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1 Introduction

In the summer of 2012 the Higgs boson was discovered [1, 2], and with the measurement of

its mass the issue of vacuum stability gained a lot of attention. State of the art computa-

tions show that the SM vacuum is metastable — it is not a global minimum of the potential

but its lifetime is extremely long [3–6]. However, this is not the final answer to the question

of vacuum stability because the SM does not describe all phenomena that we know, and

some beyond SM (BSM) theories are necessary. New BSM interactions can modify vacuum

structure of the potential and change the lifetime of the EWSB vacuum [7–11].1

Well studied extensions of the SM are two-Higgs-doublet models (2HDM). The

IDM [14–16] is a special Z2-symmetric 2HDM providing a viable candidate for the DM par-

ticle [17–21]. Moreover, in its spectrum it has a SM-like Higgs boson which is in agreement

with recent experimental data [22–26]. In the present paper we study how the additional

scalars affect the vacuum structure of the effective potential of the IDM.

To study stability of a vacuum state one normally starts from requiring the (effective)

potential to be bounded from below (positivity conditions). The common way of achieving

this at the one-loop level is to check the tree-level positivity conditions with running cou-

plings inserted. In presence of additional scalars the running Higgs self-coupling receives

additional positive contribution, which helps to stabilise the potential. It has been shown

1In principle also gravity may affect vacuum stability, for some attempts to include gravitational effects

see refs. [12, 13].
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that indeed in the IDM the potential is stable up to higher energy scales than the SM

potential [25, 27]. This is, however, not enough for stability of the EWSB vacuum since

the additional scalars can modify the structure of the effective potential introducing new

minima, potentially deeper than the EWSB minimum. The aim of the present article is to

examine the structure of the potential and stability of the vacuum state around the EW

scale in the presence of inert scalars. We will show that the potential can be significantly

modified, and the EWSB minimum can be rendered meta- or unstable.

The paper is organised as follows. In section 2 the model is briefly introduced. Section 3

explains our use of the effective potential, and in section 4 the computation of the lifetime

of the vacuum is described. The results of the paper are presented in section 5. Section 6

summarises the conclusions.

2 IDM at tree level

The IDM is a special version of 2HDM [14–16]. The most attractive feature of the IDM

is that it provides a viable DM candidate which can account for the observed relic density

of DM in agreement with direct detection constraints [17–21, 24, 28]. Moreover, within

the model thermal evolution of the Universe [20, 29, 30] and strong electroweak phase

transition [31–34] can be studied. With a slight extension of the model, neutrino masses

can be accounted for [26, 35–37]. Moreover, the IDM can be constrained with the use of

accelerator data, such as invisible Higgs decay branching ratios and the diphoton Higgs

decay rate [21–26].

Scalar interactions of two SU(2) doublets in the IDM are given by the following po-

tential

V =− 1

2

[
m2

11(φ†SφS) +m2
22(φ†DφD)

]
+

1

2

[
λ1(φ†SφS)2 + λ2(φ†DφD)2

]
+ λ3(φ†SφS)(φ†DφD) + λ4(φ†SφD)(φ†DφS) +

1

2
λ5

[
(φ†SφD)2 + (φ†DφS)2

]
. (2.1)

The potential is symmetric under two Z2 transformations, D : φD → −φD, φS → φS and

S : φS → −φS , φD → φD, the SM fields are assumed not to change under these transfor-

mations. We choose D as a symmetry of our model. To preserve it Yukawa interactions are

set to type I (i.e. only the φS doublet couples to fermions), and at tree level a D-symmetric

vacuum state is considered

〈φS〉 =
1√
2

(
0

v

)
, 〈φD〉 =

(
0

0

)
. (2.2)

This way the whole model is D-invariant, and D parity is a conserved quantum number.

The φS and φD doublets can be decomposed around the vacuum state in the following

way

φS =
1√
2

( √
2G+

v + h+ iG

)
, φD =

1√
2

( √
2H+

H + iA

)
,
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where all the fields are mass eigenstates, G and G± are pseudo-Goldstone bosons, and h is

the Higgs boson. The tree-level masses of the physical particles read

M2
h = −1

2
m2

11 +
3

2
λ1v

2 = λ1v
2 = m2

11,

M2
H± =

1

2
(−m2

22 + λ3v
2),

M2
A =

1

2
(−m2

22 + λ−345v
2), (2.3)

M2
H =

1

2
(−m2

22 + λ345v
2),

where v2 = m2
11/λ1, λ345 = λ3 + λ4 + λ5, and λ−345 = λ3 + λ4 − λ5.

Here we use the value of v = 250.6 GeV. A common way to compute v is to use

its relation to the Fermi constant v2 = 1√
2GF

, which gives the value v = 246.2 GeV.

However, in our computations we needed exact cancelation between terms coming from the

Coleman-Weinberg (CW) potential, and from the on-shell (OS) renormalisation procedure

(see section 3). In the latter, the tree-level masses of W and Z appear, and thus taking their

measured values from Particle Data Group [38] (MW = 80.385 GeV, MZ = 91.1876 GeV),

and the fine structure constant α = 1/137 as input we have to compute v using the tree-level

relation with these quantities, namely

v =
2MW√

4πα

√
1−

(
MW

MZ

)2

≈ 250.6 GeV.

The h particle is a SM-like Higgs boson so we fix its mass to 125 GeV [39]. It has

all tree-level couplings to fundamental fermions and gauge bosons equal to the respective

couplings in the SM. The D-odd particles A,H,H± are jointly referred to as dark or inert

scalars, as they do not couple to fermions at tree level. In contrast, they do interact with

gauge bosons through the covariant derivative. They always appear in pairs in interaction

vertices due to conservation of D parity.

The lightest neutral D-odd particle, H or A, is stable and thus can play a role of the

DM particle. The two options are exactly equivalent, they differ just by the sign of the

λ5 parameter. Here we choose H as the DM candidate, and thus partially fix the mass

hierarchy: MH < MA,MH± . This implies that λ5 < 0, and λ4 + λ5 < 0. In the light of

current experimental constraints, there are two ranges of masses of DM with correct relic

density: MH .MW and MH & 500 GeV [17, 19, 21, 24, 28].

To parametrize IDM one can use the parameters appearing in the Lagrangian, i.e.

λ1, . . . , λ5,m
2
22 (m2

11 is fixed by eq. (2.3)). Alternatively, physical parameters can be used,

e.g. λ2, λ345, MH , MA, MH± . In the following analysis we will employ the latter. The two
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sets of parameters are related as follows

λ1 =
M2
h

v2
,

λ3 =
2

v2

(
M2
H± −M2

H

)
+ λ345,

λ4 =
1

v2

(
M2
H +M2

A − 2M2
H±
)
,

λ5 =
1

v2

(
M2
H −M2

A

)
,

m2
22 = −2M2

H + λ345v
2.

The λ2 parameter in general is very hard to constrain since it is the quartic coupling

between the dark scalars.2 On the other hand, λ345 is proportional to the coupling be-

tween DM particles and the h boson so it significantly influences relic density of the DM,

DM-nucleon scattering cross-section, and also invisible decays of the Higgs boson to the

DM particles.

3 Effective potential

A vacuum state is a ground state of a theory, i.e. a state of the lowest energy. A stable

vacuum state should correspond to a global minimum of the potential. A state which is a

local minimum can decay (tunnel) to the global minimum, and thus is not absolutely stable.

However, if it has sufficiently long lifetime (longer than the age of the Universe) it can also

play a role of the ground state. Such configurations will be referred to as metastable vacua.

An unstable minimum (with lifetime shorter than the age of the Universe) cannot constitute

a present vacuum state because it would have already decayed — such configurations will

be called unstable vacua.

To examine the vacuum structure of a model we need to analyse the effective poten-

tial [40]. Study of vacuum stability in models with more scalar fields is a complex task

as the effective potential becomes a function of multiple variables, and new minima can

appear along various directions (see e.g. analysis in refs. [32, 41]).3 To avoid this problem

but still study the impact of the presence of additional scalars on vacuum stability, we

employ a simplified approach. Our assumption is that the dark scalars cannot be observed

in the final/initial states, i.e. they are integrated out. Because of this approach, we focus

on the heavy DM regime, where MH & 500 GeV. In this way, in the effective potential

computation we only consider one classical field on external legs of the diagrams, and the

effective potential is a function of only one variable. Nonetheless, loop corrections from the

inert scalars are included in the one-loop renormalisation process, and their contributions

to the Coleman-Weinberg (CW) [40] potential are taken into account. We will show that

the impact of the new heavy scalars on vacuum structure can be significant.

2Some tree-level constraints come from the stability of the inert vacuum, see [20].
3In the IDM even at tree level minima with different vacuum expectation values can coexist [29]. Sim-

ilarly, in the general 2HDM simultaneous tree-level minima can occur [42, 43]. Here we focus on the loop

effects.
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The one-loop effective potential is given by

V
(1)

eff = V
(0)

eff + δVCW + δV + const. (3.1)

V
(0)

eff denotes the tree-level effective potential

V
(0)

eff = −1

4
m2

11ϕ
2 +

1

8
λ1ϕ

4, (3.2)

where ϕ is a real classical field. δVCW stands for the CW potential, and δV is the coun-

terterm potential. A constant that shifts the potential to get limϕ→0 V (ϕ) = 0 is explicitly

singled out.

The CW contribution coming from the Higgs boson, Goldstone bosons, fermions (we

include top and bottom quarks as the heaviest ones), gauge bosons, and inert scalars,

computed in dimensional regularisation (D = 4− ε) reads

δVCW =
∑
i

fi
64π2

Mi(ϕ)4

[
−2

ε
+ γE − Ci + log

(
Mi(ϕ)2

4πµ2

)]
, (3.3)

where i runs over particle species, and fi depends on the spin, electric and colour charge

of a particle (fh = fH = fG = fA = 1, fG± = fH± = 2, ft = fb = −12, fW± = 6, fZ = 3),

and Ci = 3
2 for all of the particles, except the gauge bosons, for which CW± = CZ = 5

6 .

For the physical particles the field dependent masses Mi(ϕ) are obtained by substituting ϕ

instead of v in the tree-level formulas for masses. The tree-level masses of the scalars are

given in eq. (2.3), for gauge bosons and fermions they read

MW =
gv

2
, MZ =

√
g2 + g′2

2
v, Mf =

yfv√
2
.

The field dependent masses of the Goldstones are as follows

M2
G = M2

G± = −1

2
m2

11 +
1

2
λ1ϕ

2,

which of course vanish for ϕ = v. For ϕ < v the field-dependent masses of the Goldstone

bosons become negative, and the effective potential acquires an imaginary part. Recently

it has been shown that the problematic Goldstone contributions can be consistently re-

summed, and this way the imaginary part can be removed [44, 45]. Furthermore, it has

been demonstrated that this resummation procedure has little numerical impact on the

results, thus we simply ignore the imaginary contributions from the Goldstones.

The counterterm potential δV is obtained after the shift in the parameters of the

potential m2
11 → m2

11 + δm2
11, λ1 → λ1 + δλ1, ϕ2 → (1 + δZ)ϕ2 is performed,

δV = −1

4

(
m2

11δZ + δm2
11

)
ϕ2 +

1

4

(
λ1δZ +

1

2
δλ1

)
ϕ4.

The counterterms are defined in the on-shell renormalisation scheme. We require that the

one-loop tadpole of h is cancelled — this way the tree-level value of v is preserved at the

one-loop level, and that the Higgs propagator has a pole at Mh with a residue equal to i

– 5 –
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(we follow ref. [32]). This gives δV in terms of the Higgs self-energy (evaluated at M2
h),

Σ(M2
h), its derivative with respect to momentum, Σ′(M2

h), and the tadpole, T ,

δV =
1

4

[
Σ(M2

h)−M2
hΣ′(M2

h)− 3T
v

]
ϕ2 − 1

8v2

[
Σ(M2

h)−M2
hΣ′(M2

h)− T
v

]
ϕ4.

The expressions for Σ and T are given in the appendix A. In the counterterms there is

another source of imaginary part of the effective potential — the loops containing the b

quark. This complexity signals instability of the Higgs boson, and we can simply take into

account only the real part of the potential [46].

The infinities present in δV exactly cancel the 2
ε terms in δVCW, together with γE −

log(4πµ2). Thus the final potential is finite and µ-independent.

4 Lifetime of the vacuum

As we will show in the following, in the IDM with heavy inert scalars EWSB minimum

is not necessarily the global one. To assess whether such a state can play a role of a

metastable vacuum state we have to compute its lifetime, and check whether it is longer

than the age of the Universe. In the computation of the vacuum lifetime we follow the

seminal papers [47, 48], and the more recent ones [7–10].

To determine the lifetime of vacuum we have to find a classical trajectory, the so-called

bounce solution, ϕB, which satisfies the following equation (in the O(4)-symmetric case it

depends only on one variable s =
√
~x2 + x2

4):

ϕ̈+
3

s
ϕ̇ =

∂V
(1)

eff (ϕ)

∂ϕ
, (4.1)

where dot denotes derivative with respect to s. The boundary conditions are: ϕ̇B(0) = 0,

and ϕB(∞) = v. Having this solution, an approximate relative lifetime of the vacuum τ is

given by (in the units of the age of the Universe TU )

τ =
eSE

ϕ4
0T

4
U

. (4.2)

The formula above is an approximation since quantum fluctuations around the bounce

solution in the exponential prefactor have been replaced by another dimensionful quantity,

ϕ0 = ϕB(0), see refs. [9, 10]. This approximation has been shown [9] to give a good

estimation of the tunnelling time. The quantity SE , the Euclidean action on the bounce

solution ϕB, is given by

SE = 2π2

∫
dss3

[
1

2
ϕ̇2
B(s) + V

(1)
eff (ϕB(s))

]
. (4.3)

The effective potential is a rather complicated function of the classical field so it is

not possible to solve eq. (4.1) analytically. Therefore, we solve it using the undershoot-

overshoot method.

– 6 –
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Figure 1. Minus effective potential as a function of the classical field ϕ. The bounce solution

corresponds to a classical trajectory of a body sliding (in presence of a friction force) from the slope

on the left with zero initial velocity and stopping on the top of the lower hill on the right at infinite

time s.

Eq. (4.1) can be viewed as an equation describing movement of a body in the potential

−V (1)
eff , in the presence of a friction force (second term of eq. (4.1)), and time denoted by

s; see figure 1 for an exemplary shape of −V (1)
eff (ϕ). A bounce solution corresponds to a

classical trajectory of a body sliding down from the slope of the higher hill (corresponding

to the deeper minimum of V
(1)

eff ) with initial velocity ϕ̇ equal zero, and stopping at the

lower hill at infinite time s.4 The task is to find appropriate starting point: if we start to

close to the peak of the bigger hill we will overshoot and the body will not stop on the

other hill. If we start too far, it will not reach the top. Somewhere in between lies the

correct starting point. Knowing that, we look for it using the bisection method, and solve

eq. (4.1) numerically.

5 Results

5.1 Effective potential and lifetime of the vacuum

To evaluate the impact of the heavy inert scalars on vacuum stability we analyse the struc-

ture of the effective potential of the IDM around the EW scale. For this general discussion

we fix the mass of the DM candidate to 550 GeV and λ345 = −0.1, as suggested by DM data

(see e.g. ref. [23]). The A and H± particles are assumed to be degenerate, with common

mass M . In figure 2 the OS effective potential for the IDM with different values of M is

shown. The solid line represents the SM case (similar results were presented in ref. [32]).

Figure 2 shows that for lighter inert scalars the effective potential of the IDM is very

close to the SM one. While the common mass M of A and H± is increased (while MH

4For the computation of the tunnelling time we shift the potential such that it is equal zero at ϕ = v,

not at ϕ = 0. Thanks to that the integrand in eq. (4.3) converges to zero for s→∞. If the vacuum energy

is identified with a source of the cosmological constant, indeed it has to be very small to reproduce the

observations.
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Figure 2. The 1-loop OS effective potential for the IDM with heavy inert scalars integrated out. In

this plot MH = 550 GeV, λ345 = −0.1, and A and H± are assumed to be degenerate, with mass M .

is fixed), the maximum at ϕ = 0 turns to a minimum, and a maximum for 0 < ϕ < v

appears. Then, the minimum at ϕ = v becomes a local minimum of the potential, and thus

to constitute a metastable vacuum state for our model it must have long enough lifetime.

It might be surprising that the heavier the A and H± scalars are, the bigger the

deviation from the SM scenario is. This is because the mass of H is fixed here, and

increasing the splitting between M and MH , we increase the couplings and enter a non-

decoupling regime. For M and MH being close (and heavy) we are in the decoupling

regime, and no significant deviation from the SM is observed.

To check whether the local minima can constitute metastable vacuum states we com-

puted their lifetimes. We underline that we are interested here in lifetimes with respect to

the tunnelling to the EW symmetric minimum, we do not consider tunnelling to a possi-

ble minimum at very high field values. In the cases with M = 750, 800 GeV the EWSB

minima are stable, their energy is lower than the energy of the EW symmetric minimum.

For M = 850 GeV the tunnelling can occur but the lifetime of the EWSB vacuum is very

long, log10 τ ≈ 434 (where τ is the lifetime of the vacuum with respect to the age of the

Universe). For the cases with M = 900, 950, 1000 GeV EWSB minima are highly un-

stable, their lifetimes are log10 τ ≈ −129,−164,−171, respectively. Thus they cannot be

considered as ground states for the IDM.

This shows that additional scalars can have a striking impact on the stability of vac-

uum. Although the additional heavy scalars may improve the behaviour of running Higgs

self-coupling at large field values [25, 27], they can destabilise the vacuum due to EW-scale

effects. We demonstrated this effect for the IDM with heavy dark scalars, but one can

expect similar behaviour in other models with extra scalar fields.

As was mentioned above, the interesting case of unstable EWSB minimum corresponds

to relatively large splitting between M and MH . This suggests that “large” values of the λi
parameters are required. How large? For the presented cases we checked the perturbative

unitarity conditions, which constrain the parameters λi. In the scenarios with M up to

– 8 –
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Figure 3. log M2(ϕ)
M2 as a function of ϕ. Different styles of the curves correspond to different values

of M . The horizontal black line corresponds to log
M2

H(ϕ)

M2
H

.

900 GeV the conditions are fulfilled, and starting from M = 950 GeV they are violated. So

parameters λi required for the meta- or unstable scenarios are rather big but still within

the allowed region. In the section 5.3 we confront the bounds coming from requirement

of stability with other theoretical and experimental constraints in more detail to check

whether meta- or instability scenarios can occur within viable parameter space of the

IDM. But before that, in section 5.2 we study validity of the perturbative expansion of the

effective potential.

5.2 Validity of the perturbative expansion

One may ask whether the one-loop approximation of the effective potential used in this work

is valid. In the OS scheme the terms of the form log µ, where µ is the renormalisation scale,

cancel out between the counterterm potential and the CW contribution. As a consequence,

the logarithmic terms are of the form log M2(ϕ)
M2 , where M2 is the physical mass of a particle,

and M2(ϕ) is its field dependent mass. Therefore there is no freedom of adjusting µ to

make the logarithms small.

The behaviour of the logarithms log M2(ϕ)
M2 for the cases analysed above (MH =

550 GeV, λ345 = −0.1, MA = MH± = M) is shown in figure 3. Different styles of the

curves correspond to different values of M (the colour coding is the same as in figure 2).

The horizontal black line corresponds to log
M2

H(ϕ)

M2
H

.

It can be seen from the plot that log
M2

H(ϕ)

M2
H

is small for the whole range of ϕ. The

absolute value of the other logarithm, log M2(ϕ)
M2 , for M 6 900 GeV is less then 1 which is

required for the perturbative expansion of the effective potential to be valid. For the cases

with M = 950, 1000 GeV the logarithm becomes larger around ϕ = 0. This could suggest

breakdown of perturbative expansion, however these two cases are already excluded by

perturbative unitarity, as was shown above.

– 9 –
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One should note, that the most important point, from the perspective of this analysis,

is the point ϕ = v. And at this point all the logarithms vanish, and are small around. This

means that the perturbative expansion of the effective potential should be trustworthy

around the electroweak minimum. Since the CW contribution vanishes around ϕ = v, the

shift in the value of the potential at this point, that can be seen in figure 2, is due to the

counterterms, and the shift fixing V
(1)

eff (0) = 0.

Another thing that should be taken into account is that the expansion of the effective

potential is not in terms of the logarithms only, but rather in some coupling α times the

logarithm. So the quantity α
4π log M2(ϕ)

M2 should be small (see e.g. [41, 49]). It is however not

so straightforward in the case of scalars to define α, since the scalar contributions to the CW

potential are not linear in ϕ4 (in contrast to the fermionic or gauge-boson contributions).

Therefore we consider separately perturbativity of the couplings in section 5.3 (in terms

of perturbative unitarity). Admittedly, the couplings get rather large (within the allowed

region) in the interesting cases, but as explained above, it is hard to draw final conclusions

from that fact.

The standard way of improving the validity of the effective potential is using the RGEs

to resum the large logarithms. However, here the source of rather big logarithms is the

splitting of the scales related to masses of different particles, and therefore RGEs should

not improve the situation. Thus, only a two-loop calculation could definitely show whether

the one-loop potential can be trusted in the range where the logarithms become large.

However, the two-loop computation is beyond the scope of this paper.

5.3 Parameter space constraints

Among the relevant constraints for the IDM are

Perturbative unitarity. We will assume that the eigenvalues of the scattering matrix Λi

fulfil |Λi| 6 8π (see e.g. ref. [50]). The allowed region in the parameter space depends

on the value of λ2 which is otherwise not present in our computations. The bigger

the value of λ2, the larger the excluded part of parameter space. Therefore in this

analysis we fix λ2 to a small value, λ2 = 0.01.

Electroweak precision tests (EWPT). We use the S and T values from the Gfitter

group, ref. [51], with U fixed to 0 (the reference value of Mh is 125 GeV),

T = 0.10± 0.07,

S = 0.06± 0.09,

with the correlation between the parameters equal to 0.91. We implement the con-

straints at 2σ level. The formulas for S and T in the IDM can be found for example

in ref. [50] (see also references therein). It is important to note that the constraints

come mainly from the T parameter, as S is naturally small. In the case of degenerate

A and H± parameter T vanishes, so the electroweak measurements do not constrain

this scenario.
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Figure 4. Stability/metastability/instability regions for the case with λ345 = −0.2, and MA =

MH± = M (left panel) or MA = MH + 1 GeV (right panel). The solid line denotes the boundary

between stable and metastable vacua, the dashed line is the boundary between the metastable and

unstable region. The dark shaded region is excluded by unitarity, and the light shaded region is

excluded by EWPT. EWPT do not constrain the case with MA = MH± .

Relic density of DM. The current constraints from the Planck experiment give [52]

0.1118 < ΩDMh
2 < 0.1280 (at 3σ). (5.1)

This constrains the parameters of the IDM, see refs. [17–21, 23]. Below we will not

perform a scan of the parameter space with the constraint (5.1) but we will comment

on the consistency of our results and the relic density constraints.

The constraints coming from LEP measurements are important for lighter inert scalars

(masses below O(100 GeV)) so we do not consider them here.

We will start from analysing the case with degenerate A and H±, as was described in

the previous section. We will examine the regions in the (MH , M) plane where the EWSB

minimum is stable/metastable/unstable, and confront them with other constraints. We

underline that we do not consider the behaviour of the potential at large field values here,

we are only interested in the stability around the EW scale.

The results can be seen in figure 4 (left panel), the solid line represents the region

where V
(1)

eff (v) = 0, i.e. the boundary between stability and metastability region. Along the

dashed line τ = 1 (in the units of TU ) so it is the boundary between the metastable and

unstable vacua. The shaded region is excluded by perturbative unitarity. Since MA = MH±

the EWPT do not introduce new constraints. The parameter λ345 is fixed to −0.2. We

checked that changing λ345 within the range that is favoured by the relic density constraints

(−0.3 . λ345 . 0.3) [53] changes the picture only slightly.

It is clear from figure 4 that meta- and unstable scenarios are in agreement with

unitarity constraints5 and EWPT, as was discussed before. However, for an unstable

5If rather big values of λ2 were considered, the meta- and unstable scenarios could be excluded by

unitarity.
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vacuum to appear, the splitting between MH and M has to be large, at the level of

300 GeV. This cannot be reconciled with the relic density constraints — the heavy DM

needs coannihilation with other scalars to develop the correct relic density and the mass

splitting among dark scalars must be small [54].

Let us then consider a case where H and A are quasi-degenerate (we assume MA =

MH + 1 GeV) to allow for coannihilation processes. Figure 4 (right panel) shows the

boundaries between regions with vacua of different properties, the coding is the same as

in the left panel. Once more we fix λ345 = −0.2, and small changes in λ345 do not alter

the picture significantly. In this case we have to take into account the EWPT constraints.

The light shaded region is excluded by constraints on S and T (it overlaps with the region

excluded by unitarity). Unitarity and EWPT exclude the scenarios where metastability or

instability can occur.

Therefore we conclude that the metastability or instability scenarios within the IDM

with heavy scalars cannot be reconciled with theoretical and experimental constraints.

6 Conclusions

In this work we analysed the impact of new scalar particles on the structure of effective

potential of the IDM around the EW scale.

We showed that the new scalars can have a striking effect on the effective potential.

They can turn the maximum of the effective potential at ϕ = 0 into a minimum, and

moreover change the energy of the EWSB minimum in such a way that it becomes only

a local one. This gives rise to unstable or metastable EWSB minimum, and the source of

instability is around the EW scale. Our analysis was performed for the IDM but similar

effects may be observed in other extensions of the SM. This shows that it is not enough

to consider the behaviour of the effective potential or running coupling constants at large

field values. Introduction of new fields can modify the effective potential at low energies

and one has to check what effect such modifications have on vacuum stability.

For the particular case of the IDM we checked that the metastability/instability sce-

nario is not a threat since the region where it is realised cannot be reconciled with per-

turbative unitarity, EWPT and the DM relic abundance measurements by the Planck

experiment.

Note added. At the final stage of preparation of this manuscript ref. [55] appeared in

which vacuum stability in the IDM is analysed. In contrast to our work, the focus of this

paper is on the high-scale vacuum stability. In ref. [55] it was confirmed that additional

scalars improve the running of Higgs self-coupling and it was shown that even if a new

minimum is formed at large energy scales, the lifetime of the vacuum is longer than in

the SM.
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A Self-energy and tadpole of the Higgs boson in the IDM

The Higgs boson self-energy and the tadpole were computed using dimensional regulari-

sation and can be expressed in terms of basic Passarino-Veltman integrals [56], defined as

follows

a(m) =

∫
dDk

(2π)D
iµε

k2 −m2 + iε

b0(p2,m1,m2) =

∫
dDk

(2π)D
iµε

(k2 −m2
1 + iε)

[
(p− k)2 −m2

2 + iε
]

Using the standard Feynman parametrisation, and expansion in ε, the functions can be

evaluated, up to terms vanishing for ε→ 0 as

a(m) = − m2

(4π)2

(
2

ε
− γE + log(4πµ2)− logm2 + 1

)
b0(p2,m1,m2) = − 1

(4π)2

(
2

ε
− γE + log(4πµ2)−

∫ 1

0
dx log ∆

)
,

where ∆ = −x(1− x)p2 + xm2
1 + (1− x)m2

2.

We also introduce a non-standard ab and bb0 functions, which will be useful for the

bosonic loops

3ab(m) = (D − 1)a(m) = − 3m2

(4π)2

(
2

ε
− γE + log(4πµ2)− logm2 +

1

3

)
4bb0(p2,m1,m2) = Db0(p2,m1,m2) = − 4

(4π)2

(
2

ε
− γE + log(4πµ2)−

∫ 1

0
dx log ∆− 1

2

)
.

They differ from the original ones only by the finite part.6

The Higgs tadpole in the IDM is given by

−iT =− i
[

3

2
λ1a(Mh) +

3

2
g2ab(MW ) +

3

4
(g2 + g′2)ab(MZ)− 6y2

t a(Mt)− 6y2
ba(Mb)

+ λ3a(MH±) +
1

2
λ345a(MH) +

1

2
λ−345a(MA)

]
v.

6These functions would not appear if we used dimensional reduction (DRED) instead of dimensional

regularisation (DREG).
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The Higgs self-energy is given by

Σ(p2) =
g2

4M2
W

[
16M4

W b
b
0(p2,MW ,MW ) +

(
p4 − 4p2M2

W − 4M4
W

)
b0(p2,MW ,MW )

]
+
g2 + g′2

8M2
Z

[
16M4

Zb
b
0(p2,MZ ,MZ) +

(
p4 − 4p2M2

Z − 4M4
Z

)
b0(p2,MZ ,MZ)

]
+ b0(p2, 0, 0)

(
− g2

4M2
W

p4 − g2 + g′2

8M2
Z

p4 +
3

8

g2M4
h

M2
W

)
− g2p2

2M2
W

a(MW ) +
3g2

2
ab(MW )− (g2 + g′2)p2

4M2
Z

a(MZ) +
3(g2 + g′2)

4
ab(MZ)

+
9

8
g2 M

4
h

M2
W

b0(p2,Mh,Mh) +
3

8
g2 M

2
h

M2
W

a(Mh)

− 3g2

2M2
W

M2
t

[
2a(Mt) + (−p2 + 4M2

t )b0(p2,Mt,Mt)
]

− 3g2

2M2
W

M2
b

[
2a(Mb) + (−p2 + 4M2

b )b0(p2,Mb,Mb)
]

+ λ3a(MH±) +
1

2
λ345a(MH) +

1

2
λ−345a(MA)

+(λ3v)2b0(p2,MH± ,MH±)+
1

2
(λ345v)2b0(p2,MH ,MH)+

1

2
(λ−345v)2b0(p2,MA,MA).
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[50] B. Świeżewska, Yukawa independent constraints for two-Higgs-doublet models with a 125 GeV

Higgs boson, Phys. Rev. D 88 (2013) 055027 [arXiv:1209.5725] [INSPIRE].

[51] Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and

prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792]

[INSPIRE].

[52] Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological

parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

[53] M. Krawczyk, D. Soko lowska, P. Swaczyna and B. Świeżewska, Higgs → γγ, Zγ in the Inert
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