) [12]. This configuration give

rise to an energy-momentum tensor isotropic in the x1-x2 plane; therefore the metric

function c(y) must be a constant, even when back-reaction is taken into account.

This kind of configurations were first studied in [21]–[22], using relaxation methods.

We will re-obtain these solutions here for later use by using shooting methods.

• The anisotropic case: K(y) ≡ K1(y) ; K2(y) = 0.

As stated above, a configuration with K1 = 0 preserves the U(1)X0 and spatial

rotations. When K1(y) develops a non zero value the gauge symmetry U(1)X0 breaks,

– 7 –
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and the condensate K1(y)X1 dx
1 choose a direction x1 as a special one. Then if

we take into account back-reaction effects the system cannot support the condition

g11 = g22 [13]. Due to this fact Tx1x1 6= Tx2x2 and the function c(y) can not be a

constant; in conclusion the system will be in an anisotropic phase.

In both cases the vacuum expectation value in the d = 3 field theory of the current

operator OK , dual to the function K associated with the magnetic field in the bulk, follows

from the identification, 〈OK〉 ∼ K1 with K1 defined in (2.14); K1 = K1(T ) can be taken

as the order parameter that describes the phase transition of the system. As discussed

for different models [7]–[22] one can interpret this result by stating that a condensate is

formed above a black hole horizon because of a balance of gravitational and electrostatic

forces. From the asymptotic behavior in (2.14) we get the dimension ∆[OK ] of the operator

OK [33]

∆[OK ] = 1 + κ1 =
3

2
+

1

2

√
1 + 4 m̂W

2 . (3.3)

From numerical solutions we conclude that a finite temperature continuous symmetry

breaking transition takes place so that the system condenses at a critical temperature Tc,

as can be seen from the behavior of K1(T ) for T ≈ Tc in figures 3, 4 and 5. Furthermore,

we compare the free energies corresponding to both phases in figures 8 and 9, finding that

the anisotropic phase is favored, see [29–31] for related results.

4 Numerical solutions

We analyzed numerically equations (2.7)–(2.8) and found solutions that satisfy the required

b.c. (2.13)–(2.14) in a wide region of the parameter space, that lead to the phase diagram

in figure 1. Such solutions in the anisotropic case are shown in figure 2.

Before presenting the results, we think is worth to spend a few words on the method

used. As discussed in appendix A, after fixing some normalization and asking for finiteness

the solution near the boundary admits the expansions in equation (A.1), and is determined

by six constants, (F1, C1, J0, J1,K1, H1). However the b.c. on the horizon impose five

conditions. The first two come from the definition of the horizon and the regularity of the

gauge field,

f(1) = 0 ; J(1) = 0 . (4.1)

They essentially fix the mass (∼ F1) and the charge density (∼ J1) of the black hole.

The remaining three conditions fix (C1,K1, H1) and are obtained from an analysis of the

(singular) behavior of the e.o.m. near the horizon,

c′(1) = α2 m̂W
2 c(1)

f ′(1)

(
−K1(1)2

c(1)2
+K2(1)2

)
H(1)2

K ′1(1) =
K1(1)

f ′(1)

(
K2(1)2 + m̂W

2 H(1)2
)

H ′(1) =
H(1)

f ′(1)

(
K1(1)2

c(1)2
+K2(1)2

)
. (4.2)
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Figure 1. Phase diagrams in the isotropic case (left) for m̂W = 0.1 (blue), m̂W = 0.4 (green), and

in the anisotropic case, for m̂W = 0.1 (center) and m̂W = 0.4 (right).

Therefore the only additional free parameter that determines the solution is J0, i.e. the

chemical potential (2.17). In practice we integrate the system from the horizon, where

according to (4.1)–(4.2) the free parameters are,

J ′(1) = j1 ; K(1) = k0 ; H(1) = h0 ; A(1) = a0 ; c(1) = c0 (4.3)

as defined in (2.13). These parameters are selected in such a way that the solution matches

the conditions on the boundary (2.14),

A(∞) = c(∞) = H(∞) = 1 ; K(∞) = 0 ; J(∞) = J0 . (4.4)

Figure 1 displays the phase diagrams in the α−T plane, for two different values of m̂W .

In the white regions only the normal or uncondensed phase is present. In the isotropic case

the system experiments second order phase transitions along the blue (m̂W = 0.1) and green

(m̂W = 0.4) curves. In the anisotropic case, in the blue and red regions the condensed phase

is the thermodynamically preferred phase. The blue line until the black point indicates a

critical line of second order transitions. The black point signals the coupling αtc beyond

which the transitions become of first order along the red line, while that the blue and

green lines that continue after this tri-critical point represent spinodal lines. The critical

red curve of first order phase transitions ends in the red point at T = 0, which represents a

quantum phase transition, signaling a critical coupling α̃ above which the condensed phase

ceases to exist, see section 5. By comparing both graphs we can see that both αtc and α̃

decrease with increasing m̂W . Similar phase diagrams were obtained in reference [34] in

absence of Higgs fields.

In figure 2 the fields are shown as functions of the coordinate y, at fixed J0 and m̂W

and for different α’s. For αc ≈ 0.8825 a second horizon appears, as displayed from the

curves corresponding to f(y)/y2. The uncondensed and condensed phases are separated

by a curve on which the formation of the second horizon takes place for a given critical

temperature determined by the gauge boson mass m̂W and J0. In the isotropic case the

curve is displayed in figure 1 for two different values of m̂W (blues and green lines) and

it coincides with the critical curve on which the phase transitions take place. On the

– 9 –
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other hand, in the anisotropic case the curve coincides with the critical curve (blue line

in figure 1) until the tri-critical point αtc, and it continues through the spinodal curve in

green.

In figure 3 the order parameter K1 in the isotropic case is plotted as a function of the

temperature for different values of m̂W , at fixed gravitational coupling α = 0.7. In this

case the transition is of second order independently of α, in agreement with [12].

Figures 4 and 5 shows the order parameter K1 as function of T in the anisotropic case

from two perspectives: at fixed m̂W = 0.4 and varying α in figure 4 and at fixed α = 0.7

and varying m̂W in figure 5. From figure 4 it is seen that for αtc ≈ 0.53 K1 becomes

multi-valued, fact that signals the passage from second to first order phase transitions as

corroborated from the free energy computations of the next subsection. This phenomenon

has been found recently in p-wave superfluids by studying the role of the back-reaction in

the phase transitions [23] (for experimental results on first order phase transitions in super-

conductors, see [26–28]). By comparing figures 3 and 5 it is observed that the temperature

at which the order parameter becomes zero is the same in both cases, and that the critical

temperature decreases when m̂W increases, what can be interpreted as the presence of the

Higgs field hinders the condensation. Furthermore, we have checked that near Tc and for

weak gravitational couplings α < αtc, K1 behaves like (Tc−T )
1
2 , indicating a second order

phase transition with mean field exponent 1
2 as usually happens in holographic descriptions

of critical systems in the limit of large number degrees of freedom.

4.1 The free energy

According to the AdS/CFT correspondence, the free energy of the QFT is given by,

F ≡ T Seucl =

∫ ∞
yh

dy

∫
d~x2Leucl . (4.5)

From (2.3) and using the e.o.m. the bulk contribution to the free energy density can be

written as,

f (bulk) =
1

2 e2 L3

∫ y∞

1
dy A(y) c(y) y2

(
6

α2
− λ0

2

(
H(y)2 − 1

)2
+
f(y)

y2

(
K ′1(y)2

c(y)2
+K ′2(y)2

)
+
K1(y)2K2(y)2

y4 c(y)2

− J ′(y)2

A(y)2
− J(y)2

y2 f(y)A(y)2

(
K1(y)2

c(y)2
+K2(y)2

))
. (4.6)

The Gibbons-Hawking contribution is,

f (GH) =
1

2 e2 L3

(
− 2

α2

)
f(y)

1
2

(
y2 f(y)

1
2 A(y) c(y)

)′
|y∞ . (4.7)

Here we have introduced y∞ to regularize the expressions since they present divergent

terms. To this end we introduce a counter-term action [35, 36],

S(ct) =
1

2κ2

∫
∂M

d3x
√
|h| −2

L
(4.8)
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Figure 2. Solutions for the fields (f(y), A(y), c(y),K(y), J(y), H(y)) with the b.c. (2.13)–(2.14) in

the anisotropic case. The curves correspond to J0 = 6, m̂W = 0.4 with different fixed values of

α = 0.0 (black), 0.1 (green), 0.2 (light red), 0.3 (light blue), 0.4 (fuchsia), 0.5 (brown), 0.6 (gray),

0.7 (orange), 0.8 (red), 0.88 (blue). One can appreciate from the curves corresponding to f(y)/y2

the formation of a second horizon at αc ≈ 0.8825. The analogous solutions for the isotropic case

can be found in [22].
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Figure 3. The order parameter K1/J0
1+κ1 = 〈ÔK1〉/J01+κ1 is plotted in the isotropic case at fixed

α = 0.7, for different values of m̂W = 0.01 (black), 0.1 (green), 0.2 (orange), 0.3 (brown), 0.4 (blue)

that correspond to the critical temperatures Tc = 0.017056, 0.016371, 0.014174, 0.011215, 0.00791

respectively. Near the critical temperature the order parameter behaves like (Tc − T )1/2.
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Figure 4. The order parameter K1/J0
1+κ1 = 〈ÔK1〉/J01+κ1 is plotted in the anisotropic case at

fixed m̂W = 0.4, for different values of α = 0.50 (black), 0.53 (blue), 0.55 (red). In the inset is

displayed the multi-valuation of the order parameter for αtc ≈ 0.53.

which give rise to the following contribution to the free energy density,

f (ct) =
1

2 e2 L3

4

α2

(
f(y)1/2A(y)c(y)y2

)
|y∞ (4.9)

The total free energy density of the system f is then given by,

f ≡ lim
y∞→∞

(
f (bulk) + f (GH) + f (ct)

)
. (4.10)

We remark that in order to analyze the results the right thing to do is to work with the

scale invariant free energy density,

f̂ ≡ κ2

L2 µ3
f . (4.11)
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Figure 5. The order parameter K1/J0
1+κ1 = 〈ÔK1〉/J01+κ1 is plotted in the anisotropic case at

fixed α = 0.7, showing the phase transition at different values of m̂W = 0.01 (black), 0.1 (green),

0.2 (orange), 0.3 (brown), 0.4 (blue), 0.32 (blue).

figures 6 and 7 show the evolution of the free energy density (4.11) with the mass of the

gauge boson for two different values of α, in the isotropic and anisotropic cases respectively.

Figure 6 displays the continuity of f̂ at the critical temperature (where the free energy

density of the uncondensed phase intersects the curve of the condensed phase) for both

values of α, for any m̂W , fact that indicates the second order character of the phase

transition as the behavior of K1 in figure 3 suggested. In figure 7 instead it is observed the

discontinuity in the first derivative of the free energy density at the critical temperature

for α = 0.7 > αtc for any m̂W , signaling a first order phase transition. In both cases the

critical temperature decreases with growing m̂W , in agreement with the analysis of the

behavior of the order parameter made above.

In figures 8 and 9 the free energy densities of the isotropic and anisotropic phases are

compared for two values of the gravitational coupling, α < αtc (figure 8) and α > αtc
(figure 9). From them one can see that the free energy density of the anisotropic phase, no

matter the region where the value of α is, i.e. if first or second order phase transitions take

place, is lower than the free energy density of the isotropic phase. That is, the anisotropic

phase is always energetically favored over the isotropic one.

5 Zero temperature solutions

In this section we will address the problem of quantum phase transitions in three dimen-

sional p-wave superconductors (anisotropic case), i.e. transitions at T = 0, that to our

knowledge was not considered before in the literature (see however [37–40] for related

studies in other settings).

It is known that when a charged AdS black hole is driven to a state of zero temperature

it becomes extremal, but its entropy is different from zero and then it can not describe

the ground state of the superconductor that we are presumably modeling holographically.

To reach our goal the radius of the black hole needs to become null, to agree with the
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Figure 6. The free energy density f̂ is plotted as function of the temperature in the isotropic case

for two values of the gravitational coupling constant, α = 0.4 (left) and α = 0.7 (right), at different

values of m̂W = 0.01 (black), 0.1 (green), 0.2 (orange), 0.3 (brown), 0.4 (blue). The red curve

represents the free energy density of the uncondensed phase.
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Figure 7. The free energy density f̂ is plotted as function of the temperature in the anisotropic

case for two values of the gravitational coupling constant, α = 0.4 (left) and α = 0.7 (right), at

different values of m̂W = 0.01 (black), 0.1 (green), 0.2 (orange), 0.3 (brown), 0.4 (blue). The red

curve represents the free energy density of the uncondensed phase.

third law of thermodynamics and really describe the quantum ground state [29, 41]. So

we must impose that yh = 0, i.e. the coordinate y ∈ [0,∞). A very important thing from

a technical point of view is that while the asymptotic behavior of the fields is as in (2.14),

the expansions near the horizon drastically change with respect to the T > 0 case. At

leading order the (non analytical) behavior of the fields for y → 0+ is,

f(y) = y2 − α2 k̃0 j̃0
2

2 c̃0 ã0
2

e
− 2k̃0

c̃0y

y
+ . . .
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Figure 8. The free energy densities for the isotropic (black) and anisotropic (blue) cases are plotted

as function of the temperature for different values of m̂W , at fixed α = 0.4. The red curve represents

the free energy density of the uncondensed phase.

A(y) = ã0

1 + α2 k̃0 j̃0
2

c̃0ã0
2

e
− 2k̃0

c̃0y

y3
+ . . .


c(y) = c̃0

1 + α2 j̃0
2

ã0
2

e
− 2k̃0

c̃0y

y2
+ . . .


K(y) = k̃0

(
1− c̃0

2 j̃0
2

4ã0
2 k̃0

2
e
− 2k̃0

c̃0y + . . .

)
J(y) = j̃0 e

− k̃0
c̃0y + . . .

H(y) = h̃0 e
− k̃0

c̃0y + . . . (5.1)

The independent constants are k̃0, j̃0, h̃0, ã0, c̃0. Such constants are chosen in the same

way as in the T > 0 case, see (4.4). From (5.1) it follows that near the horizon the

solution is another AdS4 space. The solutions that describe the quantum ground state of

the superconductor in the condensed phase are therefore domain walls interpolating AdS4

spaces with the same radius L but different light velocities in both directions, in virtue of

the fact that ã0 6= 1 and c̃0 6= 1. More explicitly,

vUV1

vIR1

=
yh
y∞

c(yh)

c(y∞)

√
f(y∞)

f(yh)

A(y∞)

A(yh)
=
c̃0

ã0
;

vUV2

vIR2

=
yh
y∞

√
f(y∞)

f(yh)

A(y∞)

A(yh)
=

1

ã0
(5.2)

– 15 –



J
H
E
P
0
7
(
2
0
1
5
)
1
7
2

mW = 0.01

0.005 0.010 0.015

T-0.120

-0.115

-0.110

-0.105

-0.100

-0.095

f

`

mW = 0.1

0.005 0.010 0.015

T-0.120

-0.115

-0.110

-0.105

-0.100

-0.095

f

`

mW = 0.2

0.005 0.010 0.015

T-0.120

-0.115

-0.110

-0.105

-0.100

-0.095

f

`

mW = 0.3

0.005 0.010 0.015

T-0.120

-0.115

-0.110

-0.105

-0.100

-0.095

f

`

mW = 0.4

0.005 0.010 0.015

T-0.120

-0.115

-0.110

-0.105

-0.100

-0.095

f

`

Figure 9. The free energy densities for the isotropic (black) and anisotropic (blue) cases are plotted

as function of the temperature for different values of m̂W , at fixed α = 0.7. The red curve represents

the free energy density of the uncondensed phase.

On the other hand, the uncondensed phase is described strictly by AdS4 space and J(y) =

J0, which replace the AdS-RN solution (2.20)–(2.21). Interestingly, we found that above a

certain α̃ the solution representing the condensed phase disappears and the only solution

that exists is AdS space. This result can be guessed from the following analysis borrowed

from [38] (see also [29]). At very low temperatures the normal phase is nearly represented by

the extremal, zero temperature Reissner-Nördstrom solution (2.20)–(2.22) with J0
2 = 6

α2 ,

whose near horizon geometry is AdS2×<2. If we perturb this solution with a non-zero gauge

field K1(y) = K(y), from the first equation in (2.8) its linear equation in this background
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Figure 10. We display for T = 0 the solutions f(y)/y2, A(y), c(y), H(y), K(y) and J(y) as

functions of the coordinate y from the horizon, now located at y = 0, towards the boundary, for

m̂W = 0.4 and different values of α = 0.0 (blue), 0.3 (orange), 0.6 (green), 0.8 (fuchsia). One can

appreciate from the curves corresponding to f(y)/y2 the formation of a second horizon when α

approaches α̃ ≈ αc|T>0 ≈ 0.8825; for larger values of α the asymmetric solution ceases to exist.

results,

0 =
(
ρ2 ∂2

ρ + 2 ρ ∂ρ − m̂eff
2
)
K(y) (5.3)

where ρ ≡ y − 1, which is just the wave equation for AdS2 with an effective mass,

m̂eff
2 =

1

6

(
m̂W

2 − 1

α2

)
(5.4)

So, the instability to form SU(2) vector hair at low temperature is just that of scalar fields

below the BF bound for AdS2, m̂2
BF = −1

4 . That is, when m̂eff
2 < m̂2

BF one could wait

that AdS vacuum gets unstable and the system prefers to be in the phase described by

the superconducting black hole solution with non abelian hair. Thus we get a plausible

condition for instability,

α2 < α̃2
guess ≡

1
3
2 + m̂W

2
. (5.5)

figure 10 shows the fields for different values of the gravitational coupling.5 In the example

showed (m̂W = 0.4) we obtain α̃ ≈ 0.8825 ≈ αc|T>0, see figures 2 and 10.

We worked out the solutions for different values of the parameter m̂W , in table 1 the

corresponding critical couplings are shown. It is observed that α̃ decreases with growing

m̂W and that α̃guess < α̃, what is consistent with the instability analysis made before.

On the other hand, in figure 11 it is shown the order parameter as a function of the

coupling α. We have verified that the behavior near the critical coupling is of the type,

K1(α) ∼ (α̃− α)
1
2 (5.6)

consistent with the existence of a second order phase transition in the mean field, large

number of degrees of freedom limit.

5We use the scaling symmetry (2.12) to fix J0 = 1.
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Figure 11. The order parameter K1 is plotted as function of α at T = 0, for different values of

m̂W = 0.5 (blue), 0.6 (lightblue), 0.7 (green), 0.8 (orange), 0.9 (brown), 1.0 (red). The values for

which K1 = 0 define the critical couplings α̃.

m̂W α̃

0.1 1.03

0.2 0.97

0.3 0.94

0.4 0.88

0.5 0.86

0.6 0.84

0.7 0.80

0.8 0.76

0.9 0.74

1.0 0.70

Table 1. Critical gravitational couplings α̃ for different values of m̂W at T = 0.

6 Analysis for λ 6= 0

In this section we will study the effect of a non-zero Higgs potential as introduced in (2.3),

specified by the Higgs vev scale H0 and the strength λ. For simplicity we will work in the

no back-reaction limit α = 0, although the new insights does not depend on this fact.

In the conventions of appendix B, the e.o.m. (2.8) in the anisotropic case reduce to,

(
f(u)K ′(u)

)′
=

(
m̂W

2 H(u)2

u2
− J(u)2

f(u)

)
K(u)

u2

(
f(u)

u2
H ′(u)

)′
=

(
K(u)2 +

λ0

m̂W
2

H(u)2 − 1

u2

)
H(u)

J ′′(u) =
K(u)2

f(u)
J(u) (6.1)

where f(u) = 1− u3.
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Figure 12. The condensate K1 as a function of the temperature T , for mW
2 = 1 and λ0 = 0

(black), 0.25 (orange), 0.5 (brown),0.75 (blue), in the anisotropic (left) and isotropic (right) cases.

The existence of a non-zero λ does not modify the behavior of K(y) and J(y) on the

boundary that remain as in (2.14), but it does in the Higgs case where we now have,

H(u) = 1 +H− u
∆− + · · ·+H+ u

∆+ + . . . (6.2)

where, for general λ0 and m̂W ,

∆± =
3

2
±
√

9

4
+ 2

λ0

m̂W
2
. (6.3)

A first well-known fact is that reality of ∆± necessarily implies the BF bound λ0 ≥ −9
8 m̂W

2.

When we are in the window −9
8 ≤

λ0
m̂W

2 ≤ −3
4 both modes are normalizable and lead to

consistent quantization and we can impose H− = 0 or H+ = 0. If λ0 > −3
4 m̂W

2, the

condition H− = 0 must be imposed [42]. We will consider for definiteness the case λ0 > 0.

A very interesting fact is that, besides the existence of a bound from below for the

Higgs coupling as stated above, a straight analysis of the solution near the boundary u = 0

yields the result that a bound from above is also present. We find that there exists a critical

value λc0 defined by,
λc0
m̂W

2
= 2 + (κ1 − 1) (2κ1 + 3) (6.4)

such that for λ0 > λc0 the condensed solution ceases to exist. In the example considered

below m̂W
2 = 1, λc0 ∼ 5.854. This is so for both the isotropic and anisotropic cases.

Figures 12 and 13 show the condensate and the free energy respectively as functions of

the temperature, for a fixed m̂W and different Higgs couplings.6 One can appreciate that

both the order parameter and the free energy decreases with increasing strength of the

potential λ0; however the critical temperature does not change and the phase transitions

remain of second order.

In figure 14 the free energies of both isotropic and anisotropic cases as functions of

the temperature are plotted together for comparison, for fixed Higgs scale and different

6For higher Higgs strengths towards the critical value the curves does not experiment significative

changes.
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Figure 13. The free energy f̂ as a function of the temperature T for mW
2 = 1 and λ0 = 0 (black),

0.25 (orange), 0.5 (brown), 0.75 (blue) in the anisotropic (left) and isotropic (right) cases.
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Figure 14. Comparison between the free energies of the anisotropic (blue) and isotropic (black)

cases for mW
2 = 1 and, from left to right, λ0 = 0, 0.25, 0.5, 0.75.
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Figure 15. The free energy as a function of the temperature in the anisotropic (left) and isotropic

(right) cases, for fixed λ0 = 0.25 and different values of m̂W = 0.5 (blue), 0.7 (brown) and 1.0

(black). The red curve represents the free energy of the normal phase.

Higgs couplings. The anisotropic phase always remains energetically favored over the

isotropic one.

As stated before, a critical value (6.4) above which the condensed phase does not exist

is present, and it was verified by our numerical calculations; such result occurs in both

isotropic and anisotropic cases.

Figures 15 show the free energies in function of the temperature for a fixed λ0, for

different gauge boson masses. It is observed that they increase with increasing m̂W . The

curves are similar to the left curves in figures 6 and 7.

7 Conclusions and outlook

In this paper we have investigated four dimensional solutions of black holes with non-

abelian, SU(2) hair introduced by Yang-Mills gauge bosons and a non trivial Higgs field in

the adjoint representation, whose v.e.v. triggers the breaking of the gauge symmetry to a

U(1) subgroup under which the black hole is charged.

In the spirit of the AdS/CFT correspondence, the symmetric solution given by the

AdS-RN black hole when the temperature is positive and AdS when T = 0, describes the

uncondensed phase of the dual three dimensional QFT. A solution with non-abelian hair

generically breaks the U(1) gauge symmetry together with the rotational symmetry, and

is interpreted as describing a condensed phase of the QFT. The order parameter is the co-

efficient of the leading order term of the magnetic component of the gauge field, and thus

the systems described are generically termed p-wave superfluids/superconductors. We have

considered two cases. The isotropic case that describes p+ ip-wave superconductors where

the diagonal subgroup of U(1)gauge× SO(2)rot is preserved, and the anisotropic case where

no symmetry is preserved. In both cases we get phase transitions at critical temperatures

that decrease when the gravitational coupling grows and in the case of anisotropic super-

conductors the phase transitions become of first order for large gravitational couplings [23].

These results are summarized in the phase diagrams presented in figure 1.
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We also find solutions that describe the zero entropy ground state of the p-wave super-

conductor, showing the existence of phase transitions from the normal phase (described by

AdS space) to this condensed phase, that is present below a certain value of the gravita-

tional coupling α̃. These transitions are of second order, according to the behavior (5.6) of

the order parameter near the transition obtained from figure 11. Such states are described

by domain wall geometries that interpolate two AdS spaces. The occurrence of AdS space

near the horizon, with the the same scale as the AdS in the boundary but different light

velocities, presumably indicates that there is an emergent scale invariance in the T = 0

limit [23, 24].

Finally we study the effect of considering a non zero Higgs potential. It was found

that for Higgs coupling constants greater than a critical value λc, the solution collapses to

the normal one. This fact relies on the ultraviolet behavior of the system; in particular

is independent if the back-reaction is considered or not. For λ below λc the system and

its thermodynamic variables behave qualitatively as in the case λ = 0, but with lower

free energy.

A very relevant fact conjectured in the literature [12, 13, 29] for systems without Higgs

fields that we have explicitly addressed in this paper including them together with the

corresponding Higgs potential, is that below the critical temperature in all the parameter

space we found that the free energy density of the anisotropic solution is lower than that

of the isotropic one, indicating that the p-wave superconductor phase is more stable that

the one corresponding to the p + ip-wave superconductor. This result is illustrated in

figures 8, 9 and 14.

We believe it is worth to make the following remarks. It is straight to see that if we

switch off the Higgs field the e.o.m. of the p-wave superconductor are recovered. However

if we switch off the magnetic part of the gauge field, K1 = K2 = 0, it is seen that we do not

recover the e.o.m. of a s-wave superconductor. This is due to the fact that we are switching

the Higgs field in the X0-direction, not in the X1-direction. This lead us to conclude that

in our set-up the Higgs field can not condense spontaneously since the temporal component

of the gauge field (which plays a fundamental role in the condensation) is null. Therefore

we will never have competition between s-wave and p-wave phases, as it takes place in the

cases analyzed in references [15]–[18] where the matter field ansatz is slightly different and

the vev Higgs field is put to zero. Furthermore it is not difficult to see from the e.o.m.

that a configuration where a vev (3.1) is present necessary implies a non-trivial Higgs field;

however the vev of its dual scalar operator O(x),

〈O(x)〉 ∼ H1 (7.1)

does not indicate any spontaneous breaking in view of the presence of the source H0.

We stress that, although they share some similar characteristics, the presence of the

Higgs fields with the non trivial b.c. | ~H(∞)| = H0 > 0, introduces a scale that makes our

systems different from those considered in precedence since [13, 37], in which the scalars

were not present. On one hand from the obvious fact that the system is larger and more

complex; in particular we have three free parameters (α, m̂W , J0) and, among other things,

the dimension (3.3) of the order parameter remains arbitrary. Instead, in EYM systems
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where the Higgs field is not present, the temperature for example is a function of just

one parameter α ≡ κ
eL [23]. On the other hand and more important, from the QFT

point of view to which the systems we have considered are presumed to be holographically

dual. This fact can be elucidate by studying the transport properties of the system, i.e.

the conductivities. Even ignoring back-reaction effects, we finish with a system of fifteen

coupled second order equations that results much more cumbersome to disentangle than

in the Abelian case or in the absence of Higgs fields. We hope to report results in this

direction in a near future [43].
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A Boundary expansions

Along this paper we used shooting methods to get the solutions to the e.o.m. We present

here the (next to) leading order behavior of the fields near the boundary that is necessary

to carry out the numerics.

For large y →∞ the fields admit the expansions,

A(y) = 1 +
A1

ya1
Ã1(y) = 1 +

A1

ya1

(
1 +

A2

ya2
Ã2(y)

)
f(y) = y2 +

F1

y
F̃1(y) = 1 +

F1

y

(
1 +

α2 J1
2

2 m̂W
2 F1 y

F̃2(y)

)
c(y) = 1 +

C1

y3
C̃1(y) = 1 +

C1

y3

(
1 +

C2

yc2
C̃2(y)

)
K(y) =

K1

yκ1
K̃1(y) =

K1

yκ1

(
1− J0

2

2 (1 + 2κ1) y2
K̃2(y)

)
; κ1 ≡

1

2
+

√
1

4
+ m̂W

2

J(y) = J0 +
J1

y
J̃1(y) = J0 +

J1

y

(
1 +

J2

yj2
J̃2(y)

)
H(y) = 1 +

H1

y3
H̃1(y) = 1 +

H1

y3

(
1 +

H2

yh2
H̃2(y)

)
(A.1)

where Ãi(0) = 1, ai > 0, etc., for i = 1, 2, . . . . The constants (F1, C1, J0, J1,K1, H1)

are free, all the other ones as well the powers (including those make explicit in (A.1))

are determined by the e.o.m.7 In the isotropic case, K(y) ≡ K1(y) = K2(y), C(y) = 1

7The boundary conditions at the horizon leave just one free parameter (that we take J0) that determines

completely the solution, see section 4.
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(C1 = 0), they are given by,

(a1, A1) =


6 < 2κ1 + 2 , −3

4 α
2H1

2 ; 2 < m̂W
2 <∞

2κ1 + 2 < 6 , − α2 κ12K1
2

2 m̂W
2(1+κ1)

; 0 < m̂W
2 < 2

6 = 2κ1 + 2 , −α2
(

3
4 H1

2 + 1
3 K1

2
)

; m̂W
2 = 2

(j2, J2) =


6 < 2κ1 + 1 , A1

7 ; 15
4 < m̂W

2 <∞
2κ1 + 1 < 6 , K1

2 J0
(2κ1+1) (1+κ1) J1

; 0 < m̂W
2 < 15

4

6 = 2κ1 + 1 , K1
2 J0

21 J1
+ A1

7 ; m̂W
2 = 15

4

(h2, H2) =


3 < 2κ1 − 1 , −F1

2 ; 2 < m̂W
2 <∞

2κ1 − 1 < 3 , K1
2

(2κ1−1) (1+κ1)H1
; 0 < m̂W

2 < 2

3 = 2κ1 − 1 , K1
2

9H1
− F1

2 ; m̂W
2 = 2

(A.2)

while that in the anisotropic case, K(y) ≡ K1(y), K2(y) = 0, they result,

(a1, A1) = (3,−C1) (A.3)

(c2, C2) =


3 < 2κ1 − 1 , −F1−C1

2 ; 2 < m̂W
2 <∞

2κ1 − 1 < 3 , −α2 (1+m̂W
−2 κ12)K1

2

2 (2κ1−1) (1+κ1)C1
; 0 < m̂W

2 < 2

3 = 2κ1 − 1 , −F1−C1
2 − α2K1

2

6C1
; m̂W

2 = 2

(j2, J2) =

(
3,−C1

2

)

(h2, H2) =


3 < 2κ1 − 1 , −F1

2 ; 2 < m̂W
2 <∞

2κ1 − 1 < 3 , K1
2

2 (2κ1−1) (1+κ1)H1
; 0 < m̂W

2 < 2

3 = 2κ1 − 1 , −F1
2 + K1

2

18H1
; m̂W

2 = 2

(A.4)

B AH conventions

In this appendix we write the e.o.m. in the conventions of references [23, 44]. Besides being

often present in literature, they proved to be convenient in some numerical computations.

The ansatz is written as,

g =
L2

u2

(
−f̃(u) s(u)2 dt2 +

dx2

g(u)2
+ g(u)2 dỹ2 +

du2

f̃(u)

)
A = dt J̃(u) X0 + dx K̃1(u) X1 + dỹ K̃2(u) X2

H = H0 H̃(u) X0 . (B.1)

The relation with the conventions used in the bulk of the paper are,

x0 = L t , x1 = Lx , x2 = L ỹ , y =
g(u)

u

c(y) =
1

g(u)2
, f(y) =

f̃(u)

u2
(g(u)− u g′(u))2 , A(y) =

s(u)

g(u)− u g′(u)

J(y) = J̃(u) , K1(y) = K1(u) , K2(y) = K̃2(u) , H(y) = H̃(u) . (B.2)
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The gravity e.o.m. result (out the tildes),

f ′(u) =
3

u
(f(u)− 1) + u f(u)

g′(u)2

g(u)2
+

u

g(u)2
(1)

s′(u)

s(u)
= −u g

′(u)2

g(u)2
− u3

g(u)2
y′(u)2 (2)

2
u2 g(u)

f(u) s(u)

(
s(u) f(u)

u2 g(u)
g′(u)

)′
= − 1

f(u) g(u)
(3) (B.3)

where (1), (2), (3) are the r.h.s.’s of (2.7) written in the variables (B.2), while that the

matter e.o.m. are,

1

g(u)2

(
f(u) s(u) g(u)2K ′1(u)

)′
=

(
s(u)

g(u)2
K2(u)2+m̂W

2 s(u)H(u)2

u2
− J(u)2

f(u) s(u)

)
K1(u)

1

g(u)2

(
f(u) s(u) g(u)2K ′2(u)

)′
=

(
s(u) g(u)2K1(u)2+m̂W

2 s(u)H(u)2

u2
− J(u)2

f(u) s(u)

)
K2(u)

f(u) s(u)

(
J ′(u)

s(u)

)′
=

(
g(u)2K1(u)2+

K2(y)2

g(u)2

)
J(u)

u2

s(u)

(
f(u) s(u)

u2
H ′(u)

)′
=

(
g(u)2K1(u)2+

K2(y)2

g(u)2
+

λ0

m̂W
2

H(u)2−1

u2

)
H(u) . (B.4)

Finally, the contributions to the free energy density are,

f̂ (bulk) =
α2

2 J0
3

∫ u1

u0

du s(u)

(
6

α2 u4
− λ0

2u4

(
H(u)2 − 1

)2
+
f(u)

g(u)2

(
g(u)4K ′1(u)2 +K ′2(u)2

)
+K1(u)2K2(u)2

− J ′(u)2

s(u)2
− J(u)2

f(u) s(u)2 g(u)2

(
g(u)4K1(y)2 +K2(y)2

))
f̂ (GH) =

α2

2 J0
3

2

α2
u f(u)

1
2

(
f(u)

1
2 s(u)

u3

)′
|u0

f̂ (ct) =
α2

2 J0
3

4

α2

(
f(u)

1
2 s(u)

u3

)
|u0 . (B.5)
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